source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 21895

Last change on this file since 21895 was 21895, checked in by Mathieu Morlighem, 8 years ago

NEW: Enables iomodel to read patches

File size: 63.7 KB
RevLine 
[16534]1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
[18591]6#include "../solutionsequences/solutionsequences.h"
[21721]7#include "../cores/cores.h"
[16534]8
9/*Model processing*/
[18930]10void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
[16604]11
[18930]12 /*Intermediary*/
13 int count;
14 int M,N;
15 bool spcpresent = false;
[21546]16 int finiteelement;
[18930]17 IssmDouble heatcapacity;
18 IssmDouble referencetemperature;
[16604]19
[18930]20 /*Output*/
21 IssmDouble *spcvector = NULL;
22 IssmDouble* times=NULL;
23 IssmDouble* values=NULL;
[16604]24
[18930]25 /*Fetch parameters: */
[20690]26 iomodel->FindConstant(&heatcapacity,"md.materials.heatcapacity");
27 iomodel->FindConstant(&referencetemperature,"md.constants.referencetemperature");
[21546]28 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
[18732]29
[18930]30 /*return if 2d mesh*/
31 if(iomodel->domaintype==Domain2DhorizontalEnum) return;
32
33 /*Fetch data: */
[20690]34 iomodel->FetchData(&spcvector,&M,&N,"md.thermal.spctemperature");
[18930]35
[21546]36 /*Convert spcs from temperatures to enthalpy*/
37 _assert_(N>0); _assert_(M>=iomodel->numberofvertices);
38 for(int i=0;i<iomodel->numberofvertices;i++){
[21549]39 for(int j=0;j<N;j++){
40 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
[18930]41 }
42 }
43
[21548]44 /*Specific case for PDD, we want the constaints to be updated by the PDD scheme itself*/
45 bool isdynamic = false;
46 if (iomodel->solution_enum==TransientSolutionEnum){
47 int smb_model;
48 iomodel->FindConstant(&smb_model,"md.smb.model");
49 if(smb_model==SMBpddEnum) isdynamic=true;
50 if(smb_model==SMBd18opddEnum) isdynamic=true;
51 }
52
53 if(isdynamic){
[21560]54 IoModelToDynamicConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
[21548]55 }
56 else{
57 IoModelToConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
58 }
59
[18930]60 /*Free ressources:*/
[20690]61 iomodel->DeleteData(spcvector,"md.thermal.spctemperature");
[18930]62 xDelete<IssmDouble>(times);
63 xDelete<IssmDouble>(values);
[16539]64}/*}}}*/
[18930]65void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
66
67 /*No loads */
68}/*}}}*/
69void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/
70
[21542]71 int finiteelement;
72 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
73
[20690]74 if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
[21542]75 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,finiteelement);
[20690]76 iomodel->DeleteData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
[18930]77}/*}}}*/
78int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
79 return 1;
80}/*}}}*/
[16539]81void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
82
[20459]83 bool dakota_analysis,ismovingfront,isenthalpy;
[21382]84 int frictionlaw,basalforcing_model,materialstype;
[19161]85 int FrictionCoupling;
86
[16539]87 /*Now, is the model 3d? otherwise, do nothing: */
[17700]88 if(iomodel->domaintype==Domain2DhorizontalEnum)return;
[16539]89
90 /*Is enthalpy requested?*/
[20690]91 iomodel->FindConstant(&isenthalpy,"md.thermal.isenthalpy");
[16539]92 if(!isenthalpy) return;
93
94 /*Fetch data needed: */
[20690]95 iomodel->FetchData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
[16539]96
[21542]97 /*Finite element type*/
98 int finiteelement;
99 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
100
[16539]101 /*Update elements: */
102 int counter=0;
103 for(int i=0;i<iomodel->numberofelements;i++){
104 if(iomodel->my_elements[i]){
105 Element* element=(Element*)elements->GetObjectByOffset(counter);
[21542]106 element->Update(i,iomodel,analysis_counter,analysis_type,finiteelement);
[16539]107 counter++;
108 }
109 }
110
[20690]111 iomodel->FindConstant(&dakota_analysis,"md.qmu.isdakota");
112 iomodel->FindConstant(&ismovingfront,"md.transient.ismovingfront");
113 iomodel->FindConstant(&frictionlaw,"md.friction.law");
[21382]114 iomodel->FindConstant(&materialstype,"md.materials.type");
[16539]115
[20690]116 iomodel->FetchDataToInput(elements,"md.geometry.thickness",ThicknessEnum);
117 iomodel->FetchDataToInput(elements,"md.geometry.surface",SurfaceEnum);
118 iomodel->FetchDataToInput(elements,"md.slr.sealevel",SealevelEnum,0);
119 iomodel->FetchDataToInput(elements,"md.geometry.base",BaseEnum);
120 iomodel->FetchDataToInput(elements,"md.mask.ice_levelset",MaskIceLevelsetEnum);
121 iomodel->FetchDataToInput(elements,"md.mask.groundedice_levelset",MaskGroundediceLevelsetEnum);
[17886]122 if(iomodel->domaintype!=Domain2DhorizontalEnum){
[20690]123 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum);
124 iomodel->FetchDataToInput(elements,"md.mesh.vertexonsurface",MeshVertexonsurfaceEnum);
[17886]125 }
[20690]126 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
127 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
128 iomodel->FetchDataToInput(elements,"md.initialization.waterfraction",WaterfractionEnum);
129 iomodel->FetchDataToInput(elements,"md.initialization.enthalpy",EnthalpyEnum);
130 iomodel->FetchDataToInput(elements,"md.initialization.watercolumn",WatercolumnEnum);
131 iomodel->FetchDataToInput(elements,"md.basalforcings.groundedice_melting_rate",BasalforcingsGroundediceMeltingRateEnum);
132 iomodel->FetchDataToInput(elements,"md.initialization.vx",VxEnum);
133 iomodel->FetchDataToInput(elements,"md.initialization.vy",VyEnum);
134 iomodel->FetchDataToInput(elements,"md.initialization.vz",VzEnum);
[16539]135 InputUpdateFromConstantx(elements,0.,VxMeshEnum);
136 InputUpdateFromConstantx(elements,0.,VyMeshEnum);
137 InputUpdateFromConstantx(elements,0.,VzMeshEnum);
[20459]138 if(ismovingfront){
[20690]139 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum); // required for updating active nodes
[17434]140 }
[20020]141
142 /*Basal forcings variables*/
[20690]143 iomodel->FindConstant(&basalforcing_model,"md.basalforcings.model");
[20020]144 switch(basalforcing_model){
145 case MantlePlumeGeothermalFluxEnum:
146 break;
147 default:
[20690]148 iomodel->FetchDataToInput(elements,"md.basalforcings.geothermalflux",BasalforcingsGeothermalfluxEnum);
[20020]149 break;
150 }
[21382]151
152 /*Rheology type*/
153 iomodel->FetchDataToInput(elements,"md.materials.rheology_B",MaterialsRheologyBEnum);
154 switch(materialstype){
[21389]155 case MatenhancediceEnum:
156 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
157 iomodel->FetchDataToInput(elements,"md.materials.rheology_E",MaterialsRheologyEEnum);
158 break;
[21382]159 case MatdamageiceEnum:
160 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
161 break;
162 case MatestarEnum:
163 iomodel->FetchDataToInput(elements,"md.materials.rheology_Ec",MaterialsRheologyEcEnum);
164 iomodel->FetchDataToInput(elements,"md.materials.rheology_Es",MaterialsRheologyEsEnum);
165 break;
166 case MaticeEnum:
167 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
168 break;
169 default:
170 _error_("not supported");
171 }
[17952]172
173 /*Friction law variables*/
174 switch(frictionlaw){
175 case 1:
[21740]176 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
[20690]177 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
178 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
179 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
[21740]180 if (FrictionCoupling==1){
181 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);
182 }
[17952]183 break;
184 case 2:
[20690]185 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
186 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
[17952]187 break;
[18778]188 case 3:
[20690]189 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
190 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
191 iomodel->FetchDataToInput(elements,"md.friction.As",FrictionAsEnum);
192 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
[21740]193 if (FrictionCoupling==1){
[20690]194 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);
[19161]195 }
[18778]196 break;
[18732]197 case 4:
[20690]198 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
199 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
200 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
201 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
202 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
[18732]203 break;
[18772]204 case 5:
[20690]205 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
206 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
207 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
208 iomodel->FetchDataToInput(elements,"md.friction.water_layer",FrictionWaterLayerEnum);
[18772]209 break;
[18804]210 case 6:
[20690]211 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
212 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
213 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
214 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
[18804]215 break;
[21556]216 case 9:
217 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
218 iomodel->FetchDataToInput(elements,"md.friction.pressure_adjusted_temperature",FrictionPressureAdjustedTemperatureEnum);
[21565]219 InputUpdateFromConstantx(elements,1.,FrictionPEnum);
220 InputUpdateFromConstantx(elements,1.,FrictionQEnum);
[21556]221 break;
[17952]222 default:
[21873]223 _error_("friction law not supported");
[17952]224 }
[20690]225
[16539]226 /*Free data: */
[20690]227 iomodel->DeleteData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
228
[16539]229}/*}}}*/
[18930]230void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
[16539]231
[18930]232 int numoutputs;
233 char** requestedoutputs = NULL;
234
[20690]235 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.stabilization",ThermalStabilizationEnum));
236 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.maxiter",ThermalMaxiterEnum));
237 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.reltol",ThermalReltolEnum));
238 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isenthalpy",ThermalIsenthalpyEnum));
239 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdynamicbasalspc",ThermalIsdynamicbasalspcEnum));
240 parameters->AddObject(iomodel->CopyConstantObject("md.friction.law",FrictionLawEnum));
[18930]241
[20690]242 iomodel->FindConstant(&requestedoutputs,&numoutputs,"md.thermal.requested_outputs");
[18930]243 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
244 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
[20690]245 iomodel->DeleteData(&requestedoutputs,numoutputs,"md.thermal.requested_outputs");
[18930]246
247 /*Deal with friction parameters*/
248 int frictionlaw;
[20690]249 iomodel->FindConstant(&frictionlaw,"md.friction.law");
[21776]250 if(frictionlaw==4 || frictionlaw==6){
251 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
252 }
253 if(frictionlaw==3 || frictionlaw==1){
254 parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
255 }
256 if(frictionlaw==9){
257 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
[21778]258 parameters->AddObject(new IntParam(FrictionCouplingEnum,0));
[21776]259 }
[16539]260}/*}}}*/
261
[18930]262/*Finite Element Analysis*/
263void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* serial_spc,Element* element){/*{{{*/
[16539]264
[21481]265 /* Do not check if ice in element, this may lead to inconsistencies between cpu partitions */
[20213]266 /* Only update constraints at the base. */
267 if(!(element->IsOnBase())) return;
[16539]268
[18930]269 /*Intermediary*/
270 bool isdynamicbasalspc;
271 int numindices;
272 int *indices = NULL;
273 Node* node = NULL;
274 IssmDouble pressure;
[16539]275
[18930]276 /*Check wether dynamic basal boundary conditions are activated */
277 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
278 if(!isdynamicbasalspc) return;
[16539]279
[18930]280 /*Get parameters and inputs: */
281 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
[16539]282
[18930]283 /*Fetch indices of basal & surface nodes for this finite element*/
284 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
285 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
[16539]286
[18930]287 GaussPenta* gauss=new GaussPenta();
288 for(int i=0;i<numindices;i++){
289 gauss->GaussNode(element->GetElementType(),indices[i]);
[16539]290
[18930]291 pressure_input->GetInputValue(&pressure,gauss);
[16539]292
[18930]293 /*apply or release spc*/
294 node=element->GetNode(indices[i]);
[21481]295 if(!node->IsActive()) continue;
[18930]296 if(serial_spc[node->Sid()]==1.){
297 pressure_input->GetInputValue(&pressure, gauss);
298 node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
[16539]299 }
[21481]300 else {
[18930]301 node->DofInFSet(0);
[21481]302 }
[16539]303 }
304
[18930]305 /*Free ressources:*/
306 xDelete<int>(indices);
307 delete gauss;
308}/*}}}*/
309void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
310 /*Compute basal melting rates: */
311 for(int i=0;i<femmodel->elements->Size();i++){
312 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
313 ComputeBasalMeltingrate(element);
314 }
[21895]315
316 /*extrude inputs*/
[21894]317 femmodel->parameters->SetParam(BasalforcingsGroundediceMeltingRateEnum,InputToExtrudeEnum);
318 extrudefrombase_core(femmodel);
[18930]319}/*}}}*/
320void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
321 /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
322 /* melting rate is positive when melting, negative when refreezing*/
[16539]323
[18930]324 /* Check if ice in element */
325 if(!element->IsIceInElement()) return;
[16539]326
[18930]327 /* Only compute melt rates at the base of grounded ice*/
328 if(!element->IsOnBase() || element->IsFloating()) return;
[16539]329
[18930]330 /* Intermediaries */
331 bool converged;
332 const int dim=3;
333 int i,is,state;
[21718]334 int nodedown,nodeup,numnodes,numsegments;
[18930]335 int enthalpy_enum;
336 IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
337 IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
338 IssmDouble dt,yts;
339 IssmDouble melting_overshoot,lambda;
340 IssmDouble vx,vy,vz;
341 IssmDouble *xyz_list = NULL;
342 IssmDouble *xyz_list_base = NULL;
343 int *pairindices = NULL;
[16539]344
[18930]345 /*Fetch parameters*/
346 element->GetVerticesCoordinates(&xyz_list);
347 element->GetVerticesCoordinatesBase(&xyz_list_base);
348 element->GetInputValue(&converged,ConvergedEnum);
349 element->FindParam(&dt,TimesteppingTimeStepEnum);
350 element->FindParam(&yts, ConstantsYtsEnum);
351
352 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
353 else enthalpy_enum=EnthalpyEnum;
354
355 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
356 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
357 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoFreshwaterEnum);
358 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
359 IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
360 IssmDouble kappa_mix;
361
362 /*retrieve inputs*/
363 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
364 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
365 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
366 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
367 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
368 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
369
370 /*Build friction element, needed later: */
371 Friction* friction=new Friction(element,dim);
372
373 /******** MELTING RATES ************************************//*{{{*/
374 element->NormalBase(&normal_base[0],xyz_list_base);
[21718]375 element->VerticalSegmentIndicesBase(&pairindices,&numsegments);
[18930]376 IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
377 IssmDouble* heating = xNew<IssmDouble>(numsegments);
378
[21718]379 numnodes=element->GetNumberOfNodes();
380 IssmDouble* enthalpies = xNew<IssmDouble>(numnodes);
381 IssmDouble* pressures = xNew<IssmDouble>(numnodes);
382 IssmDouble* watercolumns = xNew<IssmDouble>(numnodes);
383 IssmDouble* basalmeltingrates = xNew<IssmDouble>(numnodes);
384 element->GetInputListOnNodes(enthalpies,enthalpy_enum);
385 element->GetInputListOnNodes(pressures,PressureEnum);
386 element->GetInputListOnNodes(watercolumns,WatercolumnEnum);
387 element->GetInputListOnNodes(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
[18930]388
389 Gauss* gauss=element->NewGauss();
390 for(is=0;is<numsegments;is++){
[21718]391 nodedown = pairindices[is*2+0];
392 nodeup = pairindices[is*2+1];
393 gauss->GaussNode(element->GetElementType(),nodedown);
[18930]394
[21718]395 state=GetThermalBasalCondition(element, enthalpies[nodedown], enthalpies[nodeup], pressures[nodedown], pressures[nodeup], watercolumns[nodedown], basalmeltingrates[nodedown]);
[18930]396 switch (state) {
397 case 0:
398 // cold, dry base: apply basal surface forcing
399 for(i=0;i<3;i++) vec_heatflux[i]=0.;
400 break;
401 case 1: case 2: case 3:
402 // case 1 : cold, wet base: keep at pressure melting point
403 // case 2: temperate, thin refreezing base: release spc
404 // case 3: temperate, thin melting base: set spc
405 enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
406 for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
407 break;
408 case 4:
409 // temperate, thick melting base: set grad H*n=0
[21718]410 kappa_mix=GetWetIceConductivity(element, enthalpies[nodedown], pressures[nodedown]);
[18930]411 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
412 for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
413 break;
414 default:
415 _printf0_(" unknown thermal basal state found!");
416 }
417 if(state==0) meltingrate_enthalpy[is]=0.;
418 else{
419 /*heat flux along normal*/
420 heatflux=0.;
421 for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
422
423 /*basal friction*/
424 friction->GetAlpha2(&alpha2,gauss);
425 vx_input->GetInputValue(&vx,gauss); vy_input->GetInputValue(&vy,gauss); vz_input->GetInputValue(&vz,gauss);
426 basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
427 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
428 /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
429 heating[is]=(heatflux+basalfriction+geothermalflux);
430 meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
431 }
432 }/*}}}*/
433
434 /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
435 for(is=0;is<numsegments;is++){
[21718]436 nodedown = pairindices[is*2+0];
437 nodeup = pairindices[is*2+1];
[18930]438 if(dt!=0.){
[21718]439 if(watercolumns[nodedown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
440 lambda = -watercolumns[nodedown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
441 watercolumns[nodedown]=0.;
442 basalmeltingrates[nodedown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
443 enthalpies[nodedown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
[16539]444 }
[18930]445 else{
[21718]446 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
447 watercolumns[nodedown]+=dt*meltingrate_enthalpy[is];
[18930]448 }
[16539]449 }
[18930]450 else{
[21718]451 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
452 if(watercolumns[nodedown]+meltingrate_enthalpy[is]<0.)
453 watercolumns[nodedown]=0.;
[18930]454 else
[21718]455 watercolumns[nodedown]+=meltingrate_enthalpy[is];
[18930]456 }
[21718]457 basalmeltingrates[nodedown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
458 _assert_(watercolumns[nodedown]>=0.);
[18930]459 }/*}}}*/
460
461 /*feed updated variables back into model*/
462 if(dt!=0.){
[21718]463 element->AddInput(enthalpy_enum,enthalpies,element->GetElementType());
464 element->AddInput(WatercolumnEnum,watercolumns,element->GetElementType());
[16539]465 }
[21718]466 element->AddInput(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,element->GetElementType());
[16539]467
[18930]468 /*Clean up and return*/
469 delete gauss;
470 delete friction;
471 xDelete<int>(pairindices);
472 xDelete<IssmDouble>(enthalpies);
473 xDelete<IssmDouble>(pressures);
474 xDelete<IssmDouble>(watercolumns);
475 xDelete<IssmDouble>(basalmeltingrates);
476 xDelete<IssmDouble>(meltingrate_enthalpy);
477 xDelete<IssmDouble>(heating);
478 xDelete<IssmDouble>(xyz_list);
479 xDelete<IssmDouble>(xyz_list_base);
[16539]480}/*}}}*/
[18930]481void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
[21160]482
483 IssmDouble dt;
484 bool isdynamicbasalspc;
485
486 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
487 femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
488
[18591]489 if(VerboseSolution()) _printf0_(" computing enthalpy\n");
490 femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
[21160]491 if((dt>0.) && isdynamicbasalspc) UpdateBasalConstraints(femmodel);
[18591]492 solutionsequence_thermal_nonlinear(femmodel);
493
494 /*transfer enthalpy to enthalpy picard for the next step: */
495 InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
496
[21161]497 PostProcessing(femmodel);
[18591]498
[17005]499}/*}}}*/
[17000]500ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
501 /*Default, return NULL*/
502 return NULL;
503}/*}}}*/
[16992]504ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
505_error_("Not implemented");
506}/*}}}*/
[16782]507ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
[16888]508
[17434]509 /* Check if ice in element */
510 if(!element->IsIceInElement()) return NULL;
511
[16888]512 /*compute all stiffness matrices for this element*/
513 ElementMatrix* Ke1=CreateKMatrixVolume(element);
514 ElementMatrix* Ke2=CreateKMatrixShelf(element);
515 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
516
517 /*clean-up and return*/
518 delete Ke1;
519 delete Ke2;
520 return Ke;
[16782]521}/*}}}*/
[16888]522ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
523
[17434]524 /* Check if ice in element */
525 if(!element->IsIceInElement()) return NULL;
526
[16888]527 /*Intermediaries */
528 int stabilization;
529 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
530 IssmDouble h,hx,hy,hz,vx,vy,vz;
531 IssmDouble tau_parameter,diameter;
532 IssmDouble D_scalar;
533 IssmDouble* xyz_list = NULL;
534
535 /*Fetch number of nodes and dof for this finite element*/
536 int numnodes = element->GetNumberOfNodes();
537
538 /*Initialize Element vector and other vectors*/
539 ElementMatrix* Ke = element->NewElementMatrix();
540 IssmDouble* basis = xNew<IssmDouble>(numnodes);
541 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
542 IssmDouble* B = xNew<IssmDouble>(3*numnodes);
543 IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
544 IssmDouble D[3][3] = {0.};
545 IssmDouble K[3][3];
546
547 /*Retrieve all inputs and parameters*/
548 element->GetVerticesCoordinates(&xyz_list);
549 element->FindParam(&dt,TimesteppingTimeStepEnum);
550 element->FindParam(&stabilization,ThermalStabilizationEnum);
[17946]551 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
[16888]552 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
553 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
554 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
555 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
556 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
557 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
558 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
559 Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
560 Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
561 Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
562 if(stabilization==2) diameter=element->MinEdgeLength(xyz_list);
563
564 /*Enthalpy diffusion parameter*/
[17027]565 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
[16888]566
567 /* Start looping on the number of gaussian points: */
[19637]568 Gauss* gauss=element->NewGauss(4);
[16888]569 for(int ig=gauss->begin();ig<gauss->end();ig++){
570 gauss->GaussPoint(ig);
571
572 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
573 D_scalar=gauss->weight*Jdet;
574 if(dt!=0.) D_scalar=D_scalar*dt;
575
576 /*Conduction: */
577 GetBConduct(B,element,xyz_list,gauss);
578 D[0][0]=D_scalar*kappa/rho_ice;
579 D[1][1]=D_scalar*kappa/rho_ice;
580 D[2][2]=D_scalar*kappa/rho_ice;
581 TripleMultiply(B,3,numnodes,1,
582 &D[0][0],3,3,0,
583 B,3,numnodes,0,
584 &Ke->values[0],1);
585
586 /*Advection: */
587 GetBAdvec(B,element,xyz_list,gauss);
588 GetBAdvecprime(Bprime,element,xyz_list,gauss);
589 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
590 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
591 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
592 D[0][0]=D_scalar*vx;
593 D[1][1]=D_scalar*vy;
594 D[2][2]=D_scalar*vz;
595 TripleMultiply(B,3,numnodes,1,
596 &D[0][0],3,3,0,
597 Bprime,3,numnodes,0,
598 &Ke->values[0],1);
599
600 /*Transient: */
601 if(dt!=0.){
602 D_scalar=gauss->weight*Jdet;
603 element->NodalFunctions(basis,gauss);
604 TripleMultiply(basis,numnodes,1,0,
605 &D_scalar,1,1,0,
606 basis,1,numnodes,0,
607 &Ke->values[0],1);
608 D_scalar=D_scalar*dt;
609 }
610
[21382]611 /*Artificial diffusivity*/
[16888]612 if(stabilization==1){
613 element->ElementSizes(&hx,&hy,&hz);
614 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
615 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
[18484]616 K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
617 K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
618 K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
[16888]619 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
620
621 GetBAdvecprime(Bprime,element,xyz_list,gauss);
622 TripleMultiply(Bprime,3,numnodes,1,
623 &K[0][0],3,3,0,
624 Bprime,3,numnodes,0,
625 &Ke->values[0],1);
626 }
627 else if(stabilization==2){
628 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
629 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
630 for(int i=0;i<numnodes;i++){
631 for(int j=0;j<numnodes;j++){
632 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
[16895]633 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
[16888]634 }
635 }
636 if(dt!=0.){
[16896]637 D_scalar=gauss->weight*Jdet;
[16888]638 for(int i=0;i<numnodes;i++){
639 for(int j=0;j<numnodes;j++){
[16895]640 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
[16888]641 }
642 }
643 }
644 }
645 }
646
647 /*Clean up and return*/
648 xDelete<IssmDouble>(xyz_list);
649 xDelete<IssmDouble>(basis);
650 xDelete<IssmDouble>(dbasis);
651 xDelete<IssmDouble>(B);
652 xDelete<IssmDouble>(Bprime);
653 delete gauss;
654 return Ke;
655}/*}}}*/
656ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
657
[17434]658 /* Check if ice in element */
659 if(!element->IsIceInElement()) return NULL;
660
[16888]661 /*Initialize Element matrix and return if necessary*/
[17585]662 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
[16888]663
[16986]664 /*Intermediaries*/
[16888]665 IssmDouble dt,Jdet,D;
666 IssmDouble *xyz_list_base = NULL;
667
668 /*Fetch number of nodes for this finite element*/
669 int numnodes = element->GetNumberOfNodes();
670
671 /*Initialize vectors*/
672 ElementMatrix* Ke = element->NewElementMatrix();
673 IssmDouble* basis = xNew<IssmDouble>(numnodes);
674
675 /*Retrieve all inputs and parameters*/
676 element->GetVerticesCoordinatesBase(&xyz_list_base);
677 element->FindParam(&dt,TimesteppingTimeStepEnum);
678 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
[17946]679 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
[16888]680 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
681 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
682 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
683 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
684
685 /* Start looping on the number of gaussian points: */
[19637]686 Gauss* gauss=element->NewGaussBase(4);
[16888]687 for(int ig=gauss->begin();ig<gauss->end();ig++){
688 gauss->GaussPoint(ig);
689
690 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
691 element->NodalFunctions(basis,gauss);
692
693 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
694 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
695 TripleMultiply(basis,numnodes,1,0,
696 &D,1,1,0,
697 basis,1,numnodes,0,
698 &Ke->values[0],1);
699
700 }
701
702 /*Clean up and return*/
703 delete gauss;
704 xDelete<IssmDouble>(basis);
705 xDelete<IssmDouble>(xyz_list_base);
706 return Ke;
707}/*}}}*/
[16782]708ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
[16812]709
[17434]710 /* Check if ice in element */
711 if(!element->IsIceInElement()) return NULL;
712
[16812]713 /*compute all load vectors for this element*/
714 ElementVector* pe1=CreatePVectorVolume(element);
715 ElementVector* pe2=CreatePVectorSheet(element);
716 ElementVector* pe3=CreatePVectorShelf(element);
717 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
718
719 /*clean-up and return*/
720 delete pe1;
721 delete pe2;
722 delete pe3;
723 return pe;
[16782]724}/*}}}*/
[16812]725ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
726
[17434]727 /* Check if ice in element */
728 if(!element->IsIceInElement()) return NULL;
729
[16812]730 /*Intermediaries*/
[17014]731 int i, stabilization;
[16812]732 IssmDouble Jdet,phi,dt;
[17014]733 IssmDouble enthalpy, Hpmp;
734 IssmDouble enthalpypicard, d1enthalpypicard[3];
735 IssmDouble pressure, d1pressure[3], d2pressure;
736 IssmDouble waterfractionpicard;
737 IssmDouble kappa,tau_parameter,diameter,kappa_w;
[16812]738 IssmDouble u,v,w;
[17014]739 IssmDouble scalar_def, scalar_sens ,scalar_transient;
[16812]740 IssmDouble* xyz_list = NULL;
[17014]741 IssmDouble d1H_d1P, d1P2;
[16812]742
743 /*Fetch number of nodes and dof for this finite element*/
744 int numnodes = element->GetNumberOfNodes();
745 int numvertices = element->GetNumberOfVertices();
746
747 /*Initialize Element vector*/
748 ElementVector* pe = element->NewElementVector();
749 IssmDouble* basis = xNew<IssmDouble>(numnodes);
750 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
751
752 /*Retrieve all inputs and parameters*/
753 element->GetVerticesCoordinates(&xyz_list);
754 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
[17014]755 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
[16812]756 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
[17014]757 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
758 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
759 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
[16812]760 element->FindParam(&dt,TimesteppingTimeStepEnum);
761 element->FindParam(&stabilization,ThermalStabilizationEnum);
762 Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
763 Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
764 Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
[17014]765 Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
766 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
767 Input* enthalpy_input=NULL;
[16812]768 if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
769 if(stabilization==2){
770 diameter=element->MinEdgeLength(xyz_list);
[17027]771 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
[16812]772 }
773
774 /* Start looping on the number of gaussian points: */
[19637]775 Gauss* gauss=element->NewGauss(4);
[16812]776 for(int ig=gauss->begin();ig<gauss->end();ig++){
777 gauss->GaussPoint(ig);
778
779 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
780 element->NodalFunctions(basis,gauss);
[17014]781
782 /*viscous dissipation*/
[16812]783 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
784
785 scalar_def=phi/rho_ice*Jdet*gauss->weight;
[16895]786 if(dt!=0.) scalar_def=scalar_def*dt;
[16812]787
[17014]788 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
[16812]789
[17014]790 /*sensible heat flux in temperate ice*/
791 enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
792 pressure_input->GetInputValue(&pressure,gauss);
793 Hpmp=this->PureIceEnthalpy(element, pressure);
794
795 if(enthalpypicard>=Hpmp){
796 enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
797 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
798 d2pressure=0.; // for linear elements, 2nd derivative is zero
799
800 d1H_d1P=0.;
801 for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
802 d1P2=0.;
803 for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
804
805 scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
806 if(dt!=0.) scalar_sens=scalar_sens*dt;
807 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
808 }
809
[16812]810 /* Build transient now */
811 if(reCast<bool,IssmDouble>(dt)){
812 enthalpy_input->GetInputValue(&enthalpy, gauss);
813 scalar_transient=enthalpy*Jdet*gauss->weight;
[17014]814 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
[16812]815 }
816
817 if(stabilization==2){
818 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
819
820 vx_input->GetInputValue(&u,gauss);
821 vy_input->GetInputValue(&v,gauss);
822 vz_input->GetInputValue(&w,gauss);
[16895]823 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
[16812]824
[17014]825 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
[16895]826
827 if(dt!=0.){
[17014]828 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
[16812]829 }
830 }
831 }
832
833 /*Clean up and return*/
834 xDelete<IssmDouble>(basis);
835 xDelete<IssmDouble>(dbasis);
836 xDelete<IssmDouble>(xyz_list);
837 delete gauss;
838 return pe;
839
840}/*}}}*/
841ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
[16888]842
[17434]843 /* Check if ice in element */
844 if(!element->IsIceInElement()) return NULL;
845
[17014]846 /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
[17585]847 if(!element->IsOnBase() || element->IsFloating()) return NULL;
[16888]848
[20272]849 bool converged, isdynamicbasalspc;
[18612]850 int i, state;
[20272]851 int enthalpy_enum;
[18612]852 IssmDouble dt,Jdet,scalar;
853 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
854 IssmDouble vx,vy,vz;
855 IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
[16888]856 IssmDouble *xyz_list_base = NULL;
857
858 /*Fetch number of nodes for this finite element*/
859 int numnodes = element->GetNumberOfNodes();
860
861 /*Initialize vectors*/
862 ElementVector* pe = element->NewElementVector();
863 IssmDouble* basis = xNew<IssmDouble>(numnodes);
864
865 /*Retrieve all inputs and parameters*/
866 element->GetVerticesCoordinatesBase(&xyz_list_base);
867 element->FindParam(&dt,TimesteppingTimeStepEnum);
[18622]868 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
[20272]869 element->GetInputValue(&converged,ConvergedEnum);
870 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum; // use enthalpy from last iteration
871 else enthalpy_enum=EnthalpyEnum; // use enthalpy from last time step
[16888]872 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
873 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
874 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
[20272]875 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
[18612]876 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
877 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
878 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
[16888]879 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
[18612]880 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
[16888]881
882 /*Build friction element, needed later: */
883 Friction* friction=new Friction(element,3);
884
885 /* Start looping on the number of gaussian points: */
[19637]886 Gauss* gauss=element->NewGaussBase(4);
887 Gauss* gaussup=element->NewGaussTop(4);
[16888]888 for(int ig=gauss->begin();ig<gauss->end();ig++){
889 gauss->GaussPoint(ig);
[18665]890 gaussup->GaussPoint(ig);
[16888]891
892 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
893 element->NodalFunctions(basis,gauss);
894
[18622]895 if(isdynamicbasalspc){
896 enthalpy_input->GetInputValue(&enthalpy,gauss);
897 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
898 pressure_input->GetInputValue(&pressure,gauss);
899 pressure_input->GetInputValue(&pressureup,gaussup);
900 watercolumn_input->GetInputValue(&watercolumn,gauss);
901 meltingrate_input->GetInputValue(&meltingrate,gauss);
902 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
903 }
904 else
905 state=0;
[16888]906
[18612]907 switch (state) {
[20272]908 case 0: case 1: case 2: case 3:
909 // cold, dry base; cold, wet base; refreezing temperate base; thin temperate base:
910 // Apply basal surface forcing.
911 // Interpolated values of enthalpy on gauss nodes may indicate cold base,
912 // although one node might have become temperate. So keep heat flux switched on.
[18612]913 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
914 friction->GetAlpha2(&alpha2,gauss);
915 vx_input->GetInputValue(&vx,gauss);
916 vy_input->GetInputValue(&vy,gauss);
917 vz_input->GetInputValue(&vz,gauss);
918 basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
919 heatflux=(basalfriction+geothermalflux)/(rho_ice);
920 scalar=gauss->weight*Jdet*heatflux;
921 if(dt!=0.) scalar=dt*scalar;
922 for(i=0;i<numnodes;i++)
923 pe->values[i]+=scalar*basis[i];
924 break;
925 case 4:
926 // temperate, thick melting base: set grad H*n=0
927 for(i=0;i<numnodes;i++)
928 pe->values[i]+=0.;
929 break;
930 default:
931 _printf0_(" unknown thermal basal state found!");
[16888]932 }
933 }
934
935 /*Clean up and return*/
936 delete gauss;
937 delete gaussup;
938 delete friction;
939 xDelete<IssmDouble>(basis);
940 xDelete<IssmDouble>(xyz_list_base);
941 return pe;
942
[16812]943}/*}}}*/
944ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
945
[17434]946 /* Check if ice in element */
947 if(!element->IsIceInElement()) return NULL;
948
[16888]949 /*Get basal element*/
[17585]950 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
[16888]951
[18612]952 IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
[16812]953 IssmDouble *xyz_list_base = NULL;
954
955 /*Fetch number of nodes for this finite element*/
956 int numnodes = element->GetNumberOfNodes();
957
958 /*Initialize vectors*/
959 ElementVector* pe = element->NewElementVector();
960 IssmDouble* basis = xNew<IssmDouble>(numnodes);
961
962 /*Retrieve all inputs and parameters*/
963 element->GetVerticesCoordinatesBase(&xyz_list_base);
964 element->FindParam(&dt,TimesteppingTimeStepEnum);
965 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
966 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
[17946]967 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
[16812]968 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
969 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
970 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
971 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
972
973 /* Start looping on the number of gaussian points: */
[19637]974 Gauss* gauss=element->NewGaussBase(4);
[16812]975 for(int ig=gauss->begin();ig<gauss->end();ig++){
976 gauss->GaussPoint(ig);
977
978 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
979 element->NodalFunctions(basis,gauss);
980
981 pressure_input->GetInputValue(&pressure,gauss);
[18612]982 Hpmp=element->PureIceEnthalpy(pressure);
[16812]983
[18612]984 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
[16812]985 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
986
987 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
988 }
989
990 /*Clean up and return*/
991 delete gauss;
992 xDelete<IssmDouble>(basis);
993 xDelete<IssmDouble>(xyz_list_base);
994 return pe;
995}/*}}}*/
[18930]996void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
997 /*Drain excess water fraction in ice column: */
[21721]998 ComputeWaterfractionDrainage(femmodel);
999 DrainageUpdateWatercolumn(femmodel);
1000 DrainageUpdateEnthalpy(femmodel);
[17002]1001}/*}}}*/
[21721]1002void EnthalpyAnalysis::ComputeWaterfractionDrainage(FemModel* femmodel){/*{{{*/
[17002]1003
[21721]1004 int i,k,numnodes;
1005 IssmDouble dt;
1006 Element* element= NULL;
[17434]1007
[21721]1008 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
[17434]1009
[21721]1010 for(i=0;i<femmodel->elements->Size();i++){
1011 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1012 numnodes=element->GetNumberOfNodes();
1013 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1014 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
[17014]1015
[21721]1016 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1017 for(k=0; k<numnodes;k++){
1018 drainage[k]=DrainageFunctionWaterfraction(waterfractions[k], dt);
1019 }
1020 element->AddInput(WaterfractionDrainageEnum,drainage,element->GetElementType());
[18930]1021
[21721]1022 xDelete<IssmDouble>(waterfractions);
1023 xDelete<IssmDouble>(drainage);
[18930]1024 }
[21721]1025}/*}}}*/
1026void EnthalpyAnalysis::DrainageUpdateWatercolumn(FemModel* femmodel){/*{{{*/
1027
1028 int i,k,numnodes, numbasalnodes;
1029 IssmDouble dt;
1030 int* basalnodeindices=NULL;
1031 Element* element= NULL;
[18930]1032
[21721]1033 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
[18667]1034
[21721]1035 /*depth-integrate the drained water fraction */
1036 femmodel->parameters->SetParam(WaterfractionDrainageEnum,InputToDepthaverageInEnum);
1037 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToDepthaverageOutEnum);
1038 depthaverage_core(femmodel);
1039 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToExtrudeEnum);
1040 extrudefrombase_core(femmodel);
1041 /*multiply depth-average by ice thickness*/
1042 for(i=0;i<femmodel->elements->Size();i++){
1043 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1044 numnodes=element->GetNumberOfNodes();
1045 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1046 IssmDouble* thicknesses= xNew<IssmDouble>(numnodes);
[17014]1047
[21721]1048 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1049 element->GetInputListOnNodes(thicknesses,ThicknessEnum);
1050 for(k=0;k<numnodes;k++){
1051 drainage_int[k]*=thicknesses[k];
1052 }
1053 element->AddInput(WaterfractionDrainageIntegratedEnum, drainage_int, element->GetElementType());
[17166]1054
[21721]1055 xDelete<IssmDouble>(drainage_int);
1056 xDelete<IssmDouble>(thicknesses);
1057 }
[17434]1058
[21721]1059 /*update water column*/
1060 for(i=0;i<femmodel->elements->Size();i++){
1061 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1062 /* Check if ice in element */
1063 if(!element->IsIceInElement()) continue;
1064 if(!element->IsOnBase()) continue;
[17166]1065
[21721]1066 numnodes=element->GetNumberOfNodes();
1067 IssmDouble* watercolumn= xNew<IssmDouble>(numnodes);
1068 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1069 element->GetInputListOnNodes(watercolumn,WatercolumnEnum);
1070 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
[17166]1071
[21721]1072 element->BasalNodeIndices(&numbasalnodes,&basalnodeindices,element->GetElementType());
1073 for(k=0;k<numbasalnodes;k++){
1074 watercolumn[basalnodeindices[k]]+=dt*drainage_int[basalnodeindices[k]];
1075 }
1076 element->AddInput(WatercolumnEnum, watercolumn, element->GetElementType());
[17166]1077
[21721]1078 xDelete<IssmDouble>(watercolumn);
1079 xDelete<IssmDouble>(drainage_int);
[21779]1080 xDelete<int>(basalnodeindices);
[21721]1081 }
1082}/*}}}*/
1083void EnthalpyAnalysis::DrainageUpdateEnthalpy(FemModel* femmodel){/*{{{*/
[17166]1084
[21721]1085 int i,k,numnodes;
1086 IssmDouble dt;
1087 Element* element= NULL;
1088 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
[17166]1089
[21721]1090 for(i=0;i<femmodel->elements->Size();i++){
1091 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1092 numnodes=element->GetNumberOfNodes();
1093 IssmDouble* enthalpies= xNew<IssmDouble>(numnodes);
1094 IssmDouble* pressures= xNew<IssmDouble>(numnodes);
1095 IssmDouble* temperatures= xNew<IssmDouble>(numnodes);
1096 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1097 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
[21653]1098
[21721]1099 element->GetInputListOnNodes(pressures,PressureEnum);
1100 element->GetInputListOnNodes(temperatures,TemperatureEnum);
1101 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1102 element->GetInputListOnNodes(drainage,WaterfractionDrainageEnum);
[21653]1103
[21721]1104 for(k=0;k<numnodes;k++){
1105 waterfractions[k]-=dt*drainage[k];
1106 element->ThermalToEnthalpy(&enthalpies[k], temperatures[k], waterfractions[k], pressures[k]);
1107 }
1108 element->AddInput(WaterfractionEnum,waterfractions,element->GetElementType());
1109 element->AddInput(EnthalpyEnum,enthalpies,element->GetElementType());
[17166]1110
[21721]1111 xDelete<IssmDouble>(enthalpies);
1112 xDelete<IssmDouble>(pressures);
1113 xDelete<IssmDouble>(temperatures);
1114 xDelete<IssmDouble>(waterfractions);
1115 xDelete<IssmDouble>(drainage);
1116 }
[17002]1117}/*}}}*/
[18930]1118IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
[17014]1119
[18930]1120 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1121 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
1122 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
[17434]1123
[18930]1124 if(enthalpy < PureIceEnthalpy(element,pressure)){
1125 return thermalconductivity/heatcapacity;
1126 }
1127 else{
1128 return temperateiceconductivity/heatcapacity;
1129 }
1130}/*}}}*/
1131IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
[17014]1132
[18930]1133 int iv;
1134 IssmDouble lambda; /* fraction of cold ice */
1135 IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
1136 IssmDouble Hc,Ht;
[17014]1137
[18930]1138 /*Get pressures and enthalpies on vertices*/
1139 int numvertices = element->GetNumberOfVertices();
1140 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1141 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1142 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
1143 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
[17014]1144 element->GetInputListOnVertices(pressures,PressureEnum);
[18930]1145 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
1146 for(iv=0;iv<numvertices;iv++){
1147 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
1148 dHpmp[iv] = enthalpies[iv]-PIE[iv];
1149 }
[17014]1150
[18930]1151 bool allequalsign = true;
1152 if(dHpmp[0]<0.){
1153 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
[17014]1154 }
[18930]1155 else{
1156 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
[17014]1157 }
1158
[18930]1159 if(allequalsign){
1160 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
[17014]1161 }
[18930]1162 else{
1163 /* return harmonic mean of thermal conductivities, weighted by fraction of cold/temperate ice,
1164 cf Patankar 1980, pp44 */
1165 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
1166 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
1167 Hc=0.; Ht=0.;
1168 for(iv=0; iv<numvertices;iv++){
1169 if(enthalpies[iv]<PIE[iv])
1170 Hc+=(PIE[iv]-enthalpies[iv]);
1171 else
1172 Ht+=(enthalpies[iv]-PIE[iv]);
1173 }
1174 _assert_((Hc+Ht)>0.);
1175 lambda = Hc/(Hc+Ht);
1176 kappa = kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c); // ==(lambda/kappa_c + (1.-lambda)/kappa_t)^-1
1177 }
[17014]1178
1179 /*Clean up and return*/
[18930]1180 xDelete<IssmDouble>(PIE);
1181 xDelete<IssmDouble>(dHpmp);
1182 xDelete<IssmDouble>(pressures);
[17014]1183 xDelete<IssmDouble>(enthalpies);
[18930]1184 return kappa;
[17002]1185}/*}}}*/
[18930]1186void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1187 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1188 * For node i, Bi' can be expressed in the actual coordinate system
1189 * by:
1190 * Bi_advec =[ h ]
1191 * [ h ]
1192 * [ h ]
1193 * where h is the interpolation function for node i.
1194 *
1195 * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
1196 */
[18659]1197
[18930]1198 /*Fetch number of nodes for this finite element*/
1199 int numnodes = element->GetNumberOfNodes();
[18659]1200
[18930]1201 /*Get nodal functions*/
1202 IssmDouble* basis=xNew<IssmDouble>(numnodes);
1203 element->NodalFunctions(basis,gauss);
[18659]1204
[18930]1205 /*Build B: */
1206 for(int i=0;i<numnodes;i++){
1207 B[numnodes*0+i] = basis[i];
1208 B[numnodes*1+i] = basis[i];
1209 B[numnodes*2+i] = basis[i];
[18659]1210 }
1211
[18930]1212 /*Clean-up*/
1213 xDelete<IssmDouble>(basis);
[18612]1214}/*}}}*/
[18930]1215void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1216 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1217 * For node i, Bi' can be expressed in the actual coordinate system
1218 * by:
1219 * Biprime_advec=[ dh/dx ]
1220 * [ dh/dy ]
1221 * [ dh/dz ]
1222 * where h is the interpolation function for node i.
1223 *
1224 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1225 */
[17002]1226
[18930]1227 /*Fetch number of nodes for this finite element*/
1228 int numnodes = element->GetNumberOfNodes();
[17434]1229
[18930]1230 /*Get nodal functions derivatives*/
1231 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1232 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
[17434]1233
[18930]1234 /*Build B: */
1235 for(int i=0;i<numnodes;i++){
1236 B[numnodes*0+i] = dbasis[0*numnodes+i];
1237 B[numnodes*1+i] = dbasis[1*numnodes+i];
1238 B[numnodes*2+i] = dbasis[2*numnodes+i];
[18659]1239 }
1240
[18930]1241 /*Clean-up*/
1242 xDelete<IssmDouble>(dbasis);
[18659]1243}/*}}}*/
[18930]1244void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
[18659]1245
1246 /*Intermediary*/
1247 bool isdynamicbasalspc;
[18612]1248 IssmDouble dt;
1249
1250 /*Check wether dynamic basal boundary conditions are activated */
1251 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1252 if(!isdynamicbasalspc) return;
1253
1254 element->FindParam(&dt,TimesteppingTimeStepEnum);
1255 if(dt==0.){
[18659]1256 GetBasalConstraintsSteadystate(vec_spc,element);
[18612]1257 }
1258 else{
[18659]1259 GetBasalConstraintsTransient(vec_spc,element);
[18612]1260 }
1261}/*}}}*/
[18930]1262void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
[18612]1263
1264 /* Check if ice in element */
1265 if(!element->IsIceInElement()) return;
1266
[20213]1267 /* Only update constraints at the base.
1268 * Floating ice is not affected by basal BC decision chart. */
[18612]1269 if(!(element->IsOnBase()) || element->IsFloating()) return;
1270
1271 /*Intermediary*/
1272 int numindices, numindicesup, state;
[17027]1273 int *indices = NULL, *indicesup = NULL;
[18612]1274 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
[17014]1275
[18612]1276 /*Get parameters and inputs: */
[18930]1277 Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
[18612]1278 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1279 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1280 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1281
[17027]1282 /*Fetch indices of basal & surface nodes for this finite element*/
1283 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1284 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
[18612]1285 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
[17014]1286
[18612]1287 GaussPenta* gauss=new GaussPenta();
1288 GaussPenta* gaussup=new GaussPenta();
1289 for(int i=0;i<numindices;i++){
1290 gauss->GaussNode(element->GetElementType(),indices[i]);
1291 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
[18930]1292
[18612]1293 enthalpy_input->GetInputValue(&enthalpy,gauss);
1294 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1295 pressure_input->GetInputValue(&pressure,gauss);
1296 pressure_input->GetInputValue(&pressureup,gaussup);
1297 watercolumn_input->GetInputValue(&watercolumn,gauss);
1298 meltingrate_input->GetInputValue(&meltingrate,gauss);
1299
1300 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1301 switch (state) {
1302 case 0:
1303 // cold, dry base: apply basal surface forcing
[18659]1304 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
[18612]1305 break;
1306 case 1:
1307 // cold, wet base: keep at pressure melting point
[18659]1308 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
[18612]1309 break;
1310 case 2:
[20098]1311 // temperate, thin refreezing base:
1312 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
[18612]1313 break;
1314 case 3:
1315 // temperate, thin melting base: set spc
[18659]1316 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
[18612]1317 break;
1318 case 4:
[20098]1319 // temperate, thick melting base:
[18930]1320 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
[18612]1321 break;
1322 default:
1323 _printf0_(" unknown thermal basal state found!");
1324 }
1325 }
1326
1327 /*Free ressources:*/
1328 xDelete<int>(indices);
1329 xDelete<int>(indicesup);
1330 delete gauss;
1331 delete gaussup;
1332}/*}}}*/
[18930]1333void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
[18612]1334
1335 /* Check if ice in element */
1336 if(!element->IsIceInElement()) return;
1337
[20213]1338 /* Only update constraints at the base.
1339 * Floating ice is not affected by basal BC decision chart.*/
[18612]1340 if(!(element->IsOnBase()) || element->IsFloating()) return;
1341
1342 /*Intermediary*/
1343 int numindices, numindicesup, state;
1344 int *indices = NULL, *indicesup = NULL;
1345 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1346
[17027]1347 /*Get parameters and inputs: */
[18930]1348 Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
[18612]1349 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1350 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1351 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
[17014]1352
[18612]1353 /*Fetch indices of basal & surface nodes for this finite element*/
1354 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1355 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1356 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1357
[17027]1358 GaussPenta* gauss=new GaussPenta();
1359 GaussPenta* gaussup=new GaussPenta();
[18930]1360
[17027]1361 for(int i=0;i<numindices;i++){
1362 gauss->GaussNode(element->GetElementType(),indices[i]);
1363 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
[18930]1364
[18612]1365 enthalpy_input->GetInputValue(&enthalpy,gauss);
1366 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1367 pressure_input->GetInputValue(&pressure,gauss);
1368 pressure_input->GetInputValue(&pressureup,gaussup);
[17027]1369 watercolumn_input->GetInputValue(&watercolumn,gauss);
[18612]1370 meltingrate_input->GetInputValue(&meltingrate,gauss);
1371
1372 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
[18930]1373
[18612]1374 switch (state) {
1375 case 0:
1376 // cold, dry base: apply basal surface forcing
[18659]1377 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
[18612]1378 break;
1379 case 1:
1380 // cold, wet base: keep at pressure melting point
[18659]1381 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
[18612]1382 break;
1383 case 2:
1384 // temperate, thin refreezing base: release spc
[18659]1385 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
[18612]1386 break;
1387 case 3:
1388 // temperate, thin melting base: set spc
[18659]1389 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
[18612]1390 break;
1391 case 4:
[18930]1392 // temperate, thick melting base: set grad H*n=0
1393 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
[18612]1394 break;
1395 default:
1396 _printf0_(" unknown thermal basal state found!");
[17027]1397 }
[18930]1398
[17027]1399 }
[17014]1400
[17027]1401 /*Free ressources:*/
1402 xDelete<int>(indices);
1403 xDelete<int>(indicesup);
1404 delete gauss;
1405 delete gaussup;
[17002]1406}/*}}}*/
[18930]1407void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1408 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1409 * For node i, Bi' can be expressed in the actual coordinate system
1410 * by:
1411 * Bi_conduct=[ dh/dx ]
1412 * [ dh/dy ]
1413 * [ dh/dz ]
1414 * where h is the interpolation function for node i.
1415 *
1416 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1417 */
[17002]1418
[18930]1419 /*Fetch number of nodes for this finite element*/
1420 int numnodes = element->GetNumberOfNodes();
1421
1422 /*Get nodal functions derivatives*/
1423 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1424 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1425
1426 /*Build B: */
1427 for(int i=0;i<numnodes;i++){
1428 B[numnodes*0+i] = dbasis[0*numnodes+i];
1429 B[numnodes*1+i] = dbasis[1*numnodes+i];
1430 B[numnodes*2+i] = dbasis[2*numnodes+i];
1431 }
1432
1433 /*Clean-up*/
1434 xDelete<IssmDouble>(dbasis);
1435}/*}}}*/
1436void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
1437 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
1438}/*}}}*/
1439int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
1440
[18612]1441 /* Check if ice in element */
1442 if(!element->IsIceInElement()) return -1;
1443
1444 /* Only update Constraints at the base of grounded ice*/
1445 if(!(element->IsOnBase())) return -1;
1446
1447 /*Intermediary*/
1448 int state=-1;
1449 IssmDouble dt;
1450
1451 /*Get parameters and inputs: */
1452 element->FindParam(&dt,TimesteppingTimeStepEnum);
1453
[18620]1454 if(enthalpy<PureIceEnthalpy(element,pressure)){
1455 if(watercolumn<=0.) state=0; // cold, dry base
1456 else state=1; // cold, wet base (refreezing)
[18612]1457 }
[18620]1458 else{
1459 if(enthalpyup<PureIceEnthalpy(element,pressureup)){
1460 if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
1461 else state=3; // temperate base, but no temperate layer
[18612]1462 }
[18620]1463 else state=4; // temperate layer with positive thickness
[18612]1464 }
1465
1466 _assert_(state>=0);
1467 return state;
1468}/*}}}*/
[18930]1469IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
[18612]1470
1471 IssmDouble temperature, waterfraction;
1472 IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
1473 IssmDouble kappa_i = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1474 element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
1475
1476 return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
1477}/*}}}*/
[18930]1478void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
1479 _error_("Not implemented yet");
1480}/*}}}*/
1481void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
[18612]1482
[18930]1483 bool converged;
1484 int i,rheology_law;
1485 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
[21382]1486 IssmDouble n=3.0;
[18930]1487 int *doflist = NULL;
1488 IssmDouble *xyz_list = NULL;
[16888]1489
[18930]1490 /*Fetch number of nodes and dof for this finite element*/
1491 int numnodes = element->GetNumberOfNodes();
[16888]1492
[18930]1493 /*Fetch dof list and allocate solution vector*/
1494 element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum);
1495 IssmDouble* values = xNew<IssmDouble>(numnodes);
1496 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
1497 IssmDouble* surface = xNew<IssmDouble>(numnodes);
1498 IssmDouble* B = xNew<IssmDouble>(numnodes);
1499 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
1500 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
[16888]1501
[18930]1502 /*Use the dof list to index into the solution vector: */
1503 for(i=0;i<numnodes;i++){
1504 values[i]=solution[doflist[i]];
[16888]1505
[18930]1506 /*Check solution*/
1507 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
[20669]1508 if(xIsInf<IssmDouble>(values[i])) _error_("Inf found in solution vector");
[16888]1509 }
1510
[18930]1511 /*Get all inputs and parameters*/
[21382]1512 if(element->material->ObjectEnum()!=MatestarEnum) n=element->GetMaterialParameter(MaterialsRheologyNEnum);
[18930]1513 element->GetInputValue(&converged,ConvergedEnum);
1514 element->GetInputListOnNodes(&pressure[0],PressureEnum);
1515 if(converged){
1516 for(i=0;i<numnodes;i++){
1517 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
1518 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
1519 //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
1520 }
1521 element->AddInput(EnthalpyEnum,values,element->GetElementType());
1522 element->AddInput(WaterfractionEnum,waterfraction,element->GetElementType());
1523 element->AddInput(TemperatureEnum,temperature,element->GetElementType());
1524
1525 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
1526 * otherwise the rheology could be negative*/
1527 element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
1528 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
1529 switch(rheology_law){
1530 case NoneEnum:
1531 /*Do nothing: B is not temperature dependent*/
1532 break;
[21377]1533 case BuddJackaEnum:
1534 for(i=0;i<numnodes;i++) B[i]=BuddJacka(temperature[i]);
1535 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1536 break;
[18930]1537 case CuffeyEnum:
1538 for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
1539 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1540 break;
[20625]1541 case CuffeyTemperateEnum:
[21382]1542 for(i=0;i<numnodes;i++) B[i]=CuffeyTemperate(temperature[i], waterfraction[i],n);
[20625]1543 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1544 break;
[18930]1545 case PatersonEnum:
1546 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
1547 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1548 break;
1549 case ArrheniusEnum:
1550 element->GetVerticesCoordinates(&xyz_list);
[21382]1551 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],n);
[18930]1552 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1553 break;
1554 case LliboutryDuvalEnum:
[21382]1555 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],n,element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum));
[18930]1556 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1557 break;
1558 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
1559 }
[16888]1560 }
1561 else{
[18930]1562 element->AddInput(EnthalpyPicardEnum,values,element->GetElementType());
[16888]1563 }
1564
[18930]1565 /*Free ressources:*/
1566 xDelete<IssmDouble>(values);
1567 xDelete<IssmDouble>(pressure);
1568 xDelete<IssmDouble>(surface);
1569 xDelete<IssmDouble>(B);
1570 xDelete<IssmDouble>(temperature);
1571 xDelete<IssmDouble>(waterfraction);
1572 xDelete<IssmDouble>(xyz_list);
1573 xDelete<int>(doflist);
1574}/*}}}*/
1575void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
[16888]1576
[18930]1577 /*Intermediaries*/
1578 bool computebasalmeltingrates=true;
1579 bool drainicecolumn=true;
1580 IssmDouble dt;
1581
1582 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1583
[21161]1584 if(drainicecolumn && (dt>0.)) DrainWaterfraction(femmodel);
[18930]1585 if(computebasalmeltingrates) ComputeBasalMeltingrate(femmodel);
1586
[17027]1587}/*}}}*/
[18930]1588IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
[16888]1589
1590 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1591 IssmDouble referencetemperature = element->GetMaterialParameter(ConstantsReferencetemperatureEnum);
1592
1593 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
1594}/*}}}*/
[18930]1595IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
[16888]1596
1597 IssmDouble meltingpoint = element->GetMaterialParameter(MaterialsMeltingpointEnum);
1598 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
1599
1600 return meltingpoint-beta*pressure;
1601}/*}}}*/
[18930]1602void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
1603
1604 /*Update basal dirichlet BCs for enthalpy: */
1605 Vector<IssmDouble>* spc = NULL;
1606 IssmDouble* serial_spc = NULL;
1607
1608 spc=new Vector<IssmDouble>(femmodel->nodes->NumberOfNodes(EnthalpyAnalysisEnum));
1609 /*First create a vector to figure out what elements should be constrained*/
1610 for(int i=0;i<femmodel->elements->Size();i++){
1611 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1612 GetBasalConstraints(spc,element);
1613 }
1614
1615 /*Assemble and serialize*/
1616 spc->Assemble();
1617 serial_spc=spc->ToMPISerial();
1618 delete spc;
1619
1620 /*Then update basal constraints nodes accordingly*/
1621 for(int i=0;i<femmodel->elements->Size();i++){
1622 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1623 ApplyBasalConstraints(serial_spc,element);
1624 }
1625
1626 femmodel->UpdateConstraintsx();
1627
1628 /*Delete*/
1629 xDelete<IssmDouble>(serial_spc);
1630}/*}}}*/
1631void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
[20453]1632 SetActiveNodesLSMx(femmodel);
[18930]1633}/*}}}*/
Note: See TracBrowser for help on using the repository browser.