1 | % set up a sampling study, like might be done in Pig.par
|
---|
2 |
|
---|
3 | %% a variety of variables
|
---|
4 |
|
---|
5 | % seems to be a Matlab bug here (on Linux, not WinXP) -- unless
|
---|
6 | % the class has been called, "empty" method can not be found
|
---|
7 | normal_uncertain;
|
---|
8 | continuous_design;
|
---|
9 | continuous_state;
|
---|
10 | linear_inequality_constraint;
|
---|
11 | linear_equality_constraint;
|
---|
12 | response_function;
|
---|
13 | objective_function;
|
---|
14 | least_squares_term;
|
---|
15 | nonlinear_inequality_constraint;
|
---|
16 | nonlinear_equality_constraint;
|
---|
17 |
|
---|
18 | md.qmu.variables=struct();
|
---|
19 | md.qmu.variables.nuv=normal_uncertain.empty();
|
---|
20 | md.qmu.variables.nuv(end+1)=normal_uncertain('rho_ice',917,45.85);
|
---|
21 | md.qmu.variables.nuv(end+1)=normal_uncertain('rho_water',1023,51.15);
|
---|
22 | md.qmu.variables.nuv(end+1)=normal_uncertain('heatcapacity',2009,100.45);
|
---|
23 | md.qmu.variables.nuv(end+1)=normal_uncertain('thermalconductivity',2.2,0.11);
|
---|
24 | md.qmu.variables.nuv(end+1)=normal_uncertain('gravity',9.8,0.49);
|
---|
25 | md.qmu.variables.nuv(end+1)=normal_uncertain('thickness',1,0.05);
|
---|
26 | md.qmu.variables.nuv(end+1)=normal_uncertain('drag',1,0.05);
|
---|
27 |
|
---|
28 | %% a variety of responses
|
---|
29 |
|
---|
30 | md.qmu.responses=struct();
|
---|
31 | md.qmu.responses.rf =response_function.empty();
|
---|
32 | md.qmu.responses.rf (end+1)=response_function('min_vx',[],[0.0001 0.001 0.01 0.25 0.5 0.75 0.99 0.999 0.9999]);
|
---|
33 | md.qmu.responses.rf (end+1)=response_function('max_vx',[],[0.0001 0.001 0.01 0.25 0.5 0.75 0.99 0.999 0.9999]);
|
---|
34 | md.qmu.responses.rf (end+1)=response_function('max_abs_vx',[],[0.0001 0.001 0.01 0.25 0.5 0.75 0.99 0.999 0.9999]);
|
---|
35 | md.qmu.responses.rf (end+1)=response_function('min_vy',[],[0.0001 0.001 0.01 0.25 0.5 0.75 0.99 0.999 0.9999]);
|
---|
36 | md.qmu.responses.rf (end+1)=response_function('max_vy',[],[0.0001 0.001 0.01 0.25 0.5 0.75 0.99 0.999 0.9999]);
|
---|
37 | md.qmu.responses.rf (end+1)=response_function('max_abs_vy',[],[0.0001 0.001 0.01 0.25 0.5 0.75 0.99 0.999 0.9999]);
|
---|
38 | md.qmu.responses.rf (end+1)=response_function('min_vel',[],[0.0001 0.001 0.01 0.25 0.5 0.75 0.99 0.999 0.9999]);
|
---|
39 | md.qmu.responses.rf (end+1)=response_function('max_vel',[],[0.0001 0.001 0.01 0.25 0.5 0.75 0.99 0.999 0.9999]);
|
---|
40 |
|
---|
41 | %% nond_sampling study
|
---|
42 |
|
---|
43 | md.qmu.method =dakota_method('nond_samp');
|
---|
44 | md.qmu.method(end)=dmeth_params_set(md.qmu.method(end),...
|
---|
45 | 'seed',1234,...
|
---|
46 | 'samples',20,...
|
---|
47 | 'sample_type','lhs');
|
---|
48 |
|
---|
49 | %% a variety of parameters
|
---|
50 |
|
---|
51 | md.qmu.params.direct=true;
|
---|
52 | md.qmu.params.analysis_driver='diagnostic';
|
---|
53 | md.qmu.params.evaluation_concurrency=1;
|
---|
54 |
|
---|
55 | md.qmu.numberofpartitions=10;
|
---|
56 |
|
---|
57 | md.qmu
|
---|