1 | %Ok, start defining model parameters here
|
---|
2 | disp(' creating thickness');
|
---|
3 | md.thickness=10*ones(md.numberofnodes,1);
|
---|
4 | md.bed=zeros(md.numberofnodes,1);
|
---|
5 | md.surface=md.bed+md.thickness;
|
---|
6 |
|
---|
7 | disp(' creating drag');
|
---|
8 | md.friction.coefficient=20*ones(md.numberofnodes,1); %q=1. %no drag is specified in the analytical solution
|
---|
9 | md.friction.p=ones(md.numberofelements,1);
|
---|
10 | md.friction.q=ones(md.numberofelements,1);
|
---|
11 |
|
---|
12 | disp(' creating temperatures');
|
---|
13 | tmin=238.15; %K
|
---|
14 | st=1.67*10^-2/1000; %k/m;
|
---|
15 | radius=sqrt((md.x).^2+(md.y).^2);
|
---|
16 | md.temperature=(tmin+st*radius);
|
---|
17 | md.basalforcings.geothermalflux=4.2*10^-2*ones(md.numberofnodes,1);
|
---|
18 |
|
---|
19 | disp(' creating flow law paramter');
|
---|
20 | md.materials.rheology_B=6.81*10^(7)*ones(md.numberofnodes,1); %to have the same B as the analytical solution
|
---|
21 | md.materials.rheology_n=3*ones(md.numberofelements,1);
|
---|
22 |
|
---|
23 | disp(' creating surface mass balance');
|
---|
24 | smb_max=0.5; %m/yr
|
---|
25 | sb=10^-2/1000; %m/yr/m
|
---|
26 | rel=450*1000; %m
|
---|
27 | md.surfaceforcings.mass_balance=min(smb_max,sb*(rel-radius));
|
---|
28 |
|
---|
29 | disp(' creating velocities');
|
---|
30 | constant=0.3;
|
---|
31 | md.inversion.vx_obs=constant/2*md.x.*(md.thickness).^-1;
|
---|
32 | md.inversion.vy_obs=constant/2*md.y.*(md.thickness).^-1;
|
---|
33 | md.inversion.vel_obs=(sqrt((md.inversion.vx_obs).^2+(md.inversion.vy_obs).^2));
|
---|
34 | md.vx=zeros(md.numberofnodes,1);
|
---|
35 | md.vy=zeros(md.numberofnodes,1);
|
---|
36 | md.vz=zeros(md.numberofnodes,1);
|
---|
37 | md.pressure=zeros(md.numberofnodes,1);
|
---|
38 |
|
---|
39 | %Deal with boundary conditions:
|
---|
40 | disp(' boundary conditions for diagnostic model: ');
|
---|
41 | md=SetMarineIceSheetBC(md,'../Exp/RoundFrontEISMINT.exp');
|
---|
42 |
|
---|
43 | radius=sqrt((md.x).*md.x+(md.y).*md.y);
|
---|
44 | pos=find(radius==min(radius));
|
---|
45 | md.x(pos)=0; md.y(pos)=0; %the closest node to the center is changed to be exactly at the center
|
---|
46 |
|
---|
47 | md.diagnostic.spcvx(pos)=0;
|
---|
48 | md.diagnostic.spcvy(pos)=0;
|
---|
49 | md.diagnostic.spcvz(pos)=0;
|
---|
50 |
|
---|
51 | %parallel options
|
---|
52 | md.timestepping.final_time=50000;
|
---|
53 |
|
---|
54 | %Constants
|
---|
55 | md.materials.rho_ice=910;
|
---|
56 | md.materials.thermalconductivity=2.1;
|
---|
57 | md.materials.latentheat=3.35*10^5;
|
---|
58 | md.materials.beta=8.66*10^-4/(md.materials.rho_ice*md.constants.g); %conversion from K/m to K/Pa
|
---|
59 | md.constants.yts=31556926;
|
---|