Ice Sheet System Model  4.18
Code documentation
Metric.cpp
Go to the documentation of this file.
1 #include <cstdio>
2 #include <string.h>
3 #include <cmath>
4 
5 #include "Metric.h"
6 #include "../shared/shared.h"
7 
8 using namespace std;
9 
10 namespace bamg {
11 
13 
14  /*Constructor/Destructor*/
15  Metric::Metric(double a){/*{{{*/
16 
17  /*Isotropic metric for a length of a as unit*/
18  this->a11 = 1./(a*a);
19  this->a21 = 0.;
20  this->a22 = 1./(a*a);
21 
22  }/*}}}*/
23  Metric::Metric(double a11_in,double a21_in,double a22_in){/*{{{*/
24 
25  this->a11 = a11_in;
26  this->a21 = a21_in;
27  this->a22 = a22_in;
28 
29  }/*}}}*/
30  Metric::Metric(const double a[3],const Metric m0,const Metric m1,const Metric m2 ){/*{{{*/
31 
32  /*Create metric using 3 inputs*/
33  Metric mab(a[0]*m0.a11 + a[1]*m1.a11 + a[2]*m2.a11,
34  a[0]*m0.a21 + a[1]*m1.a21 + a[2]*m2.a21,
35  a[0]*m0.a22 + a[1]*m1.a22 + a[2]*m2.a22);
36 
37  /*Convert to eigen metric*/
38  EigenMetric vab(mab);
39  double v1x = + vab.vx;
40  double v1y = + vab.vy;
41  double v2x = - vab.vy;
42  double v2y = + vab.vx;
43 
44  double h1=a[0] / m0.Length(v1x,v1y) + a[1] / m1.Length(v1x,v1y) + a[2] / m2.Length(v1x,v1y);
45  double h2=a[0] / m0.Length(v2x,v2y) + a[1] / m1.Length(v2x,v2y) + a[2] / m2.Length(v2x,v2y);
46 
47  vab.lambda1 = 1. / (h1*h1);
48  vab.lambda2 = 1. / (h2*h2);
49 
50  /*Build metric from vab*/
51  double v00=vab.vx*vab.vx;
52  double v11=vab.vy*vab.vy;
53  double v01=vab.vx*vab.vy;
54  this->a11=v00*vab.lambda1+v11*vab.lambda2;
55  this->a21=v01*(vab.lambda1-vab.lambda2);
56  this->a22=v00*vab.lambda2+v11*vab.lambda1;
57 
58  } /*}}}*/
59  Metric::Metric(double a,const Metric ma,double b,const Metric mb) { /*{{{*/
60 
61  /*Compute metric (linear combination of ma and mb)*/
62  Metric mab(a*ma.a11+b*mb.a11,a*ma.a21+b*mb.a21,a*ma.a22+b*mb.a22);
63 
64  /*Get Eigen values and vectors*/
65  EigenMetric vab(mab);
66  double v1x = + vab.vx;
67  double v1y = + vab.vy;
68  double v2x = - vab.vy;
69  double v2y = + vab.vx;
70 
71  /*Modify eigen values (a+b=1)*/
72  double h1 = a/ma.Length(v1x,v1y) + b/mb.Length(v1x,v1y);
73  double h2 = a/ma.Length(v2x,v2y) + b/mb.Length(v2x,v2y);
74  vab.lambda1 = 1./(h1*h1);
75  vab.lambda2 = 1./(h2*h2);
76 
77  /*Build metric from vab*/
78  double v00=vab.vx*vab.vx;
79  double v11=vab.vy*vab.vy;
80  double v01=vab.vx*vab.vy;
81  this->a11=v00*vab.lambda1+v11*vab.lambda2;
82  this->a21=v01*(vab.lambda1-vab.lambda2);
83  this->a22=v00*vab.lambda2+v11*vab.lambda1;
84  }
85  /*}}}*/
86 
87  /*Methods*/
88  double Metric::det() const {/*{{{*/
89  return a11*a22-a21*a21;
90  } /*}}}*/
91  void Metric::Echo(void){/*{{{*/
92 
93  _printf_("Metric:\n");
94  _printf_(" [a11 a21 a22]: [" << a11 << " " << a21 << " " << a22 << "]\n");
95 
96  return;
97  }
98  /*}}}*/
99  int Metric::IntersectWith(const Metric& M2) {/*{{{*/
100  /*Original code from Frederic Hecht <hecht@ann.jussieu.fr> (BAMG v1.01, Metric.cpp/IntersectWith)*/
101 
102  /*Get a new metric from an existing metric (M1=this)
103  * and a new metric given in input M2 using a
104  * Simultaneous Matrix Reduction:
105  * If M1 and M2 are 2 metrics, we must build N=M1^-1 M2 (Alauzet2003 p16)
106  * the eigen vectors of N form a matrix P
107  * The new metric M = M1 inter M2 is then given by:
108  *
109  * -T [ max(lambda1, mu1) 0 ] -1
110  * M = P [ ] P
111  * [ 0 max(lambda2, mu2)]
112  *
113  * where lambdai and mui can be computed using Rayleigh formula:
114  * lambdai = vi' M1 vi
115  * with vi eigen vectors of N (columns of P)
116  */
117 
118  int change=0;
119  Metric &M1=*this;
120  D2xD2 P;
121 
122  //Get P, eigen vectors of N=inv(M1) M2
123  SimultaneousMatrixReduction(*this,M2,P);
124 
125  //extract the eigen vectors of P (columns)
126  R2 v1(P.x.x,P.y.x);
127  R2 v2(P.x.y,P.y.y);
128 
129  //compute lambdai mui
130  double lambda1=M1(v1,v1);
131  double lambda2=M1(v2,v2);
132  double mu1=M2(v1,v1);
133  double mu2=M2(v2,v2);
134 
135  //check where any change needs to be done on M1
136  if ( lambda1 < mu1 ) change=1,lambda1=mu1;
137  if ( lambda2 < mu2 ) change=1,lambda2=mu2;
138 
139  //update M1 if necessary
140  if (change) {
141  D2xD2 invP(P.inv());
142  D2xD2 D(lambda1,0,0,lambda2);
143  D2xD2 M(invP.t()*D*invP);
144  a11=M.x.x;
145  a21=0.5*(M.x.y+M.y.x);
146  a22=M.y.y;
147  }
148  return change;
149  }
150  /*}}}*/
151  double Metric::Length(double Ax,double Ay) const{/*{{{*/
152  /*Length of A in the current metric*/
153  return sqrt(Ax*Ax*a11+2*Ax*Ay*a21+Ay*Ay*a22);
154  }
155  /*}}}*/
156 
157  /*Intermediary*/
158  double LengthInterpole(const Metric& Ma,const Metric& Mb, R2 AB) {/*{{{*/
159  /*Original code from Frederic Hecht <hecht@ann.jussieu.fr> (BAMG v1.01, Metric.cpp/LengthInterpole)*/
160 
161  double k=1./2.;
162  int level=0;
163  static int kkk=0;
164  static Metric Ms1[32],Ms2[32];
165  static double lMs1[32],lMs2[32];
166  static double K[32];
167  double l=0,sss=0;
168  Ms1[level]=Ma;
169  Ms2[level]=Mb;
170  double sa = Ma.Length(AB.x,AB.y);
171  double sb = Mb.Length(AB.x,AB.y);
172  lMs1[level]=sa;
173  lMs2[level]=sb;
174  K[level]=k;
175  level++;
176  int i=0;
177  double * L= LastMetricInterpole.L, *S = LastMetricInterpole.S;
178  double sstop = 0.1; // Max(0.6,(sa+sb)/5000);
179  while (level) {
180  level--;
181  Metric M1=Ms1[level];
182  Metric M2=Ms2[level];
183  k=K[level];
184  double s1= lMs1[level];
185  double s2= lMs2[level];
186 
187  double s= (s1+s2)*k;
188  if( s > sstop && level < 30 && i < 500-level ) {
189  Metric Mi(0.5,M1,0.5,M2);
190  double si = Mi.Length(AB.x,AB.y);
191  if( Abs((s1+s2)-(si+si)) > s1*0.001)
192  {
193  k=k/2;
194  // we begin by the end to walk in the correct direction from a to b
195  // due to the stack
196  Ms1[level]=Mi;
197  Ms2[level]=M2;
198  lMs1[level]=si;
199  lMs2[level]=s2;
200  K[level]=k;
201  level++;
202  Ms1[level]=M1;
203  Ms2[level]=Mi;
204  lMs1[level]=s1;
205  lMs2[level]=si;
206  K[level]=k;
207  level++;
208  }
209  else
210  L[i]= l += s,S[i]=sss+=k,i++;
211  }
212  else
213  L[i]= l += s,S[i]=sss+=k,i++;
214  }
215  // warning for optimisation S is in [0:0.5] not in [0:1]
216  if (i>=512){
217  _error_("i>=512");
218  }
221  if (i>200 && kkk++<10) _printf_("WARNING: LengthInterpole: ( i=" << i << " l=" << l << " sss=" << sss << " ) " << sstop << "\n");
222  return l;
223  }
224  /*}}}*/
225  void SimultaneousMatrixReduction( Metric M1, Metric M2, D2xD2 &V) {/*{{{*/
226  /*Original code from Frederic Hecht <hecht@ann.jussieu.fr> (BAMG v1.01, Metric.cpp/ReductionSimultanee)*/
227 
228  /*In this routine we must return a matrix V that is composed of the
229  * eigen vectors of N=inv(M1) M2.
230  * Instead of looking at N directly, we are going to use the fact that
231  * M1 and M2 are symmetrical, positive definite.
232  * The eigen values of N are given by solving
233  * inv(M1) M2 V = lambda V
234  * which is equivalent to
235  * M2 V = lambda M1 V
236  * and we will hence solve
237  * (M2 - lambda M1) V = 0
238  */
239 
240  //M1 and M2 components
241  double a11=M1.a11,a21=M1.a21,a22=M1.a22;
242  double b11=M2.a11,b21=M2.a21,b22=M2.a22;
243 
244  /*To get the eigen values, we solve the following problem:
245  * det(M2-lambda M1) = 0
246  * (b11 - lambda a11)(b22-lambda a22) - (b21-lambda a21)^2
247  * and we have the following trinome:
248  * a lambda^2 + b lambda + c =0
249  * with:
250  * a = a11 a22 - a21 a21 (=det(M1))
251  * b = -a11 b22 -b11 a22 + 2 b21 a21
252  * c = b11 b22 - b21 b21 (=det(M2))
253  * */
254  const double a= a11*a22 - a21*a21;
255  const double b=-a11*b22 - b11*a22+2*b21*a21;
256  const double c=-b21*b21 + b11*b22;
257  const double bb=b*b,ac=a*c;
258  const double delta= bb-4*ac;
259 
260  // first, case of a double root if:
261  // - all the terms are very small (a??)
262  // - or : delta is very small
263  if ( (bb + Abs(ac) < 1.0e-34 ) || (delta < 1.0e-6*bb) ){
264  //all vectors are eigen vectors -> choose 1,0 and 0,1
265  V= D2xD2(1,0,0,1);
266  }
267 
268  //general case: two distinct roots: lambda1 and lambda2
269  else {
270 
271  /*Compute eigen values*/
272  const double delta2 = sqrt(delta);
273  double lambda[2];
274  lambda[0]= (-b - delta2)/(2*a);
275  lambda[1]= (-b + delta2)/(2*a);
276 
277  /*compute eigen vectors*/
278  double vp[2][2];
279  double v0,v1,v2;
280  double s0,s1;
281 
282  for(int i=0;i<2;i++){
283  /*Now, one must find the eigen vectors. For that we use the
284  * following property of the inner product
285  * (Ax,b) = transp(b) Ax = transp(x) transp(A) b
286  * = (transp(A) b ,x)
287  * Here we are dealing with A= M2 - lambda M1 which is symmetrical:
288  * for all (x,y) in R2
289  * ((M2 - lambda M1)x,y)=((M2 - lambda M1)y,x)
290  * If y is in Ker(M2 - lambda M1):
291  * for all x in R2
292  * ((M2 - lambda M1)y,x)=0
293  * This shows that:
294  * Ker(M2 - lambda M1) is orthogonal to Im(M2 - lambda M1)
295  * To find the eigen vectors, we only have to find two vectors
296  * of the image and take their perpendicular as long as they are
297  * not 0.
298  * To do that, we take (1,0) and (0,1) and take the larger norm*/
299 
300  //compute V = M2 - lambdai M1
301  v0 = b11 - lambda[i]*a11;
302  v1 = b21 - lambda[i]*a21;
303  v2 = b22 - lambda[i]*a22;
304 
305  // compute s1=norm(V(1,0)) and s0=norm(V(0,1))
306  s0 = v0*v0 + v1*v1;
307  s1 = v1*v1 + v2*v2;
308 
309  //compute vp1 = (vp1x,vp1y)
310  if(s1 < s0){
311  s0=sqrt(s0);
312  vp[0][i]= v1/s0;
313  vp[1][i]= - v0/s0;
314  }
315  else{
316  s1=sqrt(s1);
317  vp[0][i]= v2/s1;
318  vp[1][i]= - v1/s1;
319  }
320  }
321 
322  //compute V from vp
323  V=D2xD2(vp[0][0],vp[0][1],vp[1][0],vp[1][1]);
324  }
325  }
326  /*}}}*/
327  double abscisseInterpole(const Metric& Ma,const Metric& Mb, R2 AB,double s,int optim) { /*{{{*/
328  /*Original code from Frederic Hecht <hecht@ann.jussieu.fr> (BAMG v1.01, Metric.cpp/abscisseInterpole)*/
329 
330  if(!optim) LengthInterpole(Ma,Mb,AB);
331  double l = s* LastMetricInterpole.lab,r;
332  int j=LastMetricInterpole.opt-1;
333 
334  double * L= LastMetricInterpole.L, *S = LastMetricInterpole.S;
335  // warning for optimisation S is the abcisse in [0:0.5]
336  // and L is le lenght
337  if(l<=L[0]){
338  r=2*S[0]*l/L[0];
339  }
340  else if (l>=L[j]){
341  r=1;
342  }
343  else{
344  int i=0;
345  while (j-i>1){
346  int k;
347  k= (i+j)/2;
348  if(l<=L[k]){
349  j=k;// l<=L[j]
350  }
351  else{
352  i=k; // L[i]<l
353  }
354  };
355  if (i==j){
356  r = 2*S[i];
357  }
358  else{
359  r = 2*(S[i]*(L[j]-l)+ S[j]*(l-L[i]))/(L[j]-L[i]);
360  }
361  }
362  if (r>1 || r<0){
363  _error_("r>1 || r<0");
364  }
365  return r ;
366  }
367  /*}}}*/
368 
369 }
bamg::SaveMetricInterpole
Definition: Metric.h:85
bamg::LastMetricInterpole
SaveMetricInterpole LastMetricInterpole
Definition: Metric.cpp:12
_printf_
#define _printf_(StreamArgs)
Definition: Print.h:22
bamg
Definition: AdjacentTriangle.cpp:9
bamg::SimultaneousMatrixReduction
void SimultaneousMatrixReduction(Metric M1, Metric M2, D2xD2 &V)
Definition: Metric.cpp:225
bamg::abscisseInterpole
double abscisseInterpole(const Metric &Ma, const Metric &Mb, R2 AB, double s, int optim)
Definition: Metric.cpp:327
bamg::P2xP2
Definition: R2.h:40
bamg::SaveMetricInterpole::lab
double lab
Definition: Metric.h:90
bamg::SaveMetricInterpole::L
double L[1024]
Definition: Metric.h:91
bamg::EigenMetric::lambda2
double lambda2
Definition: Metric.h:58
Metric.h
bamg::P2xP2::inv
P2xP2< R, RR > inv() const
Definition: R2.h:58
bamg::det
long long det(const I2 &a, const I2 &b, const I2 &c)
Definition: det.h:8
bamg::Metric
Definition: Metric.h:17
bamg::LengthInterpole
double LengthInterpole(const Metric &Ma, const Metric &Mb, R2 AB)
Definition: Metric.cpp:158
bamg::EigenMetric::lambda1
double lambda1
Definition: Metric.h:58
bamg::SaveMetricInterpole::opt
int opt
Definition: Metric.h:89
bamg::Metric::a11
double a11
Definition: Metric.h:22
bamg::EigenMetric::vx
double vx
Definition: Metric.h:59
bamg::P2xP2::t
P2xP2< R, RR > t()
Definition: R2.h:62
bamg::EigenMetric::vy
double vy
Definition: Metric.h:59
bamg::Metric::Length
double Length(double Ax, double Ay) const
Definition: Metric.cpp:151
_error_
#define _error_(StreamArgs)
Definition: exceptions.h:49
bamg::P2::x
R x
Definition: R2.h:15
bamg::EigenMetric
Definition: Metric.h:54
bamg::P2xP2::x
P2< R, RR > x
Definition: R2.h:45
bamg::P2::y
R y
Definition: R2.h:15
bamg::SaveMetricInterpole::S
double S[1024]
Definition: Metric.h:91
bamg::P2< double, double >
bamg::Abs
T Abs(const T &a)
Definition: Abs.h:5
bamg::Metric::a22
double a22
Definition: Metric.h:22
bamg::D2xD2
P2xP2< double, double > D2xD2
Definition: Metric.h:12
bamg::Metric::a21
double a21
Definition: Metric.h:22
bamg::P2xP2::y
P2< R, RR > y
Definition: R2.h:45