source: issm/trunk-jpl/examples/SlrFarrell/runme.m@ 22805

Last change on this file since 22805 was 22805, checked in by adhikari, 7 years ago

CHG: third tutorial place holder

File size: 6.7 KB
Line 
1
2clear all;
3steps=[2]; %
4
5if any(steps==1) % Global mesh creation {{{
6 disp(' Step 1: Global mesh creation');
7
8 numrefine=1;
9 resolution=150*1e3; % inital resolution [m]. It determines, e.g., whether we capture small islands.
10 radius = 6.371012*10^6; % mean radius of Earth, m
11 mindistance_coast=150*1e3; % coastal resolution [m]
12 mindistance_land=300*1e3; % resolution on the continents [m]
13 maxdistance=600*1e3; % max element size (on mid-oceans) [m]
14
15 %mesh earth:
16 md=model;
17 md.mask=maskpsl(); % use maskpsl class (instead of mask) to store the ocean function as a ocean_levelset
18 md.mesh=gmshplanet('radius',radius*1e-3,'resolution',resolution*1e-3); % attributes should be in km.
19
20 for i=1:numrefine,
21
22 %figure out mask:
23 md.mask.ocean_levelset=gmtmask(md.mesh.lat,md.mesh.long);
24
25 %figure out distance to the coastline, in lat,long (not x,y,z):
26 distance=zeros(md.mesh.numberofvertices,1);
27
28 pos=find(~md.mask.ocean_levelset); coaste.lat=md.mesh.lat(pos); coaste.long=md.mesh.long(pos);
29 pos=find(md.mask.ocean_levelset); coasto.lat=md.mesh.lat(pos); coasto.long=md.mesh.long(pos);
30
31 for j=1:md.mesh.numberofvertices
32 %figure out nearest coastline (using the great circle distance)
33 phi1=md.mesh.lat(j)/180*pi; lambda1=md.mesh.long(j)/180*pi;
34 if md.mask.ocean_levelset(j),
35 phi2=coaste.lat/180*pi; lambda2=coaste.long/180*pi;
36 deltaphi=abs(phi2-phi1); deltalambda=abs(lambda2-lambda1);
37 d=radius*2*asin(sqrt(sin(deltaphi/2).^2+cos(phi1).*cos(phi2).*sin(deltalambda/2).^2));
38 else
39 phi2=coasto.lat/180*pi; lambda2=coasto.long/180*pi;
40 deltaphi=abs(phi2-phi1); deltalambda=abs(lambda2-lambda1);
41 d=radius*2*asin(sqrt(sin(deltaphi/2).^2+cos(phi1).*cos(phi2).*sin(deltalambda/2).^2));
42 end
43 distance(j)=min(d);
44 end
45 pos=find(distance<mindistance_coast); distance(pos)=mindistance_coast;
46
47 % refine on the continents
48 pos2=find(md.mask.ocean_levelset~=1 & distance>mindistance_land);
49 distance(pos2)=mindistance_land;
50
51 dist=min(maxdistance,distance); % max size 1000 km
52 %use distance to the coastline to refine mesh:
53 md.mesh=gmshplanet('radius',radius*1e-3,'resolution',resolution*1e-3,'refine',md.mesh,'refinemetric',dist);
54 end
55
56 %figure out mask:
57 md.mask.ocean_levelset=gmtmask(md.mesh.lat,md.mesh.long);
58
59 save ./Models/SlrFarrell.Mesh md;
60
61 plotmodel (md,'data',md.mask.ocean_levelset,'edgecolor','k');
62 %export_fig('Fig1.pdf');
63
64end % }}}
65
66if any(steps==2) % Define source {{{
67 disp(' Step 2: Define source as in Farrell, 1972, Figure 1');
68 md = loadmodel('./Models/SlrFarrell.Mesh');
69
70 % initial sea-level: 1 m RSL everywhere.
71 md.slr.sealevel=md.mask.ocean_levelset;
72
73 save ./Models/SlrFarrell.Loads md;
74
75 plotmodel (md,'data',md.slr.sealevel,'view',[90 90],...
76 'title#all','Initial sea-level [m]');
77 %export_fig('Fig2.pdf');
78
79end % }}}
80
81if any(steps==3) % Parameterization {{{
82 disp(' Step 3: Parameterization');
83 md = loadmodel('./Models/SlrFarrell.Loads');
84
85 % Love numbers and reference frame: CF or CM (choose one!)
86 nlove=10001; % up to 10,000 degree
87 md.slr.love_h = love_numbers('h','CM'); md.slr.love_h(nlov+1:end)=[];
88 md.slr.love_k = love_numbers('k','CM'); md.slr.love_k(nlov+1:end)=[];
89 md.slr.love_l = love_numbers('l','CM'); md.slr.love_l(nlov+1:end)=[];
90
91 % Mask: for computational efficiency only those elements that have loads are convolved!
92 md.mask.groundedice_levelset = ones(md.mesh.numberofvertices,1); % 1 = ice is grounnded
93 md.mask.ice_levelset = ones(md.mesh.numberofvertices,1);
94 pos=find(md.slr.deltathickness~=0);
95 md.mask.ice_levelset(md.mesh.elements(pos,:))=-1; % -1 = ice loads
96 md.mask.land_levelset = 1-md.mask.ocean_levelset;
97
98 %% IGNORE BUT DO NOT DELETE %% {{{
99 % Geometry: Important only when you want to couple with Ice Flow Model
100 di=md.materials.rho_ice/md.materials.rho_water;
101 md.geometry.thickness=ones(md.mesh.numberofvertices,1);
102 md.geometry.surface=(1-di)*zeros(md.mesh.numberofvertices,1);
103 md.geometry.base=md.geometry.surface-md.geometry.thickness;
104 md.geometry.bed=md.geometry.base;
105 % Materials:
106 md.initialization.temperature=273.25*ones(md.mesh.numberofvertices,1);
107 md.materials.rheology_B=paterson(md.initialization.temperature);
108 md.materials.rheology_n=3*ones(md.mesh.numberofelements,1);
109 % Miscellaneous:
110 md.miscellaneous.name='SlrFarrell';
111 %% IGNORE BUT DO NOT DELETE %% }}}
112
113 save ./Models/SlrFarrell.Parameterization md;
114
115end % }}}
116
117if any(steps==4) % Solve {{{
118 disp(' Step 4: Solve Slr solver');
119 md = loadmodel('./Models/SlrFarrell.Parameterization');
120
121 % Request outputs
122 md.slr.requested_outputs = {'SlrUmotion','SlrNmotion','SlrEmotion'};
123
124 % Cluster info
125 md.cluster=generic('name',oshostname(),'np',3);
126 md.verbose=verbose('111111111');
127
128 % Solve
129 md=solve(md,'Slr');
130
131 save ./Models/SlrFarrell.Solution md;
132
133end % }}}
134
135if any(steps==5) % Plot solutions {{{
136 disp(' Step 5: Plot solutions');
137 md = loadmodel('./Models/SlrFarrell.Solution');
138
139 % loads and solutions.
140 sol1 = md.slr.deltathickness*100; % WEH cm
141 sol2 = md.results.SlrSolution.SlrUmotion*1000; % [mm]
142 sol3 = md.results.SlrSolution.SlrNmotion*1000; % [mm]
143 sol4 = md.results.SlrSolution.SlrEmotion*1000; % [mm]
144 sol_name={'Change in water equivalent height [cm]', 'Vertical displacement [mm]',...
145 'Horizontal (NS) displacement [mm]', 'Horizontal (EW) displacement [mm]'};
146
147 res = 1.0; % degree
148
149 % Make a grid of lats and lons, based on the min and max of the original vectors
150 [lat_grid, lon_grid] = meshgrid(linspace(-90,90,180/res), linspace(-180,180,360/res));
151 sol_grid = zeros(size(lat_grid));
152
153 for kk=1:4
154 sol=eval(sprintf('sol%d',kk));
155
156 % if data are on elements, map those on to the vertices {{{
157 if length(sol)==md.mesh.numberofelements
158 % map on to the vertices
159 for jj=1:md.mesh.numberofelements
160 ii=(jj-1)*3;
161 pp(ii+1:ii+3)=md.mesh.elements(jj,:);
162 end
163 for jj=1:md.mesh.numberofvertices
164 pos=ceil(find(pp==jj)/3);
165 temp(jj)=mean(sol(pos));
166 end
167 sol=temp';
168 end % }}}
169
170 % Make a interpolation object
171 F = scatteredInterpolant(md.mesh.lat,md.mesh.long,sol);
172 F.Method = 'linear';
173 F.ExtrapolationMethod = 'linear';
174
175 % Do the interpolation to get gridded solutions...
176 sol_grid = F(lat_grid, lon_grid);
177 sol_grid(isnan(sol_grid))=0;
178 sol_grid(lat_grid>85 & sol_grid==0) =NaN; % set polar unphysical 0s to Nan
179
180 set(0,'DefaultAxesFontSize',18,'DefaultAxesLineWidth',1,'DefaultTextFontSize',18,'DefaultLineMarkerSize',8)
181 figure1=figure('Position', [100, 100, 1000, 500]);
182 gcf;
183 load coast;
184 cla;
185 pcolor(lon_grid,lat_grid,sol_grid); shading flat; hold on;
186 plot(long,lat,'k'); hold off;
187 c1=colorbar;
188 colormap(jet);
189 xlim([-180 180]);
190 ylim([-90 90]);
191 grid on;
192 title(sol_name(kk));
193 set(gcf,'color','w');
194
195 %export_fig('Fig5.pdf');
196 end
197
198end % }}}
199
200
Note: See TracBrowser for help on using the repository browser.