Ice Sheet System Model  4.18
Code documentation
R2.h
Go to the documentation of this file.
1 /*Original code from Frederic Hecht <hecht@ann.jussieu.fr> (BAMG v1.01, R2.h)*/
2 #ifndef _R2_H
3 #define _R2_H
4 
5 #include <cstdio>
6 #include "../shared/shared.h"
7 
8 namespace bamg {
9 
10  template <class R,class RR> class P2{
11 
12  public:
13 
14  //fields
15  R x,y;
16 
17  //functions
18  P2 () :x(0),y(0) {};
19  P2 (R a,R b) :x(a),y(b) {}
20  P2 (P2 A,P2 B) : x(B.x-A.x),y(B.y-A.y) {}
21  void Echo() const{
22  printf("Member of P2:\n");
23  std::cout<<" x: "<<x<<std::endl;
24  std::cout<<" y: "<<y<<std::endl;
25  }
26  //operators
27  RR operator,(const P2<R,RR> & cc) const {return (RR) x* (RR) cc.x+(RR) y* (RR) cc.y;} //scalar product
28  P2<R,RR> operator+(const P2<R,RR> & cc) const {return P2<R,RR>(x+cc.x,y+cc.y);}
29  P2<R,RR> operator-(const P2<R,RR> & cc) const {return P2<R,RR>(x-cc.x,y-cc.y);}
30  P2<R,RR> operator-() const{return P2<R,RR>(-x,-y);}
31  P2<R,RR> operator*(R cc) const {return P2<R,RR>(x*cc,y*cc);}
32  P2<R,RR> operator/(R cc) const {return P2<R,RR>(x/cc,y/cc);}
33  P2<R,RR> operator+=(const P2<R,RR> & cc) {x += cc.x;y += cc.y;return *this;}
34  P2<R,RR> operator/=(const R r) {x /= r;y /= r;return *this;}
35  P2<R,RR> operator*=(const R r) {x *= r;y *= r;return *this;}
36  P2<R,RR> operator-=(const P2<R,RR> & cc) {x -= cc.x;y -= cc.y;return *this;}
37 
38  };
39 
40  template <class R,class RR> class P2xP2{
41 
42  public:
43 
44  //fields
46 
47  //functions
48  P2xP2 (): x(),y() {}
49  P2xP2 (P2<R,RR> a,P2<R,RR> b): x(a),y(b) {}
50  P2xP2 (P2<R,RR> a,P2<R,RR> b,P2<R,RR> c ): x(b-a),y(c-a) {}
51  P2xP2 (R xx,R xy,R yx,R yy) :x(xx,xy),y(yx,yy) {}
52  void Echo(){
53  printf("Member of P2xP2:\n");
54  printf(" x.x: %g x.y: %g\n",x.x,x.y);
55  printf(" y.x: %g y.x: %g\n",y.x,y.y);
56  }
57  RR det() const {return (RR) x.x* (RR) y.y - (RR) x.y * (RR) y.x;}
58  P2xP2<R,RR> inv() const{
59  RR d = (*this).det();
60  return P2xP2<R,RR>((R)( y.y /d) ,(R)(-x.y/d),(R)( -y.x/d) ,(R)( x.x/d) );
61  };
62  P2xP2<R,RR> t() {return P2xP2<R,RR>(x.x,y.x,x.y,y.y);} //transposer
63  P2<R,RR> tx() {return P2<R,RR>(x.x,y.x);}
64  P2<R,RR> ty() {return P2<R,RR>(x.y,y.y);}
65  //Operators
66  P2<R,RR> operator*(const P2<R,RR>& c) const {return P2<R,RR>(x.x*c.x + x.y*c.y, y.x*c.x + y.y*c.y);}
68  return P2xP2<R,RR>(x.x*c.x.x + x.y*c.y.x,
69  x.x*c.x.y + x.y*c.y.y,
70  y.x*c.x.x + y.y*c.y.x,
71  y.x*c.x.y + y.y*c.y.y);
72  }
73  };
74 
75  //inline functions
76  template <class R,class RR>
77  inline RR Det(const P2<R,RR> x,const P2<R,RR> y) {
78  return (RR) x.x * (RR) y.y - (RR) x.y * (RR) y.x ;
79  }
80  template <class R,class RR>
81  inline RR Area2 (const P2<R,RR> a,const P2<R,RR> b,const P2<R,RR> c) {
82  return Det(b-a,c-a) ;
83  }
84  template <class R,class RR>
85  inline R Norme1 (const P2<R,RR> x) {
86  return (Abs(x.x)+Abs(x.y)) ;
87  }
88  template <class R,class RR>
89  inline RR Norme2_2 (const P2<R,RR> x) {
90  return (RR)x.x*(RR)x.x + (RR)x.y*(RR)x.y ;
91  }
92  template <class R,class RR>
93  inline RR Norme2 (const P2<R,RR> x) {
94  return sqrt((RR)x.x*(RR)x.x + (RR)x.y*(RR)x.y) ;
95  }
96  template <class R,class RR>
97  inline P2<R,RR> Orthogonal (const P2<R,RR> x) {
98  return P2<R,RR>(-x.y,x.x);
99  }
100 }
101 #endif
bamg::P2::operator+=
P2< R, RR > operator+=(const P2< R, RR > &cc)
Definition: R2.h:33
bamg::P2xP2::P2xP2
P2xP2()
Definition: R2.h:48
bamg::P2::operator,
RR operator,(const P2< R, RR > &cc) const
Definition: R2.h:27
bamg::P2::operator-
P2< R, RR > operator-() const
Definition: R2.h:30
bamg
Definition: AdjacentTriangle.cpp:9
bamg::P2::Echo
void Echo() const
Definition: R2.h:21
bamg::P2::operator-=
P2< R, RR > operator-=(const P2< R, RR > &cc)
Definition: R2.h:36
bamg::P2xP2
Definition: R2.h:40
bamg::P2xP2::P2xP2
P2xP2(P2< R, RR > a, P2< R, RR > b)
Definition: R2.h:49
bamg::P2xP2::Echo
void Echo()
Definition: R2.h:52
bamg::P2::operator/=
P2< R, RR > operator/=(const R r)
Definition: R2.h:34
bamg::P2xP2::operator*
P2< R, RR > operator*(const P2< R, RR > &c) const
Definition: R2.h:66
bamg::P2xP2::inv
P2xP2< R, RR > inv() const
Definition: R2.h:58
bamg::P2::P2
P2()
Definition: R2.h:18
bamg::Area2
RR Area2(const P2< R, RR > a, const P2< R, RR > b, const P2< R, RR > c)
Definition: R2.h:81
bamg::Norme2
RR Norme2(const P2< R, RR > x)
Definition: R2.h:93
bamg::P2::operator*
P2< R, RR > operator*(R cc) const
Definition: R2.h:31
bamg::P2::P2
P2(P2 A, P2 B)
Definition: R2.h:20
bamg::Det
RR Det(const P2< R, RR > x, const P2< R, RR > y)
Definition: R2.h:77
bamg::P2xP2::det
RR det() const
Definition: R2.h:57
bamg::P2xP2::t
P2xP2< R, RR > t()
Definition: R2.h:62
bamg::P2xP2::operator*
P2xP2< R, RR > operator*(P2xP2< R, RR > c) const
Definition: R2.h:67
R
const double R
Definition: Gembx.cpp:30
bamg::P2xP2::P2xP2
P2xP2(R xx, R xy, R yx, R yy)
Definition: R2.h:51
bamg::P2::x
R x
Definition: R2.h:15
bamg::P2::operator/
P2< R, RR > operator/(R cc) const
Definition: R2.h:32
bamg::P2::operator-
P2< R, RR > operator-(const P2< R, RR > &cc) const
Definition: R2.h:29
bamg::P2xP2::x
P2< R, RR > x
Definition: R2.h:45
bamg::Norme2_2
RR Norme2_2(const P2< R, RR > x)
Definition: R2.h:89
bamg::P2xP2::P2xP2
P2xP2(P2< R, RR > a, P2< R, RR > b, P2< R, RR > c)
Definition: R2.h:50
bamg::Orthogonal
P2< R, RR > Orthogonal(const P2< R, RR > x)
Definition: R2.h:97
bamg::P2::y
R y
Definition: R2.h:15
bamg::P2::P2
P2(R a, R b)
Definition: R2.h:19
bamg::P2
Definition: R2.h:10
bamg::Abs
T Abs(const T &a)
Definition: Abs.h:5
bamg::P2xP2::tx
P2< R, RR > tx()
Definition: R2.h:63
bamg::P2::operator+
P2< R, RR > operator+(const P2< R, RR > &cc) const
Definition: R2.h:28
bamg::P2xP2::ty
P2< R, RR > ty()
Definition: R2.h:64
bamg::P2xP2::y
P2< R, RR > y
Definition: R2.h:45
bamg::P2::operator*=
P2< R, RR > operator*=(const R r)
Definition: R2.h:35
bamg::Norme1
R Norme1(const P2< R, RR > x)
Definition: R2.h:85