source: issm/trunk-jpl/examples/SlrFarrell/runme.m@ 22815

Last change on this file since 22815 was 22815, checked in by adhikari, 7 years ago

CHG: final minor changes to all tutorials

File size: 6.5 KB
Line 
1
2clear all;
3
4steps=[1]; % [1:5];
5
6if any(steps==1) % Global mesh creation {{{
7 disp(' Step 1: Global mesh creation');
8
9 numrefine=1;
10 resolution=150*1e3; % inital resolution [m]. It determines, e.g., whether we capture small islands.
11 radius = 6.371012*10^6; % mean radius of Earth, m
12 mindistance_coast=150*1e3; % coastal resolution [m]
13 mindistance_land=300*1e3; % resolution on the continents [m]
14 maxdistance=600*1e3; % max element size (on mid-oceans) [m]
15
16 %mesh earth:
17 md=model;
18 md.mask=maskpsl(); % use maskpsl class (instead of mask) to store the ocean function as a ocean_levelset
19 md.mesh=gmshplanet('radius',radius*1e-3,'resolution',resolution*1e-3); % attributes should be in km.
20
21 for i=1:numrefine,
22
23 %figure out mask:
24 md.mask.ocean_levelset=gmtmask(md.mesh.lat,md.mesh.long);
25
26 %figure out distance to the coastline, in lat,long (not x,y,z):
27 distance=zeros(md.mesh.numberofvertices,1);
28
29 pos=find(~md.mask.ocean_levelset); coaste.lat=md.mesh.lat(pos); coaste.long=md.mesh.long(pos);
30 pos=find(md.mask.ocean_levelset); coasto.lat=md.mesh.lat(pos); coasto.long=md.mesh.long(pos);
31
32 for j=1:md.mesh.numberofvertices
33 %figure out nearest coastline (using the great circle distance)
34 phi1=md.mesh.lat(j)/180*pi; lambda1=md.mesh.long(j)/180*pi;
35 if md.mask.ocean_levelset(j),
36 phi2=coaste.lat/180*pi; lambda2=coaste.long/180*pi;
37 deltaphi=abs(phi2-phi1); deltalambda=abs(lambda2-lambda1);
38 d=radius*2*asin(sqrt(sin(deltaphi/2).^2+cos(phi1).*cos(phi2).*sin(deltalambda/2).^2));
39 else
40 phi2=coasto.lat/180*pi; lambda2=coasto.long/180*pi;
41 deltaphi=abs(phi2-phi1); deltalambda=abs(lambda2-lambda1);
42 d=radius*2*asin(sqrt(sin(deltaphi/2).^2+cos(phi1).*cos(phi2).*sin(deltalambda/2).^2));
43 end
44 distance(j)=min(d);
45 end
46 pos=find(distance<mindistance_coast); distance(pos)=mindistance_coast;
47
48 % refine on the continents
49 pos2=find(md.mask.ocean_levelset~=1 & distance>mindistance_land);
50 distance(pos2)=mindistance_land;
51
52 dist=min(maxdistance,distance); % max size 1000 km
53 %use distance to the coastline to refine mesh:
54 md.mesh=gmshplanet('radius',radius*1e-3,'resolution',resolution*1e-3,'refine',md.mesh,'refinemetric',dist);
55 end
56
57 %figure out mask:
58 md.mask.ocean_levelset=gmtmask(md.mesh.lat,md.mesh.long);
59
60 save ./Models/SlrFarrell.Mesh md;
61
62 plotmodel (md,'data',md.mask.ocean_levelset,'edgecolor','k');
63 %export_fig('Fig1.pdf');
64
65end % }}}
66
67if any(steps==2) % Define source {{{
68 disp(' Step 2: Define source as in Farrell, 1972, Figure 1');
69 md = loadmodel('./Models/SlrFarrell.Mesh');
70
71 % initial sea-level: 1 m RSL everywhere.
72 md.slr.sealevel=md.mask.ocean_levelset;
73
74 md.slr.deltathickness=zeros(md.mesh.numberofelements,1);
75 md.slr.steric_rate=zeros(md.mesh.numberofvertices,1);
76
77 save ./Models/SlrFarrell.Loads md;
78
79 plotmodel (md,'data',md.slr.sealevel,'view',[90 90],...
80 'title#all','Initial sea-level [m]');
81 %export_fig('Fig2.pdf');
82
83end % }}}
84
85if any(steps==3) % Parameterization {{{
86 disp(' Step 3: Parameterization');
87 md = loadmodel('./Models/SlrFarrell.Loads');
88
89 % Love numbers and reference frame: CF or CM (choose one!)
90 nlove=10001; % up to 10,000 degree
91 md.slr.love_h = love_numbers('h','CM'); md.slr.love_h(nlove+1:end)=[];
92 md.slr.love_k = love_numbers('k','CM'); md.slr.love_k(nlove+1:end)=[];
93 md.slr.love_l = love_numbers('l','CM'); md.slr.love_l(nlove+1:end)=[];
94
95 % Mask: for computational efficiency only those elements that have loads are convolved!
96 md.mask.land_levelset = 1-md.mask.ocean_levelset;
97 % fake ice load in one element!
98 md.mask.ice_levelset = ones(md.mesh.numberofvertices,1); % no ice
99 md.mask.groundedice_levelset = -ones(md.mesh.numberofvertices,1); % floated...
100 pos=find(md.mesh.lat <-80);
101 md.mask.ice_levelset(pos(1))=-1; % ice yes!
102 md.mask.groundedice_levelset(pos(1))=1; % ice grounded!
103
104 %% IGNORE BUT DO NOT DELETE %% {{{
105 % Geometry: Important only when you want to couple with Ice Flow Model
106 di=md.materials.rho_ice/md.materials.rho_water;
107 md.geometry.thickness=ones(md.mesh.numberofvertices,1);
108 md.geometry.surface=(1-di)*zeros(md.mesh.numberofvertices,1);
109 md.geometry.base=md.geometry.surface-md.geometry.thickness;
110 md.geometry.bed=md.geometry.base;
111 % Materials:
112 md.initialization.temperature=273.25*ones(md.mesh.numberofvertices,1);
113 md.materials.rheology_B=paterson(md.initialization.temperature);
114 md.materials.rheology_n=3*ones(md.mesh.numberofelements,1);
115 % Miscellaneous:
116 md.miscellaneous.name='SlrFarrell';
117 %% IGNORE BUT DO NOT DELETE %% }}}
118
119 save ./Models/SlrFarrell.Parameterization md;
120
121end % }}}
122
123if any(steps==4) % Solve {{{
124 disp(' Step 4: Solve Slr solver');
125 md = loadmodel('./Models/SlrFarrell.Parameterization');
126
127 % Cluster info
128 md.cluster=generic('name',oshostname(),'np',3);
129 md.verbose=verbose('111111111');
130
131 % Choose different convergence threshold. [10% 1% 0.1%] to match Farrell 3 panels in Fig. 1
132 md.slr.reltol = 0.1/100; % per cent change in solution
133
134 % Solve
135 md=solve(md,'Slr');
136
137 save ./Models/SlrFarrell.Solution md;
138
139end % }}}
140
141if any(steps==5) % Plot solutions {{{
142 disp(' Step 5: Plot solutions');
143 md = loadmodel('./Models/SlrFarrell.Solution');
144
145 % solutions.
146 sol = md.results.SealevelriseSolution.Sealevel*100; % per cent normalized by GMSL (which 1 m)
147
148 res = 1; % degree
149
150 % Make a grid of lats and lons, based on the min and max of the original vectors
151 [lat_grid, lon_grid] = meshgrid(linspace(-90,90,180/res), linspace(-180,180,360/res));
152 sol_grid = zeros(size(lat_grid));
153
154 % Make a interpolation object
155 F = scatteredInterpolant(md.mesh.lat,md.mesh.long,sol);
156 F.Method = 'natural'; % for smooth contour
157 F.ExtrapolationMethod = 'none';
158
159 % Do the interpolation to get gridded solutions...
160 sol_grid = F(lat_grid, lon_grid);
161 sol_grid(isnan(sol_grid))=0;
162 sol_grid(lat_grid>85 & sol_grid==0) =NaN; % set polar unphysical 0s to Nan
163
164 set(0,'DefaultAxesFontSize',18,'DefaultAxesLineWidth',1,'DefaultTextFontSize',18,'DefaultLineMarkerSize',8)
165 figure1=figure('Position', [100, 100, 1000, 500]);
166 gcf; load coast; cla;
167 pcolor(lon_grid,lat_grid,sol_grid); shading flat; hold on;
168 [C,h]=contour(lon_grid,lat_grid,sol_grid,[96 98 100 102 104 105],'-k','linewidth',2);
169 clabel(C,h,'FontSize',18,'Color','red','LabelSpacing',500);
170 geoshow(lat,long,'DisplayType','polygon','FaceColor',[.82 .82 .82]);
171 plot(long,lat,'k'); hold off;
172 % define colormap, caxis, xlim etc {{{
173 c1=colorbar;
174 colormap(flipud(haxby));
175 caxis([96 105]);
176 xlim([-170 170]);
177 ylim([-85 85]);
178 % }}}
179 grid on;
180 title('Relative sea-level [% of GMSL]');
181 set(gcf,'color','w');
182
183 %export_fig('Fig5.pdf');
184
185end % }}}
186
Note: See TracBrowser for help on using the repository browser.