[19895] | 1 | import numpy
|
---|
| 2 | from model import model
|
---|
| 3 | from pairoptions import pairoptions
|
---|
| 4 | import MatlabFuncs as m
|
---|
| 5 | import PythonFuncs as p
|
---|
| 6 | from FlagElements import FlagElements
|
---|
| 7 |
|
---|
| 8 | def setflowequation(md,**kwargs):
|
---|
| 9 | """
|
---|
| 10 | SETFLOWEQUATION - associate a solution type to each element
|
---|
| 11 |
|
---|
| 12 | This routine works like plotmodel: it works with an even number of inputs
|
---|
| 13 | 'SIA','SSA','HO','L1L2','FS' and 'fill' are the possible options
|
---|
| 14 | that must be followed by the corresponding exp file or flags list
|
---|
| 15 | It can either be a domain file (argus type, .exp extension), or an array of element flags.
|
---|
| 16 | If user wants every element outside the domain to be
|
---|
| 17 | setflowequationd, add '~' to the name of the domain file (ex: '~HO.exp');
|
---|
| 18 | an empty string '' will be considered as an empty domain
|
---|
| 19 | a string 'all' will be considered as the entire domain
|
---|
| 20 | You can specify the type of coupling, 'penalties' or 'tiling', to use with the input 'coupling'
|
---|
| 21 |
|
---|
| 22 | Usage:
|
---|
| 23 | md=setflowequation(md,varargin)
|
---|
| 24 |
|
---|
| 25 | Example:
|
---|
| 26 | md=setflowequation(md,'HO','HO.exp',fill','SIA','coupling','tiling');
|
---|
| 27 | """
|
---|
| 28 |
|
---|
| 29 | #some checks on list of arguments
|
---|
| 30 | if not isinstance(md,model) or not len(kwargs):
|
---|
| 31 | raise TypeError("setflowequation error message")
|
---|
| 32 |
|
---|
| 33 | #process options
|
---|
| 34 | options=pairoptions(**kwargs)
|
---|
| 35 | print(options)
|
---|
| 36 | # options=deleteduplicates(options,1);
|
---|
| 37 |
|
---|
| 38 | #Find_out what kind of coupling to use
|
---|
| 39 | coupling_method=options.getfieldvalue('coupling','tiling')
|
---|
| 40 | if coupling_method is not 'tiling' or not 'penalties':
|
---|
| 41 | raise TypeError("coupling type can only be: tiling or penalties")
|
---|
| 42 |
|
---|
| 43 | #recover elements distribution
|
---|
| 44 | SIAflag = FlagElements(md,options.getfieldvalue('SIA',''))
|
---|
| 45 | SSAflag = FlagElements(md,options.getfieldvalue('SSA',''))
|
---|
| 46 | HOflag = FlagElements(md,options.getfieldvalue('HO',''))
|
---|
| 47 | L1L2flag = FlagElements(md,options.getfieldvalue('L1L2',''))
|
---|
| 48 | FSflag = FlagElements(md,options.getfieldvalue('FS',''))
|
---|
| 49 | filltype = options.getfieldvalue('fill','none')
|
---|
| 50 |
|
---|
| 51 | #Flag the elements that have not been flagged as filltype
|
---|
| 52 | if filltype is 'SIA':
|
---|
| 53 | SIAflag[numpy.nonzero(numpy.logical_not(p.logical_or_n(SSAflag,HOflag)))]=True
|
---|
| 54 | elif filltype is 'SSA':
|
---|
| 55 | SSAflag[numpy.nonzero(numpy.logical_not(p.logical_or_n(SIAflag,HOflag,FSflag)))]=True
|
---|
| 56 | elif filltype is 'HO':
|
---|
| 57 | HOflag[numpy.nonzero(numpy.logical_not(p.logical_or_n(SIAflag,SSAflag,FSflag)))]=True
|
---|
| 58 |
|
---|
| 59 | #check that each element has at least one flag
|
---|
| 60 | if not any(SIAflag+SSAflag+L1L2flag+HOflag+FSflag):
|
---|
| 61 | raise TypeError("elements type not assigned, supported models are 'SIA','SSA','HO' and 'FS'")
|
---|
| 62 |
|
---|
| 63 | #check that each element has only one flag
|
---|
| 64 | if any(SIAflag+SSAflag+L1L2flag+HOflag+FSflag>1):
|
---|
| 65 | print("setflowequation warning message: some elements have several types, higher order type is used for them")
|
---|
| 66 | SIAflag[numpy.nonzero(numpy.logical_and(SIAflag,SSAflag))]=False
|
---|
| 67 | SIAflag[numpy.nonzero(numpy.logical_and(SIAflag,HOflag))]=False
|
---|
| 68 | SSAflag[numpy.nonzero(numpy.logical_and(SSAflag,HOflag))]=False
|
---|
| 69 |
|
---|
| 70 | #FS can only be used alone for now:
|
---|
| 71 | if any(FSflag) and any(SIAflag):
|
---|
| 72 | raise TypeError("FS cannot be used with any other model for now, put FS everywhere")
|
---|
| 73 |
|
---|
| 74 | #Initialize node fields
|
---|
| 75 | nodeonSIA=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
| 76 | nodeonSIA[md.mesh.elements[numpy.nonzero(SIAflag),:]-1]=True
|
---|
| 77 | nodeonSSA=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
| 78 | nodeonSSA[md.mesh.elements[numpy.nonzero(SSAflag),:]-1]=True
|
---|
| 79 | nodeonL1L2=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
| 80 | nodeonL1L2[md.mesh.elements[numpy.nonzero(L1L2flag),:]-1]=True
|
---|
| 81 | nodeonHO=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
| 82 | nodeonHO[md.mesh.elements[numpy.nonzero(HOflag),:]-1]=True
|
---|
| 83 | nodeonFS=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
| 84 | noneflag=numpy.zeros(md.mesh.numberofelements,bool)
|
---|
| 85 |
|
---|
| 86 | #First modify FSflag to get rid of elements contrained everywhere (spc + border with HO or SSA)
|
---|
| 87 | if any(FSflag):
|
---|
| 88 | # fullspcnodes=double((~isnan(md.stressbalance.spcvx)+~isnan(md.stressbalance.spcvy)+~isnan(md.stressbalance.spcvz))==3 | (nodeonHO & nodeonFS)); %find all the nodes on the boundary of the domain without icefront
|
---|
| 89 | fullspcnodes=numpy.logical_or(numpy.logical_not(numpy.isnan(md.stressbalance.spcvx)).astype(int)+ \
|
---|
| 90 | numpy.logical_not(numpy.isnan(md.stressbalance.spcvy)).astype(int)+ \
|
---|
| 91 | numpy.logical_not(numpy.isnan(md.stressbalance.spcvz)).astype(int)==3, \
|
---|
| 92 | numpy.logical_and(nodeonHO,nodeonFS)).astype(int) #find all the nodes on the boundary of the domain without icefront
|
---|
| 93 | # fullspcelems=double(sum(fullspcnodes(md.mesh.elements),2)==6); %find all the nodes on the boundary of the domain without icefront
|
---|
| 94 | fullspcelems=(numpy.sum(fullspcnodes[md.mesh.elements-1],axis=1)==6).astype(int) #find all the nodes on the boundary of the domain without icefront
|
---|
| 95 | FSflag[numpy.nonzero(fullspcelems.reshape(-1))]=False
|
---|
| 96 | nodeonFS[md.mesh.elements[numpy.nonzero(FSflag),:]-1]=True
|
---|
| 97 |
|
---|
| 98 | #Then complete with NoneApproximation or the other model used if there is no FS
|
---|
| 99 | if any(FSflag):
|
---|
| 100 | if any(HOflag): #fill with HO
|
---|
| 101 | HOflag[numpy.logical_not(FSflag)]=True
|
---|
| 102 | nodeonHO[md.mesh.elements[numpy.nonzero(HOflag),:]-1]=True
|
---|
| 103 | elif any(SSAflag): #fill with SSA
|
---|
| 104 | SSAflag[numpy.logical_not(FSflag)]=True
|
---|
| 105 | nodeonSSA[md.mesh.elements[numpy.nonzero(SSAflag),:]-1]=True
|
---|
| 106 | else: #fill with none
|
---|
| 107 | noneflag[numpy.nonzero(numpy.logical_not(FSflag))]=True
|
---|
| 108 |
|
---|
| 109 | #Now take care of the coupling between SSA and HO
|
---|
| 110 | md.stressbalance.vertex_pairing=numpy.array([])
|
---|
| 111 | nodeonSSAHO=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
| 112 | nodeonHOFS=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
| 113 | nodeonSSAFS=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
| 114 | SSAHOflag=numpy.zeros(md.mesh.numberofelements,bool)
|
---|
| 115 | SSAFSflag=numpy.zeros(md.mesh.numberofelements,bool)
|
---|
| 116 | HOFSflag=numpy.zeros(md.mesh.numberofelements,bool)
|
---|
| 117 | if coupling_method is 'penalties':
|
---|
| 118 | #Create the border nodes between HO and SSA and extrude them
|
---|
| 119 | numnodes2d=md.mesh.numberofvertices2d
|
---|
| 120 | numlayers=md.mesh.numberoflayers
|
---|
| 121 | bordernodes2d=numpy.nonzero(numpy.logical_and(nodeonHO[0:numnodes2d],nodeonSSA[0:numnodes2d]))[0]+1 #Nodes connected to two different types of elements
|
---|
| 122 |
|
---|
| 123 | #initialize and fill in penalties structure
|
---|
| 124 | if numpy.all(numpy.logical_not(numpy.isnan(bordernodes2d))):
|
---|
| 125 | penalties=numpy.zeros((0,2))
|
---|
| 126 | for i in range(1,numlayers):
|
---|
| 127 | penalties=numpy.vstack((penalties,numpy.hstack((bordernodes2d.reshape(-1,1),bordernodes2d.reshape(-1,1)+md.mesh.numberofvertices2d*(i)))))
|
---|
| 128 | md.stressbalance.vertex_pairing=penalties
|
---|
| 129 |
|
---|
| 130 | elif coupling_method is 'tiling':
|
---|
| 131 | if any(SSAflag) and any(HOflag): #coupling SSA HO
|
---|
| 132 | #Find node at the border
|
---|
| 133 | nodeonSSAHO[numpy.nonzero(numpy.logical_and(nodeonSSA,nodeonHO))]=True
|
---|
| 134 | #SSA elements in contact with this layer become SSAHO elements
|
---|
| 135 | matrixelements=m.ismember(md.mesh.elements-1,numpy.nonzero(nodeonSSAHO)[0])
|
---|
| 136 | commonelements=numpy.sum(matrixelements,axis=1)!=0
|
---|
| 137 | commonelements[numpy.nonzero(HOflag)]=False #only one layer: the elements previously in SSA
|
---|
| 138 | SSAflag[numpy.nonzero(commonelements)]=False #these elements are now SSAHOelements
|
---|
| 139 | SSAHOflag[numpy.nonzero(commonelements)]=True
|
---|
| 140 | nodeonSSA[:]=False
|
---|
| 141 | nodeonSSA[md.mesh.elements[numpy.nonzero(SSAflag),:]-1]=True
|
---|
| 142 |
|
---|
| 143 | #rule out elements that don't touch the 2 boundaries
|
---|
| 144 | pos=numpy.nonzero(SSAHOflag)[0]
|
---|
| 145 | elist=numpy.zeros(numpy.size(pos),dtype=int)
|
---|
| 146 | elist = elist + numpy.sum(nodeonSSA[md.mesh.elements[pos,:]-1],axis=1).astype(bool)
|
---|
| 147 | elist = elist - numpy.sum(nodeonHO[md.mesh.elements[pos,:]-1] ,axis=1).astype(bool)
|
---|
| 148 | pos1=numpy.nonzero(elist==1)[0]
|
---|
| 149 | SSAflag[pos[pos1]]=True
|
---|
| 150 | SSAHOflag[pos[pos1]]=False
|
---|
| 151 | pos2=numpy.nonzero(elist==-1)[0]
|
---|
| 152 | HOflag[pos[pos2]]=True
|
---|
| 153 | SSAHOflag[pos[pos2]]=False
|
---|
| 154 |
|
---|
| 155 | #Recompute nodes associated to these elements
|
---|
| 156 | nodeonSSA[:]=False
|
---|
| 157 | nodeonSSA[md.mesh.elements[numpy.nonzero(SSAflag),:]-1]=True
|
---|
| 158 | nodeonHO[:]=False
|
---|
| 159 | nodeonHO[md.mesh.elements[numpy.nonzero(HOflag),:]-1]=True
|
---|
| 160 | nodeonSSAHO[:]=False
|
---|
| 161 | nodeonSSAHO[md.mesh.elements[numpy.nonzero(SSAHOflag),:]-1]=True
|
---|
| 162 |
|
---|
| 163 | elif any(HOflag) and any(FSflag): #coupling HO FS
|
---|
| 164 | #Find node at the border
|
---|
| 165 | nodeonHOFS[numpy.nonzero(numpy.logical_and(nodeonHO,nodeonFS))]=True
|
---|
| 166 | #FS elements in contact with this layer become HOFS elements
|
---|
| 167 | matrixelements=m.ismember(md.mesh.elements-1,numpy.nonzero(nodeonHOFS)[0])
|
---|
| 168 | commonelements=numpy.sum(matrixelements,axis=1)!=0
|
---|
| 169 | commonelements[numpy.nonzero(HOflag)]=False #only one layer: the elements previously in SSA
|
---|
| 170 | FSflag[numpy.nonzero(commonelements)]=False #these elements are now SSAHOelements
|
---|
| 171 | HOFSflag[numpy.nonzero(commonelements)]=True
|
---|
| 172 | nodeonFS=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
| 173 | nodeonFS[md.mesh.elements[numpy.nonzero(FSflag),:]-1]=True
|
---|
| 174 |
|
---|
| 175 | #rule out elements that don't touch the 2 boundaries
|
---|
| 176 | pos=numpy.nonzero(HOFSflag)[0]
|
---|
| 177 | elist=numpy.zeros(numpy.size(pos),dtype=int)
|
---|
| 178 | elist = elist + numpy.sum(nodeonFS[md.mesh.elements[pos,:]-1],axis=1).astype(bool)
|
---|
| 179 | elist = elist - numpy.sum(nodeonHO[md.mesh.elements[pos,:]-1],axis=1).astype(bool)
|
---|
| 180 | pos1=numpy.nonzero(elist==1)[0]
|
---|
| 181 | FSflag[pos[pos1]]=True
|
---|
| 182 | HOFSflag[pos[pos1]]=False
|
---|
| 183 | pos2=numpy.nonzero(elist==-1)[0]
|
---|
| 184 | HOflag[pos[pos2]]=True
|
---|
| 185 | HOFSflag[pos[pos2]]=False
|
---|
| 186 |
|
---|
| 187 | #Recompute nodes associated to these elements
|
---|
| 188 | nodeonFS[:]=False
|
---|
| 189 | nodeonFS[md.mesh.elements[numpy.nonzero(FSflag),:]-1]=True
|
---|
| 190 | nodeonHO[:]=False
|
---|
| 191 | nodeonHO[md.mesh.elements[numpy.nonzero(HOflag),:]-1]=True
|
---|
| 192 | nodeonHOFS[:]=False
|
---|
| 193 | nodeonHOFS[md.mesh.elements[numpy.nonzero(HOFSflag),:]-1]=True
|
---|
| 194 |
|
---|
| 195 | elif any(FSflag) and any(SSAflag):
|
---|
| 196 | #Find node at the border
|
---|
| 197 | nodeonSSAFS[numpy.nonzero(numpy.logical_and(nodeonSSA,nodeonFS))]=True
|
---|
| 198 | #FS elements in contact with this layer become SSAFS elements
|
---|
| 199 | matrixelements=m.ismember(md.mesh.elements-1,numpy.nonzero(nodeonSSAFS)[0])
|
---|
| 200 | commonelements=numpy.sum(matrixelements,axis=1)!=0
|
---|
| 201 | commonelements[numpy.nonzero(SSAflag)]=False #only one layer: the elements previously in SSA
|
---|
| 202 | FSflag[numpy.nonzero(commonelements)]=False #these elements are now SSASSAelements
|
---|
| 203 | SSAFSflag[numpy.nonzero(commonelements)]=True
|
---|
| 204 | nodeonFS=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
| 205 | nodeonFS[md.mesh.elements[numpy.nonzero(FSflag),:]-1]=True
|
---|
| 206 |
|
---|
| 207 | #rule out elements that don't touch the 2 boundaries
|
---|
| 208 | pos=numpy.nonzero(SSAFSflag)[0]
|
---|
| 209 | elist=numpy.zeros(numpy.size(pos),dtype=int)
|
---|
| 210 | elist = elist + numpy.sum(nodeonSSA[md.mesh.elements[pos,:]-1],axis=1).astype(bool)
|
---|
| 211 | elist = elist - numpy.sum(nodeonFS[md.mesh.elements[pos,:]-1] ,axis=1).astype(bool)
|
---|
| 212 | pos1=numpy.nonzero(elist==1)[0]
|
---|
| 213 | SSAflag[pos[pos1]]=True
|
---|
| 214 | SSAFSflag[pos[pos1]]=False
|
---|
| 215 | pos2=numpy.nonzero(elist==-1)[0]
|
---|
| 216 | FSflag[pos[pos2]]=True
|
---|
| 217 | SSAFSflag[pos[pos2]]=False
|
---|
| 218 |
|
---|
| 219 | #Recompute nodes associated to these elements
|
---|
| 220 | nodeonSSA[:]=False
|
---|
| 221 | nodeonSSA[md.mesh.elements[numpy.nonzero(SSAflag),:]-1]=True
|
---|
| 222 | nodeonFS[:]=False
|
---|
| 223 | nodeonFS[md.mesh.elements[numpy.nonzero(FSflag),:]-1]=True
|
---|
| 224 | nodeonSSAFS[:]=False
|
---|
| 225 | nodeonSSAFS[md.mesh.elements[numpy.nonzero(SSAFSflag),:]-1]=True
|
---|
| 226 |
|
---|
| 227 | elif any(FSflag) and any(SIAflag):
|
---|
| 228 | raise TypeError("type of coupling not supported yet")
|
---|
| 229 |
|
---|
| 230 | #Create SSAHOApproximation where needed
|
---|
| 231 | md.flowequation.element_equation=numpy.zeros(md.mesh.numberofelements,int)
|
---|
| 232 | md.flowequation.element_equation[numpy.nonzero(noneflag)]=0
|
---|
| 233 | md.flowequation.element_equation[numpy.nonzero(SIAflag)]=1
|
---|
| 234 | md.flowequation.element_equation[numpy.nonzero(SSAflag)]=2
|
---|
| 235 | md.flowequation.element_equation[numpy.nonzero(L1L2flag)]=3
|
---|
| 236 | md.flowequation.element_equation[numpy.nonzero(HOflag)]=4
|
---|
| 237 | md.flowequation.element_equation[numpy.nonzero(FSflag)]=5
|
---|
| 238 | md.flowequation.element_equation[numpy.nonzero(SSAHOflag)]=6
|
---|
| 239 | md.flowequation.element_equation[numpy.nonzero(SSAFSflag)]=7
|
---|
| 240 | md.flowequation.element_equation[numpy.nonzero(HOFSflag)]=8
|
---|
| 241 |
|
---|
| 242 | #border
|
---|
| 243 | md.flowequation.borderHO=nodeonHO
|
---|
| 244 | md.flowequation.borderSSA=nodeonSSA
|
---|
| 245 | md.flowequation.borderFS=nodeonFS
|
---|
| 246 |
|
---|
| 247 | #Create vertices_type
|
---|
| 248 | md.flowequation.vertex_equation=numpy.zeros(md.mesh.numberofvertices,int)
|
---|
| 249 | pos=numpy.nonzero(nodeonSSA)
|
---|
| 250 | md.flowequation.vertex_equation[pos]=2
|
---|
| 251 | pos=numpy.nonzero(nodeonL1L2)
|
---|
| 252 | md.flowequation.vertex_equation[pos]=3
|
---|
| 253 | pos=numpy.nonzero(nodeonHO)
|
---|
| 254 | md.flowequation.vertex_equation[pos]=4
|
---|
| 255 | pos=numpy.nonzero(nodeonFS)
|
---|
| 256 | md.flowequation.vertex_equation[pos]=5
|
---|
| 257 | #DO SIA LAST! Otherwise spcs might not be set up correctly (SIA should have priority)
|
---|
| 258 | pos=numpy.nonzero(nodeonSIA)
|
---|
| 259 | md.flowequation.vertex_equation[pos]=1
|
---|
| 260 | if any(FSflag):
|
---|
| 261 | pos=numpy.nonzero(numpy.logical_not(nodeonFS))
|
---|
| 262 | if not (any(HOflag) or any(SSAflag)):
|
---|
| 263 | md.flowequation.vertex_equation[pos]=0
|
---|
| 264 | pos=numpy.nonzero(nodeonSSAHO)
|
---|
| 265 | md.flowequation.vertex_equation[pos]=6
|
---|
| 266 | pos=numpy.nonzero(nodeonHOFS)
|
---|
| 267 | md.flowequation.vertex_equation[pos]=7
|
---|
| 268 | pos=numpy.nonzero(nodeonSSAFS)
|
---|
| 269 | md.flowequation.vertex_equation[pos]=8
|
---|
| 270 |
|
---|
| 271 | #figure out solution types
|
---|
| 272 | md.flowequation.isSIA=any(md.flowequation.element_equation==1)
|
---|
| 273 | md.flowequation.isSSA=any(md.flowequation.element_equation==2)
|
---|
| 274 | md.flowequation.isL1L2=any(md.flowequation.element_equation==3)
|
---|
| 275 | md.flowequation.isHO=any(md.flowequation.element_equation==4)
|
---|
| 276 | md.flowequation.isFS=any(md.flowequation.element_equation==5)
|
---|
| 277 |
|
---|
| 278 | return md
|
---|
| 279 |
|
---|
| 280 | #Check that tiling can work:
|
---|
| 281 | if any(md.flowequation.borderSSA) and any(md.flowequation.borderHO) and any(md.flowequation.borderHO + md.flowequation.borderSSA !=1):
|
---|
| 282 | raise TypeError("error coupling domain too irregular")
|
---|
| 283 | if any(md.flowequation.borderSSA) and any(md.flowequation.borderFS) and any(md.flowequation.borderFS + md.flowequation.borderSSA !=1):
|
---|
| 284 | raise TypeError("error coupling domain too irregular")
|
---|
| 285 | if any(md.flowequation.borderFS) and any(md.flowequation.borderHO) and any(md.flowequation.borderHO + md.flowequation.borderFS !=1):
|
---|
| 286 | raise TypeError("error coupling domain too irregular")
|
---|
| 287 |
|
---|
| 288 | return md
|
---|
| 289 |
|
---|