[28013] | 1 | %{
|
---|
| 2 | Given a NetCDF4 file, this set of functions will perform the following:
|
---|
| 3 | 1. Enter each group of the file.
|
---|
| 4 | 2. For each variable in each group, update an empty model with the variable's data
|
---|
| 5 | 3. Enter nested groups and repeat
|
---|
| 6 |
|
---|
| 7 |
|
---|
| 8 | If the model you saved has subclass instances that are not in the standard model() class
|
---|
| 9 | you can:
|
---|
| 10 | 1. Copy lines 30-35, set the "results" string to the name of the subclass instance,
|
---|
| 11 | 2. Copy and modify the make_results_subclasses() function to create the new subclass
|
---|
| 12 | instances you need.
|
---|
| 13 | From there, the rest of this script will automatically create the new subclass
|
---|
| 14 | instance in the model you're writing to and store the data from the netcdf file there.
|
---|
| 15 | %}
|
---|
| 16 |
|
---|
| 17 |
|
---|
| 18 | function model_copy = read_netCDF(filename, varargin)
|
---|
| 19 | if nargin > 1
|
---|
| 20 | verbose = true;
|
---|
| 21 | else
|
---|
| 22 | verbose = false;
|
---|
| 23 | end
|
---|
| 24 |
|
---|
| 25 | if verbose
|
---|
| 26 | fprintf('NetCDF42C v1.1.14\n');
|
---|
| 27 | end
|
---|
| 28 | % make a model framework to fill that is in the scope of this file
|
---|
| 29 | model_copy = model();
|
---|
| 30 |
|
---|
| 31 | % Check if path exists
|
---|
| 32 | if exist(filename, 'file')
|
---|
| 33 | if verbose
|
---|
| 34 | fprintf('Opening %s for reading\n', filename);
|
---|
| 35 | end
|
---|
| 36 |
|
---|
| 37 | % Open the given netCDF4 file
|
---|
| 38 | NCData = netcdf.open(filename, 'NOWRITE');
|
---|
| 39 | % Remove masks from netCDF data for easy conversion: NOT WORKING
|
---|
| 40 | %netcdf.setMask(NCData, 'NC_NOFILL');
|
---|
| 41 |
|
---|
| 42 | % see if results is in there, if it is we have to instantiate some classes
|
---|
| 43 | try
|
---|
| 44 | results_group_id = netcdf.inqNcid(NCData, "results");
|
---|
| 45 | model_copy = make_results_subclasses(model_copy, NCData, verbose);
|
---|
| 46 | catch
|
---|
| 47 | end % 'results' group doesn't exist
|
---|
| 48 |
|
---|
| 49 | % see if inversion is in there, if it is we may have to instantiate some classes
|
---|
| 50 | try
|
---|
| 51 | inversion_group_id = netcdf.inqNcid(NCData, "inversion");
|
---|
| 52 | model_copy = check_inversion_class(model_copy, NCData, verbose);
|
---|
| 53 | catch
|
---|
| 54 | end % 'inversion' group doesn't exist
|
---|
| 55 |
|
---|
| 56 | % loop over first layer of groups in netcdf file
|
---|
| 57 | for group = netcdf.inqGrps(NCData)
|
---|
| 58 | group_id = netcdf.inqNcid(NCData, netcdf.inqGrpName(group));
|
---|
| 59 | %disp(netcdf.inqGrpNameFull(group_id))
|
---|
| 60 | % hand off first level to recursive search
|
---|
| 61 | model_copy = walk_nested_groups(group_id, model_copy, NCData, verbose);
|
---|
| 62 | end
|
---|
| 63 |
|
---|
| 64 | % Close the netCDF file
|
---|
| 65 | netcdf.close(NCData);
|
---|
| 66 | if verbose
|
---|
| 67 | disp('Model Successfully Copied')
|
---|
| 68 | end
|
---|
| 69 | else
|
---|
| 70 | fprintf('File %s does not exist.\n', filename);
|
---|
| 71 | end
|
---|
| 72 | end
|
---|
| 73 |
|
---|
| 74 |
|
---|
| 75 | function model_copy = make_results_subclasses(model_copy, NCData, verbose)
|
---|
| 76 | resultsGroup = netcdf.inqNcid(NCData, "results");
|
---|
| 77 | variables = netcdf.inqVarIDs(resultsGroup);
|
---|
| 78 | for name = variables
|
---|
| 79 | class_instance = netcdf.inqVar(resultsGroup, name);
|
---|
| 80 | class_instance_names_raw = netcdf.getVar(resultsGroup, name, 'char').';
|
---|
| 81 | class_instance_names = cellstr(class_instance_names_raw);
|
---|
| 82 | for index = 1:numel(class_instance_names)
|
---|
| 83 | class_instance_name = class_instance_names{index};
|
---|
| 84 | model_copy.results = setfield(model_copy.results, class_instance_name, struct());
|
---|
| 85 | end
|
---|
| 86 | %model_copy.results = setfield(model_copy.results, class_instance, class_instance_name);
|
---|
| 87 | end
|
---|
| 88 | model_copy = model_copy;
|
---|
| 89 | if verbose
|
---|
| 90 | disp('Successfully recreated results structs:')
|
---|
| 91 | for fieldname = string(fieldnames(model_copy.results))
|
---|
| 92 | disp(fieldname)
|
---|
| 93 | end
|
---|
| 94 | end
|
---|
| 95 | end
|
---|
| 96 |
|
---|
| 97 |
|
---|
| 98 | function model_copy = check_inversion_class(model_copy, NCData, verbose)
|
---|
| 99 | % get the name of the inversion class: either inversion or m1qn3inversion or taoinversion
|
---|
| 100 | inversionGroup = netcdf.inqNcid(NCData, "inversion");
|
---|
| 101 | varid = netcdf.inqVarID(inversionGroup, 'inversion_class_name');
|
---|
| 102 | inversion_class = convertCharsToStrings(netcdf.getVar(inversionGroup, varid,'char'));
|
---|
| 103 | if strcmp(inversion_class, 'm1qn3inversion')
|
---|
| 104 | model_copy.inversion = m1qn3inversion();
|
---|
| 105 | if verbose
|
---|
| 106 | disp('Successfully created inversion class instance: m1qn3inversion')
|
---|
| 107 | end
|
---|
| 108 | elseif strcmp(inversion_class, 'taoinversion')
|
---|
| 109 | model_copy.inversion = taoinversion();
|
---|
| 110 | if verbose
|
---|
| 111 | disp('Successfully created inversion class instance: taoinversion')
|
---|
| 112 | end
|
---|
| 113 | else
|
---|
| 114 | if verbose
|
---|
| 115 | disp('No inversion class was found')
|
---|
| 116 | end
|
---|
| 117 | end
|
---|
| 118 | model_copy = model_copy;
|
---|
| 119 | end
|
---|
| 120 |
|
---|
| 121 |
|
---|
| 122 | function model_copy = walk_nested_groups(group_location_in_file, model_copy, NCData, verbose)
|
---|
| 123 | % we search the current group level for variables by getting this struct
|
---|
| 124 | variables = netcdf.inqVarIDs(group_location_in_file);
|
---|
| 125 |
|
---|
| 126 | % from the variables struct get the info related to the variables
|
---|
| 127 | for variable = variables
|
---|
| 128 | [varname, xtype, dimids, numatts] = netcdf.inqVar(group_location_in_file, variable);
|
---|
| 129 |
|
---|
| 130 | % keep an eye out for nested structs:
|
---|
| 131 | if strcmp(varname, 'this_is_a_nested')
|
---|
| 132 | is_object = true;
|
---|
| 133 | model_copy = copy_nested_struct(group_location_in_file, model_copy, NCData, verbose);
|
---|
| 134 | elseif strcmp(varname, 'name_of_cell_array')
|
---|
| 135 | is_object = true;
|
---|
| 136 | model_copy = copy_cell_array_of_objects(variables, group_location_in_file, model_copy, NCData, verbose);
|
---|
| 137 | elseif strcmp(varname, 'solution')
|
---|
| 138 | % band-aid pass..
|
---|
| 139 | else
|
---|
| 140 | if logical(exist('is_object', 'var'))
|
---|
| 141 | % already handled
|
---|
| 142 | else
|
---|
| 143 | model_copy = copy_variable_data_to_new_model(group_location_in_file, varname, xtype, model_copy, NCData, verbose);
|
---|
| 144 | end
|
---|
| 145 | end
|
---|
| 146 | end
|
---|
| 147 |
|
---|
| 148 | % try to find groups in current level, if it doesn't work it's because there is nothing there
|
---|
| 149 | %try
|
---|
| 150 | % if it's a nested struct the function copy_nested_struct has already been called
|
---|
| 151 | if logical(exist('is_object', 'var'))
|
---|
| 152 | % do nothing
|
---|
| 153 | else
|
---|
| 154 | % search for nested groups in the current level to feed back to this function
|
---|
| 155 | groups = netcdf.inqGrps(group_location_in_file);
|
---|
| 156 | if not(isempty(groups))
|
---|
| 157 | for group = groups
|
---|
| 158 | group_id = netcdf.inqNcid(group_location_in_file, netcdf.inqGrpName(group));
|
---|
| 159 | %disp(netcdf.inqGrpNameFull(group_id))
|
---|
| 160 | model_copy = walk_nested_groups(group, model_copy, NCData, verbose);
|
---|
| 161 | end
|
---|
| 162 | end
|
---|
| 163 | end
|
---|
| 164 | %catch % no nested groups here
|
---|
| 165 | %end
|
---|
| 166 | end
|
---|
| 167 |
|
---|
| 168 |
|
---|
| 169 | % to read cell arrays with objects:
|
---|
| 170 | function model_copy = copy_cell_array_of_objects(variables, group_location_in_file, model_copy, NCData, verbose);
|
---|
| 171 | %{
|
---|
| 172 | The structure in netcdf for groups with the name_of_cell_array variable is like:
|
---|
| 173 |
|
---|
| 174 | group: 2x6_cell_array_of_objects {
|
---|
| 175 | name_of_cell_array = <name_of_cell_array>
|
---|
| 176 |
|
---|
| 177 | group: Row_1_of_2 {
|
---|
| 178 | group: Col_1_of_6 {
|
---|
| 179 | ... other groups can be here that refer to objects
|
---|
| 180 | } // group Col_6_of_6
|
---|
| 181 | } // group Row_1_of_2
|
---|
| 182 |
|
---|
| 183 | group: Row_2_of_2 {
|
---|
| 184 | group: Col_1_of_6 {
|
---|
| 185 | ... other groups can be here that refer to objects
|
---|
| 186 | } // group Col_6_of_6
|
---|
| 187 | } // group Row_2_of_2
|
---|
| 188 | } // group 2x6_cell_array_of_objects
|
---|
| 189 |
|
---|
| 190 | We have to navigate this structure to extract all the data and recreate the
|
---|
| 191 | original structure when the model was saved
|
---|
| 192 | %}
|
---|
| 193 |
|
---|
| 194 | % get the name_of_cell_array, rows and cols vars
|
---|
| 195 | name_of_cell_array_varID = netcdf.inqVarID(group_location_in_file, 'name_of_cell_array');
|
---|
| 196 | rows_varID = netcdf.inqVarID(group_location_in_file, 'rows');
|
---|
| 197 | cols_varID = netcdf.inqVarID(group_location_in_file, 'cols');
|
---|
| 198 |
|
---|
| 199 | name_of_cell_array = netcdf.getVar(group_location_in_file, name_of_cell_array_varID).'; % transpose
|
---|
| 200 | rows = netcdf.getVar(group_location_in_file, rows_varID);
|
---|
| 201 | cols = netcdf.getVar(group_location_in_file, cols_varID);
|
---|
| 202 |
|
---|
| 203 | % now we work backwards: make the cell array, fill it in, and assign it to the model
|
---|
| 204 |
|
---|
| 205 | % make the cell array
|
---|
| 206 | cell_array_placeholder = cell(rows, cols);
|
---|
| 207 |
|
---|
| 208 | % get subgroups which are elements of the cell array
|
---|
| 209 | subgroups = netcdf.inqGrps(group_location_in_file); % numerical cell array with ID's of subgroups
|
---|
| 210 |
|
---|
| 211 | % enter each subgroup, get the data, assign it to the corresponding index of cell array
|
---|
| 212 | if rows > 1
|
---|
| 213 | % we go over rows
|
---|
| 214 | % set index for cell array rows
|
---|
| 215 | row_idx = 1;
|
---|
| 216 | for row = subgroups
|
---|
| 217 | % now columns
|
---|
| 218 | columns = netcdf.inqGrps(group_location_in_file);
|
---|
| 219 |
|
---|
| 220 | % set index for cell array cols
|
---|
| 221 | col_idx = 1;
|
---|
| 222 | for column = columns
|
---|
| 223 | % now variables
|
---|
| 224 | current_column_varids = netcdf.inqVarIDs(column);
|
---|
| 225 |
|
---|
| 226 | % if 'class_is_a' or 'this_is_a_nested' variables is present at this level we have to handle them accordingly
|
---|
| 227 | try
|
---|
| 228 | class_is_aID = netcdf.inqVarID(column, 'class_is_a');
|
---|
| 229 | col_data = deserialize_class(column, NCData, verbose);
|
---|
| 230 | is_object = true;
|
---|
| 231 | catch
|
---|
| 232 | end
|
---|
| 233 |
|
---|
| 234 | try
|
---|
| 235 | this_is_a_nestedID = netcdf.inqVarID(column, 'this_is_a_nested');
|
---|
| 236 | % functionality not supported
|
---|
| 237 | disp('Error: Cell Arrays of structs not yet supported!')
|
---|
| 238 | % copy_nested_struct(column, model_copy, NCData, verbose)
|
---|
| 239 | is_object = true;
|
---|
| 240 | catch
|
---|
| 241 | end
|
---|
| 242 |
|
---|
| 243 | if logical(exist('is_object', 'var'))
|
---|
| 244 | % already taken care of
|
---|
| 245 | else
|
---|
| 246 | % store the variables as normal -- to be added later
|
---|
| 247 | disp('Error: Cell Arrays of mixed objects not yet supported!')
|
---|
| 248 | for var = current_column_varids
|
---|
| 249 | % not supported
|
---|
| 250 | end
|
---|
| 251 | end
|
---|
| 252 |
|
---|
| 253 | cell_array_placeholder{row_idx, col_idx} = col_data;
|
---|
| 254 | col_idx = col_idx + 1;
|
---|
| 255 | end
|
---|
| 256 | row_idx = row_idx + 1;
|
---|
| 257 | end
|
---|
| 258 | else
|
---|
| 259 | % set index for cell array
|
---|
| 260 | col_idx = 1;
|
---|
| 261 | for column = subgroups
|
---|
| 262 | % now variables
|
---|
| 263 | current_column_varids = netcdf.inqVarIDs(column);
|
---|
| 264 |
|
---|
| 265 | % if 'class_is_a' or 'this_is_a_nested' variables is present at this level we have to handle them accordingly
|
---|
| 266 | try
|
---|
| 267 | classID = netcdf.inqVarID(column, 'class_is_a');
|
---|
| 268 | col_data = deserialize_class(classID, column, NCData, verbose);
|
---|
| 269 | is_object = true;
|
---|
| 270 | catch ME
|
---|
| 271 | rethrow(ME)
|
---|
| 272 | end
|
---|
| 273 |
|
---|
| 274 | try
|
---|
| 275 | this_is_a_nestedID = netcdf.inqVarID(column, 'this_is_a_nested');
|
---|
| 276 | % functionality not supported
|
---|
| 277 | disp('Error: Cell Arrays of structs not yet supported!')
|
---|
| 278 | % col_data = copy_nested_struct(column, model_copy, NCData, verbose);
|
---|
| 279 | is_object = true;
|
---|
| 280 | catch
|
---|
| 281 | end
|
---|
| 282 | if logical(exist('is_object', 'var'))
|
---|
| 283 | % already taken care of
|
---|
| 284 | else
|
---|
| 285 | % store the variables as normal -- to be added later
|
---|
| 286 | disp('Error: Cell Arrays of mixed objects not yet supported!')
|
---|
| 287 | for var = current_column_varids
|
---|
| 288 | % col_data = not supported
|
---|
| 289 | end
|
---|
| 290 | end
|
---|
| 291 |
|
---|
| 292 | cell_array_placeholder{col_idx} = col_data;
|
---|
| 293 | col_idx = col_idx + 1;
|
---|
| 294 |
|
---|
| 295 | end
|
---|
| 296 | end
|
---|
| 297 |
|
---|
| 298 |
|
---|
| 299 | % Like in copy_nested_struct, we can only handle things 1 layer deep.
|
---|
| 300 | % assign cell array to model
|
---|
| 301 | address_to_attr_list = split(netcdf.inqGrpNameFull(group_location_in_file), '/');
|
---|
| 302 | address_to_attr = address_to_attr_list{2};
|
---|
| 303 | if isprop(model_copy.(address_to_attr), name_of_cell_array);
|
---|
| 304 | model_copy.(address_to_attr).(name_of_cell_array) = cell_array_placeholder;
|
---|
| 305 | else
|
---|
| 306 | model_copy = addprop(model_copy.(address_to_attr), name_of_cell_array, cell_array_placeholder);
|
---|
| 307 | end
|
---|
| 308 |
|
---|
| 309 | if verbose
|
---|
| 310 | fprintf("Successfully loaded cell array %s to %s\n", name_of_cell_array,address_to_attr_list{2})
|
---|
| 311 | end
|
---|
| 312 | end
|
---|
| 313 |
|
---|
| 314 |
|
---|
| 315 |
|
---|
| 316 |
|
---|
| 317 | function output = deserialize_class(classID, group, NCData, verbose)
|
---|
| 318 | %{
|
---|
| 319 | This function will recreate a class
|
---|
| 320 | %}
|
---|
| 321 |
|
---|
| 322 | % get the name of the class
|
---|
| 323 | name = netcdf.getVar(group, classID).';
|
---|
| 324 |
|
---|
| 325 | % instantiate it
|
---|
| 326 | class_instance = eval([name, '()']);
|
---|
| 327 |
|
---|
| 328 | % get and assign properties
|
---|
| 329 | subgroups = netcdf.inqGrps(group); % numerical cell array with ID's of subgroups
|
---|
| 330 |
|
---|
| 331 | if numel(subgroups) == 1
|
---|
| 332 | % get properties
|
---|
| 333 | varIDs = netcdf.inqVarIDs(subgroups);
|
---|
| 334 | for varID = varIDs
|
---|
| 335 | % var metadata
|
---|
| 336 | [varname, xtype, dimids, numatts] = netcdf.inqVar(subgroups, varID);
|
---|
| 337 | % data
|
---|
| 338 | data = netcdf.getVar(subgroups, varID);
|
---|
| 339 |
|
---|
| 340 | % netcdf uses Row Major Order but MATLAB uses Column Major Order so we need to transpose all arrays w/ more than 1 dim
|
---|
| 341 | if all(size(data)~=1) || xtype == 2
|
---|
| 342 | data = data.';
|
---|
| 343 | end
|
---|
| 344 |
|
---|
| 345 | % some classes have permissions... so we skip those
|
---|
| 346 | try
|
---|
| 347 | % if property already exists, assign new value
|
---|
| 348 | if isprop(class_instance, varname)
|
---|
| 349 | class_instance.(varname) = data;
|
---|
| 350 | else
|
---|
| 351 | addprop(class_instance, varname, data);
|
---|
| 352 | end
|
---|
| 353 | catch
|
---|
| 354 | end
|
---|
| 355 | end
|
---|
| 356 | else
|
---|
| 357 | % not supported
|
---|
| 358 | end
|
---|
| 359 | output = class_instance;
|
---|
| 360 | end
|
---|
| 361 |
|
---|
| 362 |
|
---|
| 363 | function model_copy = copy_nested_struct(group_location_in_file, model_copy, NCData, verbose)
|
---|
| 364 | %{
|
---|
| 365 | A common multidimensional struct array is the 1xn md.results.TransientSolution struct.
|
---|
| 366 | The process to recreate is as follows:
|
---|
| 367 | 1. Get the name of the struct from group name
|
---|
| 368 | 2. Get the fieldnames from the subgroups
|
---|
| 369 | 3. Recreate the struct with fieldnames
|
---|
| 370 | 4. Populate the fields with their respective values
|
---|
| 371 | %}
|
---|
| 372 |
|
---|
| 373 | % step 1
|
---|
| 374 | name_of_struct = netcdf.inqGrpName(group_location_in_file);
|
---|
| 375 |
|
---|
| 376 | % step 2
|
---|
| 377 | subgroups = netcdf.inqGrps(group_location_in_file); % numerical cell array with ID's of subgroups
|
---|
| 378 | % get single subgroup's data
|
---|
| 379 | single_subgroup_ID = subgroups(1);
|
---|
| 380 | subgroup_varids = netcdf.inqVarIDs(single_subgroup_ID);
|
---|
| 381 | fieldnames = {};
|
---|
| 382 | for variable = subgroup_varids
|
---|
| 383 | [varname, xtype, dimids, numatts] = netcdf.inqVar(single_subgroup_ID, variable);
|
---|
| 384 | fieldnames{end+1} = varname;
|
---|
| 385 | end
|
---|
| 386 |
|
---|
| 387 | % step 3
|
---|
| 388 | address_in_model_raw = split(netcdf.inqGrpNameFull(group_location_in_file), '/');
|
---|
| 389 | address_in_model = address_in_model_raw{2};
|
---|
| 390 |
|
---|
| 391 | % we cannot assign a variable to represent this object as MATLAB treats all variables as copies
|
---|
| 392 | % and not pointers to the same memory address
|
---|
| 393 | % this means that if address_in_model has more than 1 layer, we need to modify the code. For now,
|
---|
| 394 | % we just hope this will do. An example of a no-solution would be model().abc.def.ghi.field whereas we're only assuming model().abc.field now
|
---|
| 395 |
|
---|
| 396 | model_copy.(address_in_model).(name_of_struct) = struct();
|
---|
| 397 | % for every fieldname in the subgroup, create an empty field
|
---|
| 398 | for fieldname = string(fieldnames)
|
---|
| 399 | model_copy.(address_in_model).(name_of_struct).(fieldname) = {};
|
---|
| 400 | end
|
---|
| 401 |
|
---|
| 402 | % use repmat to make the struct array multidimensional along the fields axis
|
---|
| 403 | number_of_dimensions = numel(subgroups);
|
---|
| 404 | model_copy.(address_in_model).(name_of_struct) = repmat(model_copy.(address_in_model).(name_of_struct), 1, number_of_dimensions);
|
---|
| 405 |
|
---|
| 406 | % step 4
|
---|
| 407 | % for every layer of the multidimensional struct array, populate the fields
|
---|
| 408 | for current_layer = 1:number_of_dimensions
|
---|
| 409 | % choose subgroup
|
---|
| 410 | current_layer_subgroup_ID = subgroups(current_layer);
|
---|
| 411 | % get all vars
|
---|
| 412 | current_layer_subgroup_varids = netcdf.inqVarIDs(current_layer_subgroup_ID);
|
---|
| 413 | % get individual vars and set fields at layer current_layer
|
---|
| 414 | for varid = current_layer_subgroup_varids
|
---|
| 415 | [varname, xtype, dimids, numatts] = netcdf.inqVar(current_layer_subgroup_ID, varid);
|
---|
| 416 | data = netcdf.getVar(current_layer_subgroup_ID, varid);
|
---|
| 417 |
|
---|
| 418 | % netcdf uses Row Major Order but MATLAB uses Column Major Order so we need to transpose all arrays w/ more than 1 dim
|
---|
| 419 | if all(size(data)~=1) || xtype == 2
|
---|
| 420 | data = data.';
|
---|
| 421 | end
|
---|
| 422 |
|
---|
| 423 | % set the field
|
---|
| 424 | model_copy.(address_in_model).(name_of_struct)(current_layer).(varname) = data;
|
---|
| 425 | %address_to_struct_in_model = setfield(address_to_struct_in_model(current_layer), varname, data)
|
---|
| 426 | end
|
---|
| 427 | model_copy.(address_in_model).(name_of_struct)(current_layer);
|
---|
| 428 | if verbose
|
---|
| 429 | fprintf("Successfully loaded layer %s to multidimension struct array\n", num2str(current_layer))
|
---|
| 430 | end
|
---|
| 431 | end
|
---|
| 432 | model_copy = model_copy;
|
---|
| 433 | if verbose
|
---|
| 434 | fprintf('Successfully recreated multidimensional structure array %s in md.%s\n', name_of_struct, address_in_model)
|
---|
| 435 | end
|
---|
| 436 | end
|
---|
| 437 |
|
---|
| 438 |
|
---|
| 439 |
|
---|
| 440 |
|
---|
| 441 | %{
|
---|
| 442 | Since there are two types of objects that MATLAB uses (classes and structs), we have to check
|
---|
| 443 | which object we're working with before we can set any fields/attributes of it. After this is completed,
|
---|
| 444 | we can write the data to that location in the model.
|
---|
| 445 | %}
|
---|
| 446 |
|
---|
| 447 | function model_copy = copy_variable_data_to_new_model(group_location_in_file, varname, xtype, model_copy, NCData, verbose)
|
---|
| 448 | %disp(varname)
|
---|
| 449 | % this is an inversion band-aid
|
---|
| 450 | if strcmp(varname, 'inversion_class_name') || strcmp(varname, 'name_of_struct') || strcmp(varname, 'solution')
|
---|
| 451 | % we don't need this
|
---|
| 452 | else
|
---|
| 453 | % putting try/catch here so that any errors generated while copying data are logged and not lost by the try/catch in walk_nested_groups function
|
---|
| 454 | try
|
---|
| 455 | %disp(netcdf.inqGrpNameFull(group_location_in_file))
|
---|
| 456 | %disp(class(netcdf.inqGrpNameFull(group_location_in_file)))
|
---|
| 457 | address_to_attr = strrep(netcdf.inqGrpNameFull(group_location_in_file), '/', '.');
|
---|
| 458 | varid = netcdf.inqVarID(group_location_in_file, varname);
|
---|
| 459 | data = netcdf.getVar(group_location_in_file, varid);
|
---|
| 460 |
|
---|
| 461 |
|
---|
| 462 | % if we have an empty string
|
---|
| 463 | if xtype == 2 && isempty(all(data))
|
---|
| 464 | data = cell(char());
|
---|
| 465 | % if we have an empty cell-char array
|
---|
| 466 | elseif numel(data) == 1 && xtype == 3 && data == -32767
|
---|
| 467 | data = cell(char());
|
---|
| 468 | elseif isempty(all(data))
|
---|
| 469 | data = []
|
---|
| 470 | end
|
---|
| 471 | % band-aid for some cell-char-arrays:
|
---|
| 472 | if xtype == 2 && strcmp(data, 'default')
|
---|
| 473 | data = {'default'};
|
---|
| 474 | end
|
---|
| 475 |
|
---|
| 476 | % netcdf uses Row Major Order but MATLAB uses Column Major Order so we need to transpose all arrays w/ more than 1 dim
|
---|
| 477 | if all(size(data)~=1) || xtype == 2
|
---|
| 478 | data = data.';
|
---|
| 479 | end
|
---|
| 480 |
|
---|
| 481 | % if we have a list of strings
|
---|
| 482 | if xtype == 2
|
---|
| 483 | try
|
---|
| 484 | if strcmp(netcdf.getAtt(group_location_in_file, varid, "type_is"), 'cell_array_of_strings')
|
---|
| 485 | data = cellstr(data);
|
---|
| 486 | end
|
---|
| 487 | catch
|
---|
| 488 | % no attr found so we pass
|
---|
| 489 | end
|
---|
| 490 | end
|
---|
| 491 |
|
---|
| 492 | % the issm c compiler does not work with int64 datatypes, so we need to convert those to int16
|
---|
| 493 | % reference this (very hard to find) link for netcdf4 datatypes: https://docs.unidata.ucar.edu/netcdf-c/current/netcdf_8h_source.html
|
---|
| 494 | %xtype
|
---|
| 495 | if xtype == 10
|
---|
| 496 | arg_to_eval = ['model_copy', address_to_attr, '.', varname, ' = ' , 'double(data);'];
|
---|
| 497 | eval(arg_to_eval);
|
---|
| 498 | %disp('Loaded int64 as int16')
|
---|
| 499 | else
|
---|
| 500 | arg_to_eval = ['model_copy', address_to_attr, '.', varname, ' = data;'];
|
---|
| 501 | eval(arg_to_eval);
|
---|
| 502 | end
|
---|
| 503 |
|
---|
| 504 | if verbose
|
---|
| 505 | full_addy = netcdf.inqGrpNameFull(group_location_in_file);
|
---|
| 506 | %disp(xtype)
|
---|
| 507 | %class(data)
|
---|
| 508 | fprintf('Successfully loaded %s to %s\n', varname, full_addy);
|
---|
| 509 | end
|
---|
| 510 |
|
---|
| 511 | catch ME %ME is an MException struct
|
---|
| 512 | % Some error occurred if you get here.
|
---|
| 513 | fprintf(1,'There was an error with %s! \n', varname)
|
---|
| 514 | errorMessage = sprintf('Error in function %s() at line %d.\n\nError Message:\n%s', ME.stack.name, ME.stack.line, ME.message);
|
---|
| 515 | fprintf(1, '%s\n', errorMessage);
|
---|
| 516 | uiwait(warndlg(errorMessage));
|
---|
| 517 | %line = ME.stack.line
|
---|
| 518 | %fprintf(1,'There was an error with %s! \n', varname)
|
---|
| 519 | %fprintf('The message was:\n%s\n',ME.message);
|
---|
| 520 | %fprintf(1,'The identifier was:\n%s\n',ME.identifier);
|
---|
| 521 |
|
---|
| 522 | % more error handling...
|
---|
| 523 | end
|
---|
| 524 | end
|
---|
| 525 | model_copy = model_copy;
|
---|
| 526 | end
|
---|