source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 21895

Last change on this file since 21895 was 21895, checked in by Mathieu Morlighem, 8 years ago

NEW: Enables iomodel to read patches

File size: 63.7 KB
Line 
1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
6#include "../solutionsequences/solutionsequences.h"
7#include "../cores/cores.h"
8
9/*Model processing*/
10void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
11
12 /*Intermediary*/
13 int count;
14 int M,N;
15 bool spcpresent = false;
16 int finiteelement;
17 IssmDouble heatcapacity;
18 IssmDouble referencetemperature;
19
20 /*Output*/
21 IssmDouble *spcvector = NULL;
22 IssmDouble* times=NULL;
23 IssmDouble* values=NULL;
24
25 /*Fetch parameters: */
26 iomodel->FindConstant(&heatcapacity,"md.materials.heatcapacity");
27 iomodel->FindConstant(&referencetemperature,"md.constants.referencetemperature");
28 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
29
30 /*return if 2d mesh*/
31 if(iomodel->domaintype==Domain2DhorizontalEnum) return;
32
33 /*Fetch data: */
34 iomodel->FetchData(&spcvector,&M,&N,"md.thermal.spctemperature");
35
36 /*Convert spcs from temperatures to enthalpy*/
37 _assert_(N>0); _assert_(M>=iomodel->numberofvertices);
38 for(int i=0;i<iomodel->numberofvertices;i++){
39 for(int j=0;j<N;j++){
40 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
41 }
42 }
43
44 /*Specific case for PDD, we want the constaints to be updated by the PDD scheme itself*/
45 bool isdynamic = false;
46 if (iomodel->solution_enum==TransientSolutionEnum){
47 int smb_model;
48 iomodel->FindConstant(&smb_model,"md.smb.model");
49 if(smb_model==SMBpddEnum) isdynamic=true;
50 if(smb_model==SMBd18opddEnum) isdynamic=true;
51 }
52
53 if(isdynamic){
54 IoModelToDynamicConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
55 }
56 else{
57 IoModelToConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
58 }
59
60 /*Free ressources:*/
61 iomodel->DeleteData(spcvector,"md.thermal.spctemperature");
62 xDelete<IssmDouble>(times);
63 xDelete<IssmDouble>(values);
64}/*}}}*/
65void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
66
67 /*No loads */
68}/*}}}*/
69void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/
70
71 int finiteelement;
72 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
73
74 if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
75 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,finiteelement);
76 iomodel->DeleteData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
77}/*}}}*/
78int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
79 return 1;
80}/*}}}*/
81void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
82
83 bool dakota_analysis,ismovingfront,isenthalpy;
84 int frictionlaw,basalforcing_model,materialstype;
85 int FrictionCoupling;
86
87 /*Now, is the model 3d? otherwise, do nothing: */
88 if(iomodel->domaintype==Domain2DhorizontalEnum)return;
89
90 /*Is enthalpy requested?*/
91 iomodel->FindConstant(&isenthalpy,"md.thermal.isenthalpy");
92 if(!isenthalpy) return;
93
94 /*Fetch data needed: */
95 iomodel->FetchData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
96
97 /*Finite element type*/
98 int finiteelement;
99 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
100
101 /*Update elements: */
102 int counter=0;
103 for(int i=0;i<iomodel->numberofelements;i++){
104 if(iomodel->my_elements[i]){
105 Element* element=(Element*)elements->GetObjectByOffset(counter);
106 element->Update(i,iomodel,analysis_counter,analysis_type,finiteelement);
107 counter++;
108 }
109 }
110
111 iomodel->FindConstant(&dakota_analysis,"md.qmu.isdakota");
112 iomodel->FindConstant(&ismovingfront,"md.transient.ismovingfront");
113 iomodel->FindConstant(&frictionlaw,"md.friction.law");
114 iomodel->FindConstant(&materialstype,"md.materials.type");
115
116 iomodel->FetchDataToInput(elements,"md.geometry.thickness",ThicknessEnum);
117 iomodel->FetchDataToInput(elements,"md.geometry.surface",SurfaceEnum);
118 iomodel->FetchDataToInput(elements,"md.slr.sealevel",SealevelEnum,0);
119 iomodel->FetchDataToInput(elements,"md.geometry.base",BaseEnum);
120 iomodel->FetchDataToInput(elements,"md.mask.ice_levelset",MaskIceLevelsetEnum);
121 iomodel->FetchDataToInput(elements,"md.mask.groundedice_levelset",MaskGroundediceLevelsetEnum);
122 if(iomodel->domaintype!=Domain2DhorizontalEnum){
123 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum);
124 iomodel->FetchDataToInput(elements,"md.mesh.vertexonsurface",MeshVertexonsurfaceEnum);
125 }
126 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
127 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
128 iomodel->FetchDataToInput(elements,"md.initialization.waterfraction",WaterfractionEnum);
129 iomodel->FetchDataToInput(elements,"md.initialization.enthalpy",EnthalpyEnum);
130 iomodel->FetchDataToInput(elements,"md.initialization.watercolumn",WatercolumnEnum);
131 iomodel->FetchDataToInput(elements,"md.basalforcings.groundedice_melting_rate",BasalforcingsGroundediceMeltingRateEnum);
132 iomodel->FetchDataToInput(elements,"md.initialization.vx",VxEnum);
133 iomodel->FetchDataToInput(elements,"md.initialization.vy",VyEnum);
134 iomodel->FetchDataToInput(elements,"md.initialization.vz",VzEnum);
135 InputUpdateFromConstantx(elements,0.,VxMeshEnum);
136 InputUpdateFromConstantx(elements,0.,VyMeshEnum);
137 InputUpdateFromConstantx(elements,0.,VzMeshEnum);
138 if(ismovingfront){
139 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum); // required for updating active nodes
140 }
141
142 /*Basal forcings variables*/
143 iomodel->FindConstant(&basalforcing_model,"md.basalforcings.model");
144 switch(basalforcing_model){
145 case MantlePlumeGeothermalFluxEnum:
146 break;
147 default:
148 iomodel->FetchDataToInput(elements,"md.basalforcings.geothermalflux",BasalforcingsGeothermalfluxEnum);
149 break;
150 }
151
152 /*Rheology type*/
153 iomodel->FetchDataToInput(elements,"md.materials.rheology_B",MaterialsRheologyBEnum);
154 switch(materialstype){
155 case MatenhancediceEnum:
156 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
157 iomodel->FetchDataToInput(elements,"md.materials.rheology_E",MaterialsRheologyEEnum);
158 break;
159 case MatdamageiceEnum:
160 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
161 break;
162 case MatestarEnum:
163 iomodel->FetchDataToInput(elements,"md.materials.rheology_Ec",MaterialsRheologyEcEnum);
164 iomodel->FetchDataToInput(elements,"md.materials.rheology_Es",MaterialsRheologyEsEnum);
165 break;
166 case MaticeEnum:
167 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
168 break;
169 default:
170 _error_("not supported");
171 }
172
173 /*Friction law variables*/
174 switch(frictionlaw){
175 case 1:
176 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
177 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
178 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
179 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
180 if (FrictionCoupling==1){
181 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);
182 }
183 break;
184 case 2:
185 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
186 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
187 break;
188 case 3:
189 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
190 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
191 iomodel->FetchDataToInput(elements,"md.friction.As",FrictionAsEnum);
192 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
193 if (FrictionCoupling==1){
194 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);
195 }
196 break;
197 case 4:
198 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
199 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
200 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
201 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
202 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
203 break;
204 case 5:
205 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
206 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
207 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
208 iomodel->FetchDataToInput(elements,"md.friction.water_layer",FrictionWaterLayerEnum);
209 break;
210 case 6:
211 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
212 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
213 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
214 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
215 break;
216 case 9:
217 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
218 iomodel->FetchDataToInput(elements,"md.friction.pressure_adjusted_temperature",FrictionPressureAdjustedTemperatureEnum);
219 InputUpdateFromConstantx(elements,1.,FrictionPEnum);
220 InputUpdateFromConstantx(elements,1.,FrictionQEnum);
221 break;
222 default:
223 _error_("friction law not supported");
224 }
225
226 /*Free data: */
227 iomodel->DeleteData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
228
229}/*}}}*/
230void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
231
232 int numoutputs;
233 char** requestedoutputs = NULL;
234
235 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.stabilization",ThermalStabilizationEnum));
236 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.maxiter",ThermalMaxiterEnum));
237 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.reltol",ThermalReltolEnum));
238 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isenthalpy",ThermalIsenthalpyEnum));
239 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdynamicbasalspc",ThermalIsdynamicbasalspcEnum));
240 parameters->AddObject(iomodel->CopyConstantObject("md.friction.law",FrictionLawEnum));
241
242 iomodel->FindConstant(&requestedoutputs,&numoutputs,"md.thermal.requested_outputs");
243 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
244 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
245 iomodel->DeleteData(&requestedoutputs,numoutputs,"md.thermal.requested_outputs");
246
247 /*Deal with friction parameters*/
248 int frictionlaw;
249 iomodel->FindConstant(&frictionlaw,"md.friction.law");
250 if(frictionlaw==4 || frictionlaw==6){
251 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
252 }
253 if(frictionlaw==3 || frictionlaw==1){
254 parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
255 }
256 if(frictionlaw==9){
257 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
258 parameters->AddObject(new IntParam(FrictionCouplingEnum,0));
259 }
260}/*}}}*/
261
262/*Finite Element Analysis*/
263void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* serial_spc,Element* element){/*{{{*/
264
265 /* Do not check if ice in element, this may lead to inconsistencies between cpu partitions */
266 /* Only update constraints at the base. */
267 if(!(element->IsOnBase())) return;
268
269 /*Intermediary*/
270 bool isdynamicbasalspc;
271 int numindices;
272 int *indices = NULL;
273 Node* node = NULL;
274 IssmDouble pressure;
275
276 /*Check wether dynamic basal boundary conditions are activated */
277 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
278 if(!isdynamicbasalspc) return;
279
280 /*Get parameters and inputs: */
281 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
282
283 /*Fetch indices of basal & surface nodes for this finite element*/
284 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
285 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
286
287 GaussPenta* gauss=new GaussPenta();
288 for(int i=0;i<numindices;i++){
289 gauss->GaussNode(element->GetElementType(),indices[i]);
290
291 pressure_input->GetInputValue(&pressure,gauss);
292
293 /*apply or release spc*/
294 node=element->GetNode(indices[i]);
295 if(!node->IsActive()) continue;
296 if(serial_spc[node->Sid()]==1.){
297 pressure_input->GetInputValue(&pressure, gauss);
298 node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
299 }
300 else {
301 node->DofInFSet(0);
302 }
303 }
304
305 /*Free ressources:*/
306 xDelete<int>(indices);
307 delete gauss;
308}/*}}}*/
309void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
310 /*Compute basal melting rates: */
311 for(int i=0;i<femmodel->elements->Size();i++){
312 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
313 ComputeBasalMeltingrate(element);
314 }
315
316 /*extrude inputs*/
317 femmodel->parameters->SetParam(BasalforcingsGroundediceMeltingRateEnum,InputToExtrudeEnum);
318 extrudefrombase_core(femmodel);
319}/*}}}*/
320void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
321 /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
322 /* melting rate is positive when melting, negative when refreezing*/
323
324 /* Check if ice in element */
325 if(!element->IsIceInElement()) return;
326
327 /* Only compute melt rates at the base of grounded ice*/
328 if(!element->IsOnBase() || element->IsFloating()) return;
329
330 /* Intermediaries */
331 bool converged;
332 const int dim=3;
333 int i,is,state;
334 int nodedown,nodeup,numnodes,numsegments;
335 int enthalpy_enum;
336 IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
337 IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
338 IssmDouble dt,yts;
339 IssmDouble melting_overshoot,lambda;
340 IssmDouble vx,vy,vz;
341 IssmDouble *xyz_list = NULL;
342 IssmDouble *xyz_list_base = NULL;
343 int *pairindices = NULL;
344
345 /*Fetch parameters*/
346 element->GetVerticesCoordinates(&xyz_list);
347 element->GetVerticesCoordinatesBase(&xyz_list_base);
348 element->GetInputValue(&converged,ConvergedEnum);
349 element->FindParam(&dt,TimesteppingTimeStepEnum);
350 element->FindParam(&yts, ConstantsYtsEnum);
351
352 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
353 else enthalpy_enum=EnthalpyEnum;
354
355 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
356 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
357 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoFreshwaterEnum);
358 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
359 IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
360 IssmDouble kappa_mix;
361
362 /*retrieve inputs*/
363 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
364 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
365 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
366 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
367 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
368 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
369
370 /*Build friction element, needed later: */
371 Friction* friction=new Friction(element,dim);
372
373 /******** MELTING RATES ************************************//*{{{*/
374 element->NormalBase(&normal_base[0],xyz_list_base);
375 element->VerticalSegmentIndicesBase(&pairindices,&numsegments);
376 IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
377 IssmDouble* heating = xNew<IssmDouble>(numsegments);
378
379 numnodes=element->GetNumberOfNodes();
380 IssmDouble* enthalpies = xNew<IssmDouble>(numnodes);
381 IssmDouble* pressures = xNew<IssmDouble>(numnodes);
382 IssmDouble* watercolumns = xNew<IssmDouble>(numnodes);
383 IssmDouble* basalmeltingrates = xNew<IssmDouble>(numnodes);
384 element->GetInputListOnNodes(enthalpies,enthalpy_enum);
385 element->GetInputListOnNodes(pressures,PressureEnum);
386 element->GetInputListOnNodes(watercolumns,WatercolumnEnum);
387 element->GetInputListOnNodes(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
388
389 Gauss* gauss=element->NewGauss();
390 for(is=0;is<numsegments;is++){
391 nodedown = pairindices[is*2+0];
392 nodeup = pairindices[is*2+1];
393 gauss->GaussNode(element->GetElementType(),nodedown);
394
395 state=GetThermalBasalCondition(element, enthalpies[nodedown], enthalpies[nodeup], pressures[nodedown], pressures[nodeup], watercolumns[nodedown], basalmeltingrates[nodedown]);
396 switch (state) {
397 case 0:
398 // cold, dry base: apply basal surface forcing
399 for(i=0;i<3;i++) vec_heatflux[i]=0.;
400 break;
401 case 1: case 2: case 3:
402 // case 1 : cold, wet base: keep at pressure melting point
403 // case 2: temperate, thin refreezing base: release spc
404 // case 3: temperate, thin melting base: set spc
405 enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
406 for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
407 break;
408 case 4:
409 // temperate, thick melting base: set grad H*n=0
410 kappa_mix=GetWetIceConductivity(element, enthalpies[nodedown], pressures[nodedown]);
411 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
412 for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
413 break;
414 default:
415 _printf0_(" unknown thermal basal state found!");
416 }
417 if(state==0) meltingrate_enthalpy[is]=0.;
418 else{
419 /*heat flux along normal*/
420 heatflux=0.;
421 for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
422
423 /*basal friction*/
424 friction->GetAlpha2(&alpha2,gauss);
425 vx_input->GetInputValue(&vx,gauss); vy_input->GetInputValue(&vy,gauss); vz_input->GetInputValue(&vz,gauss);
426 basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
427 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
428 /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
429 heating[is]=(heatflux+basalfriction+geothermalflux);
430 meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
431 }
432 }/*}}}*/
433
434 /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
435 for(is=0;is<numsegments;is++){
436 nodedown = pairindices[is*2+0];
437 nodeup = pairindices[is*2+1];
438 if(dt!=0.){
439 if(watercolumns[nodedown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
440 lambda = -watercolumns[nodedown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
441 watercolumns[nodedown]=0.;
442 basalmeltingrates[nodedown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
443 enthalpies[nodedown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
444 }
445 else{
446 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
447 watercolumns[nodedown]+=dt*meltingrate_enthalpy[is];
448 }
449 }
450 else{
451 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
452 if(watercolumns[nodedown]+meltingrate_enthalpy[is]<0.)
453 watercolumns[nodedown]=0.;
454 else
455 watercolumns[nodedown]+=meltingrate_enthalpy[is];
456 }
457 basalmeltingrates[nodedown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
458 _assert_(watercolumns[nodedown]>=0.);
459 }/*}}}*/
460
461 /*feed updated variables back into model*/
462 if(dt!=0.){
463 element->AddInput(enthalpy_enum,enthalpies,element->GetElementType());
464 element->AddInput(WatercolumnEnum,watercolumns,element->GetElementType());
465 }
466 element->AddInput(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,element->GetElementType());
467
468 /*Clean up and return*/
469 delete gauss;
470 delete friction;
471 xDelete<int>(pairindices);
472 xDelete<IssmDouble>(enthalpies);
473 xDelete<IssmDouble>(pressures);
474 xDelete<IssmDouble>(watercolumns);
475 xDelete<IssmDouble>(basalmeltingrates);
476 xDelete<IssmDouble>(meltingrate_enthalpy);
477 xDelete<IssmDouble>(heating);
478 xDelete<IssmDouble>(xyz_list);
479 xDelete<IssmDouble>(xyz_list_base);
480}/*}}}*/
481void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
482
483 IssmDouble dt;
484 bool isdynamicbasalspc;
485
486 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
487 femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
488
489 if(VerboseSolution()) _printf0_(" computing enthalpy\n");
490 femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
491 if((dt>0.) && isdynamicbasalspc) UpdateBasalConstraints(femmodel);
492 solutionsequence_thermal_nonlinear(femmodel);
493
494 /*transfer enthalpy to enthalpy picard for the next step: */
495 InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
496
497 PostProcessing(femmodel);
498
499}/*}}}*/
500ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
501 /*Default, return NULL*/
502 return NULL;
503}/*}}}*/
504ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
505_error_("Not implemented");
506}/*}}}*/
507ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
508
509 /* Check if ice in element */
510 if(!element->IsIceInElement()) return NULL;
511
512 /*compute all stiffness matrices for this element*/
513 ElementMatrix* Ke1=CreateKMatrixVolume(element);
514 ElementMatrix* Ke2=CreateKMatrixShelf(element);
515 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
516
517 /*clean-up and return*/
518 delete Ke1;
519 delete Ke2;
520 return Ke;
521}/*}}}*/
522ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
523
524 /* Check if ice in element */
525 if(!element->IsIceInElement()) return NULL;
526
527 /*Intermediaries */
528 int stabilization;
529 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
530 IssmDouble h,hx,hy,hz,vx,vy,vz;
531 IssmDouble tau_parameter,diameter;
532 IssmDouble D_scalar;
533 IssmDouble* xyz_list = NULL;
534
535 /*Fetch number of nodes and dof for this finite element*/
536 int numnodes = element->GetNumberOfNodes();
537
538 /*Initialize Element vector and other vectors*/
539 ElementMatrix* Ke = element->NewElementMatrix();
540 IssmDouble* basis = xNew<IssmDouble>(numnodes);
541 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
542 IssmDouble* B = xNew<IssmDouble>(3*numnodes);
543 IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
544 IssmDouble D[3][3] = {0.};
545 IssmDouble K[3][3];
546
547 /*Retrieve all inputs and parameters*/
548 element->GetVerticesCoordinates(&xyz_list);
549 element->FindParam(&dt,TimesteppingTimeStepEnum);
550 element->FindParam(&stabilization,ThermalStabilizationEnum);
551 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
552 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
553 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
554 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
555 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
556 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
557 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
558 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
559 Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
560 Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
561 Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
562 if(stabilization==2) diameter=element->MinEdgeLength(xyz_list);
563
564 /*Enthalpy diffusion parameter*/
565 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
566
567 /* Start looping on the number of gaussian points: */
568 Gauss* gauss=element->NewGauss(4);
569 for(int ig=gauss->begin();ig<gauss->end();ig++){
570 gauss->GaussPoint(ig);
571
572 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
573 D_scalar=gauss->weight*Jdet;
574 if(dt!=0.) D_scalar=D_scalar*dt;
575
576 /*Conduction: */
577 GetBConduct(B,element,xyz_list,gauss);
578 D[0][0]=D_scalar*kappa/rho_ice;
579 D[1][1]=D_scalar*kappa/rho_ice;
580 D[2][2]=D_scalar*kappa/rho_ice;
581 TripleMultiply(B,3,numnodes,1,
582 &D[0][0],3,3,0,
583 B,3,numnodes,0,
584 &Ke->values[0],1);
585
586 /*Advection: */
587 GetBAdvec(B,element,xyz_list,gauss);
588 GetBAdvecprime(Bprime,element,xyz_list,gauss);
589 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
590 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
591 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
592 D[0][0]=D_scalar*vx;
593 D[1][1]=D_scalar*vy;
594 D[2][2]=D_scalar*vz;
595 TripleMultiply(B,3,numnodes,1,
596 &D[0][0],3,3,0,
597 Bprime,3,numnodes,0,
598 &Ke->values[0],1);
599
600 /*Transient: */
601 if(dt!=0.){
602 D_scalar=gauss->weight*Jdet;
603 element->NodalFunctions(basis,gauss);
604 TripleMultiply(basis,numnodes,1,0,
605 &D_scalar,1,1,0,
606 basis,1,numnodes,0,
607 &Ke->values[0],1);
608 D_scalar=D_scalar*dt;
609 }
610
611 /*Artificial diffusivity*/
612 if(stabilization==1){
613 element->ElementSizes(&hx,&hy,&hz);
614 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
615 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
616 K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
617 K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
618 K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
619 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
620
621 GetBAdvecprime(Bprime,element,xyz_list,gauss);
622 TripleMultiply(Bprime,3,numnodes,1,
623 &K[0][0],3,3,0,
624 Bprime,3,numnodes,0,
625 &Ke->values[0],1);
626 }
627 else if(stabilization==2){
628 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
629 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
630 for(int i=0;i<numnodes;i++){
631 for(int j=0;j<numnodes;j++){
632 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
633 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
634 }
635 }
636 if(dt!=0.){
637 D_scalar=gauss->weight*Jdet;
638 for(int i=0;i<numnodes;i++){
639 for(int j=0;j<numnodes;j++){
640 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
641 }
642 }
643 }
644 }
645 }
646
647 /*Clean up and return*/
648 xDelete<IssmDouble>(xyz_list);
649 xDelete<IssmDouble>(basis);
650 xDelete<IssmDouble>(dbasis);
651 xDelete<IssmDouble>(B);
652 xDelete<IssmDouble>(Bprime);
653 delete gauss;
654 return Ke;
655}/*}}}*/
656ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
657
658 /* Check if ice in element */
659 if(!element->IsIceInElement()) return NULL;
660
661 /*Initialize Element matrix and return if necessary*/
662 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
663
664 /*Intermediaries*/
665 IssmDouble dt,Jdet,D;
666 IssmDouble *xyz_list_base = NULL;
667
668 /*Fetch number of nodes for this finite element*/
669 int numnodes = element->GetNumberOfNodes();
670
671 /*Initialize vectors*/
672 ElementMatrix* Ke = element->NewElementMatrix();
673 IssmDouble* basis = xNew<IssmDouble>(numnodes);
674
675 /*Retrieve all inputs and parameters*/
676 element->GetVerticesCoordinatesBase(&xyz_list_base);
677 element->FindParam(&dt,TimesteppingTimeStepEnum);
678 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
679 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
680 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
681 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
682 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
683 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
684
685 /* Start looping on the number of gaussian points: */
686 Gauss* gauss=element->NewGaussBase(4);
687 for(int ig=gauss->begin();ig<gauss->end();ig++){
688 gauss->GaussPoint(ig);
689
690 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
691 element->NodalFunctions(basis,gauss);
692
693 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
694 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
695 TripleMultiply(basis,numnodes,1,0,
696 &D,1,1,0,
697 basis,1,numnodes,0,
698 &Ke->values[0],1);
699
700 }
701
702 /*Clean up and return*/
703 delete gauss;
704 xDelete<IssmDouble>(basis);
705 xDelete<IssmDouble>(xyz_list_base);
706 return Ke;
707}/*}}}*/
708ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
709
710 /* Check if ice in element */
711 if(!element->IsIceInElement()) return NULL;
712
713 /*compute all load vectors for this element*/
714 ElementVector* pe1=CreatePVectorVolume(element);
715 ElementVector* pe2=CreatePVectorSheet(element);
716 ElementVector* pe3=CreatePVectorShelf(element);
717 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
718
719 /*clean-up and return*/
720 delete pe1;
721 delete pe2;
722 delete pe3;
723 return pe;
724}/*}}}*/
725ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
726
727 /* Check if ice in element */
728 if(!element->IsIceInElement()) return NULL;
729
730 /*Intermediaries*/
731 int i, stabilization;
732 IssmDouble Jdet,phi,dt;
733 IssmDouble enthalpy, Hpmp;
734 IssmDouble enthalpypicard, d1enthalpypicard[3];
735 IssmDouble pressure, d1pressure[3], d2pressure;
736 IssmDouble waterfractionpicard;
737 IssmDouble kappa,tau_parameter,diameter,kappa_w;
738 IssmDouble u,v,w;
739 IssmDouble scalar_def, scalar_sens ,scalar_transient;
740 IssmDouble* xyz_list = NULL;
741 IssmDouble d1H_d1P, d1P2;
742
743 /*Fetch number of nodes and dof for this finite element*/
744 int numnodes = element->GetNumberOfNodes();
745 int numvertices = element->GetNumberOfVertices();
746
747 /*Initialize Element vector*/
748 ElementVector* pe = element->NewElementVector();
749 IssmDouble* basis = xNew<IssmDouble>(numnodes);
750 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
751
752 /*Retrieve all inputs and parameters*/
753 element->GetVerticesCoordinates(&xyz_list);
754 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
755 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
756 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
757 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
758 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
759 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
760 element->FindParam(&dt,TimesteppingTimeStepEnum);
761 element->FindParam(&stabilization,ThermalStabilizationEnum);
762 Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
763 Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
764 Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
765 Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
766 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
767 Input* enthalpy_input=NULL;
768 if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
769 if(stabilization==2){
770 diameter=element->MinEdgeLength(xyz_list);
771 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
772 }
773
774 /* Start looping on the number of gaussian points: */
775 Gauss* gauss=element->NewGauss(4);
776 for(int ig=gauss->begin();ig<gauss->end();ig++){
777 gauss->GaussPoint(ig);
778
779 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
780 element->NodalFunctions(basis,gauss);
781
782 /*viscous dissipation*/
783 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
784
785 scalar_def=phi/rho_ice*Jdet*gauss->weight;
786 if(dt!=0.) scalar_def=scalar_def*dt;
787
788 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
789
790 /*sensible heat flux in temperate ice*/
791 enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
792 pressure_input->GetInputValue(&pressure,gauss);
793 Hpmp=this->PureIceEnthalpy(element, pressure);
794
795 if(enthalpypicard>=Hpmp){
796 enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
797 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
798 d2pressure=0.; // for linear elements, 2nd derivative is zero
799
800 d1H_d1P=0.;
801 for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
802 d1P2=0.;
803 for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
804
805 scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
806 if(dt!=0.) scalar_sens=scalar_sens*dt;
807 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
808 }
809
810 /* Build transient now */
811 if(reCast<bool,IssmDouble>(dt)){
812 enthalpy_input->GetInputValue(&enthalpy, gauss);
813 scalar_transient=enthalpy*Jdet*gauss->weight;
814 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
815 }
816
817 if(stabilization==2){
818 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
819
820 vx_input->GetInputValue(&u,gauss);
821 vy_input->GetInputValue(&v,gauss);
822 vz_input->GetInputValue(&w,gauss);
823 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
824
825 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
826
827 if(dt!=0.){
828 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
829 }
830 }
831 }
832
833 /*Clean up and return*/
834 xDelete<IssmDouble>(basis);
835 xDelete<IssmDouble>(dbasis);
836 xDelete<IssmDouble>(xyz_list);
837 delete gauss;
838 return pe;
839
840}/*}}}*/
841ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
842
843 /* Check if ice in element */
844 if(!element->IsIceInElement()) return NULL;
845
846 /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
847 if(!element->IsOnBase() || element->IsFloating()) return NULL;
848
849 bool converged, isdynamicbasalspc;
850 int i, state;
851 int enthalpy_enum;
852 IssmDouble dt,Jdet,scalar;
853 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
854 IssmDouble vx,vy,vz;
855 IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
856 IssmDouble *xyz_list_base = NULL;
857
858 /*Fetch number of nodes for this finite element*/
859 int numnodes = element->GetNumberOfNodes();
860
861 /*Initialize vectors*/
862 ElementVector* pe = element->NewElementVector();
863 IssmDouble* basis = xNew<IssmDouble>(numnodes);
864
865 /*Retrieve all inputs and parameters*/
866 element->GetVerticesCoordinatesBase(&xyz_list_base);
867 element->FindParam(&dt,TimesteppingTimeStepEnum);
868 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
869 element->GetInputValue(&converged,ConvergedEnum);
870 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum; // use enthalpy from last iteration
871 else enthalpy_enum=EnthalpyEnum; // use enthalpy from last time step
872 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
873 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
874 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
875 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
876 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
877 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
878 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
879 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
880 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
881
882 /*Build friction element, needed later: */
883 Friction* friction=new Friction(element,3);
884
885 /* Start looping on the number of gaussian points: */
886 Gauss* gauss=element->NewGaussBase(4);
887 Gauss* gaussup=element->NewGaussTop(4);
888 for(int ig=gauss->begin();ig<gauss->end();ig++){
889 gauss->GaussPoint(ig);
890 gaussup->GaussPoint(ig);
891
892 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
893 element->NodalFunctions(basis,gauss);
894
895 if(isdynamicbasalspc){
896 enthalpy_input->GetInputValue(&enthalpy,gauss);
897 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
898 pressure_input->GetInputValue(&pressure,gauss);
899 pressure_input->GetInputValue(&pressureup,gaussup);
900 watercolumn_input->GetInputValue(&watercolumn,gauss);
901 meltingrate_input->GetInputValue(&meltingrate,gauss);
902 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
903 }
904 else
905 state=0;
906
907 switch (state) {
908 case 0: case 1: case 2: case 3:
909 // cold, dry base; cold, wet base; refreezing temperate base; thin temperate base:
910 // Apply basal surface forcing.
911 // Interpolated values of enthalpy on gauss nodes may indicate cold base,
912 // although one node might have become temperate. So keep heat flux switched on.
913 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
914 friction->GetAlpha2(&alpha2,gauss);
915 vx_input->GetInputValue(&vx,gauss);
916 vy_input->GetInputValue(&vy,gauss);
917 vz_input->GetInputValue(&vz,gauss);
918 basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
919 heatflux=(basalfriction+geothermalflux)/(rho_ice);
920 scalar=gauss->weight*Jdet*heatflux;
921 if(dt!=0.) scalar=dt*scalar;
922 for(i=0;i<numnodes;i++)
923 pe->values[i]+=scalar*basis[i];
924 break;
925 case 4:
926 // temperate, thick melting base: set grad H*n=0
927 for(i=0;i<numnodes;i++)
928 pe->values[i]+=0.;
929 break;
930 default:
931 _printf0_(" unknown thermal basal state found!");
932 }
933 }
934
935 /*Clean up and return*/
936 delete gauss;
937 delete gaussup;
938 delete friction;
939 xDelete<IssmDouble>(basis);
940 xDelete<IssmDouble>(xyz_list_base);
941 return pe;
942
943}/*}}}*/
944ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
945
946 /* Check if ice in element */
947 if(!element->IsIceInElement()) return NULL;
948
949 /*Get basal element*/
950 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
951
952 IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
953 IssmDouble *xyz_list_base = NULL;
954
955 /*Fetch number of nodes for this finite element*/
956 int numnodes = element->GetNumberOfNodes();
957
958 /*Initialize vectors*/
959 ElementVector* pe = element->NewElementVector();
960 IssmDouble* basis = xNew<IssmDouble>(numnodes);
961
962 /*Retrieve all inputs and parameters*/
963 element->GetVerticesCoordinatesBase(&xyz_list_base);
964 element->FindParam(&dt,TimesteppingTimeStepEnum);
965 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
966 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
967 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
968 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
969 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
970 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
971 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
972
973 /* Start looping on the number of gaussian points: */
974 Gauss* gauss=element->NewGaussBase(4);
975 for(int ig=gauss->begin();ig<gauss->end();ig++){
976 gauss->GaussPoint(ig);
977
978 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
979 element->NodalFunctions(basis,gauss);
980
981 pressure_input->GetInputValue(&pressure,gauss);
982 Hpmp=element->PureIceEnthalpy(pressure);
983
984 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
985 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
986
987 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
988 }
989
990 /*Clean up and return*/
991 delete gauss;
992 xDelete<IssmDouble>(basis);
993 xDelete<IssmDouble>(xyz_list_base);
994 return pe;
995}/*}}}*/
996void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
997 /*Drain excess water fraction in ice column: */
998 ComputeWaterfractionDrainage(femmodel);
999 DrainageUpdateWatercolumn(femmodel);
1000 DrainageUpdateEnthalpy(femmodel);
1001}/*}}}*/
1002void EnthalpyAnalysis::ComputeWaterfractionDrainage(FemModel* femmodel){/*{{{*/
1003
1004 int i,k,numnodes;
1005 IssmDouble dt;
1006 Element* element= NULL;
1007
1008 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1009
1010 for(i=0;i<femmodel->elements->Size();i++){
1011 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1012 numnodes=element->GetNumberOfNodes();
1013 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1014 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1015
1016 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1017 for(k=0; k<numnodes;k++){
1018 drainage[k]=DrainageFunctionWaterfraction(waterfractions[k], dt);
1019 }
1020 element->AddInput(WaterfractionDrainageEnum,drainage,element->GetElementType());
1021
1022 xDelete<IssmDouble>(waterfractions);
1023 xDelete<IssmDouble>(drainage);
1024 }
1025}/*}}}*/
1026void EnthalpyAnalysis::DrainageUpdateWatercolumn(FemModel* femmodel){/*{{{*/
1027
1028 int i,k,numnodes, numbasalnodes;
1029 IssmDouble dt;
1030 int* basalnodeindices=NULL;
1031 Element* element= NULL;
1032
1033 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1034
1035 /*depth-integrate the drained water fraction */
1036 femmodel->parameters->SetParam(WaterfractionDrainageEnum,InputToDepthaverageInEnum);
1037 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToDepthaverageOutEnum);
1038 depthaverage_core(femmodel);
1039 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToExtrudeEnum);
1040 extrudefrombase_core(femmodel);
1041 /*multiply depth-average by ice thickness*/
1042 for(i=0;i<femmodel->elements->Size();i++){
1043 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1044 numnodes=element->GetNumberOfNodes();
1045 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1046 IssmDouble* thicknesses= xNew<IssmDouble>(numnodes);
1047
1048 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1049 element->GetInputListOnNodes(thicknesses,ThicknessEnum);
1050 for(k=0;k<numnodes;k++){
1051 drainage_int[k]*=thicknesses[k];
1052 }
1053 element->AddInput(WaterfractionDrainageIntegratedEnum, drainage_int, element->GetElementType());
1054
1055 xDelete<IssmDouble>(drainage_int);
1056 xDelete<IssmDouble>(thicknesses);
1057 }
1058
1059 /*update water column*/
1060 for(i=0;i<femmodel->elements->Size();i++){
1061 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1062 /* Check if ice in element */
1063 if(!element->IsIceInElement()) continue;
1064 if(!element->IsOnBase()) continue;
1065
1066 numnodes=element->GetNumberOfNodes();
1067 IssmDouble* watercolumn= xNew<IssmDouble>(numnodes);
1068 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1069 element->GetInputListOnNodes(watercolumn,WatercolumnEnum);
1070 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1071
1072 element->BasalNodeIndices(&numbasalnodes,&basalnodeindices,element->GetElementType());
1073 for(k=0;k<numbasalnodes;k++){
1074 watercolumn[basalnodeindices[k]]+=dt*drainage_int[basalnodeindices[k]];
1075 }
1076 element->AddInput(WatercolumnEnum, watercolumn, element->GetElementType());
1077
1078 xDelete<IssmDouble>(watercolumn);
1079 xDelete<IssmDouble>(drainage_int);
1080 xDelete<int>(basalnodeindices);
1081 }
1082}/*}}}*/
1083void EnthalpyAnalysis::DrainageUpdateEnthalpy(FemModel* femmodel){/*{{{*/
1084
1085 int i,k,numnodes;
1086 IssmDouble dt;
1087 Element* element= NULL;
1088 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1089
1090 for(i=0;i<femmodel->elements->Size();i++){
1091 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1092 numnodes=element->GetNumberOfNodes();
1093 IssmDouble* enthalpies= xNew<IssmDouble>(numnodes);
1094 IssmDouble* pressures= xNew<IssmDouble>(numnodes);
1095 IssmDouble* temperatures= xNew<IssmDouble>(numnodes);
1096 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1097 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1098
1099 element->GetInputListOnNodes(pressures,PressureEnum);
1100 element->GetInputListOnNodes(temperatures,TemperatureEnum);
1101 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1102 element->GetInputListOnNodes(drainage,WaterfractionDrainageEnum);
1103
1104 for(k=0;k<numnodes;k++){
1105 waterfractions[k]-=dt*drainage[k];
1106 element->ThermalToEnthalpy(&enthalpies[k], temperatures[k], waterfractions[k], pressures[k]);
1107 }
1108 element->AddInput(WaterfractionEnum,waterfractions,element->GetElementType());
1109 element->AddInput(EnthalpyEnum,enthalpies,element->GetElementType());
1110
1111 xDelete<IssmDouble>(enthalpies);
1112 xDelete<IssmDouble>(pressures);
1113 xDelete<IssmDouble>(temperatures);
1114 xDelete<IssmDouble>(waterfractions);
1115 xDelete<IssmDouble>(drainage);
1116 }
1117}/*}}}*/
1118IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
1119
1120 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1121 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
1122 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1123
1124 if(enthalpy < PureIceEnthalpy(element,pressure)){
1125 return thermalconductivity/heatcapacity;
1126 }
1127 else{
1128 return temperateiceconductivity/heatcapacity;
1129 }
1130}/*}}}*/
1131IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
1132
1133 int iv;
1134 IssmDouble lambda; /* fraction of cold ice */
1135 IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
1136 IssmDouble Hc,Ht;
1137
1138 /*Get pressures and enthalpies on vertices*/
1139 int numvertices = element->GetNumberOfVertices();
1140 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1141 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1142 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
1143 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
1144 element->GetInputListOnVertices(pressures,PressureEnum);
1145 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
1146 for(iv=0;iv<numvertices;iv++){
1147 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
1148 dHpmp[iv] = enthalpies[iv]-PIE[iv];
1149 }
1150
1151 bool allequalsign = true;
1152 if(dHpmp[0]<0.){
1153 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
1154 }
1155 else{
1156 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
1157 }
1158
1159 if(allequalsign){
1160 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
1161 }
1162 else{
1163 /* return harmonic mean of thermal conductivities, weighted by fraction of cold/temperate ice,
1164 cf Patankar 1980, pp44 */
1165 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
1166 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
1167 Hc=0.; Ht=0.;
1168 for(iv=0; iv<numvertices;iv++){
1169 if(enthalpies[iv]<PIE[iv])
1170 Hc+=(PIE[iv]-enthalpies[iv]);
1171 else
1172 Ht+=(enthalpies[iv]-PIE[iv]);
1173 }
1174 _assert_((Hc+Ht)>0.);
1175 lambda = Hc/(Hc+Ht);
1176 kappa = kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c); // ==(lambda/kappa_c + (1.-lambda)/kappa_t)^-1
1177 }
1178
1179 /*Clean up and return*/
1180 xDelete<IssmDouble>(PIE);
1181 xDelete<IssmDouble>(dHpmp);
1182 xDelete<IssmDouble>(pressures);
1183 xDelete<IssmDouble>(enthalpies);
1184 return kappa;
1185}/*}}}*/
1186void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1187 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1188 * For node i, Bi' can be expressed in the actual coordinate system
1189 * by:
1190 * Bi_advec =[ h ]
1191 * [ h ]
1192 * [ h ]
1193 * where h is the interpolation function for node i.
1194 *
1195 * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
1196 */
1197
1198 /*Fetch number of nodes for this finite element*/
1199 int numnodes = element->GetNumberOfNodes();
1200
1201 /*Get nodal functions*/
1202 IssmDouble* basis=xNew<IssmDouble>(numnodes);
1203 element->NodalFunctions(basis,gauss);
1204
1205 /*Build B: */
1206 for(int i=0;i<numnodes;i++){
1207 B[numnodes*0+i] = basis[i];
1208 B[numnodes*1+i] = basis[i];
1209 B[numnodes*2+i] = basis[i];
1210 }
1211
1212 /*Clean-up*/
1213 xDelete<IssmDouble>(basis);
1214}/*}}}*/
1215void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1216 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1217 * For node i, Bi' can be expressed in the actual coordinate system
1218 * by:
1219 * Biprime_advec=[ dh/dx ]
1220 * [ dh/dy ]
1221 * [ dh/dz ]
1222 * where h is the interpolation function for node i.
1223 *
1224 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1225 */
1226
1227 /*Fetch number of nodes for this finite element*/
1228 int numnodes = element->GetNumberOfNodes();
1229
1230 /*Get nodal functions derivatives*/
1231 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1232 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1233
1234 /*Build B: */
1235 for(int i=0;i<numnodes;i++){
1236 B[numnodes*0+i] = dbasis[0*numnodes+i];
1237 B[numnodes*1+i] = dbasis[1*numnodes+i];
1238 B[numnodes*2+i] = dbasis[2*numnodes+i];
1239 }
1240
1241 /*Clean-up*/
1242 xDelete<IssmDouble>(dbasis);
1243}/*}}}*/
1244void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1245
1246 /*Intermediary*/
1247 bool isdynamicbasalspc;
1248 IssmDouble dt;
1249
1250 /*Check wether dynamic basal boundary conditions are activated */
1251 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1252 if(!isdynamicbasalspc) return;
1253
1254 element->FindParam(&dt,TimesteppingTimeStepEnum);
1255 if(dt==0.){
1256 GetBasalConstraintsSteadystate(vec_spc,element);
1257 }
1258 else{
1259 GetBasalConstraintsTransient(vec_spc,element);
1260 }
1261}/*}}}*/
1262void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1263
1264 /* Check if ice in element */
1265 if(!element->IsIceInElement()) return;
1266
1267 /* Only update constraints at the base.
1268 * Floating ice is not affected by basal BC decision chart. */
1269 if(!(element->IsOnBase()) || element->IsFloating()) return;
1270
1271 /*Intermediary*/
1272 int numindices, numindicesup, state;
1273 int *indices = NULL, *indicesup = NULL;
1274 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1275
1276 /*Get parameters and inputs: */
1277 Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
1278 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1279 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1280 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1281
1282 /*Fetch indices of basal & surface nodes for this finite element*/
1283 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1284 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1285 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1286
1287 GaussPenta* gauss=new GaussPenta();
1288 GaussPenta* gaussup=new GaussPenta();
1289 for(int i=0;i<numindices;i++){
1290 gauss->GaussNode(element->GetElementType(),indices[i]);
1291 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1292
1293 enthalpy_input->GetInputValue(&enthalpy,gauss);
1294 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1295 pressure_input->GetInputValue(&pressure,gauss);
1296 pressure_input->GetInputValue(&pressureup,gaussup);
1297 watercolumn_input->GetInputValue(&watercolumn,gauss);
1298 meltingrate_input->GetInputValue(&meltingrate,gauss);
1299
1300 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1301 switch (state) {
1302 case 0:
1303 // cold, dry base: apply basal surface forcing
1304 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1305 break;
1306 case 1:
1307 // cold, wet base: keep at pressure melting point
1308 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1309 break;
1310 case 2:
1311 // temperate, thin refreezing base:
1312 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1313 break;
1314 case 3:
1315 // temperate, thin melting base: set spc
1316 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1317 break;
1318 case 4:
1319 // temperate, thick melting base:
1320 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1321 break;
1322 default:
1323 _printf0_(" unknown thermal basal state found!");
1324 }
1325 }
1326
1327 /*Free ressources:*/
1328 xDelete<int>(indices);
1329 xDelete<int>(indicesup);
1330 delete gauss;
1331 delete gaussup;
1332}/*}}}*/
1333void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1334
1335 /* Check if ice in element */
1336 if(!element->IsIceInElement()) return;
1337
1338 /* Only update constraints at the base.
1339 * Floating ice is not affected by basal BC decision chart.*/
1340 if(!(element->IsOnBase()) || element->IsFloating()) return;
1341
1342 /*Intermediary*/
1343 int numindices, numindicesup, state;
1344 int *indices = NULL, *indicesup = NULL;
1345 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1346
1347 /*Get parameters and inputs: */
1348 Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
1349 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1350 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1351 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1352
1353 /*Fetch indices of basal & surface nodes for this finite element*/
1354 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1355 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1356 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1357
1358 GaussPenta* gauss=new GaussPenta();
1359 GaussPenta* gaussup=new GaussPenta();
1360
1361 for(int i=0;i<numindices;i++){
1362 gauss->GaussNode(element->GetElementType(),indices[i]);
1363 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1364
1365 enthalpy_input->GetInputValue(&enthalpy,gauss);
1366 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1367 pressure_input->GetInputValue(&pressure,gauss);
1368 pressure_input->GetInputValue(&pressureup,gaussup);
1369 watercolumn_input->GetInputValue(&watercolumn,gauss);
1370 meltingrate_input->GetInputValue(&meltingrate,gauss);
1371
1372 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1373
1374 switch (state) {
1375 case 0:
1376 // cold, dry base: apply basal surface forcing
1377 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1378 break;
1379 case 1:
1380 // cold, wet base: keep at pressure melting point
1381 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1382 break;
1383 case 2:
1384 // temperate, thin refreezing base: release spc
1385 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1386 break;
1387 case 3:
1388 // temperate, thin melting base: set spc
1389 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1390 break;
1391 case 4:
1392 // temperate, thick melting base: set grad H*n=0
1393 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1394 break;
1395 default:
1396 _printf0_(" unknown thermal basal state found!");
1397 }
1398
1399 }
1400
1401 /*Free ressources:*/
1402 xDelete<int>(indices);
1403 xDelete<int>(indicesup);
1404 delete gauss;
1405 delete gaussup;
1406}/*}}}*/
1407void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1408 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1409 * For node i, Bi' can be expressed in the actual coordinate system
1410 * by:
1411 * Bi_conduct=[ dh/dx ]
1412 * [ dh/dy ]
1413 * [ dh/dz ]
1414 * where h is the interpolation function for node i.
1415 *
1416 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1417 */
1418
1419 /*Fetch number of nodes for this finite element*/
1420 int numnodes = element->GetNumberOfNodes();
1421
1422 /*Get nodal functions derivatives*/
1423 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1424 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1425
1426 /*Build B: */
1427 for(int i=0;i<numnodes;i++){
1428 B[numnodes*0+i] = dbasis[0*numnodes+i];
1429 B[numnodes*1+i] = dbasis[1*numnodes+i];
1430 B[numnodes*2+i] = dbasis[2*numnodes+i];
1431 }
1432
1433 /*Clean-up*/
1434 xDelete<IssmDouble>(dbasis);
1435}/*}}}*/
1436void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
1437 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
1438}/*}}}*/
1439int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
1440
1441 /* Check if ice in element */
1442 if(!element->IsIceInElement()) return -1;
1443
1444 /* Only update Constraints at the base of grounded ice*/
1445 if(!(element->IsOnBase())) return -1;
1446
1447 /*Intermediary*/
1448 int state=-1;
1449 IssmDouble dt;
1450
1451 /*Get parameters and inputs: */
1452 element->FindParam(&dt,TimesteppingTimeStepEnum);
1453
1454 if(enthalpy<PureIceEnthalpy(element,pressure)){
1455 if(watercolumn<=0.) state=0; // cold, dry base
1456 else state=1; // cold, wet base (refreezing)
1457 }
1458 else{
1459 if(enthalpyup<PureIceEnthalpy(element,pressureup)){
1460 if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
1461 else state=3; // temperate base, but no temperate layer
1462 }
1463 else state=4; // temperate layer with positive thickness
1464 }
1465
1466 _assert_(state>=0);
1467 return state;
1468}/*}}}*/
1469IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
1470
1471 IssmDouble temperature, waterfraction;
1472 IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
1473 IssmDouble kappa_i = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1474 element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
1475
1476 return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
1477}/*}}}*/
1478void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
1479 _error_("Not implemented yet");
1480}/*}}}*/
1481void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
1482
1483 bool converged;
1484 int i,rheology_law;
1485 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
1486 IssmDouble n=3.0;
1487 int *doflist = NULL;
1488 IssmDouble *xyz_list = NULL;
1489
1490 /*Fetch number of nodes and dof for this finite element*/
1491 int numnodes = element->GetNumberOfNodes();
1492
1493 /*Fetch dof list and allocate solution vector*/
1494 element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum);
1495 IssmDouble* values = xNew<IssmDouble>(numnodes);
1496 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
1497 IssmDouble* surface = xNew<IssmDouble>(numnodes);
1498 IssmDouble* B = xNew<IssmDouble>(numnodes);
1499 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
1500 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
1501
1502 /*Use the dof list to index into the solution vector: */
1503 for(i=0;i<numnodes;i++){
1504 values[i]=solution[doflist[i]];
1505
1506 /*Check solution*/
1507 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
1508 if(xIsInf<IssmDouble>(values[i])) _error_("Inf found in solution vector");
1509 }
1510
1511 /*Get all inputs and parameters*/
1512 if(element->material->ObjectEnum()!=MatestarEnum) n=element->GetMaterialParameter(MaterialsRheologyNEnum);
1513 element->GetInputValue(&converged,ConvergedEnum);
1514 element->GetInputListOnNodes(&pressure[0],PressureEnum);
1515 if(converged){
1516 for(i=0;i<numnodes;i++){
1517 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
1518 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
1519 //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
1520 }
1521 element->AddInput(EnthalpyEnum,values,element->GetElementType());
1522 element->AddInput(WaterfractionEnum,waterfraction,element->GetElementType());
1523 element->AddInput(TemperatureEnum,temperature,element->GetElementType());
1524
1525 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
1526 * otherwise the rheology could be negative*/
1527 element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
1528 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
1529 switch(rheology_law){
1530 case NoneEnum:
1531 /*Do nothing: B is not temperature dependent*/
1532 break;
1533 case BuddJackaEnum:
1534 for(i=0;i<numnodes;i++) B[i]=BuddJacka(temperature[i]);
1535 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1536 break;
1537 case CuffeyEnum:
1538 for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
1539 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1540 break;
1541 case CuffeyTemperateEnum:
1542 for(i=0;i<numnodes;i++) B[i]=CuffeyTemperate(temperature[i], waterfraction[i],n);
1543 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1544 break;
1545 case PatersonEnum:
1546 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
1547 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1548 break;
1549 case ArrheniusEnum:
1550 element->GetVerticesCoordinates(&xyz_list);
1551 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],n);
1552 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1553 break;
1554 case LliboutryDuvalEnum:
1555 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],n,element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum));
1556 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1557 break;
1558 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
1559 }
1560 }
1561 else{
1562 element->AddInput(EnthalpyPicardEnum,values,element->GetElementType());
1563 }
1564
1565 /*Free ressources:*/
1566 xDelete<IssmDouble>(values);
1567 xDelete<IssmDouble>(pressure);
1568 xDelete<IssmDouble>(surface);
1569 xDelete<IssmDouble>(B);
1570 xDelete<IssmDouble>(temperature);
1571 xDelete<IssmDouble>(waterfraction);
1572 xDelete<IssmDouble>(xyz_list);
1573 xDelete<int>(doflist);
1574}/*}}}*/
1575void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
1576
1577 /*Intermediaries*/
1578 bool computebasalmeltingrates=true;
1579 bool drainicecolumn=true;
1580 IssmDouble dt;
1581
1582 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1583
1584 if(drainicecolumn && (dt>0.)) DrainWaterfraction(femmodel);
1585 if(computebasalmeltingrates) ComputeBasalMeltingrate(femmodel);
1586
1587}/*}}}*/
1588IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
1589
1590 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1591 IssmDouble referencetemperature = element->GetMaterialParameter(ConstantsReferencetemperatureEnum);
1592
1593 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
1594}/*}}}*/
1595IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
1596
1597 IssmDouble meltingpoint = element->GetMaterialParameter(MaterialsMeltingpointEnum);
1598 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
1599
1600 return meltingpoint-beta*pressure;
1601}/*}}}*/
1602void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
1603
1604 /*Update basal dirichlet BCs for enthalpy: */
1605 Vector<IssmDouble>* spc = NULL;
1606 IssmDouble* serial_spc = NULL;
1607
1608 spc=new Vector<IssmDouble>(femmodel->nodes->NumberOfNodes(EnthalpyAnalysisEnum));
1609 /*First create a vector to figure out what elements should be constrained*/
1610 for(int i=0;i<femmodel->elements->Size();i++){
1611 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1612 GetBasalConstraints(spc,element);
1613 }
1614
1615 /*Assemble and serialize*/
1616 spc->Assemble();
1617 serial_spc=spc->ToMPISerial();
1618 delete spc;
1619
1620 /*Then update basal constraints nodes accordingly*/
1621 for(int i=0;i<femmodel->elements->Size();i++){
1622 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1623 ApplyBasalConstraints(serial_spc,element);
1624 }
1625
1626 femmodel->UpdateConstraintsx();
1627
1628 /*Delete*/
1629 xDelete<IssmDouble>(serial_spc);
1630}/*}}}*/
1631void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
1632 SetActiveNodesLSMx(femmodel);
1633}/*}}}*/
Note: See TracBrowser for help on using the repository browser.