1 | import numpy
|
---|
2 | from model import model
|
---|
3 | from pairoptions import pairoptions
|
---|
4 | import MatlabFuncs as m
|
---|
5 | import PythonFuncs as p
|
---|
6 | from FlagElements import FlagElements
|
---|
7 |
|
---|
8 | def setflowequation(md,**kwargs):
|
---|
9 | """
|
---|
10 | SETFLOWEQUATION - associate a solution type to each element
|
---|
11 |
|
---|
12 | This routine works like plotmodel: it works with an even number of inputs
|
---|
13 | 'SIA','SSA','HO','L1L2','FS' and 'fill' are the possible options
|
---|
14 | that must be followed by the corresponding exp file or flags list
|
---|
15 | It can either be a domain file (argus type, .exp extension), or an array of element flags.
|
---|
16 | If user wants every element outside the domain to be
|
---|
17 | setflowequationd, add '~' to the name of the domain file (ex: '~HO.exp');
|
---|
18 | an empty string '' will be considered as an empty domain
|
---|
19 | a string 'all' will be considered as the entire domain
|
---|
20 | You can specify the type of coupling, 'penalties' or 'tiling', to use with the input 'coupling'
|
---|
21 |
|
---|
22 | Usage:
|
---|
23 | md=setflowequation(md,varargin)
|
---|
24 |
|
---|
25 | Example:
|
---|
26 | md=setflowequation(md,'HO','HO.exp',fill','SIA','coupling','tiling');
|
---|
27 | """
|
---|
28 |
|
---|
29 | #some checks on list of arguments
|
---|
30 | if not isinstance(md,model) or not len(kwargs):
|
---|
31 | raise TypeError("setflowequation error message")
|
---|
32 |
|
---|
33 | #process options
|
---|
34 | options=pairoptions(**kwargs)
|
---|
35 | print(options)
|
---|
36 | # options=deleteduplicates(options,1);
|
---|
37 |
|
---|
38 | #Find_out what kind of coupling to use
|
---|
39 | coupling_method=options.getfieldvalue('coupling','tiling')
|
---|
40 | if coupling_method is not 'tiling' or not 'penalties':
|
---|
41 | raise TypeError("coupling type can only be: tiling or penalties")
|
---|
42 |
|
---|
43 | #recover elements distribution
|
---|
44 | SIAflag = FlagElements(md,options.getfieldvalue('SIA',''))
|
---|
45 | SSAflag = FlagElements(md,options.getfieldvalue('SSA',''))
|
---|
46 | HOflag = FlagElements(md,options.getfieldvalue('HO',''))
|
---|
47 | L1L2flag = FlagElements(md,options.getfieldvalue('L1L2',''))
|
---|
48 | FSflag = FlagElements(md,options.getfieldvalue('FS',''))
|
---|
49 | filltype = options.getfieldvalue('fill','none')
|
---|
50 |
|
---|
51 | #Flag the elements that have not been flagged as filltype
|
---|
52 | if filltype is 'SIA':
|
---|
53 | SIAflag[numpy.nonzero(numpy.logical_not(p.logical_or_n(SSAflag,HOflag)))]=True
|
---|
54 | elif filltype is 'SSA':
|
---|
55 | SSAflag[numpy.nonzero(numpy.logical_not(p.logical_or_n(SIAflag,HOflag,FSflag)))]=True
|
---|
56 | elif filltype is 'HO':
|
---|
57 | HOflag[numpy.nonzero(numpy.logical_not(p.logical_or_n(SIAflag,SSAflag,FSflag)))]=True
|
---|
58 |
|
---|
59 | #check that each element has at least one flag
|
---|
60 | if not any(SIAflag+SSAflag+L1L2flag+HOflag+FSflag):
|
---|
61 | raise TypeError("elements type not assigned, supported models are 'SIA','SSA','HO' and 'FS'")
|
---|
62 |
|
---|
63 | #check that each element has only one flag
|
---|
64 | if any(SIAflag+SSAflag+L1L2flag+HOflag+FSflag>1):
|
---|
65 | print("setflowequation warning message: some elements have several types, higher order type is used for them")
|
---|
66 | SIAflag[numpy.nonzero(numpy.logical_and(SIAflag,SSAflag))]=False
|
---|
67 | SIAflag[numpy.nonzero(numpy.logical_and(SIAflag,HOflag))]=False
|
---|
68 | SSAflag[numpy.nonzero(numpy.logical_and(SSAflag,HOflag))]=False
|
---|
69 |
|
---|
70 | #FS can only be used alone for now:
|
---|
71 | if any(FSflag) and any(SIAflag):
|
---|
72 | raise TypeError("FS cannot be used with any other model for now, put FS everywhere")
|
---|
73 |
|
---|
74 | #Initialize node fields
|
---|
75 | nodeonSIA=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
76 | nodeonSIA[md.mesh.elements[numpy.nonzero(SIAflag),:]-1]=True
|
---|
77 | nodeonSSA=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
78 | nodeonSSA[md.mesh.elements[numpy.nonzero(SSAflag),:]-1]=True
|
---|
79 | nodeonL1L2=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
80 | nodeonL1L2[md.mesh.elements[numpy.nonzero(L1L2flag),:]-1]=True
|
---|
81 | nodeonHO=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
82 | nodeonHO[md.mesh.elements[numpy.nonzero(HOflag),:]-1]=True
|
---|
83 | nodeonFS=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
84 | noneflag=numpy.zeros(md.mesh.numberofelements,bool)
|
---|
85 |
|
---|
86 | #First modify FSflag to get rid of elements contrained everywhere (spc + border with HO or SSA)
|
---|
87 | if any(FSflag):
|
---|
88 | # fullspcnodes=double((~isnan(md.stressbalance.spcvx)+~isnan(md.stressbalance.spcvy)+~isnan(md.stressbalance.spcvz))==3 | (nodeonHO & nodeonFS)); %find all the nodes on the boundary of the domain without icefront
|
---|
89 | fullspcnodes=numpy.logical_or(numpy.logical_not(numpy.isnan(md.stressbalance.spcvx)).astype(int)+ \
|
---|
90 | numpy.logical_not(numpy.isnan(md.stressbalance.spcvy)).astype(int)+ \
|
---|
91 | numpy.logical_not(numpy.isnan(md.stressbalance.spcvz)).astype(int)==3, \
|
---|
92 | numpy.logical_and(nodeonHO,nodeonFS)).astype(int) #find all the nodes on the boundary of the domain without icefront
|
---|
93 | # fullspcelems=double(sum(fullspcnodes(md.mesh.elements),2)==6); %find all the nodes on the boundary of the domain without icefront
|
---|
94 | fullspcelems=(numpy.sum(fullspcnodes[md.mesh.elements-1],axis=1)==6).astype(int) #find all the nodes on the boundary of the domain without icefront
|
---|
95 | FSflag[numpy.nonzero(fullspcelems.reshape(-1))]=False
|
---|
96 | nodeonFS[md.mesh.elements[numpy.nonzero(FSflag),:]-1]=True
|
---|
97 |
|
---|
98 | #Then complete with NoneApproximation or the other model used if there is no FS
|
---|
99 | if any(FSflag):
|
---|
100 | if any(HOflag): #fill with HO
|
---|
101 | HOflag[numpy.logical_not(FSflag)]=True
|
---|
102 | nodeonHO[md.mesh.elements[numpy.nonzero(HOflag),:]-1]=True
|
---|
103 | elif any(SSAflag): #fill with SSA
|
---|
104 | SSAflag[numpy.logical_not(FSflag)]=True
|
---|
105 | nodeonSSA[md.mesh.elements[numpy.nonzero(SSAflag),:]-1]=True
|
---|
106 | else: #fill with none
|
---|
107 | noneflag[numpy.nonzero(numpy.logical_not(FSflag))]=True
|
---|
108 |
|
---|
109 | #Now take care of the coupling between SSA and HO
|
---|
110 | md.stressbalance.vertex_pairing=numpy.array([])
|
---|
111 | nodeonSSAHO=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
112 | nodeonHOFS=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
113 | nodeonSSAFS=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
114 | SSAHOflag=numpy.zeros(md.mesh.numberofelements,bool)
|
---|
115 | SSAFSflag=numpy.zeros(md.mesh.numberofelements,bool)
|
---|
116 | HOFSflag=numpy.zeros(md.mesh.numberofelements,bool)
|
---|
117 | if coupling_method is 'penalties':
|
---|
118 | #Create the border nodes between HO and SSA and extrude them
|
---|
119 | numnodes2d=md.mesh.numberofvertices2d
|
---|
120 | numlayers=md.mesh.numberoflayers
|
---|
121 | bordernodes2d=numpy.nonzero(numpy.logical_and(nodeonHO[0:numnodes2d],nodeonSSA[0:numnodes2d]))[0]+1 #Nodes connected to two different types of elements
|
---|
122 |
|
---|
123 | #initialize and fill in penalties structure
|
---|
124 | if numpy.all(numpy.logical_not(numpy.isnan(bordernodes2d))):
|
---|
125 | penalties=numpy.zeros((0,2))
|
---|
126 | for i in range(1,numlayers):
|
---|
127 | penalties=numpy.vstack((penalties,numpy.hstack((bordernodes2d.reshape(-1,1),bordernodes2d.reshape(-1,1)+md.mesh.numberofvertices2d*(i)))))
|
---|
128 | md.stressbalance.vertex_pairing=penalties
|
---|
129 |
|
---|
130 | elif coupling_method is 'tiling':
|
---|
131 | if any(SSAflag) and any(HOflag): #coupling SSA HO
|
---|
132 | #Find node at the border
|
---|
133 | nodeonSSAHO[numpy.nonzero(numpy.logical_and(nodeonSSA,nodeonHO))]=True
|
---|
134 | #SSA elements in contact with this layer become SSAHO elements
|
---|
135 | matrixelements=m.ismember(md.mesh.elements-1,numpy.nonzero(nodeonSSAHO)[0])
|
---|
136 | commonelements=numpy.sum(matrixelements,axis=1)!=0
|
---|
137 | commonelements[numpy.nonzero(HOflag)]=False #only one layer: the elements previously in SSA
|
---|
138 | SSAflag[numpy.nonzero(commonelements)]=False #these elements are now SSAHOelements
|
---|
139 | SSAHOflag[numpy.nonzero(commonelements)]=True
|
---|
140 | nodeonSSA[:]=False
|
---|
141 | nodeonSSA[md.mesh.elements[numpy.nonzero(SSAflag),:]-1]=True
|
---|
142 |
|
---|
143 | #rule out elements that don't touch the 2 boundaries
|
---|
144 | pos=numpy.nonzero(SSAHOflag)[0]
|
---|
145 | elist=numpy.zeros(numpy.size(pos),dtype=int)
|
---|
146 | elist = elist + numpy.sum(nodeonSSA[md.mesh.elements[pos,:]-1],axis=1).astype(bool)
|
---|
147 | elist = elist - numpy.sum(nodeonHO[md.mesh.elements[pos,:]-1] ,axis=1).astype(bool)
|
---|
148 | pos1=numpy.nonzero(elist==1)[0]
|
---|
149 | SSAflag[pos[pos1]]=True
|
---|
150 | SSAHOflag[pos[pos1]]=False
|
---|
151 | pos2=numpy.nonzero(elist==-1)[0]
|
---|
152 | HOflag[pos[pos2]]=True
|
---|
153 | SSAHOflag[pos[pos2]]=False
|
---|
154 |
|
---|
155 | #Recompute nodes associated to these elements
|
---|
156 | nodeonSSA[:]=False
|
---|
157 | nodeonSSA[md.mesh.elements[numpy.nonzero(SSAflag),:]-1]=True
|
---|
158 | nodeonHO[:]=False
|
---|
159 | nodeonHO[md.mesh.elements[numpy.nonzero(HOflag),:]-1]=True
|
---|
160 | nodeonSSAHO[:]=False
|
---|
161 | nodeonSSAHO[md.mesh.elements[numpy.nonzero(SSAHOflag),:]-1]=True
|
---|
162 |
|
---|
163 | elif any(HOflag) and any(FSflag): #coupling HO FS
|
---|
164 | #Find node at the border
|
---|
165 | nodeonHOFS[numpy.nonzero(numpy.logical_and(nodeonHO,nodeonFS))]=True
|
---|
166 | #FS elements in contact with this layer become HOFS elements
|
---|
167 | matrixelements=m.ismember(md.mesh.elements-1,numpy.nonzero(nodeonHOFS)[0])
|
---|
168 | commonelements=numpy.sum(matrixelements,axis=1)!=0
|
---|
169 | commonelements[numpy.nonzero(HOflag)]=False #only one layer: the elements previously in SSA
|
---|
170 | FSflag[numpy.nonzero(commonelements)]=False #these elements are now SSAHOelements
|
---|
171 | HOFSflag[numpy.nonzero(commonelements)]=True
|
---|
172 | nodeonFS=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
173 | nodeonFS[md.mesh.elements[numpy.nonzero(FSflag),:]-1]=True
|
---|
174 |
|
---|
175 | #rule out elements that don't touch the 2 boundaries
|
---|
176 | pos=numpy.nonzero(HOFSflag)[0]
|
---|
177 | elist=numpy.zeros(numpy.size(pos),dtype=int)
|
---|
178 | elist = elist + numpy.sum(nodeonFS[md.mesh.elements[pos,:]-1],axis=1).astype(bool)
|
---|
179 | elist = elist - numpy.sum(nodeonHO[md.mesh.elements[pos,:]-1],axis=1).astype(bool)
|
---|
180 | pos1=numpy.nonzero(elist==1)[0]
|
---|
181 | FSflag[pos[pos1]]=True
|
---|
182 | HOFSflag[pos[pos1]]=False
|
---|
183 | pos2=numpy.nonzero(elist==-1)[0]
|
---|
184 | HOflag[pos[pos2]]=True
|
---|
185 | HOFSflag[pos[pos2]]=False
|
---|
186 |
|
---|
187 | #Recompute nodes associated to these elements
|
---|
188 | nodeonFS[:]=False
|
---|
189 | nodeonFS[md.mesh.elements[numpy.nonzero(FSflag),:]-1]=True
|
---|
190 | nodeonHO[:]=False
|
---|
191 | nodeonHO[md.mesh.elements[numpy.nonzero(HOflag),:]-1]=True
|
---|
192 | nodeonHOFS[:]=False
|
---|
193 | nodeonHOFS[md.mesh.elements[numpy.nonzero(HOFSflag),:]-1]=True
|
---|
194 |
|
---|
195 | elif any(FSflag) and any(SSAflag):
|
---|
196 | #Find node at the border
|
---|
197 | nodeonSSAFS[numpy.nonzero(numpy.logical_and(nodeonSSA,nodeonFS))]=True
|
---|
198 | #FS elements in contact with this layer become SSAFS elements
|
---|
199 | matrixelements=m.ismember(md.mesh.elements-1,numpy.nonzero(nodeonSSAFS)[0])
|
---|
200 | commonelements=numpy.sum(matrixelements,axis=1)!=0
|
---|
201 | commonelements[numpy.nonzero(SSAflag)]=False #only one layer: the elements previously in SSA
|
---|
202 | FSflag[numpy.nonzero(commonelements)]=False #these elements are now SSASSAelements
|
---|
203 | SSAFSflag[numpy.nonzero(commonelements)]=True
|
---|
204 | nodeonFS=numpy.zeros(md.mesh.numberofvertices,bool)
|
---|
205 | nodeonFS[md.mesh.elements[numpy.nonzero(FSflag),:]-1]=True
|
---|
206 |
|
---|
207 | #rule out elements that don't touch the 2 boundaries
|
---|
208 | pos=numpy.nonzero(SSAFSflag)[0]
|
---|
209 | elist=numpy.zeros(numpy.size(pos),dtype=int)
|
---|
210 | elist = elist + numpy.sum(nodeonSSA[md.mesh.elements[pos,:]-1],axis=1).astype(bool)
|
---|
211 | elist = elist - numpy.sum(nodeonFS[md.mesh.elements[pos,:]-1] ,axis=1).astype(bool)
|
---|
212 | pos1=numpy.nonzero(elist==1)[0]
|
---|
213 | SSAflag[pos[pos1]]=True
|
---|
214 | SSAFSflag[pos[pos1]]=False
|
---|
215 | pos2=numpy.nonzero(elist==-1)[0]
|
---|
216 | FSflag[pos[pos2]]=True
|
---|
217 | SSAFSflag[pos[pos2]]=False
|
---|
218 |
|
---|
219 | #Recompute nodes associated to these elements
|
---|
220 | nodeonSSA[:]=False
|
---|
221 | nodeonSSA[md.mesh.elements[numpy.nonzero(SSAflag),:]-1]=True
|
---|
222 | nodeonFS[:]=False
|
---|
223 | nodeonFS[md.mesh.elements[numpy.nonzero(FSflag),:]-1]=True
|
---|
224 | nodeonSSAFS[:]=False
|
---|
225 | nodeonSSAFS[md.mesh.elements[numpy.nonzero(SSAFSflag),:]-1]=True
|
---|
226 |
|
---|
227 | elif any(FSflag) and any(SIAflag):
|
---|
228 | raise TypeError("type of coupling not supported yet")
|
---|
229 |
|
---|
230 | #Create SSAHOApproximation where needed
|
---|
231 | md.flowequation.element_equation=numpy.zeros(md.mesh.numberofelements,int)
|
---|
232 | md.flowequation.element_equation[numpy.nonzero(noneflag)]=0
|
---|
233 | md.flowequation.element_equation[numpy.nonzero(SIAflag)]=1
|
---|
234 | md.flowequation.element_equation[numpy.nonzero(SSAflag)]=2
|
---|
235 | md.flowequation.element_equation[numpy.nonzero(L1L2flag)]=3
|
---|
236 | md.flowequation.element_equation[numpy.nonzero(HOflag)]=4
|
---|
237 | md.flowequation.element_equation[numpy.nonzero(FSflag)]=5
|
---|
238 | md.flowequation.element_equation[numpy.nonzero(SSAHOflag)]=6
|
---|
239 | md.flowequation.element_equation[numpy.nonzero(SSAFSflag)]=7
|
---|
240 | md.flowequation.element_equation[numpy.nonzero(HOFSflag)]=8
|
---|
241 |
|
---|
242 | #border
|
---|
243 | md.flowequation.borderHO=nodeonHO
|
---|
244 | md.flowequation.borderSSA=nodeonSSA
|
---|
245 | md.flowequation.borderFS=nodeonFS
|
---|
246 |
|
---|
247 | #Create vertices_type
|
---|
248 | md.flowequation.vertex_equation=numpy.zeros(md.mesh.numberofvertices,int)
|
---|
249 | pos=numpy.nonzero(nodeonSSA)
|
---|
250 | md.flowequation.vertex_equation[pos]=2
|
---|
251 | pos=numpy.nonzero(nodeonL1L2)
|
---|
252 | md.flowequation.vertex_equation[pos]=3
|
---|
253 | pos=numpy.nonzero(nodeonHO)
|
---|
254 | md.flowequation.vertex_equation[pos]=4
|
---|
255 | pos=numpy.nonzero(nodeonFS)
|
---|
256 | md.flowequation.vertex_equation[pos]=5
|
---|
257 | #DO SIA LAST! Otherwise spcs might not be set up correctly (SIA should have priority)
|
---|
258 | pos=numpy.nonzero(nodeonSIA)
|
---|
259 | md.flowequation.vertex_equation[pos]=1
|
---|
260 | if any(FSflag):
|
---|
261 | pos=numpy.nonzero(numpy.logical_not(nodeonFS))
|
---|
262 | if not (any(HOflag) or any(SSAflag)):
|
---|
263 | md.flowequation.vertex_equation[pos]=0
|
---|
264 | pos=numpy.nonzero(nodeonSSAHO)
|
---|
265 | md.flowequation.vertex_equation[pos]=6
|
---|
266 | pos=numpy.nonzero(nodeonHOFS)
|
---|
267 | md.flowequation.vertex_equation[pos]=7
|
---|
268 | pos=numpy.nonzero(nodeonSSAFS)
|
---|
269 | md.flowequation.vertex_equation[pos]=8
|
---|
270 |
|
---|
271 | #figure out solution types
|
---|
272 | md.flowequation.isSIA=any(md.flowequation.element_equation==1)
|
---|
273 | md.flowequation.isSSA=any(md.flowequation.element_equation==2)
|
---|
274 | md.flowequation.isL1L2=any(md.flowequation.element_equation==3)
|
---|
275 | md.flowequation.isHO=any(md.flowequation.element_equation==4)
|
---|
276 | md.flowequation.isFS=any(md.flowequation.element_equation==5)
|
---|
277 |
|
---|
278 | return md
|
---|
279 |
|
---|
280 | #Check that tiling can work:
|
---|
281 | if any(md.flowequation.borderSSA) and any(md.flowequation.borderHO) and any(md.flowequation.borderHO + md.flowequation.borderSSA !=1):
|
---|
282 | raise TypeError("error coupling domain too irregular")
|
---|
283 | if any(md.flowequation.borderSSA) and any(md.flowequation.borderFS) and any(md.flowequation.borderFS + md.flowequation.borderSSA !=1):
|
---|
284 | raise TypeError("error coupling domain too irregular")
|
---|
285 | if any(md.flowequation.borderFS) and any(md.flowequation.borderHO) and any(md.flowequation.borderHO + md.flowequation.borderFS !=1):
|
---|
286 | raise TypeError("error coupling domain too irregular")
|
---|
287 |
|
---|
288 | return md
|
---|
289 |
|
---|