1 |
|
---|
2 | clear all;
|
---|
3 | steps=[2]; %
|
---|
4 |
|
---|
5 | if any(steps==1) % Global mesh creation {{{
|
---|
6 | disp(' Step 1: Global mesh creation');
|
---|
7 |
|
---|
8 | numrefine=1;
|
---|
9 | resolution=150*1e3; % inital resolution [m]. It determines, e.g., whether we capture small islands.
|
---|
10 | radius = 6.371012*10^6; % mean radius of Earth, m
|
---|
11 | mindistance_coast=150*1e3; % coastal resolution [m]
|
---|
12 | mindistance_land=300*1e3; % resolution on the continents [m]
|
---|
13 | maxdistance=600*1e3; % max element size (on mid-oceans) [m]
|
---|
14 |
|
---|
15 | %mesh earth:
|
---|
16 | md=model;
|
---|
17 | md.mask=maskpsl(); % use maskpsl class (instead of mask) to store the ocean function as a ocean_levelset
|
---|
18 | md.mesh=gmshplanet('radius',radius*1e-3,'resolution',resolution*1e-3); % attributes should be in km.
|
---|
19 |
|
---|
20 | for i=1:numrefine,
|
---|
21 |
|
---|
22 | %figure out mask:
|
---|
23 | md.mask.ocean_levelset=gmtmask(md.mesh.lat,md.mesh.long);
|
---|
24 |
|
---|
25 | %figure out distance to the coastline, in lat,long (not x,y,z):
|
---|
26 | distance=zeros(md.mesh.numberofvertices,1);
|
---|
27 |
|
---|
28 | pos=find(~md.mask.ocean_levelset); coaste.lat=md.mesh.lat(pos); coaste.long=md.mesh.long(pos);
|
---|
29 | pos=find(md.mask.ocean_levelset); coasto.lat=md.mesh.lat(pos); coasto.long=md.mesh.long(pos);
|
---|
30 |
|
---|
31 | for j=1:md.mesh.numberofvertices
|
---|
32 | %figure out nearest coastline (using the great circle distance)
|
---|
33 | phi1=md.mesh.lat(j)/180*pi; lambda1=md.mesh.long(j)/180*pi;
|
---|
34 | if md.mask.ocean_levelset(j),
|
---|
35 | phi2=coaste.lat/180*pi; lambda2=coaste.long/180*pi;
|
---|
36 | deltaphi=abs(phi2-phi1); deltalambda=abs(lambda2-lambda1);
|
---|
37 | d=radius*2*asin(sqrt(sin(deltaphi/2).^2+cos(phi1).*cos(phi2).*sin(deltalambda/2).^2));
|
---|
38 | else
|
---|
39 | phi2=coasto.lat/180*pi; lambda2=coasto.long/180*pi;
|
---|
40 | deltaphi=abs(phi2-phi1); deltalambda=abs(lambda2-lambda1);
|
---|
41 | d=radius*2*asin(sqrt(sin(deltaphi/2).^2+cos(phi1).*cos(phi2).*sin(deltalambda/2).^2));
|
---|
42 | end
|
---|
43 | distance(j)=min(d);
|
---|
44 | end
|
---|
45 | pos=find(distance<mindistance_coast); distance(pos)=mindistance_coast;
|
---|
46 |
|
---|
47 | % refine on the continents
|
---|
48 | pos2=find(md.mask.ocean_levelset~=1 & distance>mindistance_land);
|
---|
49 | distance(pos2)=mindistance_land;
|
---|
50 |
|
---|
51 | dist=min(maxdistance,distance); % max size 1000 km
|
---|
52 | %use distance to the coastline to refine mesh:
|
---|
53 | md.mesh=gmshplanet('radius',radius*1e-3,'resolution',resolution*1e-3,'refine',md.mesh,'refinemetric',dist);
|
---|
54 | end
|
---|
55 |
|
---|
56 | %figure out mask:
|
---|
57 | md.mask.ocean_levelset=gmtmask(md.mesh.lat,md.mesh.long);
|
---|
58 |
|
---|
59 | save ./Models/SlrFarrell.Mesh md;
|
---|
60 |
|
---|
61 | plotmodel (md,'data',md.mask.ocean_levelset,'edgecolor','k');
|
---|
62 | %export_fig('Fig1.pdf');
|
---|
63 |
|
---|
64 | end % }}}
|
---|
65 |
|
---|
66 | if any(steps==2) % Define source {{{
|
---|
67 | disp(' Step 2: Define source as in Farrell, 1972, Figure 1');
|
---|
68 | md = loadmodel('./Models/SlrFarrell.Mesh');
|
---|
69 |
|
---|
70 | % initial sea-level: 1 m RSL everywhere.
|
---|
71 | md.slr.sealevel=md.mask.ocean_levelset;
|
---|
72 |
|
---|
73 | save ./Models/SlrFarrell.Loads md;
|
---|
74 |
|
---|
75 | plotmodel (md,'data',md.slr.sealevel,'view',[90 90],...
|
---|
76 | 'title#all','Initial sea-level [m]');
|
---|
77 | %export_fig('Fig2.pdf');
|
---|
78 |
|
---|
79 | end % }}}
|
---|
80 |
|
---|
81 | if any(steps==3) % Parameterization {{{
|
---|
82 | disp(' Step 3: Parameterization');
|
---|
83 | md = loadmodel('./Models/SlrFarrell.Loads');
|
---|
84 |
|
---|
85 | % Love numbers and reference frame: CF or CM (choose one!)
|
---|
86 | nlove=10001; % up to 10,000 degree
|
---|
87 | md.slr.love_h = love_numbers('h','CM'); md.slr.love_h(nlov+1:end)=[];
|
---|
88 | md.slr.love_k = love_numbers('k','CM'); md.slr.love_k(nlov+1:end)=[];
|
---|
89 | md.slr.love_l = love_numbers('l','CM'); md.slr.love_l(nlov+1:end)=[];
|
---|
90 |
|
---|
91 | % Mask: for computational efficiency only those elements that have loads are convolved!
|
---|
92 | md.mask.groundedice_levelset = ones(md.mesh.numberofvertices,1); % 1 = ice is grounnded
|
---|
93 | md.mask.ice_levelset = ones(md.mesh.numberofvertices,1);
|
---|
94 | pos=find(md.slr.deltathickness~=0);
|
---|
95 | md.mask.ice_levelset(md.mesh.elements(pos,:))=-1; % -1 = ice loads
|
---|
96 | md.mask.land_levelset = 1-md.mask.ocean_levelset;
|
---|
97 |
|
---|
98 | %% IGNORE BUT DO NOT DELETE %% {{{
|
---|
99 | % Geometry: Important only when you want to couple with Ice Flow Model
|
---|
100 | di=md.materials.rho_ice/md.materials.rho_water;
|
---|
101 | md.geometry.thickness=ones(md.mesh.numberofvertices,1);
|
---|
102 | md.geometry.surface=(1-di)*zeros(md.mesh.numberofvertices,1);
|
---|
103 | md.geometry.base=md.geometry.surface-md.geometry.thickness;
|
---|
104 | md.geometry.bed=md.geometry.base;
|
---|
105 | % Materials:
|
---|
106 | md.initialization.temperature=273.25*ones(md.mesh.numberofvertices,1);
|
---|
107 | md.materials.rheology_B=paterson(md.initialization.temperature);
|
---|
108 | md.materials.rheology_n=3*ones(md.mesh.numberofelements,1);
|
---|
109 | % Miscellaneous:
|
---|
110 | md.miscellaneous.name='SlrFarrell';
|
---|
111 | %% IGNORE BUT DO NOT DELETE %% }}}
|
---|
112 |
|
---|
113 | save ./Models/SlrFarrell.Parameterization md;
|
---|
114 |
|
---|
115 | end % }}}
|
---|
116 |
|
---|
117 | if any(steps==4) % Solve {{{
|
---|
118 | disp(' Step 4: Solve Slr solver');
|
---|
119 | md = loadmodel('./Models/SlrFarrell.Parameterization');
|
---|
120 |
|
---|
121 | % Request outputs
|
---|
122 | md.slr.requested_outputs = {'SlrUmotion','SlrNmotion','SlrEmotion'};
|
---|
123 |
|
---|
124 | % Cluster info
|
---|
125 | md.cluster=generic('name',oshostname(),'np',3);
|
---|
126 | md.verbose=verbose('111111111');
|
---|
127 |
|
---|
128 | % Solve
|
---|
129 | md=solve(md,'Slr');
|
---|
130 |
|
---|
131 | save ./Models/SlrFarrell.Solution md;
|
---|
132 |
|
---|
133 | end % }}}
|
---|
134 |
|
---|
135 | if any(steps==5) % Plot solutions {{{
|
---|
136 | disp(' Step 5: Plot solutions');
|
---|
137 | md = loadmodel('./Models/SlrFarrell.Solution');
|
---|
138 |
|
---|
139 | % loads and solutions.
|
---|
140 | sol1 = md.slr.deltathickness*100; % WEH cm
|
---|
141 | sol2 = md.results.SlrSolution.SlrUmotion*1000; % [mm]
|
---|
142 | sol3 = md.results.SlrSolution.SlrNmotion*1000; % [mm]
|
---|
143 | sol4 = md.results.SlrSolution.SlrEmotion*1000; % [mm]
|
---|
144 | sol_name={'Change in water equivalent height [cm]', 'Vertical displacement [mm]',...
|
---|
145 | 'Horizontal (NS) displacement [mm]', 'Horizontal (EW) displacement [mm]'};
|
---|
146 |
|
---|
147 | res = 1.0; % degree
|
---|
148 |
|
---|
149 | % Make a grid of lats and lons, based on the min and max of the original vectors
|
---|
150 | [lat_grid, lon_grid] = meshgrid(linspace(-90,90,180/res), linspace(-180,180,360/res));
|
---|
151 | sol_grid = zeros(size(lat_grid));
|
---|
152 |
|
---|
153 | for kk=1:4
|
---|
154 | sol=eval(sprintf('sol%d',kk));
|
---|
155 |
|
---|
156 | % if data are on elements, map those on to the vertices {{{
|
---|
157 | if length(sol)==md.mesh.numberofelements
|
---|
158 | % map on to the vertices
|
---|
159 | for jj=1:md.mesh.numberofelements
|
---|
160 | ii=(jj-1)*3;
|
---|
161 | pp(ii+1:ii+3)=md.mesh.elements(jj,:);
|
---|
162 | end
|
---|
163 | for jj=1:md.mesh.numberofvertices
|
---|
164 | pos=ceil(find(pp==jj)/3);
|
---|
165 | temp(jj)=mean(sol(pos));
|
---|
166 | end
|
---|
167 | sol=temp';
|
---|
168 | end % }}}
|
---|
169 |
|
---|
170 | % Make a interpolation object
|
---|
171 | F = scatteredInterpolant(md.mesh.lat,md.mesh.long,sol);
|
---|
172 | F.Method = 'linear';
|
---|
173 | F.ExtrapolationMethod = 'linear';
|
---|
174 |
|
---|
175 | % Do the interpolation to get gridded solutions...
|
---|
176 | sol_grid = F(lat_grid, lon_grid);
|
---|
177 | sol_grid(isnan(sol_grid))=0;
|
---|
178 | sol_grid(lat_grid>85 & sol_grid==0) =NaN; % set polar unphysical 0s to Nan
|
---|
179 |
|
---|
180 | set(0,'DefaultAxesFontSize',18,'DefaultAxesLineWidth',1,'DefaultTextFontSize',18,'DefaultLineMarkerSize',8)
|
---|
181 | figure1=figure('Position', [100, 100, 1000, 500]);
|
---|
182 | gcf;
|
---|
183 | load coast;
|
---|
184 | cla;
|
---|
185 | pcolor(lon_grid,lat_grid,sol_grid); shading flat; hold on;
|
---|
186 | plot(long,lat,'k'); hold off;
|
---|
187 | c1=colorbar;
|
---|
188 | colormap(jet);
|
---|
189 | xlim([-180 180]);
|
---|
190 | ylim([-90 90]);
|
---|
191 | grid on;
|
---|
192 | title(sol_name(kk));
|
---|
193 | set(gcf,'color','w');
|
---|
194 |
|
---|
195 | %export_fig('Fig5.pdf');
|
---|
196 | end
|
---|
197 |
|
---|
198 | end % }}}
|
---|
199 |
|
---|
200 |
|
---|