[834] | 1 | % set up a sampling study, like might be done in Pig.par
|
---|
| 2 |
|
---|
| 3 | %% a variety of variables
|
---|
| 4 |
|
---|
| 5 | % seems to be a Matlab bug here (on Linux, not WinXP) -- unless
|
---|
| 6 | % the class has been called, "empty" method can not be found
|
---|
| 7 | normal_uncertain;
|
---|
| 8 | continuous_design;
|
---|
| 9 | continuous_state;
|
---|
| 10 | linear_inequality_constraint;
|
---|
| 11 | linear_equality_constraint;
|
---|
| 12 | response_function;
|
---|
| 13 | objective_function;
|
---|
| 14 | least_squares_term;
|
---|
| 15 | nonlinear_inequality_constraint;
|
---|
| 16 | nonlinear_equality_constraint;
|
---|
| 17 |
|
---|
[9650] | 18 | md.qmu.variables=struct();
|
---|
| 19 | md.qmu.variables.nuv=normal_uncertain.empty();
|
---|
| 20 | md.qmu.variables.nuv(end+1)=normal_uncertain('rho_ice',917,45.85);
|
---|
| 21 | md.qmu.variables.nuv(end+1)=normal_uncertain('rho_water',1023,51.15);
|
---|
| 22 | md.qmu.variables.nuv(end+1)=normal_uncertain('heatcapacity',2009,100.45);
|
---|
| 23 | md.qmu.variables.nuv(end+1)=normal_uncertain('thermalconductivity',2.2,0.11);
|
---|
| 24 | md.qmu.variables.nuv(end+1)=normal_uncertain('gravity',9.8,0.49);
|
---|
| 25 | md.qmu.variables.nuv(end+1)=normal_uncertain('thickness',1,0.05);
|
---|
| 26 | md.qmu.variables.nuv(end+1)=normal_uncertain('drag',1,0.05);
|
---|
[834] | 27 |
|
---|
| 28 | %% a variety of responses
|
---|
| 29 |
|
---|
[9650] | 30 | md.qmu.responses=struct();
|
---|
| 31 | md.qmu.responses.rf =response_function.empty();
|
---|
| 32 | md.qmu.responses.rf (end+1)=response_function('min_vx',[],[0.0001 0.001 0.01 0.25 0.5 0.75 0.99 0.999 0.9999]);
|
---|
| 33 | md.qmu.responses.rf (end+1)=response_function('max_vx',[],[0.0001 0.001 0.01 0.25 0.5 0.75 0.99 0.999 0.9999]);
|
---|
| 34 | md.qmu.responses.rf (end+1)=response_function('max_abs_vx',[],[0.0001 0.001 0.01 0.25 0.5 0.75 0.99 0.999 0.9999]);
|
---|
| 35 | md.qmu.responses.rf (end+1)=response_function('min_vy',[],[0.0001 0.001 0.01 0.25 0.5 0.75 0.99 0.999 0.9999]);
|
---|
| 36 | md.qmu.responses.rf (end+1)=response_function('max_vy',[],[0.0001 0.001 0.01 0.25 0.5 0.75 0.99 0.999 0.9999]);
|
---|
| 37 | md.qmu.responses.rf (end+1)=response_function('max_abs_vy',[],[0.0001 0.001 0.01 0.25 0.5 0.75 0.99 0.999 0.9999]);
|
---|
| 38 | md.qmu.responses.rf (end+1)=response_function('min_vel',[],[0.0001 0.001 0.01 0.25 0.5 0.75 0.99 0.999 0.9999]);
|
---|
| 39 | md.qmu.responses.rf (end+1)=response_function('max_vel',[],[0.0001 0.001 0.01 0.25 0.5 0.75 0.99 0.999 0.9999]);
|
---|
[834] | 40 |
|
---|
| 41 | %% nond_sampling study
|
---|
| 42 |
|
---|
[9650] | 43 | md.qmu.method =dakota_method('nond_samp');
|
---|
| 44 | md.qmu.method(end)=dmeth_params_set(md.qmu.method(end),...
|
---|
[834] | 45 | 'seed',1234,...
|
---|
| 46 | 'samples',20,...
|
---|
| 47 | 'sample_type','lhs');
|
---|
| 48 |
|
---|
| 49 | %% a variety of parameters
|
---|
| 50 |
|
---|
[9650] | 51 | md.qmu.params.direct=true;
|
---|
[16137] | 52 | md.qmu.params.analysis_driver='stressbalance';
|
---|
[9650] | 53 | md.qmu.params.evaluation_concurrency=1;
|
---|
[834] | 54 |
|
---|
[9650] | 55 | md.qmu.numberofpartitions=10;
|
---|
[834] | 56 |
|
---|
| 57 | md.qmu
|
---|