| 1 | %{
|
|---|
| 2 | Given a NetCDF4 file, this set of functions will perform the following:
|
|---|
| 3 | 1. Enter each group of the file.
|
|---|
| 4 | 2. For each variable in each group, update an empty model with the variable's data
|
|---|
| 5 | 3. Enter nested groups and repeat
|
|---|
| 6 |
|
|---|
| 7 |
|
|---|
| 8 | If the model you saved has subclass instances that are not in the standard model() class
|
|---|
| 9 | you can:
|
|---|
| 10 | 1. Copy lines 30-35, set the "results" string to the name of the subclass instance,
|
|---|
| 11 | 2. Copy and modify the make_results_subclasses() function to create the new subclass
|
|---|
| 12 | instances you need.
|
|---|
| 13 | From there, the rest of this script will automatically create the new subclass
|
|---|
| 14 | instance in the model you're writing to and store the data from the netcdf file there.
|
|---|
| 15 | %}
|
|---|
| 16 |
|
|---|
| 17 |
|
|---|
| 18 | function model_copy = read_netCDF(filename, varargin)
|
|---|
| 19 | if nargin > 1
|
|---|
| 20 | verbose = true;
|
|---|
| 21 | else
|
|---|
| 22 | verbose = false;
|
|---|
| 23 | end
|
|---|
| 24 |
|
|---|
| 25 | if verbose
|
|---|
| 26 | fprintf('NetCDF42C v1.1.14\n');
|
|---|
| 27 | end
|
|---|
| 28 | % make a model framework to fill that is in the scope of this file
|
|---|
| 29 | model_copy = model();
|
|---|
| 30 |
|
|---|
| 31 | % Check if path exists
|
|---|
| 32 | if exist(filename, 'file')
|
|---|
| 33 | if verbose
|
|---|
| 34 | fprintf('Opening %s for reading\n', filename);
|
|---|
| 35 | end
|
|---|
| 36 |
|
|---|
| 37 | % Open the given netCDF4 file
|
|---|
| 38 | NCData = netcdf.open(filename, 'NOWRITE');
|
|---|
| 39 | % Remove masks from netCDF data for easy conversion: NOT WORKING
|
|---|
| 40 | %netcdf.setMask(NCData, 'NC_NOFILL');
|
|---|
| 41 |
|
|---|
| 42 | % see if results is in there, if it is we have to instantiate some classes
|
|---|
| 43 | try
|
|---|
| 44 | results_group_id = netcdf.inqNcid(NCData, "results");
|
|---|
| 45 | model_copy = make_results_subclasses(model_copy, NCData, verbose);
|
|---|
| 46 | catch
|
|---|
| 47 | end % 'results' group doesn't exist
|
|---|
| 48 |
|
|---|
| 49 | % see if inversion is in there, if it is we may have to instantiate some classes
|
|---|
| 50 | try
|
|---|
| 51 | inversion_group_id = netcdf.inqNcid(NCData, "inversion");
|
|---|
| 52 | model_copy = check_inversion_class(model_copy, NCData, verbose);
|
|---|
| 53 | catch
|
|---|
| 54 | end % 'inversion' group doesn't exist
|
|---|
| 55 |
|
|---|
| 56 | % loop over first layer of groups in netcdf file
|
|---|
| 57 | for group = netcdf.inqGrps(NCData)
|
|---|
| 58 | group_id = netcdf.inqNcid(NCData, netcdf.inqGrpName(group));
|
|---|
| 59 | %disp(netcdf.inqGrpNameFull(group_id))
|
|---|
| 60 | % hand off first level to recursive search
|
|---|
| 61 | model_copy = walk_nested_groups(group_id, model_copy, NCData, verbose);
|
|---|
| 62 | end
|
|---|
| 63 |
|
|---|
| 64 | % Close the netCDF file
|
|---|
| 65 | netcdf.close(NCData);
|
|---|
| 66 | if verbose
|
|---|
| 67 | disp('Model Successfully Copied')
|
|---|
| 68 | end
|
|---|
| 69 | else
|
|---|
| 70 | fprintf('File %s does not exist.\n', filename);
|
|---|
| 71 | end
|
|---|
| 72 | end
|
|---|
| 73 |
|
|---|
| 74 |
|
|---|
| 75 | function model_copy = make_results_subclasses(model_copy, NCData, verbose)
|
|---|
| 76 | resultsGroup = netcdf.inqNcid(NCData, "results");
|
|---|
| 77 | variables = netcdf.inqVarIDs(resultsGroup);
|
|---|
| 78 | for name = variables
|
|---|
| 79 | class_instance = netcdf.inqVar(resultsGroup, name);
|
|---|
| 80 | class_instance_names_raw = netcdf.getVar(resultsGroup, name, 'char').';
|
|---|
| 81 | class_instance_names = cellstr(class_instance_names_raw);
|
|---|
| 82 | for index = 1:numel(class_instance_names)
|
|---|
| 83 | class_instance_name = class_instance_names{index};
|
|---|
| 84 | model_copy.results = setfield(model_copy.results, class_instance_name, struct());
|
|---|
| 85 | end
|
|---|
| 86 | %model_copy.results = setfield(model_copy.results, class_instance, class_instance_name);
|
|---|
| 87 | end
|
|---|
| 88 | model_copy = model_copy;
|
|---|
| 89 | if verbose
|
|---|
| 90 | disp('Successfully recreated results structs:')
|
|---|
| 91 | for fieldname = string(fieldnames(model_copy.results))
|
|---|
| 92 | disp(fieldname)
|
|---|
| 93 | end
|
|---|
| 94 | end
|
|---|
| 95 | end
|
|---|
| 96 |
|
|---|
| 97 |
|
|---|
| 98 | function model_copy = check_inversion_class(model_copy, NCData, verbose)
|
|---|
| 99 | % get the name of the inversion class: either inversion or m1qn3inversion or taoinversion
|
|---|
| 100 | inversionGroup = netcdf.inqNcid(NCData, "inversion");
|
|---|
| 101 | varid = netcdf.inqVarID(inversionGroup, 'inversion_class_name');
|
|---|
| 102 | inversion_class = convertCharsToStrings(netcdf.getVar(inversionGroup, varid,'char'));
|
|---|
| 103 | if strcmp(inversion_class, 'm1qn3inversion')
|
|---|
| 104 | model_copy.inversion = m1qn3inversion();
|
|---|
| 105 | if verbose
|
|---|
| 106 | disp('Successfully created inversion class instance: m1qn3inversion')
|
|---|
| 107 | end
|
|---|
| 108 | elseif strcmp(inversion_class, 'taoinversion')
|
|---|
| 109 | model_copy.inversion = taoinversion();
|
|---|
| 110 | if verbose
|
|---|
| 111 | disp('Successfully created inversion class instance: taoinversion')
|
|---|
| 112 | end
|
|---|
| 113 | else
|
|---|
| 114 | if verbose
|
|---|
| 115 | disp('No inversion class was found')
|
|---|
| 116 | end
|
|---|
| 117 | end
|
|---|
| 118 | model_copy = model_copy;
|
|---|
| 119 | end
|
|---|
| 120 |
|
|---|
| 121 |
|
|---|
| 122 | function model_copy = walk_nested_groups(group_location_in_file, model_copy, NCData, verbose)
|
|---|
| 123 | % we search the current group level for variables by getting this struct
|
|---|
| 124 | variables = netcdf.inqVarIDs(group_location_in_file);
|
|---|
| 125 |
|
|---|
| 126 | % from the variables struct get the info related to the variables
|
|---|
| 127 | for variable = variables
|
|---|
| 128 | [varname, xtype, dimids, numatts] = netcdf.inqVar(group_location_in_file, variable);
|
|---|
| 129 |
|
|---|
| 130 | % keep an eye out for nested structs:
|
|---|
| 131 | if strcmp(varname, 'this_is_a_nested')
|
|---|
| 132 | is_nested = true;
|
|---|
| 133 | model_copy = copy_nested_struct(group_location_in_file, model_copy, NCData, verbose);
|
|---|
| 134 | elseif strcmp(varname, 'solution')
|
|---|
| 135 | % band-aid pass..
|
|---|
| 136 | else
|
|---|
| 137 | model_copy = copy_variable_data_to_new_model(group_location_in_file, varname, xtype, model_copy, NCData, verbose);
|
|---|
| 138 | end
|
|---|
| 139 | end
|
|---|
| 140 |
|
|---|
| 141 | % try to find groups in current level, if it doesn't work it's because there is nothing there
|
|---|
| 142 | %try
|
|---|
| 143 | % if it's a nested struct the function copy_nested_struct has already been called
|
|---|
| 144 | if logical(exist('is_nested', 'var'))
|
|---|
| 145 | % do nothing
|
|---|
| 146 | else
|
|---|
| 147 | % search for nested groups in the current level to feed back to this function
|
|---|
| 148 | groups = netcdf.inqGrps(group_location_in_file);
|
|---|
| 149 | if not(isempty(groups))
|
|---|
| 150 | for group = groups
|
|---|
| 151 | group_id = netcdf.inqNcid(group_location_in_file, netcdf.inqGrpName(group));
|
|---|
| 152 | %disp(netcdf.inqGrpNameFull(group_id))
|
|---|
| 153 | model_copy = walk_nested_groups(group, model_copy, NCData, verbose);
|
|---|
| 154 | end
|
|---|
| 155 | end
|
|---|
| 156 | end
|
|---|
| 157 | %catch % no nested groups here
|
|---|
| 158 | %end
|
|---|
| 159 | end
|
|---|
| 160 |
|
|---|
| 161 |
|
|---|
| 162 |
|
|---|
| 163 | function model_copy = copy_nested_struct(group_location_in_file, model_copy, NCData, verbose)
|
|---|
| 164 | %{
|
|---|
| 165 | A common multidimensional struct array is the 1xn md.results.TransientSolution struct.
|
|---|
| 166 | The process to recreate is as follows:
|
|---|
| 167 | 1. Get the name of the struct from group name
|
|---|
| 168 | 2. Get the fieldnames from the subgroups
|
|---|
| 169 | 3. Recreate the struct with fieldnames
|
|---|
| 170 | 4. Populate the fields with their respective values
|
|---|
| 171 | %}
|
|---|
| 172 |
|
|---|
| 173 | % step 1
|
|---|
| 174 | name_of_struct = netcdf.inqGrpName(group_location_in_file);
|
|---|
| 175 |
|
|---|
| 176 | % step 2
|
|---|
| 177 | subgroups = netcdf.inqGrps(group_location_in_file); % numerical cell array with ID's of subgroups
|
|---|
| 178 | % get single subgroup's data
|
|---|
| 179 | single_subgroup_ID = subgroups(1);
|
|---|
| 180 | subgroup_varids = netcdf.inqVarIDs(single_subgroup_ID);
|
|---|
| 181 | fieldnames = {};
|
|---|
| 182 | for variable = subgroup_varids
|
|---|
| 183 | [varname, xtype, dimids, numatts] = netcdf.inqVar(single_subgroup_ID, variable);
|
|---|
| 184 | fieldnames{end+1} = varname;
|
|---|
| 185 | end
|
|---|
| 186 |
|
|---|
| 187 | % step 3
|
|---|
| 188 | address_in_model_raw = split(netcdf.inqGrpNameFull(group_location_in_file), '/');
|
|---|
| 189 | address_in_model = address_in_model_raw{2};
|
|---|
| 190 |
|
|---|
| 191 | % we cannot assign a variable to represent this object as MATLAB treats all variables as copies
|
|---|
| 192 | % and not pointers to the same memory address
|
|---|
| 193 | % this means that if address_in_model has more than 1 layer, we need to modify the code. For now,
|
|---|
| 194 | % we just hope this will do. An example of a no-solution would be model().abc.def.ghi.field
|
|---|
| 195 |
|
|---|
| 196 | model_copy.(address_in_model).(name_of_struct) = struct();
|
|---|
| 197 | % for every fieldname in the subgroup, create an empty field
|
|---|
| 198 | for fieldname = string(fieldnames)
|
|---|
| 199 | model_copy.(address_in_model).(name_of_struct).(fieldname) = {};
|
|---|
| 200 | end
|
|---|
| 201 |
|
|---|
| 202 | % use repmat to make the struct array multidimensional along the fields axis
|
|---|
| 203 | number_of_dimensions = numel(subgroups);
|
|---|
| 204 | model_copy.(address_in_model).(name_of_struct) = repmat(model_copy.(address_in_model).(name_of_struct), 1, number_of_dimensions);
|
|---|
| 205 |
|
|---|
| 206 | % step 4
|
|---|
| 207 | % for every layer of the multidimensional struct array, populate the fields
|
|---|
| 208 | for current_layer = 1:number_of_dimensions
|
|---|
| 209 | % choose subgroup
|
|---|
| 210 | current_layer_subgroup_ID = subgroups(current_layer);
|
|---|
| 211 | % get all vars
|
|---|
| 212 | current_layer_subgroup_varids = netcdf.inqVarIDs(current_layer_subgroup_ID);
|
|---|
| 213 | % get individual vars and set fields at layer current_layer
|
|---|
| 214 | for varid = current_layer_subgroup_varids
|
|---|
| 215 | [varname, xtype, dimids, numatts] = netcdf.inqVar(current_layer_subgroup_ID, varid);
|
|---|
| 216 | data = netcdf.getVar(current_layer_subgroup_ID, varid);
|
|---|
| 217 |
|
|---|
| 218 | % netcdf uses Row Major Order but MATLAB uses Column Major Order so we need to transpose all arrays w/ more than 1 dim
|
|---|
| 219 | if all(size(data)~=1) || xtype == 2
|
|---|
| 220 | data = data.';
|
|---|
| 221 | end
|
|---|
| 222 |
|
|---|
| 223 | % set the field
|
|---|
| 224 | model_copy.(address_in_model).(name_of_struct)(current_layer).(varname) = data;
|
|---|
| 225 | %address_to_struct_in_model = setfield(address_to_struct_in_model(current_layer), varname, data)
|
|---|
| 226 | end
|
|---|
| 227 | model_copy.(address_in_model).(name_of_struct)(current_layer);
|
|---|
| 228 | if verbose
|
|---|
| 229 | fprintf("Successfully loaded layer %s to multidimension struct array\n", num2str(current_layer))
|
|---|
| 230 | end
|
|---|
| 231 | end
|
|---|
| 232 | model_copy = model_copy;
|
|---|
| 233 | if verbose
|
|---|
| 234 | fprintf('Successfully recreated multidimensional structure array %s in md.%s\n', name_of_struct, address_in_model)
|
|---|
| 235 | end
|
|---|
| 236 | end
|
|---|
| 237 |
|
|---|
| 238 |
|
|---|
| 239 |
|
|---|
| 240 |
|
|---|
| 241 | %{
|
|---|
| 242 | Since there are two types of objects that MATLAB uses (classes and structs), we have to check
|
|---|
| 243 | which object we're working with before we can set any fields/attributes of it. After this is completed,
|
|---|
| 244 | we can write the data to that location in the model.
|
|---|
| 245 | %}
|
|---|
| 246 |
|
|---|
| 247 | function model_copy = copy_variable_data_to_new_model(group_location_in_file, varname, xtype, model_copy, NCData, verbose)
|
|---|
| 248 | %disp(varname)
|
|---|
| 249 | % this is an inversion band-aid
|
|---|
| 250 | if strcmp(varname, 'inversion_class_name') || strcmp(varname, 'name_of_struct') || strcmp(varname, 'solution')
|
|---|
| 251 | % we don't need this
|
|---|
| 252 | else
|
|---|
| 253 | % putting try/catch here so that any errors generated while copying data are logged and not lost by the try/catch in walk_nested_groups function
|
|---|
| 254 | try
|
|---|
| 255 | %disp(netcdf.inqGrpNameFull(group_location_in_file))
|
|---|
| 256 | %disp(class(netcdf.inqGrpNameFull(group_location_in_file)))
|
|---|
| 257 | address_to_attr = strrep(netcdf.inqGrpNameFull(group_location_in_file), '/', '.');
|
|---|
| 258 | varid = netcdf.inqVarID(group_location_in_file, varname);
|
|---|
| 259 | data = netcdf.getVar(group_location_in_file, varid);
|
|---|
| 260 |
|
|---|
| 261 |
|
|---|
| 262 | % if we have an empty string
|
|---|
| 263 | if xtype == 2 && isempty(all(data))
|
|---|
| 264 | data = cell(char());
|
|---|
| 265 | % if we have an empty cell-char array
|
|---|
| 266 | elseif numel(data) == 1 && xtype == 3 && data == -32767
|
|---|
| 267 | data = cell(char());
|
|---|
| 268 | elseif isempty(all(data))
|
|---|
| 269 | data = []
|
|---|
| 270 | end
|
|---|
| 271 | % band-aid for some cell-char-arrays:
|
|---|
| 272 | if xtype == 2 && strcmp(data, 'default')
|
|---|
| 273 | data = {'default'};
|
|---|
| 274 | end
|
|---|
| 275 |
|
|---|
| 276 | % netcdf uses Row Major Order but MATLAB uses Column Major Order so we need to transpose all arrays w/ more than 1 dim
|
|---|
| 277 | if all(size(data)~=1) || xtype == 2
|
|---|
| 278 | data = data.';
|
|---|
| 279 | end
|
|---|
| 280 |
|
|---|
| 281 | % if we have a list of strings
|
|---|
| 282 | if xtype == 2
|
|---|
| 283 | try
|
|---|
| 284 | if strcmp(netcdf.getAtt(group_location_in_file, varid, "type_is"), 'cell_array_of_strings')
|
|---|
| 285 | data = cellstr(data);
|
|---|
| 286 | end
|
|---|
| 287 | catch
|
|---|
| 288 | % no attr found so we pass
|
|---|
| 289 | end
|
|---|
| 290 | end
|
|---|
| 291 |
|
|---|
| 292 | % the issm c compiler does not work with int64 datatypes, so we need to convert those to int16
|
|---|
| 293 | % reference this (very hard to find) link for netcdf4 datatypes: https://docs.unidata.ucar.edu/netcdf-c/current/netcdf_8h_source.html
|
|---|
| 294 | %xtype
|
|---|
| 295 | if xtype == 10
|
|---|
| 296 | arg_to_eval = ['model_copy', address_to_attr, '.', varname, ' = ' , 'double(data);'];
|
|---|
| 297 | eval(arg_to_eval);
|
|---|
| 298 | %disp('Loaded int64 as int16')
|
|---|
| 299 | else
|
|---|
| 300 | arg_to_eval = ['model_copy', address_to_attr, '.', varname, ' = data;'];
|
|---|
| 301 | eval(arg_to_eval);
|
|---|
| 302 | end
|
|---|
| 303 |
|
|---|
| 304 | if verbose
|
|---|
| 305 | full_addy = netcdf.inqGrpNameFull(group_location_in_file);
|
|---|
| 306 | %disp(xtype)
|
|---|
| 307 | %class(data)
|
|---|
| 308 | fprintf('Successfully loaded %s to %s\n', varname, full_addy);
|
|---|
| 309 | end
|
|---|
| 310 |
|
|---|
| 311 | catch ME %ME is an MException struct
|
|---|
| 312 | % Some error occurred if you get here.
|
|---|
| 313 | fprintf(1,'There was an error with %s! \n', varname)
|
|---|
| 314 | errorMessage = sprintf('Error in function %s() at line %d.\n\nError Message:\n%s', ME.stack.name, ME.stack.line, ME.message);
|
|---|
| 315 | fprintf(1, '%s\n', errorMessage);
|
|---|
| 316 | uiwait(warndlg(errorMessage));
|
|---|
| 317 | %line = ME.stack.line
|
|---|
| 318 | %fprintf(1,'There was an error with %s! \n', varname)
|
|---|
| 319 | %fprintf('The message was:\n%s\n',ME.message);
|
|---|
| 320 | %fprintf(1,'The identifier was:\n%s\n',ME.identifier);
|
|---|
| 321 |
|
|---|
| 322 | % more error handling...
|
|---|
| 323 | end
|
|---|
| 324 | end
|
|---|
| 325 | model_copy = model_copy;
|
|---|
| 326 | end
|
|---|