Ice Sheet System Model  4.18
Code documentation
Public Member Functions | Data Fields | Friends
bamg::EigenMetric Class Reference

#include <Metric.h>

Public Member Functions

 EigenMetric (const Metric &)
 
 EigenMetric (double r1, double r2, const D2 &vp1)
 
void Echo ()
 
void Abs ()
 
void pow (double p)
 
void Min (double a)
 
void Max (double a)
 
void Minh (double h)
 
void Maxh (double h)
 
double hmin () const
 
double hmax () const
 
double lmax () const
 
double lmin () const
 
double Aniso2 () const
 
void BoundAniso2 (const double coef)
 
void operator*= (double coef)
 

Data Fields

double lambda1
 
double lambda2
 
double vx
 
double vy
 

Friends

class Metric
 

Detailed Description

Definition at line 54 of file Metric.h.

Constructor & Destructor Documentation

◆ EigenMetric() [1/2]

bamg::EigenMetric::EigenMetric ( const Metric M)

Definition at line 12 of file EigenMetric.cpp.

12  {/*{{{*/
13  /*From a metric (a11,a21,a22), get eigen values lambda1 and lambda2 and one eigen vector v*/
14 
15  /*Intermediaries*/
16  double a11=M.a11,a21=M.a21,a22=M.a22;
17  double normM;
18  double delta,b;
19 
20  /*To get the eigen values, we must solve the following equation:
21  * | a11 - lambda a21 |
22  * det | | = 0
23  * | a21 a22-lambda |
24  *
25  * We have to solve the following polynom:
26  * lamda^2 + ( -a11 -a22)*lambda + (a11*a22-a21*a21) = 0*/
27 
28  /*Compute polynom determinant*/
29  b=-a11-a22;
30  delta=b*b - 4*(a11*a22-a21*a21);
31 
32  /*Compute norm of M to avoid round off errors*/
33  normM=a11*a11 + a22*a22 + a21*a21;
34 
35  /*1: normM too small: eigen values = 0*/
36  if(normM<1.e-30){
37  lambda1=0;
38  lambda2=0;
39  vx=1;
40  vy=0;
41  }
42  /*2: delta is small -> double root*/
43  else if (delta < 1.e-5*normM){
44  lambda1=-b/2;
45  lambda2=-b/2;
46  vx=1;
47  vy=0;
48  }
49  /*3: general case -> two roots*/
50  else{
51  delta = sqrt(delta);
52  lambda1 = (-b-delta)/2.0;
53  lambda2 = (-b+delta)/2.0;
54 
55  /*Now, one must find the eigen vectors. For that we use the following property of the inner product
56  * <Ax,y> = <x,tAy>
57  * Here, M'(M-lambda*Id) is symmetrical, which gives:
58  * ∀(x,y)∈R²xR² <M'x,y> = <M'y,x>
59  * And we have the following:
60  * if y∈Ker(M'), ∀x∈R² <M'x,y> = <x,M'y> = 0
61  * We have shown that
62  * Im(M') ⊥ Ker(M')
63  *
64  * To find the eigen vectors of M, we only have to find two vectors
65  * of the image of M' and take their perpendicular as long as they are
66  * not 0.
67  * To do that, we take the images (1,0) and (0,1):
68  * x1 = (a11 - lambda) x2 = a21
69  * y1 = a21 y2 = (a22-lambda)
70  *
71  * We take the vector that has the larger norm and take its perpendicular.*/
72 
73  double norm1 = (a11-lambda1)*(a11-lambda1) + a21*a21;
74  double norm2 = a21*a21 + (a22-lambda1)*(a22-lambda1);
75 
76  if (norm2<norm1){
77  norm1=sqrt(norm1);
78  vx = - a21/norm1;
79  vy = (a11-lambda1)/norm1;
80  }
81  else{
82  norm2=sqrt(norm2);
83  vx = - (a22-lambda1)/norm2;
84  vy = a21/norm2;
85  }
86  }
87 
88  }

◆ EigenMetric() [2/2]

bamg::EigenMetric::EigenMetric ( double  r1,
double  r2,
const D2 vp1 
)

Definition at line 90 of file EigenMetric.cpp.

90  {/*{{{*/
91  this->lambda1 = r1;
92  this->lambda2 = r2;
93  this->vx = vp1.x;
94  this->vy = vp1.y;
95  }/*}}}*/

Member Function Documentation

◆ Echo()

void bamg::EigenMetric::Echo ( void  )

Definition at line 104 of file EigenMetric.cpp.

104  {/*{{{*/
105 
106  _printf_("EigenMetric:\n");
107  _printf_(" lambda1: " << lambda1 << "\n");
108  _printf_(" lambda2: " << lambda2 << "\n");
109  _printf_(" vx: " << vx << "\n");
110  _printf_(" vy: " << vy << "\n");
111 
112  return;
113  }

◆ Abs()

void bamg::EigenMetric::Abs ( )

Definition at line 98 of file EigenMetric.cpp.

98  {/*{{{*/
100  }/*}}}*/

◆ pow()

void bamg::EigenMetric::pow ( double  p)

Definition at line 141 of file EigenMetric.cpp.

141  {/*{{{*/
143  }/*}}}*/

◆ Min()

void bamg::EigenMetric::Min ( double  a)

Definition at line 127 of file EigenMetric.cpp.

127  { /*{{{*/
129  }/*}}}*/

◆ Max()

void bamg::EigenMetric::Max ( double  a)

Definition at line 130 of file EigenMetric.cpp.

130  { /*{{{*/
131  //change eigen values
133  }/*}}}*/

◆ Minh()

void bamg::EigenMetric::Minh ( double  h)

Definition at line 134 of file EigenMetric.cpp.

134  {/*{{{*/
135  Min(1.0/(h*h));
136  }/*}}}*/

◆ Maxh()

void bamg::EigenMetric::Maxh ( double  h)

Definition at line 137 of file EigenMetric.cpp.

137  {/*{{{*/
138  //Call Max function
139  Max(1.0/(h*h));
140  }/*}}}*/

◆ hmin()

double bamg::EigenMetric::hmin ( ) const

Definition at line 115 of file EigenMetric.cpp.

115  {/*{{{*/
116  return sqrt(1/bamg::Max3(lambda1,lambda2,1e-30));
117  }/*}}}*/

◆ hmax()

double bamg::EigenMetric::hmax ( ) const

Definition at line 118 of file EigenMetric.cpp.

118  {/*{{{*/
119  return sqrt(1/bamg::Max(bamg::Min(lambda1,lambda2),1e-30));
120  }/*}}}*/

◆ lmax()

double bamg::EigenMetric::lmax ( ) const

Definition at line 121 of file EigenMetric.cpp.

121  {/*{{{*/
122  return bamg::Max3(lambda1,lambda2,1e-30);
123  }/*}}}*/

◆ lmin()

double bamg::EigenMetric::lmin ( ) const

Definition at line 124 of file EigenMetric.cpp.

124  {/*{{{*/
125  return bamg::Max(bamg::Min(lambda1,lambda2),1e-30);
126  }/*}}}*/

◆ Aniso2()

double bamg::EigenMetric::Aniso2 ( ) const

Definition at line 101 of file EigenMetric.cpp.

101  { /*{{{*/
102  return lmax()/lmin();
103  }/*}}}*/

◆ BoundAniso2()

void bamg::EigenMetric::BoundAniso2 ( const double  coef)
inline

Definition at line 101 of file Metric.h.

101  {
102  if (coef<=1.00000000001){
103  if (lambda1 < lambda2)
105  else
107  }
108  else{ //TO BE CHECKED
109  if (lambda1 > lambda2)
111  else
113  }
114  }

◆ operator*=()

void bamg::EigenMetric::operator*= ( double  coef)
inline

Definition at line 82 of file Metric.h.

82 { lambda1*=coef;lambda2*=coef;}

Friends And Related Function Documentation

◆ Metric

friend class Metric
friend

Definition at line 62 of file Metric.h.

Field Documentation

◆ lambda1

double bamg::EigenMetric::lambda1

Definition at line 58 of file Metric.h.

◆ lambda2

double bamg::EigenMetric::lambda2

Definition at line 58 of file Metric.h.

◆ vx

double bamg::EigenMetric::vx

Definition at line 59 of file Metric.h.

◆ vy

double bamg::EigenMetric::vy

Definition at line 59 of file Metric.h.


The documentation for this class was generated from the following files:
bamg::EigenMetric::lmin
double lmin() const
Definition: EigenMetric.cpp:124
_printf_
#define _printf_(StreamArgs)
Definition: Print.h:22
bamg::EigenMetric::pow
void pow(double p)
Definition: EigenMetric.cpp:141
bamg::Max3
T Max3(const T &a, const T &b, const T &c)
Definition: extrema.h:8
bamg::EigenMetric::lambda2
double lambda2
Definition: Metric.h:58
bamg::Max
T Max(const T &a, const T &b)
Definition: extrema.h:7
bamg::EigenMetric::lambda1
double lambda1
Definition: Metric.h:58
bamg::EigenMetric::vx
double vx
Definition: Metric.h:59
bamg::EigenMetric::vy
double vy
Definition: Metric.h:59
bamg::EigenMetric::Min
void Min(double a)
Definition: EigenMetric.cpp:127
bamg::EigenMetric::Max
void Max(double a)
Definition: EigenMetric.cpp:130
bamg::Abs
T Abs(const T &a)
Definition: Abs.h:5
bamg::Min
T Min(const T &a, const T &b)
Definition: extrema.h:6
bamg::EigenMetric::lmax
double lmax() const
Definition: EigenMetric.cpp:121