| 1 | /*!\file PentaVertexInput.c
 | 
|---|
| 2 |  * \brief: implementation of the PentaVertexInput object
 | 
|---|
| 3 |  */
 | 
|---|
| 4 | 
 | 
|---|
| 5 | #ifdef HAVE_CONFIG_H
 | 
|---|
| 6 |         #include "config.h"
 | 
|---|
| 7 | #else
 | 
|---|
| 8 | #error "Cannot compile with HAVE_CONFIG_H symbol! run configure first!"
 | 
|---|
| 9 | #endif
 | 
|---|
| 10 | 
 | 
|---|
| 11 | #include "stdio.h"
 | 
|---|
| 12 | #include <string.h>
 | 
|---|
| 13 | #include "../objects.h"
 | 
|---|
| 14 | #include "../../EnumDefinitions/EnumDefinitions.h"
 | 
|---|
| 15 | #include "../../shared/shared.h"
 | 
|---|
| 16 | #include "../../DataSet/DataSet.h"
 | 
|---|
| 17 | #include "../../include/include.h"
 | 
|---|
| 18 | 
 | 
|---|
| 19 | /*Object constructors and destructor*/
 | 
|---|
| 20 | /*FUNCTION PentaVertexInput::PentaVertexInput(){{{1*/
 | 
|---|
| 21 | PentaVertexInput::PentaVertexInput(){
 | 
|---|
| 22 |         return;
 | 
|---|
| 23 | }
 | 
|---|
| 24 | /*}}}*/
 | 
|---|
| 25 | /*FUNCTION PentaVertexInput::PentaVertexInput(int in_enum_type,double* values){{{1*/
 | 
|---|
| 26 | PentaVertexInput::PentaVertexInput(int in_enum_type,double* in_values){
 | 
|---|
| 27 | 
 | 
|---|
| 28 |         enum_type=in_enum_type;
 | 
|---|
| 29 |         values[0]=in_values[0];
 | 
|---|
| 30 |         values[1]=in_values[1];
 | 
|---|
| 31 |         values[2]=in_values[2];
 | 
|---|
| 32 |         values[3]=in_values[3];
 | 
|---|
| 33 |         values[4]=in_values[4];
 | 
|---|
| 34 |         values[5]=in_values[5];
 | 
|---|
| 35 | }
 | 
|---|
| 36 | /*}}}*/
 | 
|---|
| 37 | /*FUNCTION PentaVertexInput::~PentaVertexInput(){{{1*/
 | 
|---|
| 38 | PentaVertexInput::~PentaVertexInput(){
 | 
|---|
| 39 |         return;
 | 
|---|
| 40 | }
 | 
|---|
| 41 | /*}}}*/
 | 
|---|
| 42 | 
 | 
|---|
| 43 | /*Object management*/
 | 
|---|
| 44 | /*FUNCTION PentaVertexInput::copy{{{1*/
 | 
|---|
| 45 | Object* PentaVertexInput::copy() {
 | 
|---|
| 46 |         
 | 
|---|
| 47 |         return new PentaVertexInput(this->enum_type,this->values);
 | 
|---|
| 48 | 
 | 
|---|
| 49 | }
 | 
|---|
| 50 | /*}}}*/
 | 
|---|
| 51 | /*FUNCTION PentaVertexInput::DeepEcho{{{1*/
 | 
|---|
| 52 | void PentaVertexInput::DeepEcho(void){
 | 
|---|
| 53 | 
 | 
|---|
| 54 |         printf("PentaVertexInput:\n");
 | 
|---|
| 55 |         printf("   enum: %i (%s)\n",this->enum_type,EnumAsString(this->enum_type));
 | 
|---|
| 56 |         printf("   values: [%g %g %g %g %g %g]\n",this->values[0],this->values[1],this->values[2],this->values[3],this->values[4],this->values[5]);
 | 
|---|
| 57 | }
 | 
|---|
| 58 | /*}}}*/
 | 
|---|
| 59 | /*FUNCTION PentaVertexInput::Demarshall{{{1*/
 | 
|---|
| 60 | void  PentaVertexInput::Demarshall(char** pmarshalled_dataset){
 | 
|---|
| 61 | 
 | 
|---|
| 62 |         char* marshalled_dataset=NULL;
 | 
|---|
| 63 |         int   i;
 | 
|---|
| 64 | 
 | 
|---|
| 65 |         /*recover marshalled_dataset: */
 | 
|---|
| 66 |         marshalled_dataset=*pmarshalled_dataset;
 | 
|---|
| 67 | 
 | 
|---|
| 68 |         /*this time, no need to get enum type, the pointer directly points to the beginning of the 
 | 
|---|
| 69 |          *object data (thanks to DataSet::Demarshall):*/
 | 
|---|
| 70 |         memcpy(&enum_type,marshalled_dataset,sizeof(enum_type));marshalled_dataset+=sizeof(enum_type);
 | 
|---|
| 71 |         memcpy(&values,marshalled_dataset,sizeof(values));marshalled_dataset+=sizeof(values);
 | 
|---|
| 72 | 
 | 
|---|
| 73 |         /*return: */
 | 
|---|
| 74 |         *pmarshalled_dataset=marshalled_dataset;
 | 
|---|
| 75 |         return;
 | 
|---|
| 76 | }
 | 
|---|
| 77 | /*}}}*/
 | 
|---|
| 78 | /*FUNCTION PentaVertexInput::Echo {{{1*/
 | 
|---|
| 79 | void PentaVertexInput::Echo(void){
 | 
|---|
| 80 |         this->DeepEcho();
 | 
|---|
| 81 | }
 | 
|---|
| 82 | /*}}}*/
 | 
|---|
| 83 | /*FUNCTION PentaVertexInput::Enum{{{1*/
 | 
|---|
| 84 | int PentaVertexInput::Enum(void){
 | 
|---|
| 85 | 
 | 
|---|
| 86 |         return PentaVertexInputEnum;
 | 
|---|
| 87 | 
 | 
|---|
| 88 | }
 | 
|---|
| 89 | /*}}}*/
 | 
|---|
| 90 | /*FUNCTION PentaVertexInput::EnumType{{{1*/
 | 
|---|
| 91 | int PentaVertexInput::EnumType(void){
 | 
|---|
| 92 | 
 | 
|---|
| 93 |         return this->enum_type;
 | 
|---|
| 94 | 
 | 
|---|
| 95 | }
 | 
|---|
| 96 | /*}}}*/
 | 
|---|
| 97 | /*FUNCTION PentaVertexInput::Id{{{1*/
 | 
|---|
| 98 | int    PentaVertexInput::Id(void){ return -1; }
 | 
|---|
| 99 | /*}}}*/
 | 
|---|
| 100 | /*FUNCTION PentaVertexInput::Marshall{{{1*/
 | 
|---|
| 101 | void  PentaVertexInput::Marshall(char** pmarshalled_dataset){
 | 
|---|
| 102 | 
 | 
|---|
| 103 |         char* marshalled_dataset=NULL;
 | 
|---|
| 104 |         int   enum_value=0;
 | 
|---|
| 105 | 
 | 
|---|
| 106 |         /*recover marshalled_dataset: */
 | 
|---|
| 107 |         marshalled_dataset=*pmarshalled_dataset;
 | 
|---|
| 108 | 
 | 
|---|
| 109 |         /*get enum value of PentaVertexInput: */
 | 
|---|
| 110 |         enum_value=PentaVertexInputEnum;
 | 
|---|
| 111 |         
 | 
|---|
| 112 |         /*marshall enum: */
 | 
|---|
| 113 |         memcpy(marshalled_dataset,&enum_value,sizeof(enum_value));marshalled_dataset+=sizeof(enum_value);
 | 
|---|
| 114 |         
 | 
|---|
| 115 |         /*marshall PentaVertexInput data: */
 | 
|---|
| 116 |         memcpy(marshalled_dataset,&enum_type,sizeof(enum_type));marshalled_dataset+=sizeof(enum_type);
 | 
|---|
| 117 |         memcpy(marshalled_dataset,&values,sizeof(values));marshalled_dataset+=sizeof(values);
 | 
|---|
| 118 | 
 | 
|---|
| 119 |         *pmarshalled_dataset=marshalled_dataset;
 | 
|---|
| 120 | }
 | 
|---|
| 121 | /*}}}*/
 | 
|---|
| 122 | /*FUNCTION PentaVertexInput::MarshallSize{{{1*/
 | 
|---|
| 123 | int   PentaVertexInput::MarshallSize(){
 | 
|---|
| 124 |         
 | 
|---|
| 125 |         return sizeof(values)+
 | 
|---|
| 126 |                 +sizeof(enum_type)+
 | 
|---|
| 127 |                 +sizeof(int); //sizeof(int) for enum value
 | 
|---|
| 128 | }
 | 
|---|
| 129 | /*}}}*/
 | 
|---|
| 130 | /*FUNCTION PentaVertexInput::MyRank{{{1*/
 | 
|---|
| 131 | int    PentaVertexInput::MyRank(void){ 
 | 
|---|
| 132 |         extern int my_rank;
 | 
|---|
| 133 |         return my_rank; 
 | 
|---|
| 134 | }
 | 
|---|
| 135 | /*}}}*/
 | 
|---|
| 136 | /*FUNCTION PentaVertexInput::SpawnSingInput{{{1*/
 | 
|---|
| 137 | Input* PentaVertexInput::SpawnSingInput(int index){
 | 
|---|
| 138 | 
 | 
|---|
| 139 |         /*output*/
 | 
|---|
| 140 |         SingVertexInput* outinput=NULL;
 | 
|---|
| 141 | 
 | 
|---|
| 142 |         /*Create new Sing input (copy of current input)*/
 | 
|---|
| 143 |         ISSMASSERT(index<6 && index>=0);
 | 
|---|
| 144 |         outinput=new SingVertexInput(this->enum_type,this->values[index]);
 | 
|---|
| 145 | 
 | 
|---|
| 146 |         /*Assign output*/
 | 
|---|
| 147 |         return outinput;
 | 
|---|
| 148 | 
 | 
|---|
| 149 | }
 | 
|---|
| 150 | /*}}}*/
 | 
|---|
| 151 | /*FUNCTION PentaVertexInput::SpawnBeamInput{{{1*/
 | 
|---|
| 152 | Input* PentaVertexInput::SpawnBeamInput(int* indices){
 | 
|---|
| 153 | 
 | 
|---|
| 154 |         /*output*/
 | 
|---|
| 155 |         BeamVertexInput* outinput=NULL;
 | 
|---|
| 156 |         double newvalues[2];
 | 
|---|
| 157 | 
 | 
|---|
| 158 |         /*Loop over the new indices*/
 | 
|---|
| 159 |         for(int i=0;i<2;i++){
 | 
|---|
| 160 | 
 | 
|---|
| 161 |                 /*Check index value*/
 | 
|---|
| 162 |                 ISSMASSERT(indices[i]>=0 && indices[i]<6);
 | 
|---|
| 163 | 
 | 
|---|
| 164 |                 /*Assign value to new input*/
 | 
|---|
| 165 |                 newvalues[i]=this->values[indices[i]];
 | 
|---|
| 166 |         }
 | 
|---|
| 167 | 
 | 
|---|
| 168 |         /*Create new Beam input*/
 | 
|---|
| 169 |         outinput=new BeamVertexInput(this->enum_type,&newvalues[0]);
 | 
|---|
| 170 | 
 | 
|---|
| 171 |         /*Assign output*/
 | 
|---|
| 172 |         return outinput;
 | 
|---|
| 173 | 
 | 
|---|
| 174 | }
 | 
|---|
| 175 | /*}}}*/
 | 
|---|
| 176 | /*FUNCTION PentaVertexInput::SpawnTriaInput{{{1*/
 | 
|---|
| 177 | Input* PentaVertexInput::SpawnTriaInput(int* indices){
 | 
|---|
| 178 | 
 | 
|---|
| 179 |         /*output*/
 | 
|---|
| 180 |         TriaVertexInput* outinput=NULL;
 | 
|---|
| 181 |         double newvalues[3];
 | 
|---|
| 182 | 
 | 
|---|
| 183 |         /*Loop over the new indices*/
 | 
|---|
| 184 |         for(int i=0;i<3;i++){
 | 
|---|
| 185 | 
 | 
|---|
| 186 |                 /*Check index value*/
 | 
|---|
| 187 |                 ISSMASSERT(indices[i]>=0 && indices[i]<6);
 | 
|---|
| 188 | 
 | 
|---|
| 189 |                 /*Assign value to new input*/
 | 
|---|
| 190 |                 newvalues[i]=this->values[indices[i]];
 | 
|---|
| 191 |         }
 | 
|---|
| 192 | 
 | 
|---|
| 193 |         /*Create new Tria input*/
 | 
|---|
| 194 |         outinput=new TriaVertexInput(this->enum_type,&newvalues[0]);
 | 
|---|
| 195 | 
 | 
|---|
| 196 |         /*Assign output*/
 | 
|---|
| 197 |         return outinput;
 | 
|---|
| 198 | 
 | 
|---|
| 199 | }
 | 
|---|
| 200 | /*}}}*/
 | 
|---|
| 201 | /*FUNCTION PentaVertexInput::SpawnResult{{{1*/
 | 
|---|
| 202 | ElementResult* PentaVertexInput::SpawnResult(int step, double time){
 | 
|---|
| 203 | 
 | 
|---|
| 204 |         return new PentaVertexElementResult(this->enum_type,this->values,step,time);
 | 
|---|
| 205 | 
 | 
|---|
| 206 | }
 | 
|---|
| 207 | /*}}}*/
 | 
|---|
| 208 | 
 | 
|---|
| 209 | /*Object functions*/
 | 
|---|
| 210 | /*FUNCTION PentaVertexInput::GetParameterValue(bool* pvalue) {{{1*/
 | 
|---|
| 211 | void PentaVertexInput::GetParameterValue(bool* pvalue){ISSMERROR(" not supported yet!");}
 | 
|---|
| 212 | /*}}}*/
 | 
|---|
| 213 | /*FUNCTION PentaVertexInput::GetParameterValue(int* pvalue){{{1*/
 | 
|---|
| 214 | void PentaVertexInput::GetParameterValue(int* pvalue){ISSMERROR(" not supported yet!");}
 | 
|---|
| 215 | /*}}}*/
 | 
|---|
| 216 | /*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue){{{1*/
 | 
|---|
| 217 | void PentaVertexInput::GetParameterValue(double* pvalue){ISSMERROR(" not supported yet!");}
 | 
|---|
| 218 | /*}}}*/
 | 
|---|
| 219 | /*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue,Node* node){{{1*/
 | 
|---|
| 220 | void PentaVertexInput::GetParameterValue(double* pvalue,Node* node){ISSMERROR(" not supported yet!");}
 | 
|---|
| 221 | /*}}}*/
 | 
|---|
| 222 | /*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue,Node* node1,Node* node2,double gauss_coord){{{1*/
 | 
|---|
| 223 | void PentaVertexInput::GetParameterValue(double* pvalue,Node* node1,Node* node2,double gauss_coord){ISSMERROR(" not supported yet!");}
 | 
|---|
| 224 | /*}}}*/
 | 
|---|
| 225 | /*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue,double* gauss){{{1*/
 | 
|---|
| 226 | void PentaVertexInput::GetParameterValue(double* pvalue,double* gauss){
 | 
|---|
| 227 |         /*P1 interpolation on Gauss point*/
 | 
|---|
| 228 | 
 | 
|---|
| 229 |         /*intermediary*/
 | 
|---|
| 230 |         double l1l6[6];
 | 
|---|
| 231 | 
 | 
|---|
| 232 |         /*nodal functions: */
 | 
|---|
| 233 |         GetNodalFunctionsP1(&l1l6[0],gauss);
 | 
|---|
| 234 | 
 | 
|---|
| 235 |         /*Assign output pointers:*/
 | 
|---|
| 236 |         *pvalue=l1l6[0]*values[0]+l1l6[1]*values[1]+l1l6[2]*values[2]+l1l6[3]*values[3]+l1l6[4]*values[4]+l1l6[5]*values[5];
 | 
|---|
| 237 | 
 | 
|---|
| 238 | }
 | 
|---|
| 239 | /*}}}*/
 | 
|---|
| 240 | /*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue,double* gauss,double defaultvalue){{{1*/
 | 
|---|
| 241 | void PentaVertexInput::GetParameterValue(double* pvalue,double* gauss,double defaultvalue){ISSMERROR(" not supported yet!");}
 | 
|---|
| 242 | /*}}}*/
 | 
|---|
| 243 | /*FUNCTION PentaVertexInput::GetParameterValues(double* values,double* gauss_pointers, int numgauss){{{1*/
 | 
|---|
| 244 | void PentaVertexInput::GetParameterValues(double* values,double* gauss_pointers, int numgauss){
 | 
|---|
| 245 |         /*It is assumed that output values has been correctly allocated*/
 | 
|---|
| 246 | 
 | 
|---|
| 247 |         int i,j;
 | 
|---|
| 248 |         double gauss[4];
 | 
|---|
| 249 | 
 | 
|---|
| 250 |         for (i=0;i<numgauss;i++){
 | 
|---|
| 251 | 
 | 
|---|
| 252 |                 /*Get current Gauss point coordinates*/
 | 
|---|
| 253 |                 for (j=0;j<4;j++) gauss[j]=gauss_pointers[i*4+j];
 | 
|---|
| 254 | 
 | 
|---|
| 255 |                 /*Assign parameter value*/
 | 
|---|
| 256 |                 GetParameterValue(&values[i],&gauss[0]);
 | 
|---|
| 257 |         }
 | 
|---|
| 258 | }
 | 
|---|
| 259 | /*}}}*/
 | 
|---|
| 260 | /*FUNCTION PentaVertexInput::GetParameterDerivativeValue(double* derivativevalues, double* xyz_list, double* gauss){{{1*/
 | 
|---|
| 261 | void PentaVertexInput::GetParameterDerivativeValue(double* p, double* xyz_list, double* gauss){
 | 
|---|
| 262 |         /*From grid values of parameter p (p_list[0], p_list[1], p_list[2], p_list[3], p_list[4] and p_list[4]), return parameter derivative value at gaussian point specified by gauss_coord:
 | 
|---|
| 263 |          *   dp/dx=p_list[0]*dh1/dx+p_list[1]*dh2/dx+p_list[2]*dh3/dx+p_list[3]*dh4/dx+p_list[4]*dh5/dx+p_list[5]*dh6/dx;
 | 
|---|
| 264 |          *   dp/dy=p_list[0]*dh1/dy+p_list[1]*dh2/dy+p_list[2]*dh3/dy+p_list[3]*dh4/dy+p_list[4]*dh5/dy+p_list[5]*dh6/dy;
 | 
|---|
| 265 |          *   dp/dz=p_list[0]*dh1/dz+p_list[1]*dh2/dz+p_list[2]*dh3/dz+p_list[3]*dh4/dz+p_list[4]*dh5/dz+p_list[5]*dh6/dz;
 | 
|---|
| 266 |          *
 | 
|---|
| 267 |          *   p is a vector of size 3x1 already allocated.
 | 
|---|
| 268 |          */
 | 
|---|
| 269 | 
 | 
|---|
| 270 |         const int NDOF3=3;
 | 
|---|
| 271 |         const int numgrids=6;
 | 
|---|
| 272 |         double dh1dh6[NDOF3][numgrids];
 | 
|---|
| 273 | 
 | 
|---|
| 274 |         /*Get nodal funnctions derivatives in actual coordinate system: */
 | 
|---|
| 275 |         GetNodalFunctionsP1Derivatives(&dh1dh6[0][0],xyz_list, gauss);
 | 
|---|
| 276 | 
 | 
|---|
| 277 |         p[0]=this->values[0]*dh1dh6[0][0]+this->values[1]*dh1dh6[0][1]+this->values[2]*dh1dh6[0][2]+this->values[3]*dh1dh6[0][3]+this->values[4]*dh1dh6[0][4]+this->values[5]*dh1dh6[0][5];
 | 
|---|
| 278 |         p[1]=this->values[0]*dh1dh6[1][0]+this->values[1]*dh1dh6[1][1]+this->values[2]*dh1dh6[1][2]+this->values[3]*dh1dh6[1][3]+this->values[4]*dh1dh6[1][4]+this->values[5]*dh1dh6[1][5];
 | 
|---|
| 279 |         p[2]=this->values[0]*dh1dh6[2][0]+this->values[1]*dh1dh6[2][1]+this->values[2]*dh1dh6[2][2]+this->values[3]*dh1dh6[2][3]+this->values[4]*dh1dh6[2][4]+this->values[5]*dh1dh6[2][5];
 | 
|---|
| 280 | 
 | 
|---|
| 281 | }
 | 
|---|
| 282 | /*}}}*/
 | 
|---|
| 283 | /*FUNCTION PentaVertexInput::GetVxStrainRate3d(double* epsilonvx,double* xyz_list, double* gauss) {{{1*/
 | 
|---|
| 284 | void PentaVertexInput::GetVxStrainRate3d(double* epsilonvx,double* xyz_list, double* gauss){
 | 
|---|
| 285 |         int i,j;
 | 
|---|
| 286 | 
 | 
|---|
| 287 |         const int numgrids=6;
 | 
|---|
| 288 |         const int DOFVELOCITY=3;
 | 
|---|
| 289 |         double B[8][27];
 | 
|---|
| 290 |         double B_reduced[6][DOFVELOCITY*numgrids];
 | 
|---|
| 291 |         double velocity[numgrids][DOFVELOCITY];
 | 
|---|
| 292 | 
 | 
|---|
| 293 |         /*Get B matrix: */
 | 
|---|
| 294 |         GetBStokes(&B[0][0], xyz_list, gauss);
 | 
|---|
| 295 |         /*Create a reduced matrix of B to get rid of pressure */
 | 
|---|
| 296 |         for (i=0;i<6;i++){
 | 
|---|
| 297 |                 for (j=0;j<3;j++){
 | 
|---|
| 298 |                         B_reduced[i][j]=B[i][j];
 | 
|---|
| 299 |                 }
 | 
|---|
| 300 |                 for (j=4;j<7;j++){
 | 
|---|
| 301 |                         B_reduced[i][j-1]=B[i][j];
 | 
|---|
| 302 |                 }
 | 
|---|
| 303 |                 for (j=8;j<11;j++){
 | 
|---|
| 304 |                         B_reduced[i][j-2]=B[i][j];
 | 
|---|
| 305 |                 }
 | 
|---|
| 306 |                 for (j=12;j<15;j++){
 | 
|---|
| 307 |                         B_reduced[i][j-3]=B[i][j];
 | 
|---|
| 308 |                 }
 | 
|---|
| 309 |                 for (j=16;j<19;j++){
 | 
|---|
| 310 |                         B_reduced[i][j-4]=B[i][j];
 | 
|---|
| 311 |                 }
 | 
|---|
| 312 |                 for (j=20;j<23;j++){
 | 
|---|
| 313 |                         B_reduced[i][j-5]=B[i][j];
 | 
|---|
| 314 |                 }
 | 
|---|
| 315 |         }
 | 
|---|
| 316 | 
 | 
|---|
| 317 |         /*Here, we are computing the strain rate of (vx,0,0)*/
 | 
|---|
| 318 |         for(i=0;i<numgrids;i++){
 | 
|---|
| 319 |                 velocity[i][0]=this->values[i];
 | 
|---|
| 320 |                 velocity[i][1]=0.0;
 | 
|---|
| 321 |                 velocity[i][2]=0.0;
 | 
|---|
| 322 |         }
 | 
|---|
| 323 |         /*Multiply B by velocity, to get strain rate: */
 | 
|---|
| 324 |         MatrixMultiply(&B_reduced[0][0],6,DOFVELOCITY*numgrids,0,&velocity[0][0],DOFVELOCITY*numgrids,1,0,epsilonvx,0);
 | 
|---|
| 325 | 
 | 
|---|
| 326 | }
 | 
|---|
| 327 | /*}}}*/
 | 
|---|
| 328 | /*FUNCTION PentaVertexInput::GetVyStrainRate3d(double* epsilonvy,double* xyz_list, double* gauss) {{{1*/
 | 
|---|
| 329 | void PentaVertexInput::GetVyStrainRate3d(double* epsilonvy,double* xyz_list, double* gauss){
 | 
|---|
| 330 |         int i,j;
 | 
|---|
| 331 | 
 | 
|---|
| 332 |         const int numgrids=6;
 | 
|---|
| 333 |         const int DOFVELOCITY=3;
 | 
|---|
| 334 |         double B[8][27];
 | 
|---|
| 335 |         double B_reduced[6][DOFVELOCITY*numgrids];
 | 
|---|
| 336 |         double velocity[numgrids][DOFVELOCITY];
 | 
|---|
| 337 | 
 | 
|---|
| 338 |         /*Get B matrix: */
 | 
|---|
| 339 |         GetBStokes(&B[0][0], xyz_list, gauss);
 | 
|---|
| 340 |         /*Create a reduced matrix of B to get rid of pressure */
 | 
|---|
| 341 |         for (i=0;i<6;i++){
 | 
|---|
| 342 |                 for (j=0;j<3;j++){
 | 
|---|
| 343 |                         B_reduced[i][j]=B[i][j];
 | 
|---|
| 344 |                 }
 | 
|---|
| 345 |                 for (j=4;j<7;j++){
 | 
|---|
| 346 |                         B_reduced[i][j-1]=B[i][j];
 | 
|---|
| 347 |                 }
 | 
|---|
| 348 |                 for (j=8;j<11;j++){
 | 
|---|
| 349 |                         B_reduced[i][j-2]=B[i][j];
 | 
|---|
| 350 |                 }
 | 
|---|
| 351 |                 for (j=12;j<15;j++){
 | 
|---|
| 352 |                         B_reduced[i][j-3]=B[i][j];
 | 
|---|
| 353 |                 }
 | 
|---|
| 354 |                 for (j=16;j<19;j++){
 | 
|---|
| 355 |                         B_reduced[i][j-4]=B[i][j];
 | 
|---|
| 356 |                 }
 | 
|---|
| 357 |                 for (j=20;j<23;j++){
 | 
|---|
| 358 |                         B_reduced[i][j-5]=B[i][j];
 | 
|---|
| 359 |                 }
 | 
|---|
| 360 |         }
 | 
|---|
| 361 | 
 | 
|---|
| 362 |         /*Here, we are computing the strain rate of (0,vy,0)*/
 | 
|---|
| 363 |         for(i=0;i<numgrids;i++){
 | 
|---|
| 364 |                 velocity[i][0]=0.0;
 | 
|---|
| 365 |                 velocity[i][1]=this->values[i];
 | 
|---|
| 366 |                 velocity[i][2]=0.0;
 | 
|---|
| 367 |         }
 | 
|---|
| 368 |         /*Multiply B by velocity, to get strain rate: */
 | 
|---|
| 369 |         MatrixMultiply(&B_reduced[0][0],6,DOFVELOCITY*numgrids,0,&velocity[0][0],DOFVELOCITY*numgrids,1,0,epsilonvy,0);
 | 
|---|
| 370 | 
 | 
|---|
| 371 | }
 | 
|---|
| 372 | /*}}}*/
 | 
|---|
| 373 | /*FUNCTION PentaVertexInput::GetVzStrainRate3d(double* epsilonvz,double* xyz_list, double* gauss) {{{1*/
 | 
|---|
| 374 | void PentaVertexInput::GetVzStrainRate3d(double* epsilonvz,double* xyz_list, double* gauss){
 | 
|---|
| 375 |         int i,j;
 | 
|---|
| 376 | 
 | 
|---|
| 377 |         const int numgrids=6;
 | 
|---|
| 378 |         const int DOFVELOCITY=3;
 | 
|---|
| 379 |         double B[8][27];
 | 
|---|
| 380 |         double B_reduced[6][DOFVELOCITY*numgrids];
 | 
|---|
| 381 |         double velocity[numgrids][DOFVELOCITY];
 | 
|---|
| 382 | 
 | 
|---|
| 383 |         /*Get B matrix: */
 | 
|---|
| 384 |         GetBStokes(&B[0][0], xyz_list, gauss);
 | 
|---|
| 385 |         /*Create a reduced matrix of B to get rid of pressure */
 | 
|---|
| 386 |         for (i=0;i<6;i++){
 | 
|---|
| 387 |                 for (j=0;j<3;j++){
 | 
|---|
| 388 |                         B_reduced[i][j]=B[i][j];
 | 
|---|
| 389 |                 }
 | 
|---|
| 390 |                 for (j=4;j<7;j++){
 | 
|---|
| 391 |                         B_reduced[i][j-1]=B[i][j];
 | 
|---|
| 392 |                 }
 | 
|---|
| 393 |                 for (j=8;j<11;j++){
 | 
|---|
| 394 |                         B_reduced[i][j-2]=B[i][j];
 | 
|---|
| 395 |                 }
 | 
|---|
| 396 |                 for (j=12;j<15;j++){
 | 
|---|
| 397 |                         B_reduced[i][j-3]=B[i][j];
 | 
|---|
| 398 |                 }
 | 
|---|
| 399 |                 for (j=16;j<19;j++){
 | 
|---|
| 400 |                         B_reduced[i][j-4]=B[i][j];
 | 
|---|
| 401 |                 }
 | 
|---|
| 402 |                 for (j=20;j<23;j++){
 | 
|---|
| 403 |                         B_reduced[i][j-5]=B[i][j];
 | 
|---|
| 404 |                 }
 | 
|---|
| 405 |         }
 | 
|---|
| 406 | 
 | 
|---|
| 407 |         /*Here, we are computing the strain rate of (0,0,vz)*/
 | 
|---|
| 408 |         for(i=0;i<numgrids;i++){
 | 
|---|
| 409 |                 velocity[i][0]=0.0;
 | 
|---|
| 410 |                 velocity[i][1]=0.0;
 | 
|---|
| 411 |                 velocity[i][2]=this->values[i];
 | 
|---|
| 412 |         }
 | 
|---|
| 413 | 
 | 
|---|
| 414 |         /*Multiply B by velocity, to get strain rate: */
 | 
|---|
| 415 |         MatrixMultiply(&B_reduced[0][0],6,DOFVELOCITY*numgrids,0,&velocity[0][0],DOFVELOCITY*numgrids,1,0,epsilonvz,0);
 | 
|---|
| 416 | 
 | 
|---|
| 417 | }
 | 
|---|
| 418 | /*}}}*/
 | 
|---|
| 419 | /*FUNCTION PentaVertexInput::GetVxStrainRate3dPattyn(double* epsilonvx,double* xyz_list, double* gauss) {{{1*/
 | 
|---|
| 420 | void PentaVertexInput::GetVxStrainRate3dPattyn(double* epsilonvx,double* xyz_list, double* gauss){
 | 
|---|
| 421 | 
 | 
|---|
| 422 |         int i;
 | 
|---|
| 423 |         const int numgrids=6;
 | 
|---|
| 424 |         const int NDOF2=2;
 | 
|---|
| 425 |         double B[5][NDOF2*numgrids];
 | 
|---|
| 426 |         double velocity[numgrids][NDOF2];
 | 
|---|
| 427 | 
 | 
|---|
| 428 |         /*Get B matrix: */
 | 
|---|
| 429 |         GetBPattyn(&B[0][0], xyz_list, gauss);
 | 
|---|
| 430 | 
 | 
|---|
| 431 |         /*Here, we are computing the strain rate of (vx,0)*/
 | 
|---|
| 432 |         for(i=0;i<numgrids;i++){
 | 
|---|
| 433 |                 velocity[i][0]=this->values[i];
 | 
|---|
| 434 |                 velocity[i][1]=0.0;
 | 
|---|
| 435 |         }
 | 
|---|
| 436 | 
 | 
|---|
| 437 |         /*Multiply B by velocity, to get strain rate: */
 | 
|---|
| 438 |         MatrixMultiply( &B[0][0],5,NDOF2*numgrids,0,
 | 
|---|
| 439 |                                 &velocity[0][0],NDOF2*numgrids,1,0,
 | 
|---|
| 440 |                                 epsilonvx,0);
 | 
|---|
| 441 | 
 | 
|---|
| 442 | }
 | 
|---|
| 443 | /*}}}*/
 | 
|---|
| 444 | /*FUNCTION PentaVertexInput::GetVyStrainRate3dPattyn(double* epsilonvy,double* xyz_list, double* gauss) {{{1*/
 | 
|---|
| 445 | void PentaVertexInput::GetVyStrainRate3dPattyn(double* epsilonvy,double* xyz_list, double* gauss){
 | 
|---|
| 446 | 
 | 
|---|
| 447 |         int i;
 | 
|---|
| 448 |         const int numgrids=6;
 | 
|---|
| 449 |         const int NDOF2=2;
 | 
|---|
| 450 |         double B[5][NDOF2*numgrids];
 | 
|---|
| 451 |         double velocity[numgrids][NDOF2];
 | 
|---|
| 452 | 
 | 
|---|
| 453 |         /*Get B matrix: */
 | 
|---|
| 454 |         GetBPattyn(&B[0][0], xyz_list, gauss);
 | 
|---|
| 455 | 
 | 
|---|
| 456 |         /*Here, we are computing the strain rate of (0,vy)*/
 | 
|---|
| 457 |         for(i=0;i<numgrids;i++){
 | 
|---|
| 458 |                 velocity[i][0]=0.0;
 | 
|---|
| 459 |                 velocity[i][1]=this->values[i];
 | 
|---|
| 460 |         }
 | 
|---|
| 461 | 
 | 
|---|
| 462 |         /*Multiply B by velocity, to get strain rate: */
 | 
|---|
| 463 |         MatrixMultiply( &B[0][0],5,NDOF2*numgrids,0,
 | 
|---|
| 464 |                                 &velocity[0][0],NDOF2*numgrids,1,0,
 | 
|---|
| 465 |                                 epsilonvy,0);
 | 
|---|
| 466 | 
 | 
|---|
| 467 | }
 | 
|---|
| 468 | /*}}}*/
 | 
|---|
| 469 | /*FUNCTION PentaVertexInput::ChangeEnum(int newenumtype){{{1*/
 | 
|---|
| 470 | void PentaVertexInput::ChangeEnum(int newenumtype){
 | 
|---|
| 471 |         this->enum_type=newenumtype;
 | 
|---|
| 472 | }
 | 
|---|
| 473 | /*}}}*/
 | 
|---|
| 474 | /*FUNCTION PentaVertexInput::GetParameterAverage(double* pvalue){{{1*/
 | 
|---|
| 475 | void PentaVertexInput::GetParameterAverage(double* pvalue){
 | 
|---|
| 476 |         *pvalue=1./6.*(values[0]+values[1]+values[2]+values[3]+values[4]+values[5]);
 | 
|---|
| 477 | }
 | 
|---|
| 478 | /*}}}*/
 | 
|---|
| 479 | 
 | 
|---|
| 480 | /*Intermediary*/
 | 
|---|
| 481 | /*FUNCTION PentaVertexInput::GetNodalFunctionsP1 {{{1*/
 | 
|---|
| 482 | void PentaVertexInput::GetNodalFunctionsP1(double* l1l6, double* gauss_coord){
 | 
|---|
| 483 | 
 | 
|---|
| 484 |         /*This routine returns the values of the nodal functions  at the gaussian point.*/
 | 
|---|
| 485 | 
 | 
|---|
| 486 |         l1l6[0]=gauss_coord[0]*(1-gauss_coord[3])/2.0;
 | 
|---|
| 487 | 
 | 
|---|
| 488 |         l1l6[1]=gauss_coord[1]*(1-gauss_coord[3])/2.0;
 | 
|---|
| 489 | 
 | 
|---|
| 490 |         l1l6[2]=gauss_coord[2]*(1-gauss_coord[3])/2.0;
 | 
|---|
| 491 | 
 | 
|---|
| 492 |         l1l6[3]=gauss_coord[0]*(1+gauss_coord[3])/2.0;
 | 
|---|
| 493 | 
 | 
|---|
| 494 |         l1l6[4]=gauss_coord[1]*(1+gauss_coord[3])/2.0;
 | 
|---|
| 495 | 
 | 
|---|
| 496 |         l1l6[5]=gauss_coord[2]*(1+gauss_coord[3])/2.0;
 | 
|---|
| 497 | 
 | 
|---|
| 498 | }
 | 
|---|
| 499 | /*}}}*/
 | 
|---|
| 500 | /*FUNCTION PentaVertexInput::GetNodalFunctionsMINI{{{1*/
 | 
|---|
| 501 | void PentaVertexInput::GetNodalFunctionsMINI(double* l1l7, double* gauss_coord){
 | 
|---|
| 502 | 
 | 
|---|
| 503 |         /*This routine returns the values of the nodal functions  at the gaussian point.*/
 | 
|---|
| 504 | 
 | 
|---|
| 505 |         /*First nodal function: */
 | 
|---|
| 506 |         l1l7[0]=gauss_coord[0]*(1.0-gauss_coord[3])/2.0;
 | 
|---|
| 507 | 
 | 
|---|
| 508 |         /*Second nodal function: */
 | 
|---|
| 509 |         l1l7[1]=gauss_coord[1]*(1.0-gauss_coord[3])/2.0;
 | 
|---|
| 510 | 
 | 
|---|
| 511 |         /*Third nodal function: */
 | 
|---|
| 512 |         l1l7[2]=gauss_coord[2]*(1.0-gauss_coord[3])/2.0;
 | 
|---|
| 513 | 
 | 
|---|
| 514 |         /*Fourth nodal function: */
 | 
|---|
| 515 |         l1l7[3]=gauss_coord[0]*(1.0+gauss_coord[3])/2.0;
 | 
|---|
| 516 | 
 | 
|---|
| 517 |         /*Fifth nodal function: */
 | 
|---|
| 518 |         l1l7[4]=gauss_coord[1]*(1.0+gauss_coord[3])/2.0;
 | 
|---|
| 519 | 
 | 
|---|
| 520 |         /*Sixth nodal function: */
 | 
|---|
| 521 |         l1l7[5]=gauss_coord[2]*(1.0+gauss_coord[3])/2.0;
 | 
|---|
| 522 | 
 | 
|---|
| 523 |         /*Seventh nodal function: */
 | 
|---|
| 524 |         l1l7[6]=27*gauss_coord[0]*gauss_coord[1]*gauss_coord[2]*(1.0+gauss_coord[3])*(1.0-gauss_coord[3]);
 | 
|---|
| 525 | 
 | 
|---|
| 526 | }
 | 
|---|
| 527 | /*}}}*/
 | 
|---|
| 528 | /*FUNCTION PentaVertexInput::GetNodalFunctionsP1Derivatives {{{1*/
 | 
|---|
| 529 | void PentaVertexInput::GetNodalFunctionsP1Derivatives(double* dh1dh6,double* xyz_list, double* gauss_coord){
 | 
|---|
| 530 | 
 | 
|---|
| 531 |         /*This routine returns the values of the nodal functions derivatives  (with respect to the actual coordinate system: */
 | 
|---|
| 532 |         int i;
 | 
|---|
| 533 |         const int NDOF3=3;
 | 
|---|
| 534 |         const int numgrids=6;
 | 
|---|
| 535 | 
 | 
|---|
| 536 |         double dh1dh6_ref[NDOF3][numgrids];
 | 
|---|
| 537 |         double Jinv[NDOF3][NDOF3];
 | 
|---|
| 538 | 
 | 
|---|
| 539 |         /*Get derivative values with respect to parametric coordinate system: */
 | 
|---|
| 540 |         GetNodalFunctionsP1DerivativesReference(&dh1dh6_ref[0][0], gauss_coord); 
 | 
|---|
| 541 | 
 | 
|---|
| 542 |         /*Get Jacobian invert: */
 | 
|---|
| 543 |         GetJacobianInvert(&Jinv[0][0], xyz_list, gauss_coord);
 | 
|---|
| 544 | 
 | 
|---|
| 545 |         /*Build dh1dh3: 
 | 
|---|
| 546 |          *
 | 
|---|
| 547 |          * [dhi/dx]= Jinv*[dhi/dr]
 | 
|---|
| 548 |          * [dhi/dy]       [dhi/ds]
 | 
|---|
| 549 |          * [dhi/dz]       [dhi/dn]
 | 
|---|
| 550 |          */
 | 
|---|
| 551 | 
 | 
|---|
| 552 |         for (i=0;i<numgrids;i++){
 | 
|---|
| 553 |                 *(dh1dh6+numgrids*0+i)=Jinv[0][0]*dh1dh6_ref[0][i]+Jinv[0][1]*dh1dh6_ref[1][i]+Jinv[0][2]*dh1dh6_ref[2][i];
 | 
|---|
| 554 |                 *(dh1dh6+numgrids*1+i)=Jinv[1][0]*dh1dh6_ref[0][i]+Jinv[1][1]*dh1dh6_ref[1][i]+Jinv[1][2]*dh1dh6_ref[2][i];
 | 
|---|
| 555 |                 *(dh1dh6+numgrids*2+i)=Jinv[2][0]*dh1dh6_ref[0][i]+Jinv[2][1]*dh1dh6_ref[1][i]+Jinv[2][2]*dh1dh6_ref[2][i];
 | 
|---|
| 556 |         }
 | 
|---|
| 557 | 
 | 
|---|
| 558 | }
 | 
|---|
| 559 | /*}}}*/
 | 
|---|
| 560 | /*FUNCTION PentaVertexInput::GetNodalFunctionsMINIDerivatives{{{1*/
 | 
|---|
| 561 | void PentaVertexInput::GetNodalFunctionsMINIDerivatives(double* dh1dh7,double* xyz_list, double* gauss_coord){
 | 
|---|
| 562 | 
 | 
|---|
| 563 |         /*This routine returns the values of the nodal functions derivatives  (with respect to the 
 | 
|---|
| 564 |          * actual coordinate system: */
 | 
|---|
| 565 | 
 | 
|---|
| 566 |         int i;
 | 
|---|
| 567 | 
 | 
|---|
| 568 |         const  int numgrids=7;
 | 
|---|
| 569 |         double dh1dh7_ref[3][numgrids];
 | 
|---|
| 570 |         double Jinv[3][3];
 | 
|---|
| 571 | 
 | 
|---|
| 572 | 
 | 
|---|
| 573 |         /*Get derivative values with respect to parametric coordinate system: */
 | 
|---|
| 574 |         GetNodalFunctionsMINIDerivativesReference(&dh1dh7_ref[0][0], gauss_coord); 
 | 
|---|
| 575 | 
 | 
|---|
| 576 |         /*Get Jacobian invert: */
 | 
|---|
| 577 |         GetJacobianInvert(&Jinv[0][0], xyz_list, gauss_coord);
 | 
|---|
| 578 | 
 | 
|---|
| 579 |         /*Build dh1dh6: 
 | 
|---|
| 580 |          *
 | 
|---|
| 581 |          * [dhi/dx]= Jinv'*[dhi/dr]
 | 
|---|
| 582 |          * [dhi/dy]        [dhi/ds]
 | 
|---|
| 583 |          * [dhi/dz]        [dhi/dzeta]
 | 
|---|
| 584 |          */
 | 
|---|
| 585 | 
 | 
|---|
| 586 |         for (i=0;i<numgrids;i++){
 | 
|---|
| 587 |                 *(dh1dh7+numgrids*0+i)=Jinv[0][0]*dh1dh7_ref[0][i]+Jinv[0][1]*dh1dh7_ref[1][i]+Jinv[0][2]*dh1dh7_ref[2][i];
 | 
|---|
| 588 |                 *(dh1dh7+numgrids*1+i)=Jinv[1][0]*dh1dh7_ref[0][i]+Jinv[1][1]*dh1dh7_ref[1][i]+Jinv[1][2]*dh1dh7_ref[2][i];
 | 
|---|
| 589 |                 *(dh1dh7+numgrids*2+i)=Jinv[2][0]*dh1dh7_ref[0][i]+Jinv[2][1]*dh1dh7_ref[1][i]+Jinv[2][2]*dh1dh7_ref[2][i];
 | 
|---|
| 590 |         }
 | 
|---|
| 591 | 
 | 
|---|
| 592 | }
 | 
|---|
| 593 | /*}}}*/
 | 
|---|
| 594 | /*FUNCTION PentaVertexInput::GetNodalFunctionsP1DerivativesReference {{{1*/
 | 
|---|
| 595 | void PentaVertexInput::GetNodalFunctionsP1DerivativesReference(double* dl1dl6,double* gauss_coord){
 | 
|---|
| 596 | 
 | 
|---|
| 597 |         /*This routine returns the values of the nodal functions derivatives  (with respect to the 
 | 
|---|
| 598 |          * natural coordinate system) at the gaussian point. Those values vary along xi,eta,z */
 | 
|---|
| 599 | 
 | 
|---|
| 600 |         const int numgrids=6;
 | 
|---|
| 601 |         double A1,A2,A3,z;
 | 
|---|
| 602 | 
 | 
|---|
| 603 |         A1=gauss_coord[0]; //first area coordinate value. In term of xi and eta: A1=(1-xi)/2-eta/(2*SQRT3);
 | 
|---|
| 604 |         A2=gauss_coord[1]; //second area coordinate value In term of xi and eta: A2=(1+xi)/2-eta/(2*SQRT3);
 | 
|---|
| 605 |         A3=gauss_coord[2]; //third area coordinate value  In term of xi and eta: A3=y/SQRT3;
 | 
|---|
| 606 |         z=gauss_coord[3]; //fourth vertical coordinate value. Corresponding nodal function: (1-z)/2 and (1+z)/2
 | 
|---|
| 607 | 
 | 
|---|
| 608 | 
 | 
|---|
| 609 |         /*First nodal function derivatives. The corresponding nodal function is N=A1*(1-z)/2. Its derivatives follow*/
 | 
|---|
| 610 |         *(dl1dl6+numgrids*0+0)=-0.5*(1.0-z)/2.0;
 | 
|---|
| 611 |         *(dl1dl6+numgrids*1+0)=-0.5/SQRT3*(1.0-z)/2.0;
 | 
|---|
| 612 |         *(dl1dl6+numgrids*2+0)=-0.5*A1;
 | 
|---|
| 613 | 
 | 
|---|
| 614 |         /*Second nodal function: The corresponding nodal function is N=A2*(1-z)/2. Its derivatives follow*/
 | 
|---|
| 615 |         *(dl1dl6+numgrids*0+1)=0.5*(1.0-z)/2.0;
 | 
|---|
| 616 |         *(dl1dl6+numgrids*1+1)=-0.5/SQRT3*(1.0-z)/2.0;
 | 
|---|
| 617 |         *(dl1dl6+numgrids*2+1)=-0.5*A2;
 | 
|---|
| 618 | 
 | 
|---|
| 619 |         /*Third nodal function: The corresponding nodal function is N=A3*(1-z)/2. Its derivatives follow*/
 | 
|---|
| 620 |         *(dl1dl6+numgrids*0+2)=0.0;
 | 
|---|
| 621 |         *(dl1dl6+numgrids*1+2)=1.0/SQRT3*(1.0-z)/2.0;
 | 
|---|
| 622 |         *(dl1dl6+numgrids*2+2)=-0.5*A3;
 | 
|---|
| 623 | 
 | 
|---|
| 624 |         /*Fourth nodal function: The corresponding nodal function is N=A1*(1+z)/2. Its derivatives follow*/
 | 
|---|
| 625 |         *(dl1dl6+numgrids*0+3)=-0.5*(1.0+z)/2.0;
 | 
|---|
| 626 |         *(dl1dl6+numgrids*1+3)=-0.5/SQRT3*(1.0+z)/2.0;
 | 
|---|
| 627 |         *(dl1dl6+numgrids*2+3)=0.5*A1;
 | 
|---|
| 628 | 
 | 
|---|
| 629 |         /*Fifth nodal function: The corresponding nodal function is N=A2*(1+z)/2. Its derivatives follow*/
 | 
|---|
| 630 |         *(dl1dl6+numgrids*0+4)=0.5*(1.0+z)/2.0;
 | 
|---|
| 631 |         *(dl1dl6+numgrids*1+4)=-0.5/SQRT3*(1.0+z)/2.0;
 | 
|---|
| 632 |         *(dl1dl6+numgrids*2+4)=0.5*A2;
 | 
|---|
| 633 | 
 | 
|---|
| 634 |         /*Sixth nodal function: The corresponding nodal function is N=A3*(1+z)/2. Its derivatives follow*/
 | 
|---|
| 635 |         *(dl1dl6+numgrids*0+5)=0.0;
 | 
|---|
| 636 |         *(dl1dl6+numgrids*1+5)=1.0/SQRT3*(1.0+z)/2.0;
 | 
|---|
| 637 |         *(dl1dl6+numgrids*2+5)=0.5*A3;
 | 
|---|
| 638 | }
 | 
|---|
| 639 | /*}}}*/
 | 
|---|
| 640 | /*FUNCTION PentaVertexInput::GetNodalFunctionsMINIDerivativesReference{{{1*/
 | 
|---|
| 641 | void PentaVertexInput::GetNodalFunctionsMINIDerivativesReference(double* dl1dl7,double* gauss_coord){
 | 
|---|
| 642 | 
 | 
|---|
| 643 |         /*This routine returns the values of the nodal functions derivatives  (with respect to the 
 | 
|---|
| 644 |          * natural coordinate system) at the gaussian point. */
 | 
|---|
| 645 | 
 | 
|---|
| 646 |         int    numgrids=7; //six plus bubble grids
 | 
|---|
| 647 | 
 | 
|---|
| 648 |         double r=gauss_coord[1]-gauss_coord[0];
 | 
|---|
| 649 |         double s=-3.0/SQRT3*(gauss_coord[0]+gauss_coord[1]-2.0/3.0);
 | 
|---|
| 650 |         double zeta=gauss_coord[3];
 | 
|---|
| 651 | 
 | 
|---|
| 652 |         /*First nodal function: */
 | 
|---|
| 653 |         *(dl1dl7+numgrids*0+0)=-0.5*(1.0-zeta)/2.0;
 | 
|---|
| 654 |         *(dl1dl7+numgrids*1+0)=-SQRT3/6.0*(1.0-zeta)/2.0;
 | 
|---|
| 655 |         *(dl1dl7+numgrids*2+0)=-0.5*(-0.5*r-SQRT3/6.0*s+ONETHIRD);
 | 
|---|
| 656 | 
 | 
|---|
| 657 |         /*Second nodal function: */
 | 
|---|
| 658 |         *(dl1dl7+numgrids*0+1)=0.5*(1.0-zeta)/2.0;
 | 
|---|
| 659 |         *(dl1dl7+numgrids*1+1)=-SQRT3/6.0*(1.0-zeta)/2.0;
 | 
|---|
| 660 |         *(dl1dl7+numgrids*2+1)=-0.5*(0.5*r-SQRT3/6.0*s+ONETHIRD);
 | 
|---|
| 661 | 
 | 
|---|
| 662 |         /*Third nodal function: */
 | 
|---|
| 663 |         *(dl1dl7+numgrids*0+2)=0;
 | 
|---|
| 664 |         *(dl1dl7+numgrids*1+2)=SQRT3/3.0*(1.0-zeta)/2.0;
 | 
|---|
| 665 |         *(dl1dl7+numgrids*2+2)=-0.5*(SQRT3/3.0*s+ONETHIRD);
 | 
|---|
| 666 | 
 | 
|---|
| 667 |         /*Fourth nodal function: */
 | 
|---|
| 668 |         *(dl1dl7+numgrids*0+3)=-0.5*(1.0+zeta)/2.0;
 | 
|---|
| 669 |         *(dl1dl7+numgrids*1+3)=-SQRT3/6.0*(1.0+zeta)/2.0;
 | 
|---|
| 670 |         *(dl1dl7+numgrids*2+3)=0.5*(-0.5*r-SQRT3/6.0*s+ONETHIRD);
 | 
|---|
| 671 | 
 | 
|---|
| 672 |         /*Fith nodal function: */
 | 
|---|
| 673 |         *(dl1dl7+numgrids*0+4)=0.5*(1.0+zeta)/2.0;
 | 
|---|
| 674 |         *(dl1dl7+numgrids*1+4)=-SQRT3/6.0*(1.0+zeta)/2.0;
 | 
|---|
| 675 |         *(dl1dl7+numgrids*2+4)=0.5*(0.5*r-SQRT3/6.0*s+ONETHIRD);
 | 
|---|
| 676 | 
 | 
|---|
| 677 |         /*Sixth nodal function: */
 | 
|---|
| 678 |         *(dl1dl7+numgrids*0+5)=0;
 | 
|---|
| 679 |         *(dl1dl7+numgrids*1+5)=SQRT3/3.0*(1.0+zeta)/2.0;
 | 
|---|
| 680 |         *(dl1dl7+numgrids*2+5)=0.5*(SQRT3/3.0*s+ONETHIRD);
 | 
|---|
| 681 | 
 | 
|---|
| 682 |         /*Seventh nodal function: */
 | 
|---|
| 683 |         *(dl1dl7+numgrids*0+6)=9.0/2.0*r*(1.0+zeta)*(zeta-1.0)*(SQRT3*s+1.0);
 | 
|---|
| 684 |         *(dl1dl7+numgrids*1+6)=9.0/4.0*(1+zeta)*(1-zeta)*(SQRT3*pow(s,2.0)-2.0*s-SQRT3*pow(r,2.0));
 | 
|---|
| 685 |         *(dl1dl7+numgrids*2+6)=27*gauss_coord[0]*gauss_coord[1]*gauss_coord[2]*(-2.0*zeta);
 | 
|---|
| 686 | 
 | 
|---|
| 687 | }
 | 
|---|
| 688 | /*}}}*/
 | 
|---|
| 689 | /*FUNCTION PentaVertexInput::GetJacobian {{{1*/
 | 
|---|
| 690 | void PentaVertexInput::GetJacobian(double* J, double* xyz_list,double* gauss_coord){
 | 
|---|
| 691 | 
 | 
|---|
| 692 |         const int NDOF3=3;
 | 
|---|
| 693 |         int i,j;
 | 
|---|
| 694 | 
 | 
|---|
| 695 |         /*The Jacobian is constant over the element, discard the gaussian points. 
 | 
|---|
| 696 |          * J is assumed to have been allocated of size NDOF2xNDOF2.*/
 | 
|---|
| 697 | 
 | 
|---|
| 698 |         double A1,A2,A3; //area coordinates
 | 
|---|
| 699 |         double xi,eta,zi; //parametric coordinates
 | 
|---|
| 700 | 
 | 
|---|
| 701 |         double x1,x2,x3,x4,x5,x6;
 | 
|---|
| 702 |         double y1,y2,y3,y4,y5,y6;
 | 
|---|
| 703 |         double z1,z2,z3,z4,z5,z6;
 | 
|---|
| 704 | 
 | 
|---|
| 705 |         /*Figure out xi,eta and zi (parametric coordinates), for this gaussian point: */
 | 
|---|
| 706 |         A1=gauss_coord[0];
 | 
|---|
| 707 |         A2=gauss_coord[1];
 | 
|---|
| 708 |         A3=gauss_coord[2];
 | 
|---|
| 709 | 
 | 
|---|
| 710 |         xi=A2-A1;
 | 
|---|
| 711 |         eta=SQRT3*A3;
 | 
|---|
| 712 |         zi=gauss_coord[3];
 | 
|---|
| 713 | 
 | 
|---|
| 714 |         x1=*(xyz_list+3*0+0);
 | 
|---|
| 715 |         x2=*(xyz_list+3*1+0);
 | 
|---|
| 716 |         x3=*(xyz_list+3*2+0);
 | 
|---|
| 717 |         x4=*(xyz_list+3*3+0);
 | 
|---|
| 718 |         x5=*(xyz_list+3*4+0);
 | 
|---|
| 719 |         x6=*(xyz_list+3*5+0);
 | 
|---|
| 720 | 
 | 
|---|
| 721 |         y1=*(xyz_list+3*0+1);
 | 
|---|
| 722 |         y2=*(xyz_list+3*1+1);
 | 
|---|
| 723 |         y3=*(xyz_list+3*2+1);
 | 
|---|
| 724 |         y4=*(xyz_list+3*3+1);
 | 
|---|
| 725 |         y5=*(xyz_list+3*4+1);
 | 
|---|
| 726 |         y6=*(xyz_list+3*5+1);
 | 
|---|
| 727 | 
 | 
|---|
| 728 |         z1=*(xyz_list+3*0+2);
 | 
|---|
| 729 |         z2=*(xyz_list+3*1+2);
 | 
|---|
| 730 |         z3=*(xyz_list+3*2+2);
 | 
|---|
| 731 |         z4=*(xyz_list+3*3+2);
 | 
|---|
| 732 |         z5=*(xyz_list+3*4+2);
 | 
|---|
| 733 |         z6=*(xyz_list+3*5+2);
 | 
|---|
| 734 | 
 | 
|---|
| 735 |         *(J+NDOF3*0+0)=0.25*(x1-x2-x4+x5)*zi+0.25*(-x1+x2-x4+x5);
 | 
|---|
| 736 |         *(J+NDOF3*1+0)=SQRT3/12.0*(x1+x2-2*x3-x4-x5+2*x6)*zi+SQRT3/12.0*(-x1-x2+2*x3-x4-x5+2*x6);
 | 
|---|
| 737 |         *(J+NDOF3*2+0)=SQRT3/12.0*(x1+x2-2*x3-x4-x5+2*x6)*eta+1/4*(x1-x2-x4+x5)*xi +0.25*(-x1+x5-x2+x4);
 | 
|---|
| 738 | 
 | 
|---|
| 739 |         *(J+NDOF3*0+1)=0.25*(y1-y2-y4+y5)*zi+0.25*(-y1+y2-y4+y5);
 | 
|---|
| 740 |         *(J+NDOF3*1+1)=SQRT3/12.0*(y1+y2-2*y3-y4-y5+2*y6)*zi+SQRT3/12.0*(-y1-y2+2*y3-y4-y5+2*y6);
 | 
|---|
| 741 |         *(J+NDOF3*2+1)=SQRT3/12.0*(y1+y2-2*y3-y4-y5+2*y6)*eta+0.25*(y1-y2-y4+y5)*xi+0.25*(y4-y1+y5-y2);
 | 
|---|
| 742 | 
 | 
|---|
| 743 |         *(J+NDOF3*0+2)=0.25*(z1-z2-z4+z5)*zi+0.25*(-z1+z2-z4+z5);
 | 
|---|
| 744 |         *(J+NDOF3*1+2)=SQRT3/12.0*(z1+z2-2*z3-z4-z5+2*z6)*zi+SQRT3/12.0*(-z1-z2+2*z3-z4-z5+2*z6);
 | 
|---|
| 745 |         *(J+NDOF3*2+2)=SQRT3/12.0*(z1+z2-2*z3-z4-z5+2*z6)*eta+0.25*(z1-z2-z4+z5)*xi+0.25*(-z1+z5-z2+z4);
 | 
|---|
| 746 | 
 | 
|---|
| 747 | }
 | 
|---|
| 748 | /*}}}*/
 | 
|---|
| 749 | /*FUNCTION PentaVertexInput::GetJacobianInvert {{{1*/
 | 
|---|
| 750 | void PentaVertexInput::GetJacobianInvert(double*  Jinv, double* xyz_list,double* gauss_coord){
 | 
|---|
| 751 | 
 | 
|---|
| 752 |         double Jdet;
 | 
|---|
| 753 |         const int NDOF3=3;
 | 
|---|
| 754 | 
 | 
|---|
| 755 |         /*Call Jacobian routine to get the jacobian:*/
 | 
|---|
| 756 |         GetJacobian(Jinv, xyz_list, gauss_coord);
 | 
|---|
| 757 | 
 | 
|---|
| 758 |         /*Invert Jacobian matrix: */
 | 
|---|
| 759 |         MatrixInverse(Jinv,NDOF3,NDOF3,NULL,0,&Jdet);
 | 
|---|
| 760 | }
 | 
|---|
| 761 | /*}}}*/
 | 
|---|
| 762 | /*FUNCTION PentaVertexInput::GetBPattyn {{{1*/
 | 
|---|
| 763 | void PentaVertexInput::GetBPattyn(double* B, double* xyz_list, double* gauss_coord){
 | 
|---|
| 764 |         /*Compute B  matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF2. 
 | 
|---|
| 765 |          * For grid i, Bi can be expressed in the actual coordinate system
 | 
|---|
| 766 |          * by: 
 | 
|---|
| 767 |          *       Bi=[ dh/dx          0      ]
 | 
|---|
| 768 |          *          [   0           dh/dy   ]
 | 
|---|
| 769 |          *          [ 1/2*dh/dy  1/2*dh/dx  ]
 | 
|---|
| 770 |          *          [ 1/2*dh/dz      0      ]
 | 
|---|
| 771 |          *          [  0         1/2*dh/dz  ]
 | 
|---|
| 772 |          * where h is the interpolation function for grid i.
 | 
|---|
| 773 |          *
 | 
|---|
| 774 |          * We assume B has been allocated already, of size: 5x(NDOF2*numgrids)
 | 
|---|
| 775 |          */
 | 
|---|
| 776 | 
 | 
|---|
| 777 |         int i;
 | 
|---|
| 778 |         const int numgrids=6;
 | 
|---|
| 779 |         const int NDOF3=3;
 | 
|---|
| 780 |         const int NDOF2=2;
 | 
|---|
| 781 | 
 | 
|---|
| 782 |         double dh1dh6[NDOF3][numgrids];
 | 
|---|
| 783 | 
 | 
|---|
| 784 |         /*Get dh1dh6 in actual coordinate system: */
 | 
|---|
| 785 |         GetNodalFunctionsP1Derivatives(&dh1dh6[0][0],xyz_list, gauss_coord);
 | 
|---|
| 786 | 
 | 
|---|
| 787 |         /*Build B: */
 | 
|---|
| 788 |         for (i=0;i<numgrids;i++){
 | 
|---|
| 789 |                 *(B+NDOF2*numgrids*0+NDOF2*i)=dh1dh6[0][i]; 
 | 
|---|
| 790 |                 *(B+NDOF2*numgrids*0+NDOF2*i+1)=0.0;
 | 
|---|
| 791 | 
 | 
|---|
| 792 |                 *(B+NDOF2*numgrids*1+NDOF2*i)=0.0;
 | 
|---|
| 793 |                 *(B+NDOF2*numgrids*1+NDOF2*i+1)=dh1dh6[1][i];
 | 
|---|
| 794 | 
 | 
|---|
| 795 |                 *(B+NDOF2*numgrids*2+NDOF2*i)=(float).5*dh1dh6[1][i]; 
 | 
|---|
| 796 |                 *(B+NDOF2*numgrids*2+NDOF2*i+1)=(float).5*dh1dh6[0][i]; 
 | 
|---|
| 797 | 
 | 
|---|
| 798 |                 *(B+NDOF2*numgrids*3+NDOF2*i)=(float).5*dh1dh6[2][i]; 
 | 
|---|
| 799 |                 *(B+NDOF2*numgrids*3+NDOF2*i+1)=0.0;
 | 
|---|
| 800 | 
 | 
|---|
| 801 |                 *(B+NDOF2*numgrids*4+NDOF2*i)=0.0;
 | 
|---|
| 802 |                 *(B+NDOF2*numgrids*4+NDOF2*i+1)=(float).5*dh1dh6[2][i]; 
 | 
|---|
| 803 |         }
 | 
|---|
| 804 | 
 | 
|---|
| 805 | }
 | 
|---|
| 806 | /*}}}*/
 | 
|---|
| 807 | /*FUNCTION PentaVertexInput::GetBStokes {{{1*/
 | 
|---|
| 808 | void PentaVertexInput::GetBStokes(double* B, double* xyz_list, double* gauss_coord){
 | 
|---|
| 809 | 
 | 
|---|
| 810 |         /*Compute B  matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 3*DOFPERGRID. 
 | 
|---|
| 811 |          * For grid i, Bi can be expressed in the actual coordinate system
 | 
|---|
| 812 |          * by:          Bi=[ dh/dx          0             0       0  ]
 | 
|---|
| 813 |          *                                      [   0           dh/dy           0       0  ]
 | 
|---|
| 814 |          *                                      [   0             0           dh/dy     0  ]
 | 
|---|
| 815 |          *                                      [ 1/2*dh/dy    1/2*dh/dx        0       0  ]
 | 
|---|
| 816 |          *                                      [ 1/2*dh/dz       0         1/2*dh/dx   0  ]
 | 
|---|
| 817 |          *                                      [   0          1/2*dh/dz    1/2*dh/dy   0  ]
 | 
|---|
| 818 |          *                                      [   0             0             0       h  ]
 | 
|---|
| 819 |          *                                      [ dh/dx         dh/dy         dh/dz     0  ]
 | 
|---|
| 820 |          *      where h is the interpolation function for grid i.
 | 
|---|
| 821 |          *      Same thing for Bb except the last column that does not exist.
 | 
|---|
| 822 |          */
 | 
|---|
| 823 | 
 | 
|---|
| 824 |         int i;
 | 
|---|
| 825 |         const int calculationdof=3;
 | 
|---|
| 826 |         const int numgrids=6;
 | 
|---|
| 827 |         int DOFPERGRID=4;
 | 
|---|
| 828 | 
 | 
|---|
| 829 |         double dh1dh7[calculationdof][numgrids+1];
 | 
|---|
| 830 |         double l1l6[numgrids];
 | 
|---|
| 831 | 
 | 
|---|
| 832 | 
 | 
|---|
| 833 |         /*Get dh1dh7 in actual coordinate system: */
 | 
|---|
| 834 |         GetNodalFunctionsMINIDerivatives(&dh1dh7[0][0],xyz_list, gauss_coord);
 | 
|---|
| 835 |         GetNodalFunctionsP1(l1l6, gauss_coord);
 | 
|---|
| 836 | 
 | 
|---|
| 837 |         /*Build B: */
 | 
|---|
| 838 |         for (i=0;i<numgrids+1;i++){
 | 
|---|
| 839 |                 *(B+(DOFPERGRID*numgrids+3)*0+DOFPERGRID*i)=dh1dh7[0][i]; //B[0][DOFPERGRID*i]=dh1dh6[0][i];
 | 
|---|
| 840 |                 *(B+(DOFPERGRID*numgrids+3)*0+DOFPERGRID*i+1)=0;
 | 
|---|
| 841 |                 *(B+(DOFPERGRID*numgrids+3)*0+DOFPERGRID*i+2)=0;
 | 
|---|
| 842 |                 *(B+(DOFPERGRID*numgrids+3)*1+DOFPERGRID*i)=0;
 | 
|---|
| 843 |                 *(B+(DOFPERGRID*numgrids+3)*1+DOFPERGRID*i+1)=dh1dh7[1][i];
 | 
|---|
| 844 |                 *(B+(DOFPERGRID*numgrids+3)*1+DOFPERGRID*i+2)=0;
 | 
|---|
| 845 |                 *(B+(DOFPERGRID*numgrids+3)*2+DOFPERGRID*i)=0;
 | 
|---|
| 846 |                 *(B+(DOFPERGRID*numgrids+3)*2+DOFPERGRID*i+1)=0;
 | 
|---|
| 847 |                 *(B+(DOFPERGRID*numgrids+3)*2+DOFPERGRID*i+2)=dh1dh7[2][i];
 | 
|---|
| 848 |                 *(B+(DOFPERGRID*numgrids+3)*3+DOFPERGRID*i)=(float).5*dh1dh7[1][i]; 
 | 
|---|
| 849 |                 *(B+(DOFPERGRID*numgrids+3)*3+DOFPERGRID*i+1)=(float).5*dh1dh7[0][i]; 
 | 
|---|
| 850 |                 *(B+(DOFPERGRID*numgrids+3)*3+DOFPERGRID*i+2)=0;
 | 
|---|
| 851 |                 *(B+(DOFPERGRID*numgrids+3)*4+DOFPERGRID*i)=(float).5*dh1dh7[2][i];
 | 
|---|
| 852 |                 *(B+(DOFPERGRID*numgrids+3)*4+DOFPERGRID*i+1)=0;
 | 
|---|
| 853 |                 *(B+(DOFPERGRID*numgrids+3)*4+DOFPERGRID*i+2)=(float).5*dh1dh7[0][i];
 | 
|---|
| 854 |                 *(B+(DOFPERGRID*numgrids+3)*5+DOFPERGRID*i)=0;
 | 
|---|
| 855 |                 *(B+(DOFPERGRID*numgrids+3)*5+DOFPERGRID*i+1)=(float).5*dh1dh7[2][i];
 | 
|---|
| 856 |                 *(B+(DOFPERGRID*numgrids+3)*5+DOFPERGRID*i+2)=(float).5*dh1dh7[1][i];
 | 
|---|
| 857 |                 *(B+(DOFPERGRID*numgrids+3)*6+DOFPERGRID*i)=0;
 | 
|---|
| 858 |                 *(B+(DOFPERGRID*numgrids+3)*6+DOFPERGRID*i+1)=0;
 | 
|---|
| 859 |                 *(B+(DOFPERGRID*numgrids+3)*6+DOFPERGRID*i+2)=0;
 | 
|---|
| 860 |                 *(B+(DOFPERGRID*numgrids+3)*7+DOFPERGRID*i)=dh1dh7[0][i];
 | 
|---|
| 861 |                 *(B+(DOFPERGRID*numgrids+3)*7+DOFPERGRID*i+1)=dh1dh7[1][i];
 | 
|---|
| 862 |                 *(B+(DOFPERGRID*numgrids+3)*7+DOFPERGRID*i+2)=dh1dh7[2][i];
 | 
|---|
| 863 |         }
 | 
|---|
| 864 | 
 | 
|---|
| 865 |         for (i=0;i<numgrids;i++){ //last column not for the bubble function
 | 
|---|
| 866 |                 *(B+(DOFPERGRID*numgrids+3)*0+DOFPERGRID*i+3)=0;
 | 
|---|
| 867 |                 *(B+(DOFPERGRID*numgrids+3)*1+DOFPERGRID*i+3)=0;
 | 
|---|
| 868 |                 *(B+(DOFPERGRID*numgrids+3)*2+DOFPERGRID*i+3)=0;
 | 
|---|
| 869 |                 *(B+(DOFPERGRID*numgrids+3)*3+DOFPERGRID*i+3)=0;
 | 
|---|
| 870 |                 *(B+(DOFPERGRID*numgrids+3)*4+DOFPERGRID*i+3)=0;
 | 
|---|
| 871 |                 *(B+(DOFPERGRID*numgrids+3)*5+DOFPERGRID*i+3)=0;
 | 
|---|
| 872 |                 *(B+(DOFPERGRID*numgrids+3)*6+DOFPERGRID*i+3)=l1l6[i];
 | 
|---|
| 873 |                 *(B+(DOFPERGRID*numgrids+3)*7+DOFPERGRID*i+3)=0;
 | 
|---|
| 874 |         }
 | 
|---|
| 875 | 
 | 
|---|
| 876 | }
 | 
|---|
| 877 | /*}}}*/
 | 
|---|
| 878 | /*FUNCTION PentaVertexInput::SquareMin(double* psquaremin, bool process_units){{{1*/
 | 
|---|
| 879 | void PentaVertexInput::SquareMin(double* psquaremin, bool process_units,Parameters* parameters){
 | 
|---|
| 880 | 
 | 
|---|
| 881 |         int i;
 | 
|---|
| 882 |         const int numnodes=6;
 | 
|---|
| 883 |         double valuescopy[numnodes];
 | 
|---|
| 884 |         double squaremin;
 | 
|---|
| 885 | 
 | 
|---|
| 886 |         /*First,  copy values, to process units if requested: */
 | 
|---|
| 887 |         for(i=0;i<numnodes;i++)valuescopy[i]=this->values[i];
 | 
|---|
| 888 | 
 | 
|---|
| 889 |         /*Process units if requested: */
 | 
|---|
| 890 |         if(process_units)NodalValuesUnitConversion(&valuescopy[0],numnodes,enum_type,parameters);
 | 
|---|
| 891 | 
 | 
|---|
| 892 |         /*Now, figure out minimum of valuescopy: */
 | 
|---|
| 893 |         squaremin=pow(valuescopy[0],2);
 | 
|---|
| 894 |         for(i=1;i<numnodes;i++){
 | 
|---|
| 895 |                 if(pow(valuescopy[i],2)<squaremin)squaremin=pow(valuescopy[i],2);
 | 
|---|
| 896 |         }
 | 
|---|
| 897 |         /*Assign output pointers:*/
 | 
|---|
| 898 |         *psquaremin=squaremin;
 | 
|---|
| 899 | }
 | 
|---|
| 900 | /*}}}*/
 | 
|---|
| 901 | /*FUNCTION PentaVertexInput::Scale(double scale_factor){{{1*/
 | 
|---|
| 902 | void PentaVertexInput::Scale(double scale_factor){
 | 
|---|
| 903 |         
 | 
|---|
| 904 |         int i;
 | 
|---|
| 905 |         const int numgrids=6;
 | 
|---|
| 906 | 
 | 
|---|
| 907 |         for(i=0;i<numgrids;i++)values[i]=values[i]*scale_factor;
 | 
|---|
| 908 | }
 | 
|---|
| 909 | /*}}}*/
 | 
|---|
| 910 | /*FUNCTION PentaVertexInput::AXPY(Input* xinput,double scalar);{{{1*/
 | 
|---|
| 911 | void PentaVertexInput::AXPY(Input* xinput,double scalar){
 | 
|---|
| 912 | 
 | 
|---|
| 913 |         int i;
 | 
|---|
| 914 |         const int numgrids=6;
 | 
|---|
| 915 |         PentaVertexInput*  xpentavertexinput=NULL;
 | 
|---|
| 916 | 
 | 
|---|
| 917 |         /*xinput is of the same type, so cast it: */
 | 
|---|
| 918 |         xpentavertexinput=(PentaVertexInput*)xinput;
 | 
|---|
| 919 | 
 | 
|---|
| 920 |         /*Carry out the AXPY operation:*/
 | 
|---|
| 921 |         for(i=0;i<numgrids;i++)this->values[i]=this->values[i]+scalar*xpentavertexinput->values[i];
 | 
|---|
| 922 | 
 | 
|---|
| 923 | }
 | 
|---|
| 924 | /*}}}*/
 | 
|---|
| 925 | /*FUNCTION PentaVertexInput::Constrain(double cm_min, double cm_max){{{1*/
 | 
|---|
| 926 | void PentaVertexInput::Constrain(double cm_min, double cm_max){
 | 
|---|
| 927 | 
 | 
|---|
| 928 |         int i;
 | 
|---|
| 929 |         const int numgrids=6;
 | 
|---|
| 930 |                 
 | 
|---|
| 931 |         if(!isnan(cm_min)) for(i=0;i<numgrids;i++)if (this->values[i]<cm_min)this->values[i]=cm_min;
 | 
|---|
| 932 |         if(!isnan(cm_max)) for(i=0;i<numgrids;i++)if (this->values[i]>cm_max)this->values[i]=cm_max;
 | 
|---|
| 933 | 
 | 
|---|
| 934 | }
 | 
|---|
| 935 | /*}}}*/
 | 
|---|
| 936 | /*FUNCTION PentaVertexInput::GetVectorFromInputs(Vec vector,int* doflist){{{1*/
 | 
|---|
| 937 | void PentaVertexInput::GetVectorFromInputs(Vec vector,int* doflist){
 | 
|---|
| 938 | 
 | 
|---|
| 939 |         const int numvertices=6;
 | 
|---|
| 940 |         VecSetValues(vector,numvertices,doflist,(const double*)this->values,ADD_VALUES);
 | 
|---|
| 941 | 
 | 
|---|
| 942 | 
 | 
|---|
| 943 | }
 | 
|---|
| 944 | /*}}}*/
 | 
|---|