source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 21894

Last change on this file since 21894 was 21894, checked in by Mathieu Morlighem, 8 years ago

CHG: extrude melt rates to avoid error

File size: 63.6 KB
Line 
1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
6#include "../solutionsequences/solutionsequences.h"
7#include "../cores/cores.h"
8
9/*Model processing*/
10void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
11
12 /*Intermediary*/
13 int count;
14 int M,N;
15 bool spcpresent = false;
16 int finiteelement;
17 IssmDouble heatcapacity;
18 IssmDouble referencetemperature;
19
20 /*Output*/
21 IssmDouble *spcvector = NULL;
22 IssmDouble* times=NULL;
23 IssmDouble* values=NULL;
24
25 /*Fetch parameters: */
26 iomodel->FindConstant(&heatcapacity,"md.materials.heatcapacity");
27 iomodel->FindConstant(&referencetemperature,"md.constants.referencetemperature");
28 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
29
30 /*return if 2d mesh*/
31 if(iomodel->domaintype==Domain2DhorizontalEnum) return;
32
33 /*Fetch data: */
34 iomodel->FetchData(&spcvector,&M,&N,"md.thermal.spctemperature");
35
36 /*Convert spcs from temperatures to enthalpy*/
37 _assert_(N>0); _assert_(M>=iomodel->numberofvertices);
38 for(int i=0;i<iomodel->numberofvertices;i++){
39 for(int j=0;j<N;j++){
40 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
41 }
42 }
43
44 /*Specific case for PDD, we want the constaints to be updated by the PDD scheme itself*/
45 bool isdynamic = false;
46 if (iomodel->solution_enum==TransientSolutionEnum){
47 int smb_model;
48 iomodel->FindConstant(&smb_model,"md.smb.model");
49 if(smb_model==SMBpddEnum) isdynamic=true;
50 if(smb_model==SMBd18opddEnum) isdynamic=true;
51 }
52
53 if(isdynamic){
54 IoModelToDynamicConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
55 }
56 else{
57 IoModelToConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
58 }
59
60 /*Free ressources:*/
61 iomodel->DeleteData(spcvector,"md.thermal.spctemperature");
62 xDelete<IssmDouble>(times);
63 xDelete<IssmDouble>(values);
64}/*}}}*/
65void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
66
67 /*No loads */
68}/*}}}*/
69void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/
70
71 int finiteelement;
72 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
73
74 if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
75 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,finiteelement);
76 iomodel->DeleteData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
77}/*}}}*/
78int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
79 return 1;
80}/*}}}*/
81void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
82
83 bool dakota_analysis,ismovingfront,isenthalpy;
84 int frictionlaw,basalforcing_model,materialstype;
85 int FrictionCoupling;
86
87 /*Now, is the model 3d? otherwise, do nothing: */
88 if(iomodel->domaintype==Domain2DhorizontalEnum)return;
89
90 /*Is enthalpy requested?*/
91 iomodel->FindConstant(&isenthalpy,"md.thermal.isenthalpy");
92 if(!isenthalpy) return;
93
94 /*Fetch data needed: */
95 iomodel->FetchData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
96
97 /*Finite element type*/
98 int finiteelement;
99 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
100
101 /*Update elements: */
102 int counter=0;
103 for(int i=0;i<iomodel->numberofelements;i++){
104 if(iomodel->my_elements[i]){
105 Element* element=(Element*)elements->GetObjectByOffset(counter);
106 element->Update(i,iomodel,analysis_counter,analysis_type,finiteelement);
107 counter++;
108 }
109 }
110
111 iomodel->FindConstant(&dakota_analysis,"md.qmu.isdakota");
112 iomodel->FindConstant(&ismovingfront,"md.transient.ismovingfront");
113 iomodel->FindConstant(&frictionlaw,"md.friction.law");
114 iomodel->FindConstant(&materialstype,"md.materials.type");
115
116 iomodel->FetchDataToInput(elements,"md.geometry.thickness",ThicknessEnum);
117 iomodel->FetchDataToInput(elements,"md.geometry.surface",SurfaceEnum);
118 iomodel->FetchDataToInput(elements,"md.slr.sealevel",SealevelEnum,0);
119 iomodel->FetchDataToInput(elements,"md.geometry.base",BaseEnum);
120 iomodel->FetchDataToInput(elements,"md.mask.ice_levelset",MaskIceLevelsetEnum);
121 iomodel->FetchDataToInput(elements,"md.mask.groundedice_levelset",MaskGroundediceLevelsetEnum);
122 if(iomodel->domaintype!=Domain2DhorizontalEnum){
123 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum);
124 iomodel->FetchDataToInput(elements,"md.mesh.vertexonsurface",MeshVertexonsurfaceEnum);
125 }
126 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
127 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
128 iomodel->FetchDataToInput(elements,"md.initialization.waterfraction",WaterfractionEnum);
129 iomodel->FetchDataToInput(elements,"md.initialization.enthalpy",EnthalpyEnum);
130 iomodel->FetchDataToInput(elements,"md.initialization.watercolumn",WatercolumnEnum);
131 iomodel->FetchDataToInput(elements,"md.basalforcings.groundedice_melting_rate",BasalforcingsGroundediceMeltingRateEnum);
132 iomodel->FetchDataToInput(elements,"md.initialization.vx",VxEnum);
133 iomodel->FetchDataToInput(elements,"md.initialization.vy",VyEnum);
134 iomodel->FetchDataToInput(elements,"md.initialization.vz",VzEnum);
135 InputUpdateFromConstantx(elements,0.,VxMeshEnum);
136 InputUpdateFromConstantx(elements,0.,VyMeshEnum);
137 InputUpdateFromConstantx(elements,0.,VzMeshEnum);
138 if(ismovingfront){
139 iomodel->FetchDataToInput(elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum); // required for updating active nodes
140 }
141
142 /*Basal forcings variables*/
143 iomodel->FindConstant(&basalforcing_model,"md.basalforcings.model");
144 switch(basalforcing_model){
145 case MantlePlumeGeothermalFluxEnum:
146 break;
147 default:
148 iomodel->FetchDataToInput(elements,"md.basalforcings.geothermalflux",BasalforcingsGeothermalfluxEnum);
149 break;
150 }
151
152 /*Rheology type*/
153 iomodel->FetchDataToInput(elements,"md.materials.rheology_B",MaterialsRheologyBEnum);
154 switch(materialstype){
155 case MatenhancediceEnum:
156 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
157 iomodel->FetchDataToInput(elements,"md.materials.rheology_E",MaterialsRheologyEEnum);
158 break;
159 case MatdamageiceEnum:
160 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
161 break;
162 case MatestarEnum:
163 iomodel->FetchDataToInput(elements,"md.materials.rheology_Ec",MaterialsRheologyEcEnum);
164 iomodel->FetchDataToInput(elements,"md.materials.rheology_Es",MaterialsRheologyEsEnum);
165 break;
166 case MaticeEnum:
167 iomodel->FetchDataToInput(elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
168 break;
169 default:
170 _error_("not supported");
171 }
172
173 /*Friction law variables*/
174 switch(frictionlaw){
175 case 1:
176 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
177 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
178 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
179 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
180 if (FrictionCoupling==1){
181 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);
182 }
183 break;
184 case 2:
185 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
186 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
187 break;
188 case 3:
189 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
190 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
191 iomodel->FetchDataToInput(elements,"md.friction.As",FrictionAsEnum);
192 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
193 if (FrictionCoupling==1){
194 iomodel->FetchDataToInput(elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);
195 }
196 break;
197 case 4:
198 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
199 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
200 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
201 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
202 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
203 break;
204 case 5:
205 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
206 iomodel->FetchDataToInput(elements,"md.friction.p",FrictionPEnum);
207 iomodel->FetchDataToInput(elements,"md.friction.q",FrictionQEnum);
208 iomodel->FetchDataToInput(elements,"md.friction.water_layer",FrictionWaterLayerEnum);
209 break;
210 case 6:
211 iomodel->FetchDataToInput(elements,"md.friction.C",FrictionCEnum);
212 iomodel->FetchDataToInput(elements,"md.friction.m",FrictionMEnum);
213 iomodel->FetchDataToInput(elements,"md.initialization.pressure",PressureEnum);
214 iomodel->FetchDataToInput(elements,"md.initialization.temperature",TemperatureEnum);
215 break;
216 case 9:
217 iomodel->FetchDataToInput(elements,"md.friction.coefficient",FrictionCoefficientEnum);
218 iomodel->FetchDataToInput(elements,"md.friction.pressure_adjusted_temperature",FrictionPressureAdjustedTemperatureEnum);
219 InputUpdateFromConstantx(elements,1.,FrictionPEnum);
220 InputUpdateFromConstantx(elements,1.,FrictionQEnum);
221 break;
222 default:
223 _error_("friction law not supported");
224 }
225
226 /*Free data: */
227 iomodel->DeleteData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
228
229}/*}}}*/
230void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
231
232 int numoutputs;
233 char** requestedoutputs = NULL;
234
235 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.stabilization",ThermalStabilizationEnum));
236 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.maxiter",ThermalMaxiterEnum));
237 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.reltol",ThermalReltolEnum));
238 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isenthalpy",ThermalIsenthalpyEnum));
239 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdynamicbasalspc",ThermalIsdynamicbasalspcEnum));
240 parameters->AddObject(iomodel->CopyConstantObject("md.friction.law",FrictionLawEnum));
241
242 iomodel->FindConstant(&requestedoutputs,&numoutputs,"md.thermal.requested_outputs");
243 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
244 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
245 iomodel->DeleteData(&requestedoutputs,numoutputs,"md.thermal.requested_outputs");
246
247 /*Deal with friction parameters*/
248 int frictionlaw;
249 iomodel->FindConstant(&frictionlaw,"md.friction.law");
250 if(frictionlaw==4 || frictionlaw==6){
251 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
252 }
253 if(frictionlaw==3 || frictionlaw==1){
254 parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
255 }
256 if(frictionlaw==9){
257 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
258 parameters->AddObject(new IntParam(FrictionCouplingEnum,0));
259 }
260}/*}}}*/
261
262/*Finite Element Analysis*/
263void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* serial_spc,Element* element){/*{{{*/
264
265 /* Do not check if ice in element, this may lead to inconsistencies between cpu partitions */
266 /* Only update constraints at the base. */
267 if(!(element->IsOnBase())) return;
268
269 /*Intermediary*/
270 bool isdynamicbasalspc;
271 int numindices;
272 int *indices = NULL;
273 Node* node = NULL;
274 IssmDouble pressure;
275
276 /*Check wether dynamic basal boundary conditions are activated */
277 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
278 if(!isdynamicbasalspc) return;
279
280 /*Get parameters and inputs: */
281 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
282
283 /*Fetch indices of basal & surface nodes for this finite element*/
284 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
285 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
286
287 GaussPenta* gauss=new GaussPenta();
288 for(int i=0;i<numindices;i++){
289 gauss->GaussNode(element->GetElementType(),indices[i]);
290
291 pressure_input->GetInputValue(&pressure,gauss);
292
293 /*apply or release spc*/
294 node=element->GetNode(indices[i]);
295 if(!node->IsActive()) continue;
296 if(serial_spc[node->Sid()]==1.){
297 pressure_input->GetInputValue(&pressure, gauss);
298 node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
299 }
300 else {
301 node->DofInFSet(0);
302 }
303 }
304
305 /*Free ressources:*/
306 xDelete<int>(indices);
307 delete gauss;
308}/*}}}*/
309void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
310 /*Compute basal melting rates: */
311 for(int i=0;i<femmodel->elements->Size();i++){
312 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
313 ComputeBasalMeltingrate(element);
314 }
315 femmodel->parameters->SetParam(BasalforcingsGroundediceMeltingRateEnum,InputToExtrudeEnum);
316 extrudefrombase_core(femmodel);
317}/*}}}*/
318void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
319 /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
320 /* melting rate is positive when melting, negative when refreezing*/
321
322 /* Check if ice in element */
323 if(!element->IsIceInElement()) return;
324
325 /* Only compute melt rates at the base of grounded ice*/
326 if(!element->IsOnBase() || element->IsFloating()) return;
327
328 /* Intermediaries */
329 bool converged;
330 const int dim=3;
331 int i,is,state;
332 int nodedown,nodeup,numnodes,numsegments;
333 int enthalpy_enum;
334 IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
335 IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
336 IssmDouble dt,yts;
337 IssmDouble melting_overshoot,lambda;
338 IssmDouble vx,vy,vz;
339 IssmDouble *xyz_list = NULL;
340 IssmDouble *xyz_list_base = NULL;
341 int *pairindices = NULL;
342
343 /*Fetch parameters*/
344 element->GetVerticesCoordinates(&xyz_list);
345 element->GetVerticesCoordinatesBase(&xyz_list_base);
346 element->GetInputValue(&converged,ConvergedEnum);
347 element->FindParam(&dt,TimesteppingTimeStepEnum);
348 element->FindParam(&yts, ConstantsYtsEnum);
349
350 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
351 else enthalpy_enum=EnthalpyEnum;
352
353 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
354 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
355 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoFreshwaterEnum);
356 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
357 IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
358 IssmDouble kappa_mix;
359
360 /*retrieve inputs*/
361 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
362 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
363 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
364 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
365 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
366 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
367
368 /*Build friction element, needed later: */
369 Friction* friction=new Friction(element,dim);
370
371 /******** MELTING RATES ************************************//*{{{*/
372 element->NormalBase(&normal_base[0],xyz_list_base);
373 element->VerticalSegmentIndicesBase(&pairindices,&numsegments);
374 IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
375 IssmDouble* heating = xNew<IssmDouble>(numsegments);
376
377 numnodes=element->GetNumberOfNodes();
378 IssmDouble* enthalpies = xNew<IssmDouble>(numnodes);
379 IssmDouble* pressures = xNew<IssmDouble>(numnodes);
380 IssmDouble* watercolumns = xNew<IssmDouble>(numnodes);
381 IssmDouble* basalmeltingrates = xNew<IssmDouble>(numnodes);
382 element->GetInputListOnNodes(enthalpies,enthalpy_enum);
383 element->GetInputListOnNodes(pressures,PressureEnum);
384 element->GetInputListOnNodes(watercolumns,WatercolumnEnum);
385 element->GetInputListOnNodes(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
386
387 Gauss* gauss=element->NewGauss();
388 for(is=0;is<numsegments;is++){
389 nodedown = pairindices[is*2+0];
390 nodeup = pairindices[is*2+1];
391 gauss->GaussNode(element->GetElementType(),nodedown);
392
393 state=GetThermalBasalCondition(element, enthalpies[nodedown], enthalpies[nodeup], pressures[nodedown], pressures[nodeup], watercolumns[nodedown], basalmeltingrates[nodedown]);
394 switch (state) {
395 case 0:
396 // cold, dry base: apply basal surface forcing
397 for(i=0;i<3;i++) vec_heatflux[i]=0.;
398 break;
399 case 1: case 2: case 3:
400 // case 1 : cold, wet base: keep at pressure melting point
401 // case 2: temperate, thin refreezing base: release spc
402 // case 3: temperate, thin melting base: set spc
403 enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
404 for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
405 break;
406 case 4:
407 // temperate, thick melting base: set grad H*n=0
408 kappa_mix=GetWetIceConductivity(element, enthalpies[nodedown], pressures[nodedown]);
409 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
410 for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
411 break;
412 default:
413 _printf0_(" unknown thermal basal state found!");
414 }
415 if(state==0) meltingrate_enthalpy[is]=0.;
416 else{
417 /*heat flux along normal*/
418 heatflux=0.;
419 for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
420
421 /*basal friction*/
422 friction->GetAlpha2(&alpha2,gauss);
423 vx_input->GetInputValue(&vx,gauss); vy_input->GetInputValue(&vy,gauss); vz_input->GetInputValue(&vz,gauss);
424 basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
425 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
426 /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
427 heating[is]=(heatflux+basalfriction+geothermalflux);
428 meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
429 }
430 }/*}}}*/
431
432 /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
433 for(is=0;is<numsegments;is++){
434 nodedown = pairindices[is*2+0];
435 nodeup = pairindices[is*2+1];
436 if(dt!=0.){
437 if(watercolumns[nodedown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
438 lambda = -watercolumns[nodedown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
439 watercolumns[nodedown]=0.;
440 basalmeltingrates[nodedown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
441 enthalpies[nodedown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
442 }
443 else{
444 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
445 watercolumns[nodedown]+=dt*meltingrate_enthalpy[is];
446 }
447 }
448 else{
449 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
450 if(watercolumns[nodedown]+meltingrate_enthalpy[is]<0.)
451 watercolumns[nodedown]=0.;
452 else
453 watercolumns[nodedown]+=meltingrate_enthalpy[is];
454 }
455 basalmeltingrates[nodedown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
456 _assert_(watercolumns[nodedown]>=0.);
457 }/*}}}*/
458
459 /*feed updated variables back into model*/
460 if(dt!=0.){
461 element->AddInput(enthalpy_enum,enthalpies,element->GetElementType());
462 element->AddInput(WatercolumnEnum,watercolumns,element->GetElementType());
463 }
464 element->AddInput(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,element->GetElementType());
465
466 /*Clean up and return*/
467 delete gauss;
468 delete friction;
469 xDelete<int>(pairindices);
470 xDelete<IssmDouble>(enthalpies);
471 xDelete<IssmDouble>(pressures);
472 xDelete<IssmDouble>(watercolumns);
473 xDelete<IssmDouble>(basalmeltingrates);
474 xDelete<IssmDouble>(meltingrate_enthalpy);
475 xDelete<IssmDouble>(heating);
476 xDelete<IssmDouble>(xyz_list);
477 xDelete<IssmDouble>(xyz_list_base);
478}/*}}}*/
479void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
480
481 IssmDouble dt;
482 bool isdynamicbasalspc;
483
484 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
485 femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
486
487 if(VerboseSolution()) _printf0_(" computing enthalpy\n");
488 femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
489 if((dt>0.) && isdynamicbasalspc) UpdateBasalConstraints(femmodel);
490 solutionsequence_thermal_nonlinear(femmodel);
491
492 /*transfer enthalpy to enthalpy picard for the next step: */
493 InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
494
495 PostProcessing(femmodel);
496
497}/*}}}*/
498ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
499 /*Default, return NULL*/
500 return NULL;
501}/*}}}*/
502ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
503_error_("Not implemented");
504}/*}}}*/
505ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
506
507 /* Check if ice in element */
508 if(!element->IsIceInElement()) return NULL;
509
510 /*compute all stiffness matrices for this element*/
511 ElementMatrix* Ke1=CreateKMatrixVolume(element);
512 ElementMatrix* Ke2=CreateKMatrixShelf(element);
513 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
514
515 /*clean-up and return*/
516 delete Ke1;
517 delete Ke2;
518 return Ke;
519}/*}}}*/
520ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
521
522 /* Check if ice in element */
523 if(!element->IsIceInElement()) return NULL;
524
525 /*Intermediaries */
526 int stabilization;
527 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
528 IssmDouble h,hx,hy,hz,vx,vy,vz;
529 IssmDouble tau_parameter,diameter;
530 IssmDouble D_scalar;
531 IssmDouble* xyz_list = NULL;
532
533 /*Fetch number of nodes and dof for this finite element*/
534 int numnodes = element->GetNumberOfNodes();
535
536 /*Initialize Element vector and other vectors*/
537 ElementMatrix* Ke = element->NewElementMatrix();
538 IssmDouble* basis = xNew<IssmDouble>(numnodes);
539 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
540 IssmDouble* B = xNew<IssmDouble>(3*numnodes);
541 IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
542 IssmDouble D[3][3] = {0.};
543 IssmDouble K[3][3];
544
545 /*Retrieve all inputs and parameters*/
546 element->GetVerticesCoordinates(&xyz_list);
547 element->FindParam(&dt,TimesteppingTimeStepEnum);
548 element->FindParam(&stabilization,ThermalStabilizationEnum);
549 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
550 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
551 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
552 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
553 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
554 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
555 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
556 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
557 Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
558 Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
559 Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
560 if(stabilization==2) diameter=element->MinEdgeLength(xyz_list);
561
562 /*Enthalpy diffusion parameter*/
563 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
564
565 /* Start looping on the number of gaussian points: */
566 Gauss* gauss=element->NewGauss(4);
567 for(int ig=gauss->begin();ig<gauss->end();ig++){
568 gauss->GaussPoint(ig);
569
570 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
571 D_scalar=gauss->weight*Jdet;
572 if(dt!=0.) D_scalar=D_scalar*dt;
573
574 /*Conduction: */
575 GetBConduct(B,element,xyz_list,gauss);
576 D[0][0]=D_scalar*kappa/rho_ice;
577 D[1][1]=D_scalar*kappa/rho_ice;
578 D[2][2]=D_scalar*kappa/rho_ice;
579 TripleMultiply(B,3,numnodes,1,
580 &D[0][0],3,3,0,
581 B,3,numnodes,0,
582 &Ke->values[0],1);
583
584 /*Advection: */
585 GetBAdvec(B,element,xyz_list,gauss);
586 GetBAdvecprime(Bprime,element,xyz_list,gauss);
587 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
588 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
589 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
590 D[0][0]=D_scalar*vx;
591 D[1][1]=D_scalar*vy;
592 D[2][2]=D_scalar*vz;
593 TripleMultiply(B,3,numnodes,1,
594 &D[0][0],3,3,0,
595 Bprime,3,numnodes,0,
596 &Ke->values[0],1);
597
598 /*Transient: */
599 if(dt!=0.){
600 D_scalar=gauss->weight*Jdet;
601 element->NodalFunctions(basis,gauss);
602 TripleMultiply(basis,numnodes,1,0,
603 &D_scalar,1,1,0,
604 basis,1,numnodes,0,
605 &Ke->values[0],1);
606 D_scalar=D_scalar*dt;
607 }
608
609 /*Artificial diffusivity*/
610 if(stabilization==1){
611 element->ElementSizes(&hx,&hy,&hz);
612 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
613 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
614 K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
615 K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
616 K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
617 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
618
619 GetBAdvecprime(Bprime,element,xyz_list,gauss);
620 TripleMultiply(Bprime,3,numnodes,1,
621 &K[0][0],3,3,0,
622 Bprime,3,numnodes,0,
623 &Ke->values[0],1);
624 }
625 else if(stabilization==2){
626 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
627 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
628 for(int i=0;i<numnodes;i++){
629 for(int j=0;j<numnodes;j++){
630 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
631 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
632 }
633 }
634 if(dt!=0.){
635 D_scalar=gauss->weight*Jdet;
636 for(int i=0;i<numnodes;i++){
637 for(int j=0;j<numnodes;j++){
638 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
639 }
640 }
641 }
642 }
643 }
644
645 /*Clean up and return*/
646 xDelete<IssmDouble>(xyz_list);
647 xDelete<IssmDouble>(basis);
648 xDelete<IssmDouble>(dbasis);
649 xDelete<IssmDouble>(B);
650 xDelete<IssmDouble>(Bprime);
651 delete gauss;
652 return Ke;
653}/*}}}*/
654ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
655
656 /* Check if ice in element */
657 if(!element->IsIceInElement()) return NULL;
658
659 /*Initialize Element matrix and return if necessary*/
660 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
661
662 /*Intermediaries*/
663 IssmDouble dt,Jdet,D;
664 IssmDouble *xyz_list_base = NULL;
665
666 /*Fetch number of nodes for this finite element*/
667 int numnodes = element->GetNumberOfNodes();
668
669 /*Initialize vectors*/
670 ElementMatrix* Ke = element->NewElementMatrix();
671 IssmDouble* basis = xNew<IssmDouble>(numnodes);
672
673 /*Retrieve all inputs and parameters*/
674 element->GetVerticesCoordinatesBase(&xyz_list_base);
675 element->FindParam(&dt,TimesteppingTimeStepEnum);
676 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
677 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
678 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
679 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
680 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
681 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
682
683 /* Start looping on the number of gaussian points: */
684 Gauss* gauss=element->NewGaussBase(4);
685 for(int ig=gauss->begin();ig<gauss->end();ig++){
686 gauss->GaussPoint(ig);
687
688 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
689 element->NodalFunctions(basis,gauss);
690
691 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
692 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
693 TripleMultiply(basis,numnodes,1,0,
694 &D,1,1,0,
695 basis,1,numnodes,0,
696 &Ke->values[0],1);
697
698 }
699
700 /*Clean up and return*/
701 delete gauss;
702 xDelete<IssmDouble>(basis);
703 xDelete<IssmDouble>(xyz_list_base);
704 return Ke;
705}/*}}}*/
706ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
707
708 /* Check if ice in element */
709 if(!element->IsIceInElement()) return NULL;
710
711 /*compute all load vectors for this element*/
712 ElementVector* pe1=CreatePVectorVolume(element);
713 ElementVector* pe2=CreatePVectorSheet(element);
714 ElementVector* pe3=CreatePVectorShelf(element);
715 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
716
717 /*clean-up and return*/
718 delete pe1;
719 delete pe2;
720 delete pe3;
721 return pe;
722}/*}}}*/
723ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
724
725 /* Check if ice in element */
726 if(!element->IsIceInElement()) return NULL;
727
728 /*Intermediaries*/
729 int i, stabilization;
730 IssmDouble Jdet,phi,dt;
731 IssmDouble enthalpy, Hpmp;
732 IssmDouble enthalpypicard, d1enthalpypicard[3];
733 IssmDouble pressure, d1pressure[3], d2pressure;
734 IssmDouble waterfractionpicard;
735 IssmDouble kappa,tau_parameter,diameter,kappa_w;
736 IssmDouble u,v,w;
737 IssmDouble scalar_def, scalar_sens ,scalar_transient;
738 IssmDouble* xyz_list = NULL;
739 IssmDouble d1H_d1P, d1P2;
740
741 /*Fetch number of nodes and dof for this finite element*/
742 int numnodes = element->GetNumberOfNodes();
743 int numvertices = element->GetNumberOfVertices();
744
745 /*Initialize Element vector*/
746 ElementVector* pe = element->NewElementVector();
747 IssmDouble* basis = xNew<IssmDouble>(numnodes);
748 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
749
750 /*Retrieve all inputs and parameters*/
751 element->GetVerticesCoordinates(&xyz_list);
752 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
753 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
754 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
755 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
756 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
757 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
758 element->FindParam(&dt,TimesteppingTimeStepEnum);
759 element->FindParam(&stabilization,ThermalStabilizationEnum);
760 Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
761 Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
762 Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
763 Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
764 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
765 Input* enthalpy_input=NULL;
766 if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
767 if(stabilization==2){
768 diameter=element->MinEdgeLength(xyz_list);
769 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
770 }
771
772 /* Start looping on the number of gaussian points: */
773 Gauss* gauss=element->NewGauss(4);
774 for(int ig=gauss->begin();ig<gauss->end();ig++){
775 gauss->GaussPoint(ig);
776
777 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
778 element->NodalFunctions(basis,gauss);
779
780 /*viscous dissipation*/
781 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
782
783 scalar_def=phi/rho_ice*Jdet*gauss->weight;
784 if(dt!=0.) scalar_def=scalar_def*dt;
785
786 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
787
788 /*sensible heat flux in temperate ice*/
789 enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
790 pressure_input->GetInputValue(&pressure,gauss);
791 Hpmp=this->PureIceEnthalpy(element, pressure);
792
793 if(enthalpypicard>=Hpmp){
794 enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
795 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
796 d2pressure=0.; // for linear elements, 2nd derivative is zero
797
798 d1H_d1P=0.;
799 for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
800 d1P2=0.;
801 for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
802
803 scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
804 if(dt!=0.) scalar_sens=scalar_sens*dt;
805 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
806 }
807
808 /* Build transient now */
809 if(reCast<bool,IssmDouble>(dt)){
810 enthalpy_input->GetInputValue(&enthalpy, gauss);
811 scalar_transient=enthalpy*Jdet*gauss->weight;
812 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
813 }
814
815 if(stabilization==2){
816 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
817
818 vx_input->GetInputValue(&u,gauss);
819 vy_input->GetInputValue(&v,gauss);
820 vz_input->GetInputValue(&w,gauss);
821 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
822
823 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
824
825 if(dt!=0.){
826 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
827 }
828 }
829 }
830
831 /*Clean up and return*/
832 xDelete<IssmDouble>(basis);
833 xDelete<IssmDouble>(dbasis);
834 xDelete<IssmDouble>(xyz_list);
835 delete gauss;
836 return pe;
837
838}/*}}}*/
839ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
840
841 /* Check if ice in element */
842 if(!element->IsIceInElement()) return NULL;
843
844 /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
845 if(!element->IsOnBase() || element->IsFloating()) return NULL;
846
847 bool converged, isdynamicbasalspc;
848 int i, state;
849 int enthalpy_enum;
850 IssmDouble dt,Jdet,scalar;
851 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
852 IssmDouble vx,vy,vz;
853 IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
854 IssmDouble *xyz_list_base = NULL;
855
856 /*Fetch number of nodes for this finite element*/
857 int numnodes = element->GetNumberOfNodes();
858
859 /*Initialize vectors*/
860 ElementVector* pe = element->NewElementVector();
861 IssmDouble* basis = xNew<IssmDouble>(numnodes);
862
863 /*Retrieve all inputs and parameters*/
864 element->GetVerticesCoordinatesBase(&xyz_list_base);
865 element->FindParam(&dt,TimesteppingTimeStepEnum);
866 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
867 element->GetInputValue(&converged,ConvergedEnum);
868 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum; // use enthalpy from last iteration
869 else enthalpy_enum=EnthalpyEnum; // use enthalpy from last time step
870 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
871 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
872 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
873 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
874 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
875 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
876 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
877 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
878 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
879
880 /*Build friction element, needed later: */
881 Friction* friction=new Friction(element,3);
882
883 /* Start looping on the number of gaussian points: */
884 Gauss* gauss=element->NewGaussBase(4);
885 Gauss* gaussup=element->NewGaussTop(4);
886 for(int ig=gauss->begin();ig<gauss->end();ig++){
887 gauss->GaussPoint(ig);
888 gaussup->GaussPoint(ig);
889
890 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
891 element->NodalFunctions(basis,gauss);
892
893 if(isdynamicbasalspc){
894 enthalpy_input->GetInputValue(&enthalpy,gauss);
895 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
896 pressure_input->GetInputValue(&pressure,gauss);
897 pressure_input->GetInputValue(&pressureup,gaussup);
898 watercolumn_input->GetInputValue(&watercolumn,gauss);
899 meltingrate_input->GetInputValue(&meltingrate,gauss);
900 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
901 }
902 else
903 state=0;
904
905 switch (state) {
906 case 0: case 1: case 2: case 3:
907 // cold, dry base; cold, wet base; refreezing temperate base; thin temperate base:
908 // Apply basal surface forcing.
909 // Interpolated values of enthalpy on gauss nodes may indicate cold base,
910 // although one node might have become temperate. So keep heat flux switched on.
911 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
912 friction->GetAlpha2(&alpha2,gauss);
913 vx_input->GetInputValue(&vx,gauss);
914 vy_input->GetInputValue(&vy,gauss);
915 vz_input->GetInputValue(&vz,gauss);
916 basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
917 heatflux=(basalfriction+geothermalflux)/(rho_ice);
918 scalar=gauss->weight*Jdet*heatflux;
919 if(dt!=0.) scalar=dt*scalar;
920 for(i=0;i<numnodes;i++)
921 pe->values[i]+=scalar*basis[i];
922 break;
923 case 4:
924 // temperate, thick melting base: set grad H*n=0
925 for(i=0;i<numnodes;i++)
926 pe->values[i]+=0.;
927 break;
928 default:
929 _printf0_(" unknown thermal basal state found!");
930 }
931 }
932
933 /*Clean up and return*/
934 delete gauss;
935 delete gaussup;
936 delete friction;
937 xDelete<IssmDouble>(basis);
938 xDelete<IssmDouble>(xyz_list_base);
939 return pe;
940
941}/*}}}*/
942ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
943
944 /* Check if ice in element */
945 if(!element->IsIceInElement()) return NULL;
946
947 /*Get basal element*/
948 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
949
950 IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
951 IssmDouble *xyz_list_base = NULL;
952
953 /*Fetch number of nodes for this finite element*/
954 int numnodes = element->GetNumberOfNodes();
955
956 /*Initialize vectors*/
957 ElementVector* pe = element->NewElementVector();
958 IssmDouble* basis = xNew<IssmDouble>(numnodes);
959
960 /*Retrieve all inputs and parameters*/
961 element->GetVerticesCoordinatesBase(&xyz_list_base);
962 element->FindParam(&dt,TimesteppingTimeStepEnum);
963 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
964 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
965 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
966 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
967 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
968 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
969 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
970
971 /* Start looping on the number of gaussian points: */
972 Gauss* gauss=element->NewGaussBase(4);
973 for(int ig=gauss->begin();ig<gauss->end();ig++){
974 gauss->GaussPoint(ig);
975
976 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
977 element->NodalFunctions(basis,gauss);
978
979 pressure_input->GetInputValue(&pressure,gauss);
980 Hpmp=element->PureIceEnthalpy(pressure);
981
982 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
983 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
984
985 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
986 }
987
988 /*Clean up and return*/
989 delete gauss;
990 xDelete<IssmDouble>(basis);
991 xDelete<IssmDouble>(xyz_list_base);
992 return pe;
993}/*}}}*/
994void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
995 /*Drain excess water fraction in ice column: */
996 ComputeWaterfractionDrainage(femmodel);
997 DrainageUpdateWatercolumn(femmodel);
998 DrainageUpdateEnthalpy(femmodel);
999}/*}}}*/
1000void EnthalpyAnalysis::ComputeWaterfractionDrainage(FemModel* femmodel){/*{{{*/
1001
1002 int i,k,numnodes;
1003 IssmDouble dt;
1004 Element* element= NULL;
1005
1006 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1007
1008 for(i=0;i<femmodel->elements->Size();i++){
1009 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1010 numnodes=element->GetNumberOfNodes();
1011 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1012 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1013
1014 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1015 for(k=0; k<numnodes;k++){
1016 drainage[k]=DrainageFunctionWaterfraction(waterfractions[k], dt);
1017 }
1018 element->AddInput(WaterfractionDrainageEnum,drainage,element->GetElementType());
1019
1020 xDelete<IssmDouble>(waterfractions);
1021 xDelete<IssmDouble>(drainage);
1022 }
1023}/*}}}*/
1024void EnthalpyAnalysis::DrainageUpdateWatercolumn(FemModel* femmodel){/*{{{*/
1025
1026 int i,k,numnodes, numbasalnodes;
1027 IssmDouble dt;
1028 int* basalnodeindices=NULL;
1029 Element* element= NULL;
1030
1031 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1032
1033 /*depth-integrate the drained water fraction */
1034 femmodel->parameters->SetParam(WaterfractionDrainageEnum,InputToDepthaverageInEnum);
1035 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToDepthaverageOutEnum);
1036 depthaverage_core(femmodel);
1037 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToExtrudeEnum);
1038 extrudefrombase_core(femmodel);
1039 /*multiply depth-average by ice thickness*/
1040 for(i=0;i<femmodel->elements->Size();i++){
1041 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1042 numnodes=element->GetNumberOfNodes();
1043 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1044 IssmDouble* thicknesses= xNew<IssmDouble>(numnodes);
1045
1046 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1047 element->GetInputListOnNodes(thicknesses,ThicknessEnum);
1048 for(k=0;k<numnodes;k++){
1049 drainage_int[k]*=thicknesses[k];
1050 }
1051 element->AddInput(WaterfractionDrainageIntegratedEnum, drainage_int, element->GetElementType());
1052
1053 xDelete<IssmDouble>(drainage_int);
1054 xDelete<IssmDouble>(thicknesses);
1055 }
1056
1057 /*update water column*/
1058 for(i=0;i<femmodel->elements->Size();i++){
1059 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1060 /* Check if ice in element */
1061 if(!element->IsIceInElement()) continue;
1062 if(!element->IsOnBase()) continue;
1063
1064 numnodes=element->GetNumberOfNodes();
1065 IssmDouble* watercolumn= xNew<IssmDouble>(numnodes);
1066 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1067 element->GetInputListOnNodes(watercolumn,WatercolumnEnum);
1068 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1069
1070 element->BasalNodeIndices(&numbasalnodes,&basalnodeindices,element->GetElementType());
1071 for(k=0;k<numbasalnodes;k++){
1072 watercolumn[basalnodeindices[k]]+=dt*drainage_int[basalnodeindices[k]];
1073 }
1074 element->AddInput(WatercolumnEnum, watercolumn, element->GetElementType());
1075
1076 xDelete<IssmDouble>(watercolumn);
1077 xDelete<IssmDouble>(drainage_int);
1078 xDelete<int>(basalnodeindices);
1079 }
1080}/*}}}*/
1081void EnthalpyAnalysis::DrainageUpdateEnthalpy(FemModel* femmodel){/*{{{*/
1082
1083 int i,k,numnodes;
1084 IssmDouble dt;
1085 Element* element= NULL;
1086 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1087
1088 for(i=0;i<femmodel->elements->Size();i++){
1089 element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1090 numnodes=element->GetNumberOfNodes();
1091 IssmDouble* enthalpies= xNew<IssmDouble>(numnodes);
1092 IssmDouble* pressures= xNew<IssmDouble>(numnodes);
1093 IssmDouble* temperatures= xNew<IssmDouble>(numnodes);
1094 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1095 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1096
1097 element->GetInputListOnNodes(pressures,PressureEnum);
1098 element->GetInputListOnNodes(temperatures,TemperatureEnum);
1099 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1100 element->GetInputListOnNodes(drainage,WaterfractionDrainageEnum);
1101
1102 for(k=0;k<numnodes;k++){
1103 waterfractions[k]-=dt*drainage[k];
1104 element->ThermalToEnthalpy(&enthalpies[k], temperatures[k], waterfractions[k], pressures[k]);
1105 }
1106 element->AddInput(WaterfractionEnum,waterfractions,element->GetElementType());
1107 element->AddInput(EnthalpyEnum,enthalpies,element->GetElementType());
1108
1109 xDelete<IssmDouble>(enthalpies);
1110 xDelete<IssmDouble>(pressures);
1111 xDelete<IssmDouble>(temperatures);
1112 xDelete<IssmDouble>(waterfractions);
1113 xDelete<IssmDouble>(drainage);
1114 }
1115}/*}}}*/
1116IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
1117
1118 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1119 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
1120 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1121
1122 if(enthalpy < PureIceEnthalpy(element,pressure)){
1123 return thermalconductivity/heatcapacity;
1124 }
1125 else{
1126 return temperateiceconductivity/heatcapacity;
1127 }
1128}/*}}}*/
1129IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
1130
1131 int iv;
1132 IssmDouble lambda; /* fraction of cold ice */
1133 IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
1134 IssmDouble Hc,Ht;
1135
1136 /*Get pressures and enthalpies on vertices*/
1137 int numvertices = element->GetNumberOfVertices();
1138 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1139 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1140 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
1141 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
1142 element->GetInputListOnVertices(pressures,PressureEnum);
1143 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
1144 for(iv=0;iv<numvertices;iv++){
1145 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
1146 dHpmp[iv] = enthalpies[iv]-PIE[iv];
1147 }
1148
1149 bool allequalsign = true;
1150 if(dHpmp[0]<0.){
1151 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
1152 }
1153 else{
1154 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
1155 }
1156
1157 if(allequalsign){
1158 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
1159 }
1160 else{
1161 /* return harmonic mean of thermal conductivities, weighted by fraction of cold/temperate ice,
1162 cf Patankar 1980, pp44 */
1163 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
1164 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
1165 Hc=0.; Ht=0.;
1166 for(iv=0; iv<numvertices;iv++){
1167 if(enthalpies[iv]<PIE[iv])
1168 Hc+=(PIE[iv]-enthalpies[iv]);
1169 else
1170 Ht+=(enthalpies[iv]-PIE[iv]);
1171 }
1172 _assert_((Hc+Ht)>0.);
1173 lambda = Hc/(Hc+Ht);
1174 kappa = kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c); // ==(lambda/kappa_c + (1.-lambda)/kappa_t)^-1
1175 }
1176
1177 /*Clean up and return*/
1178 xDelete<IssmDouble>(PIE);
1179 xDelete<IssmDouble>(dHpmp);
1180 xDelete<IssmDouble>(pressures);
1181 xDelete<IssmDouble>(enthalpies);
1182 return kappa;
1183}/*}}}*/
1184void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1185 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1186 * For node i, Bi' can be expressed in the actual coordinate system
1187 * by:
1188 * Bi_advec =[ h ]
1189 * [ h ]
1190 * [ h ]
1191 * where h is the interpolation function for node i.
1192 *
1193 * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
1194 */
1195
1196 /*Fetch number of nodes for this finite element*/
1197 int numnodes = element->GetNumberOfNodes();
1198
1199 /*Get nodal functions*/
1200 IssmDouble* basis=xNew<IssmDouble>(numnodes);
1201 element->NodalFunctions(basis,gauss);
1202
1203 /*Build B: */
1204 for(int i=0;i<numnodes;i++){
1205 B[numnodes*0+i] = basis[i];
1206 B[numnodes*1+i] = basis[i];
1207 B[numnodes*2+i] = basis[i];
1208 }
1209
1210 /*Clean-up*/
1211 xDelete<IssmDouble>(basis);
1212}/*}}}*/
1213void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1214 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1215 * For node i, Bi' can be expressed in the actual coordinate system
1216 * by:
1217 * Biprime_advec=[ dh/dx ]
1218 * [ dh/dy ]
1219 * [ dh/dz ]
1220 * where h is the interpolation function for node i.
1221 *
1222 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1223 */
1224
1225 /*Fetch number of nodes for this finite element*/
1226 int numnodes = element->GetNumberOfNodes();
1227
1228 /*Get nodal functions derivatives*/
1229 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1230 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1231
1232 /*Build B: */
1233 for(int i=0;i<numnodes;i++){
1234 B[numnodes*0+i] = dbasis[0*numnodes+i];
1235 B[numnodes*1+i] = dbasis[1*numnodes+i];
1236 B[numnodes*2+i] = dbasis[2*numnodes+i];
1237 }
1238
1239 /*Clean-up*/
1240 xDelete<IssmDouble>(dbasis);
1241}/*}}}*/
1242void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1243
1244 /*Intermediary*/
1245 bool isdynamicbasalspc;
1246 IssmDouble dt;
1247
1248 /*Check wether dynamic basal boundary conditions are activated */
1249 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1250 if(!isdynamicbasalspc) return;
1251
1252 element->FindParam(&dt,TimesteppingTimeStepEnum);
1253 if(dt==0.){
1254 GetBasalConstraintsSteadystate(vec_spc,element);
1255 }
1256 else{
1257 GetBasalConstraintsTransient(vec_spc,element);
1258 }
1259}/*}}}*/
1260void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1261
1262 /* Check if ice in element */
1263 if(!element->IsIceInElement()) return;
1264
1265 /* Only update constraints at the base.
1266 * Floating ice is not affected by basal BC decision chart. */
1267 if(!(element->IsOnBase()) || element->IsFloating()) return;
1268
1269 /*Intermediary*/
1270 int numindices, numindicesup, state;
1271 int *indices = NULL, *indicesup = NULL;
1272 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1273
1274 /*Get parameters and inputs: */
1275 Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
1276 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1277 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1278 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1279
1280 /*Fetch indices of basal & surface nodes for this finite element*/
1281 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1282 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1283 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1284
1285 GaussPenta* gauss=new GaussPenta();
1286 GaussPenta* gaussup=new GaussPenta();
1287 for(int i=0;i<numindices;i++){
1288 gauss->GaussNode(element->GetElementType(),indices[i]);
1289 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1290
1291 enthalpy_input->GetInputValue(&enthalpy,gauss);
1292 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1293 pressure_input->GetInputValue(&pressure,gauss);
1294 pressure_input->GetInputValue(&pressureup,gaussup);
1295 watercolumn_input->GetInputValue(&watercolumn,gauss);
1296 meltingrate_input->GetInputValue(&meltingrate,gauss);
1297
1298 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1299 switch (state) {
1300 case 0:
1301 // cold, dry base: apply basal surface forcing
1302 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1303 break;
1304 case 1:
1305 // cold, wet base: keep at pressure melting point
1306 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1307 break;
1308 case 2:
1309 // temperate, thin refreezing base:
1310 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1311 break;
1312 case 3:
1313 // temperate, thin melting base: set spc
1314 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1315 break;
1316 case 4:
1317 // temperate, thick melting base:
1318 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1319 break;
1320 default:
1321 _printf0_(" unknown thermal basal state found!");
1322 }
1323 }
1324
1325 /*Free ressources:*/
1326 xDelete<int>(indices);
1327 xDelete<int>(indicesup);
1328 delete gauss;
1329 delete gaussup;
1330}/*}}}*/
1331void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1332
1333 /* Check if ice in element */
1334 if(!element->IsIceInElement()) return;
1335
1336 /* Only update constraints at the base.
1337 * Floating ice is not affected by basal BC decision chart.*/
1338 if(!(element->IsOnBase()) || element->IsFloating()) return;
1339
1340 /*Intermediary*/
1341 int numindices, numindicesup, state;
1342 int *indices = NULL, *indicesup = NULL;
1343 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1344
1345 /*Get parameters and inputs: */
1346 Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
1347 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1348 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1349 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1350
1351 /*Fetch indices of basal & surface nodes for this finite element*/
1352 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1353 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1354 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1355
1356 GaussPenta* gauss=new GaussPenta();
1357 GaussPenta* gaussup=new GaussPenta();
1358
1359 for(int i=0;i<numindices;i++){
1360 gauss->GaussNode(element->GetElementType(),indices[i]);
1361 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1362
1363 enthalpy_input->GetInputValue(&enthalpy,gauss);
1364 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1365 pressure_input->GetInputValue(&pressure,gauss);
1366 pressure_input->GetInputValue(&pressureup,gaussup);
1367 watercolumn_input->GetInputValue(&watercolumn,gauss);
1368 meltingrate_input->GetInputValue(&meltingrate,gauss);
1369
1370 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1371
1372 switch (state) {
1373 case 0:
1374 // cold, dry base: apply basal surface forcing
1375 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1376 break;
1377 case 1:
1378 // cold, wet base: keep at pressure melting point
1379 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1380 break;
1381 case 2:
1382 // temperate, thin refreezing base: release spc
1383 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1384 break;
1385 case 3:
1386 // temperate, thin melting base: set spc
1387 vec_spc->SetValue(element->nodes[i]->Sid(),1.,INS_VAL);
1388 break;
1389 case 4:
1390 // temperate, thick melting base: set grad H*n=0
1391 vec_spc->SetValue(element->nodes[i]->Sid(),0.,INS_VAL);
1392 break;
1393 default:
1394 _printf0_(" unknown thermal basal state found!");
1395 }
1396
1397 }
1398
1399 /*Free ressources:*/
1400 xDelete<int>(indices);
1401 xDelete<int>(indicesup);
1402 delete gauss;
1403 delete gaussup;
1404}/*}}}*/
1405void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1406 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
1407 * For node i, Bi' can be expressed in the actual coordinate system
1408 * by:
1409 * Bi_conduct=[ dh/dx ]
1410 * [ dh/dy ]
1411 * [ dh/dz ]
1412 * where h is the interpolation function for node i.
1413 *
1414 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
1415 */
1416
1417 /*Fetch number of nodes for this finite element*/
1418 int numnodes = element->GetNumberOfNodes();
1419
1420 /*Get nodal functions derivatives*/
1421 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1422 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1423
1424 /*Build B: */
1425 for(int i=0;i<numnodes;i++){
1426 B[numnodes*0+i] = dbasis[0*numnodes+i];
1427 B[numnodes*1+i] = dbasis[1*numnodes+i];
1428 B[numnodes*2+i] = dbasis[2*numnodes+i];
1429 }
1430
1431 /*Clean-up*/
1432 xDelete<IssmDouble>(dbasis);
1433}/*}}}*/
1434void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
1435 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
1436}/*}}}*/
1437int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
1438
1439 /* Check if ice in element */
1440 if(!element->IsIceInElement()) return -1;
1441
1442 /* Only update Constraints at the base of grounded ice*/
1443 if(!(element->IsOnBase())) return -1;
1444
1445 /*Intermediary*/
1446 int state=-1;
1447 IssmDouble dt;
1448
1449 /*Get parameters and inputs: */
1450 element->FindParam(&dt,TimesteppingTimeStepEnum);
1451
1452 if(enthalpy<PureIceEnthalpy(element,pressure)){
1453 if(watercolumn<=0.) state=0; // cold, dry base
1454 else state=1; // cold, wet base (refreezing)
1455 }
1456 else{
1457 if(enthalpyup<PureIceEnthalpy(element,pressureup)){
1458 if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
1459 else state=3; // temperate base, but no temperate layer
1460 }
1461 else state=4; // temperate layer with positive thickness
1462 }
1463
1464 _assert_(state>=0);
1465 return state;
1466}/*}}}*/
1467IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
1468
1469 IssmDouble temperature, waterfraction;
1470 IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
1471 IssmDouble kappa_i = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1472 element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
1473
1474 return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
1475}/*}}}*/
1476void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_index){/*{{{*/
1477 _error_("Not implemented yet");
1478}/*}}}*/
1479void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
1480
1481 bool converged;
1482 int i,rheology_law;
1483 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
1484 IssmDouble n=3.0;
1485 int *doflist = NULL;
1486 IssmDouble *xyz_list = NULL;
1487
1488 /*Fetch number of nodes and dof for this finite element*/
1489 int numnodes = element->GetNumberOfNodes();
1490
1491 /*Fetch dof list and allocate solution vector*/
1492 element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum);
1493 IssmDouble* values = xNew<IssmDouble>(numnodes);
1494 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
1495 IssmDouble* surface = xNew<IssmDouble>(numnodes);
1496 IssmDouble* B = xNew<IssmDouble>(numnodes);
1497 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
1498 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
1499
1500 /*Use the dof list to index into the solution vector: */
1501 for(i=0;i<numnodes;i++){
1502 values[i]=solution[doflist[i]];
1503
1504 /*Check solution*/
1505 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
1506 if(xIsInf<IssmDouble>(values[i])) _error_("Inf found in solution vector");
1507 }
1508
1509 /*Get all inputs and parameters*/
1510 if(element->material->ObjectEnum()!=MatestarEnum) n=element->GetMaterialParameter(MaterialsRheologyNEnum);
1511 element->GetInputValue(&converged,ConvergedEnum);
1512 element->GetInputListOnNodes(&pressure[0],PressureEnum);
1513 if(converged){
1514 for(i=0;i<numnodes;i++){
1515 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
1516 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
1517 //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
1518 }
1519 element->AddInput(EnthalpyEnum,values,element->GetElementType());
1520 element->AddInput(WaterfractionEnum,waterfraction,element->GetElementType());
1521 element->AddInput(TemperatureEnum,temperature,element->GetElementType());
1522
1523 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
1524 * otherwise the rheology could be negative*/
1525 element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
1526 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
1527 switch(rheology_law){
1528 case NoneEnum:
1529 /*Do nothing: B is not temperature dependent*/
1530 break;
1531 case BuddJackaEnum:
1532 for(i=0;i<numnodes;i++) B[i]=BuddJacka(temperature[i]);
1533 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1534 break;
1535 case CuffeyEnum:
1536 for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
1537 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1538 break;
1539 case CuffeyTemperateEnum:
1540 for(i=0;i<numnodes;i++) B[i]=CuffeyTemperate(temperature[i], waterfraction[i],n);
1541 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1542 break;
1543 case PatersonEnum:
1544 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
1545 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1546 break;
1547 case ArrheniusEnum:
1548 element->GetVerticesCoordinates(&xyz_list);
1549 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],n);
1550 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1551 break;
1552 case LliboutryDuvalEnum:
1553 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],n,element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum));
1554 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
1555 break;
1556 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
1557 }
1558 }
1559 else{
1560 element->AddInput(EnthalpyPicardEnum,values,element->GetElementType());
1561 }
1562
1563 /*Free ressources:*/
1564 xDelete<IssmDouble>(values);
1565 xDelete<IssmDouble>(pressure);
1566 xDelete<IssmDouble>(surface);
1567 xDelete<IssmDouble>(B);
1568 xDelete<IssmDouble>(temperature);
1569 xDelete<IssmDouble>(waterfraction);
1570 xDelete<IssmDouble>(xyz_list);
1571 xDelete<int>(doflist);
1572}/*}}}*/
1573void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
1574
1575 /*Intermediaries*/
1576 bool computebasalmeltingrates=true;
1577 bool drainicecolumn=true;
1578 IssmDouble dt;
1579
1580 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1581
1582 if(drainicecolumn && (dt>0.)) DrainWaterfraction(femmodel);
1583 if(computebasalmeltingrates) ComputeBasalMeltingrate(femmodel);
1584
1585}/*}}}*/
1586IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
1587
1588 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1589 IssmDouble referencetemperature = element->GetMaterialParameter(ConstantsReferencetemperatureEnum);
1590
1591 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
1592}/*}}}*/
1593IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
1594
1595 IssmDouble meltingpoint = element->GetMaterialParameter(MaterialsMeltingpointEnum);
1596 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
1597
1598 return meltingpoint-beta*pressure;
1599}/*}}}*/
1600void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
1601
1602 /*Update basal dirichlet BCs for enthalpy: */
1603 Vector<IssmDouble>* spc = NULL;
1604 IssmDouble* serial_spc = NULL;
1605
1606 spc=new Vector<IssmDouble>(femmodel->nodes->NumberOfNodes(EnthalpyAnalysisEnum));
1607 /*First create a vector to figure out what elements should be constrained*/
1608 for(int i=0;i<femmodel->elements->Size();i++){
1609 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1610 GetBasalConstraints(spc,element);
1611 }
1612
1613 /*Assemble and serialize*/
1614 spc->Assemble();
1615 serial_spc=spc->ToMPISerial();
1616 delete spc;
1617
1618 /*Then update basal constraints nodes accordingly*/
1619 for(int i=0;i<femmodel->elements->Size();i++){
1620 Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
1621 ApplyBasalConstraints(serial_spc,element);
1622 }
1623
1624 femmodel->UpdateConstraintsx();
1625
1626 /*Delete*/
1627 xDelete<IssmDouble>(serial_spc);
1628}/*}}}*/
1629void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
1630 SetActiveNodesLSMx(femmodel);
1631}/*}}}*/
Note: See TracBrowser for help on using the repository browser.