source: issm/trunk-jpl/examples/SlrFarrell/runme.m@ 22813

Last change on this file since 22813 was 22813, checked in by adhikari, 7 years ago

CHG: Farrell solutions recovered

File size: 6.3 KB
RevLine 
[22805]1
2clear all;
[22813]3steps=[5]; %
[22805]4
5if any(steps==1) % Global mesh creation {{{
6 disp(' Step 1: Global mesh creation');
7
8 numrefine=1;
9 resolution=150*1e3; % inital resolution [m]. It determines, e.g., whether we capture small islands.
10 radius = 6.371012*10^6; % mean radius of Earth, m
11 mindistance_coast=150*1e3; % coastal resolution [m]
12 mindistance_land=300*1e3; % resolution on the continents [m]
13 maxdistance=600*1e3; % max element size (on mid-oceans) [m]
14
15 %mesh earth:
16 md=model;
17 md.mask=maskpsl(); % use maskpsl class (instead of mask) to store the ocean function as a ocean_levelset
18 md.mesh=gmshplanet('radius',radius*1e-3,'resolution',resolution*1e-3); % attributes should be in km.
19
20 for i=1:numrefine,
21
22 %figure out mask:
23 md.mask.ocean_levelset=gmtmask(md.mesh.lat,md.mesh.long);
24
25 %figure out distance to the coastline, in lat,long (not x,y,z):
26 distance=zeros(md.mesh.numberofvertices,1);
27
28 pos=find(~md.mask.ocean_levelset); coaste.lat=md.mesh.lat(pos); coaste.long=md.mesh.long(pos);
29 pos=find(md.mask.ocean_levelset); coasto.lat=md.mesh.lat(pos); coasto.long=md.mesh.long(pos);
30
31 for j=1:md.mesh.numberofvertices
32 %figure out nearest coastline (using the great circle distance)
33 phi1=md.mesh.lat(j)/180*pi; lambda1=md.mesh.long(j)/180*pi;
34 if md.mask.ocean_levelset(j),
35 phi2=coaste.lat/180*pi; lambda2=coaste.long/180*pi;
36 deltaphi=abs(phi2-phi1); deltalambda=abs(lambda2-lambda1);
37 d=radius*2*asin(sqrt(sin(deltaphi/2).^2+cos(phi1).*cos(phi2).*sin(deltalambda/2).^2));
38 else
39 phi2=coasto.lat/180*pi; lambda2=coasto.long/180*pi;
40 deltaphi=abs(phi2-phi1); deltalambda=abs(lambda2-lambda1);
41 d=radius*2*asin(sqrt(sin(deltaphi/2).^2+cos(phi1).*cos(phi2).*sin(deltalambda/2).^2));
42 end
43 distance(j)=min(d);
44 end
45 pos=find(distance<mindistance_coast); distance(pos)=mindistance_coast;
46
47 % refine on the continents
48 pos2=find(md.mask.ocean_levelset~=1 & distance>mindistance_land);
49 distance(pos2)=mindistance_land;
50
51 dist=min(maxdistance,distance); % max size 1000 km
52 %use distance to the coastline to refine mesh:
53 md.mesh=gmshplanet('radius',radius*1e-3,'resolution',resolution*1e-3,'refine',md.mesh,'refinemetric',dist);
54 end
55
56 %figure out mask:
57 md.mask.ocean_levelset=gmtmask(md.mesh.lat,md.mesh.long);
58
59 save ./Models/SlrFarrell.Mesh md;
60
61 plotmodel (md,'data',md.mask.ocean_levelset,'edgecolor','k');
62 %export_fig('Fig1.pdf');
63
64end % }}}
65
66if any(steps==2) % Define source {{{
67 disp(' Step 2: Define source as in Farrell, 1972, Figure 1');
68 md = loadmodel('./Models/SlrFarrell.Mesh');
69
70 % initial sea-level: 1 m RSL everywhere.
71 md.slr.sealevel=md.mask.ocean_levelset;
[22813]72
73 md.slr.deltathickness=zeros(md.mesh.numberofelements,1);
74 md.slr.steric_rate=zeros(md.mesh.numberofvertices,1);
[22805]75
76 save ./Models/SlrFarrell.Loads md;
77
78 plotmodel (md,'data',md.slr.sealevel,'view',[90 90],...
79 'title#all','Initial sea-level [m]');
80 %export_fig('Fig2.pdf');
81
82end % }}}
83
84if any(steps==3) % Parameterization {{{
85 disp(' Step 3: Parameterization');
86 md = loadmodel('./Models/SlrFarrell.Loads');
87
88 % Love numbers and reference frame: CF or CM (choose one!)
89 nlove=10001; % up to 10,000 degree
[22813]90 md.slr.love_h = love_numbers('h','CM'); md.slr.love_h(nlove+1:end)=[];
91 md.slr.love_k = love_numbers('k','CM'); md.slr.love_k(nlove+1:end)=[];
92 md.slr.love_l = love_numbers('l','CM'); md.slr.love_l(nlove+1:end)=[];
[22805]93
94 % Mask: for computational efficiency only those elements that have loads are convolved!
95 md.mask.land_levelset = 1-md.mask.ocean_levelset;
[22813]96 % fake ice load in one element!
97 md.mask.ice_levelset = ones(md.mesh.numberofvertices,1); % no ice
98 md.mask.groundedice_levelset = -ones(md.mesh.numberofvertices,1); % floated...
99 pos=find(md.mesh.lat <-80);
100 md.mask.ice_levelset(pos(1))=-1; % ice yes!
101 md.mask.groundedice_levelset(pos(1))=1; % ice grounded!
[22805]102
103 %% IGNORE BUT DO NOT DELETE %% {{{
104 % Geometry: Important only when you want to couple with Ice Flow Model
105 di=md.materials.rho_ice/md.materials.rho_water;
106 md.geometry.thickness=ones(md.mesh.numberofvertices,1);
107 md.geometry.surface=(1-di)*zeros(md.mesh.numberofvertices,1);
108 md.geometry.base=md.geometry.surface-md.geometry.thickness;
109 md.geometry.bed=md.geometry.base;
110 % Materials:
111 md.initialization.temperature=273.25*ones(md.mesh.numberofvertices,1);
112 md.materials.rheology_B=paterson(md.initialization.temperature);
113 md.materials.rheology_n=3*ones(md.mesh.numberofelements,1);
114 % Miscellaneous:
115 md.miscellaneous.name='SlrFarrell';
116 %% IGNORE BUT DO NOT DELETE %% }}}
117
118 save ./Models/SlrFarrell.Parameterization md;
119
120end % }}}
121
122if any(steps==4) % Solve {{{
123 disp(' Step 4: Solve Slr solver');
124 md = loadmodel('./Models/SlrFarrell.Parameterization');
125
126 % Cluster info
127 md.cluster=generic('name',oshostname(),'np',3);
128 md.verbose=verbose('111111111');
129
130 % Solve
131 md=solve(md,'Slr');
132
133 save ./Models/SlrFarrell.Solution md;
134
135end % }}}
136
137if any(steps==5) % Plot solutions {{{
138 disp(' Step 5: Plot solutions');
139 md = loadmodel('./Models/SlrFarrell.Solution');
140
[22813]141 % solutions.
142 sol = md.results.SealevelriseSolution.Sealevel*100; % per cent normalized by GMSL (which 1 m)
143
[22805]144 res = 1.0; % degree
145
146 % Make a grid of lats and lons, based on the min and max of the original vectors
147 [lat_grid, lon_grid] = meshgrid(linspace(-90,90,180/res), linspace(-180,180,360/res));
148 sol_grid = zeros(size(lat_grid));
149
[22813]150 % Make a interpolation object
151 F = scatteredInterpolant(md.mesh.lat,md.mesh.long,sol);
152 F.Method = 'linear';
153 F.ExtrapolationMethod = 'linear';
[22805]154
[22813]155 % Do the interpolation to get gridded solutions...
156 sol_grid = F(lat_grid, lon_grid);
157 sol_grid(isnan(sol_grid))=0;
158 sol_grid(lat_grid>85 & sol_grid==0) =NaN; % set polar unphysical 0s to Nan
[22805]159
[22813]160 set(0,'DefaultAxesFontSize',18,'DefaultAxesLineWidth',1,'DefaultTextFontSize',18,'DefaultLineMarkerSize',8)
161 figure1=figure('Position', [100, 100, 1000, 500]);
162 gcf; load coast; cla;
163 %pcolor(lon_grid,lat_grid,sol_grid); shading flat; hold on;
164 contourf(lon_grid,lat_grid,sol_grid,[96 98 100 102 104 105]); shading flat; hold on;
165 geoshow(lat,long,'DisplayType','polygon','FaceColor','white');
166 plot(long,lat,'k'); hold off;
167 % define colormap, caxis, xlim etc {{{
168 c1=colorbar;
169 %colormap('haxby');
170 %caxis([96 104]);
171 xlim([-180 180]);
172 ylim([-90 90]);
173 % }}}
174 grid on;
175 title('Relative sea-level [mm]');
176 set(gcf,'color','w');
[22805]177
[22813]178 %export_fig('Fig5.pdf');
[22805]179
180end % }}}
181
Note: See TracBrowser for help on using the repository browser.