1 | disp(' creating thickness');
|
---|
2 | hmin=0.01;
|
---|
3 | hmax=2756.7;
|
---|
4 | radius=sqrt((md.mesh.x).^2+(md.mesh.y).^2);
|
---|
5 | radiusmax=max(radius);
|
---|
6 | radius(find(radius>(1.-10^-9)*radiusmax))=radiusmax; %eliminate roundoff issues in next statement
|
---|
7 | md.geometry.thickness=hmin*ones(size(md.mesh.x,1),1)+hmax*(4.*((1./2.)^(4./3.)*ones(size(md.mesh.x,1),1)-((radius)./(2.*radiusmax)).^(4./3.))).^(3./8.);
|
---|
8 | md.geometry.bed=0.*md.geometry.thickness;
|
---|
9 | md.geometry.surface=md.geometry.bed+md.geometry.thickness;
|
---|
10 |
|
---|
11 | disp(' creating drag');
|
---|
12 | md.friction.coefficient=20.*ones(md.mesh.numberofvertices,1); %q=1. no drag is specified in the analytical solution
|
---|
13 | %Take care of iceshelves: no basal drag
|
---|
14 | pos=find(md.mask.elementonfloatingice);
|
---|
15 | md.friction.coefficient(md.mesh.elements(pos,:))=0.;
|
---|
16 | md.friction.p=ones(md.mesh.numberofelements,1);
|
---|
17 | md.friction.q=ones(md.mesh.numberofelements,1);
|
---|
18 |
|
---|
19 | disp(' creating temperatures');
|
---|
20 | tmin=238.15; %K
|
---|
21 | st=1.67*10^-2/1000.; %k/m
|
---|
22 | md.initialization.temperature=tmin+st*radius;
|
---|
23 | md.basalforcings.geothermalflux=4.2*10^-2*ones(md.mesh.numberofvertices,1);
|
---|
24 |
|
---|
25 | disp(' creating flow law parameter');
|
---|
26 | md.materials.rheology_B=6.81*10^7*ones(md.mesh.numberofvertices,1); %to have the same B as the analytical solution
|
---|
27 | md.materials.rheology_n=3.*ones(md.mesh.numberofelements,1);
|
---|
28 |
|
---|
29 | disp(' creating surface mass balance');
|
---|
30 | smb_max=0.5; %m/yr
|
---|
31 | sb=10^-2/1000.; %m/yr/m
|
---|
32 | rel=450.*1000.; %m
|
---|
33 | md.surfaceforcings.mass_balance=min(smb_max,sb*(rel-radius));
|
---|
34 |
|
---|
35 | disp(' creating velocities');
|
---|
36 | constant=0.3;
|
---|
37 | md.inversion.vx_obs=constant/2.*md.mesh.x.*(md.geometry.thickness).^-1;
|
---|
38 | md.inversion.vy_obs=constant/2.*md.mesh.y.*(md.geometry.thickness).^-1;
|
---|
39 | md.inversion.vel_obs=sqrt((md.inversion.vx_obs).^2+(md.inversion.vy_obs).^2);
|
---|
40 | md.initialization.vx=zeros(md.mesh.numberofvertices,1);
|
---|
41 | md.initialization.vy=zeros(md.mesh.numberofvertices,1);
|
---|
42 | md.initialization.vz=zeros(md.mesh.numberofvertices,1);
|
---|
43 | md.initialization.pressure=zeros(md.mesh.numberofvertices,1);
|
---|
44 |
|
---|
45 | %Deal with boundary conditions:
|
---|
46 | disp(' boundary conditions for diagnostic model:');
|
---|
47 | md=SetMarineIceSheetBC(md,'../Exp/RoundFrontEISMINT.exp');
|
---|
48 |
|
---|
49 | radius=sqrt((md.mesh.x).^2+(md.mesh.y).^2);
|
---|
50 | pos=find(radius==min(radius));
|
---|
51 | md.mesh.x(pos)=0.; md.mesh.y(pos)=0.; %the closest node to the center is changed to be exactly at the center
|
---|
52 |
|
---|
53 | md.diagnostic.spcvx(pos)=0.;
|
---|
54 | md.diagnostic.spcvy(pos)=0.;
|
---|
55 | md.diagnostic.spcvz(pos)=0.;
|
---|