1 | %{
|
---|
2 | Given a NetCDF4 file, this set of functions will perform the following:
|
---|
3 | 1. Enter each group of the file.
|
---|
4 | 2. For each variable in each group, update an empty model with the variable's data
|
---|
5 | 3. Enter nested groups and repeat
|
---|
6 |
|
---|
7 |
|
---|
8 | If the model you saved has subclass instances that are not in the standard model() class
|
---|
9 | you can:
|
---|
10 | 1. Copy lines 30-35, set the "results" string to the name of the subclass instance,
|
---|
11 | 2. Copy and modify the make_results_subclasses() function to create the new subclass
|
---|
12 | instances you need.
|
---|
13 | From there, the rest of this script will automatically create the new subclass
|
---|
14 | instance in the model you're writing to and store the data from the netcdf file there.
|
---|
15 | %}
|
---|
16 |
|
---|
17 |
|
---|
18 | function model_copy = read_netCDF(filename, varargin)
|
---|
19 | if nargin > 1
|
---|
20 | verbose = true;
|
---|
21 | else
|
---|
22 | verbose = false;
|
---|
23 | end
|
---|
24 |
|
---|
25 | if verbose
|
---|
26 | fprintf('NetCDF42C v1.1.14\n');
|
---|
27 | end
|
---|
28 | % make a model framework to fill that is in the scope of this file
|
---|
29 | model_copy = model();
|
---|
30 |
|
---|
31 | % Check if path exists
|
---|
32 | if exist(filename, 'file')
|
---|
33 | if verbose
|
---|
34 | fprintf('Opening %s for reading\n', filename);
|
---|
35 | end
|
---|
36 |
|
---|
37 | % Open the given netCDF4 file
|
---|
38 | NCData = netcdf.open(filename, 'NOWRITE');
|
---|
39 | % Remove masks from netCDF data for easy conversion: NOT WORKING
|
---|
40 | %netcdf.setMask(NCData, 'NC_NOFILL');
|
---|
41 |
|
---|
42 | % see if results is in there, if it is we have to instantiate some classes
|
---|
43 | try
|
---|
44 | results_group_id = netcdf.inqNcid(NCData, "results");
|
---|
45 | model_copy = make_results_subclasses(model_copy, NCData, verbose);
|
---|
46 | catch
|
---|
47 | end % 'results' group doesn't exist
|
---|
48 |
|
---|
49 | % see if inversion is in there, if it is we may have to instantiate some classes
|
---|
50 | try
|
---|
51 | inversion_group_id = netcdf.inqNcid(NCData, "inversion");
|
---|
52 | model_copy = check_inversion_class(model_copy, NCData, verbose);
|
---|
53 | catch
|
---|
54 | end % 'inversion' group doesn't exist
|
---|
55 |
|
---|
56 | % loop over first layer of groups in netcdf file
|
---|
57 | for group = netcdf.inqGrps(NCData)
|
---|
58 | group_id = netcdf.inqNcid(NCData, netcdf.inqGrpName(group));
|
---|
59 | %disp(netcdf.inqGrpNameFull(group_id))
|
---|
60 | % hand off first level to recursive search
|
---|
61 | model_copy = walk_nested_groups(group_id, model_copy, NCData, verbose);
|
---|
62 | end
|
---|
63 |
|
---|
64 | % Close the netCDF file
|
---|
65 | netcdf.close(NCData);
|
---|
66 | if verbose
|
---|
67 | disp('Model Successfully Copied')
|
---|
68 | end
|
---|
69 | else
|
---|
70 | fprintf('File %s does not exist.\n', filename);
|
---|
71 | end
|
---|
72 | end
|
---|
73 |
|
---|
74 |
|
---|
75 | function model_copy = make_results_subclasses(model_copy, NCData, verbose)
|
---|
76 | resultsGroup = netcdf.inqNcid(NCData, "results");
|
---|
77 | variables = netcdf.inqVarIDs(resultsGroup);
|
---|
78 | for name = variables
|
---|
79 | class_instance = netcdf.inqVar(resultsGroup, name);
|
---|
80 | class_instance_names_raw = netcdf.getVar(resultsGroup, name, 'char').';
|
---|
81 | class_instance_names = cellstr(class_instance_names_raw);
|
---|
82 | for index = 1:numel(class_instance_names)
|
---|
83 | class_instance_name = class_instance_names{index};
|
---|
84 | model_copy.results = setfield(model_copy.results, class_instance_name, struct());
|
---|
85 | end
|
---|
86 | %model_copy.results = setfield(model_copy.results, class_instance, class_instance_name);
|
---|
87 | end
|
---|
88 | model_copy = model_copy;
|
---|
89 | if verbose
|
---|
90 | disp('Successfully recreated results structs:')
|
---|
91 | for fieldname = string(fieldnames(model_copy.results))
|
---|
92 | disp(fieldname)
|
---|
93 | end
|
---|
94 | end
|
---|
95 | end
|
---|
96 |
|
---|
97 |
|
---|
98 | function model_copy = check_inversion_class(model_copy, NCData, verbose)
|
---|
99 | % get the name of the inversion class: either inversion or m1qn3inversion or taoinversion
|
---|
100 | inversionGroup = netcdf.inqNcid(NCData, "inversion");
|
---|
101 | varid = netcdf.inqVarID(inversionGroup, 'inversion_class_name');
|
---|
102 | inversion_class = convertCharsToStrings(netcdf.getVar(inversionGroup, varid,'char'));
|
---|
103 | if strcmp(inversion_class, 'm1qn3inversion')
|
---|
104 | model_copy.inversion = m1qn3inversion();
|
---|
105 | if verbose
|
---|
106 | disp('Successfully created inversion class instance: m1qn3inversion')
|
---|
107 | end
|
---|
108 | elseif strcmp(inversion_class, 'taoinversion')
|
---|
109 | model_copy.inversion = taoinversion();
|
---|
110 | if verbose
|
---|
111 | disp('Successfully created inversion class instance: taoinversion')
|
---|
112 | end
|
---|
113 | else
|
---|
114 | if verbose
|
---|
115 | disp('No inversion class was found')
|
---|
116 | end
|
---|
117 | end
|
---|
118 | model_copy = model_copy;
|
---|
119 | end
|
---|
120 |
|
---|
121 |
|
---|
122 | function model_copy = walk_nested_groups(group_location_in_file, model_copy, NCData, verbose)
|
---|
123 | % we search the current group level for variables by getting this struct
|
---|
124 | variables = netcdf.inqVarIDs(group_location_in_file);
|
---|
125 |
|
---|
126 | % from the variables struct get the info related to the variables
|
---|
127 | for variable = variables
|
---|
128 | [varname, xtype, dimids, numatts] = netcdf.inqVar(group_location_in_file, variable);
|
---|
129 |
|
---|
130 | % keep an eye out for nested structs:
|
---|
131 | if strcmp(varname, 'this_is_a_nested')
|
---|
132 | is_object = true;
|
---|
133 | model_copy = copy_nested_struct(group_location_in_file, model_copy, NCData, verbose);
|
---|
134 | elseif strcmp(varname, 'name_of_cell_array')
|
---|
135 | is_object = true;
|
---|
136 | model_copy = copy_cell_array_of_objects(variables, group_location_in_file, model_copy, NCData, verbose);
|
---|
137 | elseif strcmp(varname, 'solution')
|
---|
138 | % band-aid pass..
|
---|
139 | else
|
---|
140 | if logical(exist('is_object', 'var'))
|
---|
141 | % already handled
|
---|
142 | else
|
---|
143 | model_copy = copy_variable_data_to_new_model(group_location_in_file, varname, xtype, model_copy, NCData, verbose);
|
---|
144 | end
|
---|
145 | end
|
---|
146 | end
|
---|
147 |
|
---|
148 | % try to find groups in current level, if it doesn't work it's because there is nothing there
|
---|
149 | %try
|
---|
150 | % if it's a nested struct the function copy_nested_struct has already been called
|
---|
151 | if logical(exist('is_object', 'var'))
|
---|
152 | % do nothing
|
---|
153 | else
|
---|
154 | % search for nested groups in the current level to feed back to this function
|
---|
155 | groups = netcdf.inqGrps(group_location_in_file);
|
---|
156 | if not(isempty(groups))
|
---|
157 | for group = groups
|
---|
158 | group_id = netcdf.inqNcid(group_location_in_file, netcdf.inqGrpName(group));
|
---|
159 | %disp(netcdf.inqGrpNameFull(group_id))
|
---|
160 | model_copy = walk_nested_groups(group, model_copy, NCData, verbose);
|
---|
161 | end
|
---|
162 | end
|
---|
163 | end
|
---|
164 | %catch % no nested groups here
|
---|
165 | %end
|
---|
166 | end
|
---|
167 |
|
---|
168 |
|
---|
169 | % to read cell arrays with objects:
|
---|
170 | function model_copy = copy_cell_array_of_objects(variables, group_location_in_file, model_copy, NCData, verbose);
|
---|
171 | %{
|
---|
172 | The structure in netcdf for groups with the name_of_cell_array variable is like:
|
---|
173 |
|
---|
174 | group: 2x6_cell_array_of_objects {
|
---|
175 | name_of_cell_array = <name_of_cell_array>
|
---|
176 |
|
---|
177 | group: Row_1_of_2 {
|
---|
178 | group: Col_1_of_6 {
|
---|
179 | ... other groups can be here that refer to objects
|
---|
180 | } // group Col_6_of_6
|
---|
181 | } // group Row_1_of_2
|
---|
182 |
|
---|
183 | group: Row_2_of_2 {
|
---|
184 | group: Col_1_of_6 {
|
---|
185 | ... other groups can be here that refer to objects
|
---|
186 | } // group Col_6_of_6
|
---|
187 | } // group Row_2_of_2
|
---|
188 | } // group 2x6_cell_array_of_objects
|
---|
189 |
|
---|
190 | We have to navigate this structure to extract all the data and recreate the
|
---|
191 | original structure when the model was saved
|
---|
192 | %}
|
---|
193 |
|
---|
194 | % get the name_of_cell_array, rows and cols vars
|
---|
195 | name_of_cell_array_varID = netcdf.inqVarID(group_location_in_file, 'name_of_cell_array');
|
---|
196 | rows_varID = netcdf.inqVarID(group_location_in_file, 'rows');
|
---|
197 | cols_varID = netcdf.inqVarID(group_location_in_file, 'cols');
|
---|
198 |
|
---|
199 | name_of_cell_array = netcdf.getVar(group_location_in_file, name_of_cell_array_varID).'; % transpose
|
---|
200 | rows = netcdf.getVar(group_location_in_file, rows_varID);
|
---|
201 | cols = netcdf.getVar(group_location_in_file, cols_varID);
|
---|
202 |
|
---|
203 | % now we work backwards: make the cell array, fill it in, and assign it to the model
|
---|
204 |
|
---|
205 | % make the cell array
|
---|
206 | cell_array_placeholder = cell(rows, cols);
|
---|
207 |
|
---|
208 | % get subgroups which are elements of the cell array
|
---|
209 | subgroups = netcdf.inqGrps(group_location_in_file); % numerical cell array with ID's of subgroups
|
---|
210 |
|
---|
211 | % enter each subgroup, get the data, assign it to the corresponding index of cell array
|
---|
212 | if rows > 1
|
---|
213 | % we go over rows
|
---|
214 | % set index for cell array rows
|
---|
215 | row_idx = 1;
|
---|
216 | for row = subgroups
|
---|
217 | % now columns
|
---|
218 | columns = netcdf.inqGrps(group_location_in_file);
|
---|
219 |
|
---|
220 | % set index for cell array cols
|
---|
221 | col_idx = 1;
|
---|
222 | for column = columns
|
---|
223 | % now variables
|
---|
224 | current_column_varids = netcdf.inqVarIDs(column);
|
---|
225 |
|
---|
226 | % if 'class_is_a' or 'this_is_a_nested' variables is present at this level we have to handle them accordingly
|
---|
227 | try
|
---|
228 | class_is_aID = netcdf.inqVarID(column, 'class_is_a');
|
---|
229 | col_data = deserialize_class(column, NCData, verbose);
|
---|
230 | is_object = true;
|
---|
231 | catch
|
---|
232 | end
|
---|
233 |
|
---|
234 | try
|
---|
235 | this_is_a_nestedID = netcdf.inqVarID(column, 'this_is_a_nested');
|
---|
236 | % functionality not supported
|
---|
237 | disp('Error: Cell Arrays of structs not yet supported!')
|
---|
238 | % copy_nested_struct(column, model_copy, NCData, verbose)
|
---|
239 | is_object = true;
|
---|
240 | catch
|
---|
241 | end
|
---|
242 |
|
---|
243 | if logical(exist('is_object', 'var'))
|
---|
244 | % already taken care of
|
---|
245 | else
|
---|
246 | % store the variables as normal -- to be added later
|
---|
247 | disp('Error: Cell Arrays of mixed objects not yet supported!')
|
---|
248 | for var = current_column_varids
|
---|
249 | % not supported
|
---|
250 | end
|
---|
251 | end
|
---|
252 |
|
---|
253 | cell_array_placeholder{row_idx, col_idx} = col_data;
|
---|
254 | col_idx = col_idx + 1;
|
---|
255 | end
|
---|
256 | row_idx = row_idx + 1;
|
---|
257 | end
|
---|
258 | else
|
---|
259 | % set index for cell array
|
---|
260 | col_idx = 1;
|
---|
261 | for column = subgroups
|
---|
262 | % now variables
|
---|
263 | current_column_varids = netcdf.inqVarIDs(column);
|
---|
264 |
|
---|
265 | % if 'class_is_a' or 'this_is_a_nested' variables is present at this level we have to handle them accordingly
|
---|
266 | try
|
---|
267 | classID = netcdf.inqVarID(column, 'class_is_a');
|
---|
268 | col_data = deserialize_class(classID, column, NCData, verbose);
|
---|
269 | is_object = true;
|
---|
270 | catch ME
|
---|
271 | rethrow(ME)
|
---|
272 | end
|
---|
273 |
|
---|
274 | try
|
---|
275 | this_is_a_nestedID = netcdf.inqVarID(column, 'this_is_a_nested');
|
---|
276 | % functionality not supported
|
---|
277 | disp('Error: Cell Arrays of structs not yet supported!')
|
---|
278 | % col_data = copy_nested_struct(column, model_copy, NCData, verbose);
|
---|
279 | is_object = true;
|
---|
280 | catch
|
---|
281 | end
|
---|
282 | if logical(exist('is_object', 'var'))
|
---|
283 | % already taken care of
|
---|
284 | else
|
---|
285 | % store the variables as normal -- to be added later
|
---|
286 | disp('Error: Cell Arrays of mixed objects not yet supported!')
|
---|
287 | for var = current_column_varids
|
---|
288 | % col_data = not supported
|
---|
289 | end
|
---|
290 | end
|
---|
291 |
|
---|
292 | cell_array_placeholder{col_idx} = col_data;
|
---|
293 | col_idx = col_idx + 1;
|
---|
294 |
|
---|
295 | end
|
---|
296 | end
|
---|
297 |
|
---|
298 |
|
---|
299 | % Like in copy_nested_struct, we can only handle things 1 layer deep.
|
---|
300 | % assign cell array to model
|
---|
301 | address_to_attr_list = split(netcdf.inqGrpNameFull(group_location_in_file), '/');
|
---|
302 | address_to_attr = address_to_attr_list{2};
|
---|
303 | if isprop(model_copy.(address_to_attr), name_of_cell_array);
|
---|
304 | model_copy.(address_to_attr).(name_of_cell_array) = cell_array_placeholder;
|
---|
305 | else
|
---|
306 | model_copy = addprop(model_copy.(address_to_attr), name_of_cell_array, cell_array_placeholder);
|
---|
307 | end
|
---|
308 |
|
---|
309 | if verbose
|
---|
310 | fprintf("Successfully loaded cell array %s to %s\n", name_of_cell_array,address_to_attr_list{2})
|
---|
311 | end
|
---|
312 | end
|
---|
313 |
|
---|
314 |
|
---|
315 |
|
---|
316 |
|
---|
317 | function output = deserialize_class(classID, group, NCData, verbose)
|
---|
318 | %{
|
---|
319 | This function will recreate a class
|
---|
320 | %}
|
---|
321 |
|
---|
322 | % get the name of the class
|
---|
323 | name = netcdf.getVar(group, classID).';
|
---|
324 |
|
---|
325 | % instantiate it
|
---|
326 | class_instance = eval([name, '()']);
|
---|
327 |
|
---|
328 | % get and assign properties
|
---|
329 | subgroups = netcdf.inqGrps(group); % numerical cell array with ID's of subgroups
|
---|
330 |
|
---|
331 | if numel(subgroups) == 1
|
---|
332 | % get properties
|
---|
333 | varIDs = netcdf.inqVarIDs(subgroups);
|
---|
334 | for varID = varIDs
|
---|
335 | % var metadata
|
---|
336 | [varname, xtype, dimids, numatts] = netcdf.inqVar(subgroups, varID);
|
---|
337 | % data
|
---|
338 | data = netcdf.getVar(subgroups, varID);
|
---|
339 |
|
---|
340 | % netcdf uses Row Major Order but MATLAB uses Column Major Order so we need to transpose all arrays w/ more than 1 dim
|
---|
341 | if all(size(data)~=1) || xtype == 2
|
---|
342 | data = data.';
|
---|
343 | end
|
---|
344 |
|
---|
345 | % some classes have permissions... so we skip those
|
---|
346 | try
|
---|
347 | % if property already exists, assign new value
|
---|
348 | if isprop(class_instance, varname)
|
---|
349 | class_instance.(varname) = data;
|
---|
350 | else
|
---|
351 | addprop(class_instance, varname, data);
|
---|
352 | end
|
---|
353 | catch
|
---|
354 | end
|
---|
355 | end
|
---|
356 | else
|
---|
357 | % not supported
|
---|
358 | end
|
---|
359 | output = class_instance;
|
---|
360 | end
|
---|
361 |
|
---|
362 |
|
---|
363 | function model_copy = copy_nested_struct(group_location_in_file, model_copy, NCData, verbose)
|
---|
364 | %{
|
---|
365 | A common multidimensional struct array is the 1xn md.results.TransientSolution struct.
|
---|
366 | The process to recreate is as follows:
|
---|
367 | 1. Get the name of the struct from group name
|
---|
368 | 2. Get the fieldnames from the subgroups
|
---|
369 | 3. Recreate the struct with fieldnames
|
---|
370 | 4. Populate the fields with their respective values
|
---|
371 | %}
|
---|
372 |
|
---|
373 | % step 1
|
---|
374 | name_of_struct = netcdf.inqGrpName(group_location_in_file);
|
---|
375 |
|
---|
376 | % step 2
|
---|
377 | subgroups = netcdf.inqGrps(group_location_in_file); % numerical cell array with ID's of subgroups
|
---|
378 | % get single subgroup's data
|
---|
379 | single_subgroup_ID = subgroups(1);
|
---|
380 | subgroup_varids = netcdf.inqVarIDs(single_subgroup_ID);
|
---|
381 | fieldnames = {};
|
---|
382 | for variable = subgroup_varids
|
---|
383 | [varname, xtype, dimids, numatts] = netcdf.inqVar(single_subgroup_ID, variable);
|
---|
384 | fieldnames{end+1} = varname;
|
---|
385 | end
|
---|
386 |
|
---|
387 | % step 3
|
---|
388 | address_in_model_raw = split(netcdf.inqGrpNameFull(group_location_in_file), '/');
|
---|
389 | address_in_model = address_in_model_raw{2};
|
---|
390 |
|
---|
391 | % we cannot assign a variable to represent this object as MATLAB treats all variables as copies
|
---|
392 | % and not pointers to the same memory address
|
---|
393 | % this means that if address_in_model has more than 1 layer, we need to modify the code. For now,
|
---|
394 | % we just hope this will do. An example of a no-solution would be model().abc.def.ghi.field whereas we're only assuming model().abc.field now
|
---|
395 |
|
---|
396 | model_copy.(address_in_model).(name_of_struct) = struct();
|
---|
397 | % for every fieldname in the subgroup, create an empty field
|
---|
398 | for fieldname = string(fieldnames)
|
---|
399 | model_copy.(address_in_model).(name_of_struct).(fieldname) = {};
|
---|
400 | end
|
---|
401 |
|
---|
402 | % use repmat to make the struct array multidimensional along the fields axis
|
---|
403 | number_of_dimensions = numel(subgroups);
|
---|
404 | model_copy.(address_in_model).(name_of_struct) = repmat(model_copy.(address_in_model).(name_of_struct), 1, number_of_dimensions);
|
---|
405 |
|
---|
406 | % step 4
|
---|
407 | % for every layer of the multidimensional struct array, populate the fields
|
---|
408 | for current_layer = 1:number_of_dimensions
|
---|
409 | % choose subgroup
|
---|
410 | current_layer_subgroup_ID = subgroups(current_layer);
|
---|
411 | % get all vars
|
---|
412 | current_layer_subgroup_varids = netcdf.inqVarIDs(current_layer_subgroup_ID);
|
---|
413 | % get individual vars and set fields at layer current_layer
|
---|
414 | for varid = current_layer_subgroup_varids
|
---|
415 | [varname, xtype, dimids, numatts] = netcdf.inqVar(current_layer_subgroup_ID, varid);
|
---|
416 | data = netcdf.getVar(current_layer_subgroup_ID, varid);
|
---|
417 |
|
---|
418 | % netcdf uses Row Major Order but MATLAB uses Column Major Order so we need to transpose all arrays w/ more than 1 dim
|
---|
419 | if all(size(data)~=1) || xtype == 2
|
---|
420 | data = data.';
|
---|
421 | end
|
---|
422 |
|
---|
423 | % set the field
|
---|
424 | model_copy.(address_in_model).(name_of_struct)(current_layer).(varname) = data;
|
---|
425 | %address_to_struct_in_model = setfield(address_to_struct_in_model(current_layer), varname, data)
|
---|
426 | end
|
---|
427 | model_copy.(address_in_model).(name_of_struct)(current_layer);
|
---|
428 | if verbose
|
---|
429 | fprintf("Successfully loaded layer %s to multidimension struct array\n", num2str(current_layer))
|
---|
430 | end
|
---|
431 | end
|
---|
432 | model_copy = model_copy;
|
---|
433 | if verbose
|
---|
434 | fprintf('Successfully recreated multidimensional structure array %s in md.%s\n', name_of_struct, address_in_model)
|
---|
435 | end
|
---|
436 | end
|
---|
437 |
|
---|
438 |
|
---|
439 |
|
---|
440 |
|
---|
441 | %{
|
---|
442 | Since there are two types of objects that MATLAB uses (classes and structs), we have to check
|
---|
443 | which object we're working with before we can set any fields/attributes of it. After this is completed,
|
---|
444 | we can write the data to that location in the model.
|
---|
445 | %}
|
---|
446 |
|
---|
447 | function model_copy = copy_variable_data_to_new_model(group_location_in_file, varname, xtype, model_copy, NCData, verbose)
|
---|
448 | %disp(varname)
|
---|
449 | % this is an inversion band-aid
|
---|
450 | if strcmp(varname, 'inversion_class_name') || strcmp(varname, 'name_of_struct') || strcmp(varname, 'solution')
|
---|
451 | % we don't need this
|
---|
452 | else
|
---|
453 | % putting try/catch here so that any errors generated while copying data are logged and not lost by the try/catch in walk_nested_groups function
|
---|
454 | try
|
---|
455 | %disp(netcdf.inqGrpNameFull(group_location_in_file))
|
---|
456 | %disp(class(netcdf.inqGrpNameFull(group_location_in_file)))
|
---|
457 | address_to_attr = strrep(netcdf.inqGrpNameFull(group_location_in_file), '/', '.');
|
---|
458 | varid = netcdf.inqVarID(group_location_in_file, varname);
|
---|
459 | data = netcdf.getVar(group_location_in_file, varid);
|
---|
460 |
|
---|
461 |
|
---|
462 | % if we have an empty string
|
---|
463 | if xtype == 2 && isempty(all(data))
|
---|
464 | data = cell(char());
|
---|
465 | % if we have an empty cell-char array
|
---|
466 | elseif numel(data) == 1 && xtype == 3 && data == -32767
|
---|
467 | data = cell(char());
|
---|
468 | elseif isempty(all(data))
|
---|
469 | data = []
|
---|
470 | end
|
---|
471 | % band-aid for some cell-char-arrays:
|
---|
472 | if xtype == 2 && strcmp(data, 'default')
|
---|
473 | data = {'default'};
|
---|
474 | end
|
---|
475 |
|
---|
476 | % netcdf uses Row Major Order but MATLAB uses Column Major Order so we need to transpose all arrays w/ more than 1 dim
|
---|
477 | if all(size(data)~=1) || xtype == 2
|
---|
478 | data = data.';
|
---|
479 | end
|
---|
480 |
|
---|
481 | % if we have a list of strings
|
---|
482 | if xtype == 2
|
---|
483 | try
|
---|
484 | if strcmp(netcdf.getAtt(group_location_in_file, varid, "type_is"), 'cell_array_of_strings')
|
---|
485 | data = cellstr(data);
|
---|
486 | end
|
---|
487 | catch
|
---|
488 | % no attr found so we pass
|
---|
489 | end
|
---|
490 | end
|
---|
491 |
|
---|
492 | % the issm c compiler does not work with int64 datatypes, so we need to convert those to int16
|
---|
493 | % reference this (very hard to find) link for netcdf4 datatypes: https://docs.unidata.ucar.edu/netcdf-c/current/netcdf_8h_source.html
|
---|
494 | %xtype
|
---|
495 | if xtype == 10
|
---|
496 | arg_to_eval = ['model_copy', address_to_attr, '.', varname, ' = ' , 'double(data);'];
|
---|
497 | eval(arg_to_eval);
|
---|
498 | %disp('Loaded int64 as int16')
|
---|
499 | else
|
---|
500 | arg_to_eval = ['model_copy', address_to_attr, '.', varname, ' = data;'];
|
---|
501 | eval(arg_to_eval);
|
---|
502 | end
|
---|
503 |
|
---|
504 | if verbose
|
---|
505 | full_addy = netcdf.inqGrpNameFull(group_location_in_file);
|
---|
506 | %disp(xtype)
|
---|
507 | %class(data)
|
---|
508 | fprintf('Successfully loaded %s to %s\n', varname, full_addy);
|
---|
509 | end
|
---|
510 |
|
---|
511 | catch ME %ME is an MException struct
|
---|
512 | % Some error occurred if you get here.
|
---|
513 | fprintf(1,'There was an error with %s! \n', varname)
|
---|
514 | errorMessage = sprintf('Error in function %s() at line %d.\n\nError Message:\n%s', ME.stack.name, ME.stack.line, ME.message);
|
---|
515 | fprintf(1, '%s\n', errorMessage);
|
---|
516 | uiwait(warndlg(errorMessage));
|
---|
517 | %line = ME.stack.line
|
---|
518 | %fprintf(1,'There was an error with %s! \n', varname)
|
---|
519 | %fprintf('The message was:\n%s\n',ME.message);
|
---|
520 | %fprintf(1,'The identifier was:\n%s\n',ME.identifier);
|
---|
521 |
|
---|
522 | % more error handling...
|
---|
523 | end
|
---|
524 | end
|
---|
525 | model_copy = model_copy;
|
---|
526 | end
|
---|