1 | /*!\file PentaVertexInput.c
|
---|
2 | * \brief: implementation of the PentaVertexInput object
|
---|
3 | */
|
---|
4 |
|
---|
5 | #ifdef HAVE_CONFIG_H
|
---|
6 | #include "config.h"
|
---|
7 | #else
|
---|
8 | #error "Cannot compile with HAVE_CONFIG_H symbol! run configure first!"
|
---|
9 | #endif
|
---|
10 |
|
---|
11 | #include "stdio.h"
|
---|
12 | #include <string.h>
|
---|
13 | #include "../objects.h"
|
---|
14 | #include "../../EnumDefinitions/EnumDefinitions.h"
|
---|
15 | #include "../../shared/shared.h"
|
---|
16 | #include "../../DataSet/DataSet.h"
|
---|
17 | #include "../../include/include.h"
|
---|
18 |
|
---|
19 | /*Object constructors and destructor*/
|
---|
20 | /*FUNCTION PentaVertexInput::PentaVertexInput(){{{1*/
|
---|
21 | PentaVertexInput::PentaVertexInput(){
|
---|
22 | return;
|
---|
23 | }
|
---|
24 | /*}}}*/
|
---|
25 | /*FUNCTION PentaVertexInput::PentaVertexInput(int in_enum_type,double* values){{{1*/
|
---|
26 | PentaVertexInput::PentaVertexInput(int in_enum_type,double* in_values){
|
---|
27 |
|
---|
28 | enum_type=in_enum_type;
|
---|
29 | values[0]=in_values[0];
|
---|
30 | values[1]=in_values[1];
|
---|
31 | values[2]=in_values[2];
|
---|
32 | values[3]=in_values[3];
|
---|
33 | values[4]=in_values[4];
|
---|
34 | values[5]=in_values[5];
|
---|
35 | }
|
---|
36 | /*}}}*/
|
---|
37 | /*FUNCTION PentaVertexInput::~PentaVertexInput(){{{1*/
|
---|
38 | PentaVertexInput::~PentaVertexInput(){
|
---|
39 | return;
|
---|
40 | }
|
---|
41 | /*}}}*/
|
---|
42 |
|
---|
43 | /*Object management*/
|
---|
44 | /*FUNCTION PentaVertexInput::copy{{{1*/
|
---|
45 | Object* PentaVertexInput::copy() {
|
---|
46 |
|
---|
47 | return new PentaVertexInput(this->enum_type,this->values);
|
---|
48 |
|
---|
49 | }
|
---|
50 | /*}}}*/
|
---|
51 | /*FUNCTION PentaVertexInput::DeepEcho{{{1*/
|
---|
52 | void PentaVertexInput::DeepEcho(void){
|
---|
53 |
|
---|
54 | printf("PentaVertexInput:\n");
|
---|
55 | printf(" enum: %i (%s)\n",this->enum_type,EnumAsString(this->enum_type));
|
---|
56 | printf(" values: [%g %g %g %g %g %g]\n",this->values[0],this->values[1],this->values[2],this->values[3],this->values[4],this->values[5]);
|
---|
57 | }
|
---|
58 | /*}}}*/
|
---|
59 | /*FUNCTION PentaVertexInput::Demarshall{{{1*/
|
---|
60 | void PentaVertexInput::Demarshall(char** pmarshalled_dataset){
|
---|
61 |
|
---|
62 | char* marshalled_dataset=NULL;
|
---|
63 | int i;
|
---|
64 |
|
---|
65 | /*recover marshalled_dataset: */
|
---|
66 | marshalled_dataset=*pmarshalled_dataset;
|
---|
67 |
|
---|
68 | /*this time, no need to get enum type, the pointer directly points to the beginning of the
|
---|
69 | *object data (thanks to DataSet::Demarshall):*/
|
---|
70 | memcpy(&enum_type,marshalled_dataset,sizeof(enum_type));marshalled_dataset+=sizeof(enum_type);
|
---|
71 | memcpy(&values,marshalled_dataset,sizeof(values));marshalled_dataset+=sizeof(values);
|
---|
72 |
|
---|
73 | /*return: */
|
---|
74 | *pmarshalled_dataset=marshalled_dataset;
|
---|
75 | return;
|
---|
76 | }
|
---|
77 | /*}}}*/
|
---|
78 | /*FUNCTION PentaVertexInput::Echo {{{1*/
|
---|
79 | void PentaVertexInput::Echo(void){
|
---|
80 | this->DeepEcho();
|
---|
81 | }
|
---|
82 | /*}}}*/
|
---|
83 | /*FUNCTION PentaVertexInput::Enum{{{1*/
|
---|
84 | int PentaVertexInput::Enum(void){
|
---|
85 |
|
---|
86 | return PentaVertexInputEnum;
|
---|
87 |
|
---|
88 | }
|
---|
89 | /*}}}*/
|
---|
90 | /*FUNCTION PentaVertexInput::EnumType{{{1*/
|
---|
91 | int PentaVertexInput::EnumType(void){
|
---|
92 |
|
---|
93 | return this->enum_type;
|
---|
94 |
|
---|
95 | }
|
---|
96 | /*}}}*/
|
---|
97 | /*FUNCTION PentaVertexInput::Id{{{1*/
|
---|
98 | int PentaVertexInput::Id(void){ return -1; }
|
---|
99 | /*}}}*/
|
---|
100 | /*FUNCTION PentaVertexInput::Marshall{{{1*/
|
---|
101 | void PentaVertexInput::Marshall(char** pmarshalled_dataset){
|
---|
102 |
|
---|
103 | char* marshalled_dataset=NULL;
|
---|
104 | int enum_value=0;
|
---|
105 |
|
---|
106 | /*recover marshalled_dataset: */
|
---|
107 | marshalled_dataset=*pmarshalled_dataset;
|
---|
108 |
|
---|
109 | /*get enum value of PentaVertexInput: */
|
---|
110 | enum_value=PentaVertexInputEnum;
|
---|
111 |
|
---|
112 | /*marshall enum: */
|
---|
113 | memcpy(marshalled_dataset,&enum_value,sizeof(enum_value));marshalled_dataset+=sizeof(enum_value);
|
---|
114 |
|
---|
115 | /*marshall PentaVertexInput data: */
|
---|
116 | memcpy(marshalled_dataset,&enum_type,sizeof(enum_type));marshalled_dataset+=sizeof(enum_type);
|
---|
117 | memcpy(marshalled_dataset,&values,sizeof(values));marshalled_dataset+=sizeof(values);
|
---|
118 |
|
---|
119 | *pmarshalled_dataset=marshalled_dataset;
|
---|
120 | }
|
---|
121 | /*}}}*/
|
---|
122 | /*FUNCTION PentaVertexInput::MarshallSize{{{1*/
|
---|
123 | int PentaVertexInput::MarshallSize(){
|
---|
124 |
|
---|
125 | return sizeof(values)+
|
---|
126 | +sizeof(enum_type)+
|
---|
127 | +sizeof(int); //sizeof(int) for enum value
|
---|
128 | }
|
---|
129 | /*}}}*/
|
---|
130 | /*FUNCTION PentaVertexInput::MyRank{{{1*/
|
---|
131 | int PentaVertexInput::MyRank(void){
|
---|
132 | extern int my_rank;
|
---|
133 | return my_rank;
|
---|
134 | }
|
---|
135 | /*}}}*/
|
---|
136 | /*FUNCTION PentaVertexInput::SpawnSingInput{{{1*/
|
---|
137 | Input* PentaVertexInput::SpawnSingInput(int index){
|
---|
138 |
|
---|
139 | /*output*/
|
---|
140 | SingVertexInput* outinput=NULL;
|
---|
141 |
|
---|
142 | /*Create new Sing input (copy of current input)*/
|
---|
143 | ISSMASSERT(index<6 && index>=0);
|
---|
144 | outinput=new SingVertexInput(this->enum_type,this->values[index]);
|
---|
145 |
|
---|
146 | /*Assign output*/
|
---|
147 | return outinput;
|
---|
148 |
|
---|
149 | }
|
---|
150 | /*}}}*/
|
---|
151 | /*FUNCTION PentaVertexInput::SpawnBeamInput{{{1*/
|
---|
152 | Input* PentaVertexInput::SpawnBeamInput(int* indices){
|
---|
153 |
|
---|
154 | /*output*/
|
---|
155 | BeamVertexInput* outinput=NULL;
|
---|
156 | double newvalues[2];
|
---|
157 |
|
---|
158 | /*Loop over the new indices*/
|
---|
159 | for(int i=0;i<2;i++){
|
---|
160 |
|
---|
161 | /*Check index value*/
|
---|
162 | ISSMASSERT(indices[i]>=0 && indices[i]<6);
|
---|
163 |
|
---|
164 | /*Assign value to new input*/
|
---|
165 | newvalues[i]=this->values[indices[i]];
|
---|
166 | }
|
---|
167 |
|
---|
168 | /*Create new Beam input*/
|
---|
169 | outinput=new BeamVertexInput(this->enum_type,&newvalues[0]);
|
---|
170 |
|
---|
171 | /*Assign output*/
|
---|
172 | return outinput;
|
---|
173 |
|
---|
174 | }
|
---|
175 | /*}}}*/
|
---|
176 | /*FUNCTION PentaVertexInput::SpawnTriaInput{{{1*/
|
---|
177 | Input* PentaVertexInput::SpawnTriaInput(int* indices){
|
---|
178 |
|
---|
179 | /*output*/
|
---|
180 | TriaVertexInput* outinput=NULL;
|
---|
181 | double newvalues[3];
|
---|
182 |
|
---|
183 | /*Loop over the new indices*/
|
---|
184 | for(int i=0;i<3;i++){
|
---|
185 |
|
---|
186 | /*Check index value*/
|
---|
187 | ISSMASSERT(indices[i]>=0 && indices[i]<6);
|
---|
188 |
|
---|
189 | /*Assign value to new input*/
|
---|
190 | newvalues[i]=this->values[indices[i]];
|
---|
191 | }
|
---|
192 |
|
---|
193 | /*Create new Tria input*/
|
---|
194 | outinput=new TriaVertexInput(this->enum_type,&newvalues[0]);
|
---|
195 |
|
---|
196 | /*Assign output*/
|
---|
197 | return outinput;
|
---|
198 |
|
---|
199 | }
|
---|
200 | /*}}}*/
|
---|
201 | /*FUNCTION PentaVertexInput::SpawnResult{{{1*/
|
---|
202 | Result* PentaVertexInput::SpawnResult(int step, double time){
|
---|
203 |
|
---|
204 | return new PentaVertexResult(this->enum_type,this->values,step,time);
|
---|
205 |
|
---|
206 | }
|
---|
207 | /*}}}*/
|
---|
208 |
|
---|
209 | /*Object functions*/
|
---|
210 | /*FUNCTION PentaVertexInput::GetParameterValue(bool* pvalue) {{{1*/
|
---|
211 | void PentaVertexInput::GetParameterValue(bool* pvalue){ISSMERROR(" not supported yet!");}
|
---|
212 | /*}}}*/
|
---|
213 | /*FUNCTION PentaVertexInput::GetParameterValue(int* pvalue){{{1*/
|
---|
214 | void PentaVertexInput::GetParameterValue(int* pvalue){ISSMERROR(" not supported yet!");}
|
---|
215 | /*}}}*/
|
---|
216 | /*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue){{{1*/
|
---|
217 | void PentaVertexInput::GetParameterValue(double* pvalue){ISSMERROR(" not supported yet!");}
|
---|
218 | /*}}}*/
|
---|
219 | /*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue,Node* node){{{1*/
|
---|
220 | void PentaVertexInput::GetParameterValue(double* pvalue,Node* node){ISSMERROR(" not supported yet!");}
|
---|
221 | /*}}}*/
|
---|
222 | /*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue,Node* node1,Node* node2,double gauss_coord){{{1*/
|
---|
223 | void PentaVertexInput::GetParameterValue(double* pvalue,Node* node1,Node* node2,double gauss_coord){ISSMERROR(" not supported yet!");}
|
---|
224 | /*}}}*/
|
---|
225 | /*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue,double* gauss){{{1*/
|
---|
226 | void PentaVertexInput::GetParameterValue(double* pvalue,double* gauss){
|
---|
227 | /*P1 interpolation on Gauss point*/
|
---|
228 |
|
---|
229 | /*intermediary*/
|
---|
230 | double l1l6[6];
|
---|
231 |
|
---|
232 | /*nodal functions: */
|
---|
233 | GetNodalFunctionsP1(&l1l6[0],gauss);
|
---|
234 |
|
---|
235 | /*Assign output pointers:*/
|
---|
236 | *pvalue=l1l6[0]*values[0]+l1l6[1]*values[1]+l1l6[2]*values[2]+l1l6[3]*values[3]+l1l6[4]*values[4]+l1l6[5]*values[5];
|
---|
237 |
|
---|
238 | }
|
---|
239 | /*}}}*/
|
---|
240 | /*FUNCTION PentaVertexInput::GetParameterValue(double* pvalue,double* gauss,double defaultvalue){{{1*/
|
---|
241 | void PentaVertexInput::GetParameterValue(double* pvalue,double* gauss,double defaultvalue){ISSMERROR(" not supported yet!");}
|
---|
242 | /*}}}*/
|
---|
243 | /*FUNCTION PentaVertexInput::GetParameterValues(double* values,double* gauss_pointers, int numgauss){{{1*/
|
---|
244 | void PentaVertexInput::GetParameterValues(double* values,double* gauss_pointers, int numgauss){
|
---|
245 | /*It is assumed that output values has been correctly allocated*/
|
---|
246 |
|
---|
247 | int i,j;
|
---|
248 | double gauss[4];
|
---|
249 |
|
---|
250 | for (i=0;i<numgauss;i++){
|
---|
251 |
|
---|
252 | /*Get current Gauss point coordinates*/
|
---|
253 | for (j=0;j<4;j++) gauss[j]=gauss_pointers[i*4+j];
|
---|
254 |
|
---|
255 | /*Assign parameter value*/
|
---|
256 | GetParameterValue(&values[i],&gauss[0]);
|
---|
257 | }
|
---|
258 | }
|
---|
259 | /*}}}*/
|
---|
260 | /*FUNCTION PentaVertexInput::GetParameterDerivativeValue(double* derivativevalues, double* xyz_list, double* gauss){{{1*/
|
---|
261 | void PentaVertexInput::GetParameterDerivativeValue(double* p, double* xyz_list, double* gauss){
|
---|
262 | /*From grid values of parameter p (p_list[0], p_list[1], p_list[2], p_list[3], p_list[4] and p_list[4]), return parameter derivative value at gaussian point specified by gauss_coord:
|
---|
263 | * dp/dx=p_list[0]*dh1/dx+p_list[1]*dh2/dx+p_list[2]*dh3/dx+p_list[3]*dh4/dx+p_list[4]*dh5/dx+p_list[5]*dh6/dx;
|
---|
264 | * dp/dy=p_list[0]*dh1/dy+p_list[1]*dh2/dy+p_list[2]*dh3/dy+p_list[3]*dh4/dy+p_list[4]*dh5/dy+p_list[5]*dh6/dy;
|
---|
265 | * dp/dz=p_list[0]*dh1/dz+p_list[1]*dh2/dz+p_list[2]*dh3/dz+p_list[3]*dh4/dz+p_list[4]*dh5/dz+p_list[5]*dh6/dz;
|
---|
266 | *
|
---|
267 | * p is a vector of size 3x1 already allocated.
|
---|
268 | */
|
---|
269 |
|
---|
270 | const int NDOF3=3;
|
---|
271 | const int numgrids=6;
|
---|
272 | double dh1dh6[NDOF3][numgrids];
|
---|
273 |
|
---|
274 | /*Get nodal funnctions derivatives in actual coordinate system: */
|
---|
275 | GetNodalFunctionsP1Derivatives(&dh1dh6[0][0],xyz_list, gauss);
|
---|
276 |
|
---|
277 | p[0]=this->values[0]*dh1dh6[0][0]+this->values[1]*dh1dh6[0][1]+this->values[2]*dh1dh6[0][2]+this->values[3]*dh1dh6[0][3]+this->values[4]*dh1dh6[0][4]+this->values[5]*dh1dh6[0][5];
|
---|
278 | p[1]=this->values[0]*dh1dh6[1][0]+this->values[1]*dh1dh6[1][1]+this->values[2]*dh1dh6[1][2]+this->values[3]*dh1dh6[1][3]+this->values[4]*dh1dh6[1][4]+this->values[5]*dh1dh6[1][5];
|
---|
279 | p[2]=this->values[0]*dh1dh6[2][0]+this->values[1]*dh1dh6[2][1]+this->values[2]*dh1dh6[2][2]+this->values[3]*dh1dh6[2][3]+this->values[4]*dh1dh6[2][4]+this->values[5]*dh1dh6[2][5];
|
---|
280 |
|
---|
281 | }
|
---|
282 | /*}}}*/
|
---|
283 | /*FUNCTION PentaVertexInput::GetVxStrainRate3d(double* epsilonvx,double* xyz_list, double* gauss) {{{1*/
|
---|
284 | void PentaVertexInput::GetVxStrainRate3d(double* epsilonvx,double* xyz_list, double* gauss){
|
---|
285 | int i,j;
|
---|
286 |
|
---|
287 | const int numgrids=6;
|
---|
288 | const int DOFVELOCITY=3;
|
---|
289 | double B[8][27];
|
---|
290 | double B_reduced[6][DOFVELOCITY*numgrids];
|
---|
291 | double velocity[numgrids][DOFVELOCITY];
|
---|
292 |
|
---|
293 | /*Get B matrix: */
|
---|
294 | GetBStokes(&B[0][0], xyz_list, gauss);
|
---|
295 | /*Create a reduced matrix of B to get rid of pressure */
|
---|
296 | for (i=0;i<6;i++){
|
---|
297 | for (j=0;j<3;j++){
|
---|
298 | B_reduced[i][j]=B[i][j];
|
---|
299 | }
|
---|
300 | for (j=4;j<7;j++){
|
---|
301 | B_reduced[i][j-1]=B[i][j];
|
---|
302 | }
|
---|
303 | for (j=8;j<11;j++){
|
---|
304 | B_reduced[i][j-2]=B[i][j];
|
---|
305 | }
|
---|
306 | for (j=12;j<15;j++){
|
---|
307 | B_reduced[i][j-3]=B[i][j];
|
---|
308 | }
|
---|
309 | for (j=16;j<19;j++){
|
---|
310 | B_reduced[i][j-4]=B[i][j];
|
---|
311 | }
|
---|
312 | for (j=20;j<23;j++){
|
---|
313 | B_reduced[i][j-5]=B[i][j];
|
---|
314 | }
|
---|
315 | }
|
---|
316 |
|
---|
317 | /*Here, we are computing the strain rate of (vx,0,0)*/
|
---|
318 | for(i=0;i<numgrids;i++){
|
---|
319 | velocity[i][0]=this->values[i];
|
---|
320 | velocity[i][1]=0.0;
|
---|
321 | velocity[i][2]=0.0;
|
---|
322 | }
|
---|
323 | /*Multiply B by velocity, to get strain rate: */
|
---|
324 | MatrixMultiply(&B_reduced[0][0],6,DOFVELOCITY*numgrids,0,&velocity[0][0],DOFVELOCITY*numgrids,1,0,epsilonvx,0);
|
---|
325 |
|
---|
326 | }
|
---|
327 | /*}}}*/
|
---|
328 | /*FUNCTION PentaVertexInput::GetVyStrainRate3d(double* epsilonvy,double* xyz_list, double* gauss) {{{1*/
|
---|
329 | void PentaVertexInput::GetVyStrainRate3d(double* epsilonvy,double* xyz_list, double* gauss){
|
---|
330 | int i,j;
|
---|
331 |
|
---|
332 | const int numgrids=6;
|
---|
333 | const int DOFVELOCITY=3;
|
---|
334 | double B[8][27];
|
---|
335 | double B_reduced[6][DOFVELOCITY*numgrids];
|
---|
336 | double velocity[numgrids][DOFVELOCITY];
|
---|
337 |
|
---|
338 | /*Get B matrix: */
|
---|
339 | GetBStokes(&B[0][0], xyz_list, gauss);
|
---|
340 | /*Create a reduced matrix of B to get rid of pressure */
|
---|
341 | for (i=0;i<6;i++){
|
---|
342 | for (j=0;j<3;j++){
|
---|
343 | B_reduced[i][j]=B[i][j];
|
---|
344 | }
|
---|
345 | for (j=4;j<7;j++){
|
---|
346 | B_reduced[i][j-1]=B[i][j];
|
---|
347 | }
|
---|
348 | for (j=8;j<11;j++){
|
---|
349 | B_reduced[i][j-2]=B[i][j];
|
---|
350 | }
|
---|
351 | for (j=12;j<15;j++){
|
---|
352 | B_reduced[i][j-3]=B[i][j];
|
---|
353 | }
|
---|
354 | for (j=16;j<19;j++){
|
---|
355 | B_reduced[i][j-4]=B[i][j];
|
---|
356 | }
|
---|
357 | for (j=20;j<23;j++){
|
---|
358 | B_reduced[i][j-5]=B[i][j];
|
---|
359 | }
|
---|
360 | }
|
---|
361 |
|
---|
362 | /*Here, we are computing the strain rate of (0,vy,0)*/
|
---|
363 | for(i=0;i<numgrids;i++){
|
---|
364 | velocity[i][0]=0.0;
|
---|
365 | velocity[i][1]=this->values[i];
|
---|
366 | velocity[i][2]=0.0;
|
---|
367 | }
|
---|
368 | /*Multiply B by velocity, to get strain rate: */
|
---|
369 | MatrixMultiply(&B_reduced[0][0],6,DOFVELOCITY*numgrids,0,&velocity[0][0],DOFVELOCITY*numgrids,1,0,epsilonvy,0);
|
---|
370 |
|
---|
371 | }
|
---|
372 | /*}}}*/
|
---|
373 | /*FUNCTION PentaVertexInput::GetVzStrainRate3d(double* epsilonvz,double* xyz_list, double* gauss) {{{1*/
|
---|
374 | void PentaVertexInput::GetVzStrainRate3d(double* epsilonvz,double* xyz_list, double* gauss){
|
---|
375 | int i,j;
|
---|
376 |
|
---|
377 | const int numgrids=6;
|
---|
378 | const int DOFVELOCITY=3;
|
---|
379 | double B[8][27];
|
---|
380 | double B_reduced[6][DOFVELOCITY*numgrids];
|
---|
381 | double velocity[numgrids][DOFVELOCITY];
|
---|
382 |
|
---|
383 | /*Get B matrix: */
|
---|
384 | GetBStokes(&B[0][0], xyz_list, gauss);
|
---|
385 | /*Create a reduced matrix of B to get rid of pressure */
|
---|
386 | for (i=0;i<6;i++){
|
---|
387 | for (j=0;j<3;j++){
|
---|
388 | B_reduced[i][j]=B[i][j];
|
---|
389 | }
|
---|
390 | for (j=4;j<7;j++){
|
---|
391 | B_reduced[i][j-1]=B[i][j];
|
---|
392 | }
|
---|
393 | for (j=8;j<11;j++){
|
---|
394 | B_reduced[i][j-2]=B[i][j];
|
---|
395 | }
|
---|
396 | for (j=12;j<15;j++){
|
---|
397 | B_reduced[i][j-3]=B[i][j];
|
---|
398 | }
|
---|
399 | for (j=16;j<19;j++){
|
---|
400 | B_reduced[i][j-4]=B[i][j];
|
---|
401 | }
|
---|
402 | for (j=20;j<23;j++){
|
---|
403 | B_reduced[i][j-5]=B[i][j];
|
---|
404 | }
|
---|
405 | }
|
---|
406 |
|
---|
407 | /*Here, we are computing the strain rate of (0,0,vz)*/
|
---|
408 | for(i=0;i<numgrids;i++){
|
---|
409 | velocity[i][0]=0.0;
|
---|
410 | velocity[i][1]=0.0;
|
---|
411 | velocity[i][2]=this->values[i];
|
---|
412 | }
|
---|
413 |
|
---|
414 | /*Multiply B by velocity, to get strain rate: */
|
---|
415 | MatrixMultiply(&B_reduced[0][0],6,DOFVELOCITY*numgrids,0,&velocity[0][0],DOFVELOCITY*numgrids,1,0,epsilonvz,0);
|
---|
416 |
|
---|
417 | }
|
---|
418 | /*}}}*/
|
---|
419 | /*FUNCTION PentaVertexInput::GetVxStrainRate3dPattyn(double* epsilonvx,double* xyz_list, double* gauss) {{{1*/
|
---|
420 | void PentaVertexInput::GetVxStrainRate3dPattyn(double* epsilonvx,double* xyz_list, double* gauss){
|
---|
421 |
|
---|
422 | int i;
|
---|
423 | const int numgrids=6;
|
---|
424 | const int NDOF2=2;
|
---|
425 | double B[5][NDOF2*numgrids];
|
---|
426 | double velocity[numgrids][NDOF2];
|
---|
427 |
|
---|
428 | /*Get B matrix: */
|
---|
429 | GetBPattyn(&B[0][0], xyz_list, gauss);
|
---|
430 |
|
---|
431 | /*Here, we are computing the strain rate of (vx,0)*/
|
---|
432 | for(i=0;i<numgrids;i++){
|
---|
433 | velocity[i][0]=this->values[i];
|
---|
434 | velocity[i][1]=0.0;
|
---|
435 | }
|
---|
436 |
|
---|
437 | /*Multiply B by velocity, to get strain rate: */
|
---|
438 | MatrixMultiply( &B[0][0],5,NDOF2*numgrids,0,
|
---|
439 | &velocity[0][0],NDOF2*numgrids,1,0,
|
---|
440 | epsilonvx,0);
|
---|
441 |
|
---|
442 | }
|
---|
443 | /*}}}*/
|
---|
444 | /*FUNCTION PentaVertexInput::GetVyStrainRate3dPattyn(double* epsilonvy,double* xyz_list, double* gauss) {{{1*/
|
---|
445 | void PentaVertexInput::GetVyStrainRate3dPattyn(double* epsilonvy,double* xyz_list, double* gauss){
|
---|
446 |
|
---|
447 | int i;
|
---|
448 | const int numgrids=6;
|
---|
449 | const int NDOF2=2;
|
---|
450 | double B[5][NDOF2*numgrids];
|
---|
451 | double velocity[numgrids][NDOF2];
|
---|
452 |
|
---|
453 | /*Get B matrix: */
|
---|
454 | GetBPattyn(&B[0][0], xyz_list, gauss);
|
---|
455 |
|
---|
456 | /*Here, we are computing the strain rate of (0,vy)*/
|
---|
457 | for(i=0;i<numgrids;i++){
|
---|
458 | velocity[i][0]=0.0;
|
---|
459 | velocity[i][1]=this->values[i];
|
---|
460 | }
|
---|
461 |
|
---|
462 | /*Multiply B by velocity, to get strain rate: */
|
---|
463 | MatrixMultiply( &B[0][0],5,NDOF2*numgrids,0,
|
---|
464 | &velocity[0][0],NDOF2*numgrids,1,0,
|
---|
465 | epsilonvy,0);
|
---|
466 |
|
---|
467 | }
|
---|
468 | /*}}}*/
|
---|
469 | /*FUNCTION PentaVertexInput::ChangeEnum(int newenumtype){{{1*/
|
---|
470 | void PentaVertexInput::ChangeEnum(int newenumtype){
|
---|
471 | this->enum_type=newenumtype;
|
---|
472 | }
|
---|
473 | /*}}}*/
|
---|
474 | /*FUNCTION PentaVertexInput::GetParameterAverage(double* pvalue){{{1*/
|
---|
475 | void PentaVertexInput::GetParameterAverage(double* pvalue){
|
---|
476 | *pvalue=1./6.*(values[0]+values[1]+values[2]+values[3]+values[4]+values[5]);
|
---|
477 | }
|
---|
478 | /*}}}*/
|
---|
479 |
|
---|
480 | /*Intermediary*/
|
---|
481 | /*FUNCTION PentaVertexInput::GetNodalFunctionsP1 {{{1*/
|
---|
482 | void PentaVertexInput::GetNodalFunctionsP1(double* l1l6, double* gauss_coord){
|
---|
483 |
|
---|
484 | /*This routine returns the values of the nodal functions at the gaussian point.*/
|
---|
485 |
|
---|
486 | l1l6[0]=gauss_coord[0]*(1-gauss_coord[3])/2.0;
|
---|
487 |
|
---|
488 | l1l6[1]=gauss_coord[1]*(1-gauss_coord[3])/2.0;
|
---|
489 |
|
---|
490 | l1l6[2]=gauss_coord[2]*(1-gauss_coord[3])/2.0;
|
---|
491 |
|
---|
492 | l1l6[3]=gauss_coord[0]*(1+gauss_coord[3])/2.0;
|
---|
493 |
|
---|
494 | l1l6[4]=gauss_coord[1]*(1+gauss_coord[3])/2.0;
|
---|
495 |
|
---|
496 | l1l6[5]=gauss_coord[2]*(1+gauss_coord[3])/2.0;
|
---|
497 |
|
---|
498 | }
|
---|
499 | /*}}}*/
|
---|
500 | /*FUNCTION PentaVertexInput::GetNodalFunctionsMINI{{{1*/
|
---|
501 | void PentaVertexInput::GetNodalFunctionsMINI(double* l1l7, double* gauss_coord){
|
---|
502 |
|
---|
503 | /*This routine returns the values of the nodal functions at the gaussian point.*/
|
---|
504 |
|
---|
505 | /*First nodal function: */
|
---|
506 | l1l7[0]=gauss_coord[0]*(1.0-gauss_coord[3])/2.0;
|
---|
507 |
|
---|
508 | /*Second nodal function: */
|
---|
509 | l1l7[1]=gauss_coord[1]*(1.0-gauss_coord[3])/2.0;
|
---|
510 |
|
---|
511 | /*Third nodal function: */
|
---|
512 | l1l7[2]=gauss_coord[2]*(1.0-gauss_coord[3])/2.0;
|
---|
513 |
|
---|
514 | /*Fourth nodal function: */
|
---|
515 | l1l7[3]=gauss_coord[0]*(1.0+gauss_coord[3])/2.0;
|
---|
516 |
|
---|
517 | /*Fifth nodal function: */
|
---|
518 | l1l7[4]=gauss_coord[1]*(1.0+gauss_coord[3])/2.0;
|
---|
519 |
|
---|
520 | /*Sixth nodal function: */
|
---|
521 | l1l7[5]=gauss_coord[2]*(1.0+gauss_coord[3])/2.0;
|
---|
522 |
|
---|
523 | /*Seventh nodal function: */
|
---|
524 | l1l7[6]=27*gauss_coord[0]*gauss_coord[1]*gauss_coord[2]*(1.0+gauss_coord[3])*(1.0-gauss_coord[3]);
|
---|
525 |
|
---|
526 | }
|
---|
527 | /*}}}*/
|
---|
528 | /*FUNCTION PentaVertexInput::GetNodalFunctionsP1Derivatives {{{1*/
|
---|
529 | void PentaVertexInput::GetNodalFunctionsP1Derivatives(double* dh1dh6,double* xyz_list, double* gauss_coord){
|
---|
530 |
|
---|
531 | /*This routine returns the values of the nodal functions derivatives (with respect to the actual coordinate system: */
|
---|
532 | int i;
|
---|
533 | const int NDOF3=3;
|
---|
534 | const int numgrids=6;
|
---|
535 |
|
---|
536 | double dh1dh6_ref[NDOF3][numgrids];
|
---|
537 | double Jinv[NDOF3][NDOF3];
|
---|
538 |
|
---|
539 | /*Get derivative values with respect to parametric coordinate system: */
|
---|
540 | GetNodalFunctionsP1DerivativesReference(&dh1dh6_ref[0][0], gauss_coord);
|
---|
541 |
|
---|
542 | /*Get Jacobian invert: */
|
---|
543 | GetJacobianInvert(&Jinv[0][0], xyz_list, gauss_coord);
|
---|
544 |
|
---|
545 | /*Build dh1dh3:
|
---|
546 | *
|
---|
547 | * [dhi/dx]= Jinv*[dhi/dr]
|
---|
548 | * [dhi/dy] [dhi/ds]
|
---|
549 | * [dhi/dz] [dhi/dn]
|
---|
550 | */
|
---|
551 |
|
---|
552 | for (i=0;i<numgrids;i++){
|
---|
553 | *(dh1dh6+numgrids*0+i)=Jinv[0][0]*dh1dh6_ref[0][i]+Jinv[0][1]*dh1dh6_ref[1][i]+Jinv[0][2]*dh1dh6_ref[2][i];
|
---|
554 | *(dh1dh6+numgrids*1+i)=Jinv[1][0]*dh1dh6_ref[0][i]+Jinv[1][1]*dh1dh6_ref[1][i]+Jinv[1][2]*dh1dh6_ref[2][i];
|
---|
555 | *(dh1dh6+numgrids*2+i)=Jinv[2][0]*dh1dh6_ref[0][i]+Jinv[2][1]*dh1dh6_ref[1][i]+Jinv[2][2]*dh1dh6_ref[2][i];
|
---|
556 | }
|
---|
557 |
|
---|
558 | }
|
---|
559 | /*}}}*/
|
---|
560 | /*FUNCTION PentaVertexInput::GetNodalFunctionsMINIDerivatives{{{1*/
|
---|
561 | void PentaVertexInput::GetNodalFunctionsMINIDerivatives(double* dh1dh7,double* xyz_list, double* gauss_coord){
|
---|
562 |
|
---|
563 | /*This routine returns the values of the nodal functions derivatives (with respect to the
|
---|
564 | * actual coordinate system: */
|
---|
565 |
|
---|
566 | int i;
|
---|
567 |
|
---|
568 | const int numgrids=7;
|
---|
569 | double dh1dh7_ref[3][numgrids];
|
---|
570 | double Jinv[3][3];
|
---|
571 |
|
---|
572 |
|
---|
573 | /*Get derivative values with respect to parametric coordinate system: */
|
---|
574 | GetNodalFunctionsMINIDerivativesReference(&dh1dh7_ref[0][0], gauss_coord);
|
---|
575 |
|
---|
576 | /*Get Jacobian invert: */
|
---|
577 | GetJacobianInvert(&Jinv[0][0], xyz_list, gauss_coord);
|
---|
578 |
|
---|
579 | /*Build dh1dh6:
|
---|
580 | *
|
---|
581 | * [dhi/dx]= Jinv'*[dhi/dr]
|
---|
582 | * [dhi/dy] [dhi/ds]
|
---|
583 | * [dhi/dz] [dhi/dzeta]
|
---|
584 | */
|
---|
585 |
|
---|
586 | for (i=0;i<numgrids;i++){
|
---|
587 | *(dh1dh7+numgrids*0+i)=Jinv[0][0]*dh1dh7_ref[0][i]+Jinv[0][1]*dh1dh7_ref[1][i]+Jinv[0][2]*dh1dh7_ref[2][i];
|
---|
588 | *(dh1dh7+numgrids*1+i)=Jinv[1][0]*dh1dh7_ref[0][i]+Jinv[1][1]*dh1dh7_ref[1][i]+Jinv[1][2]*dh1dh7_ref[2][i];
|
---|
589 | *(dh1dh7+numgrids*2+i)=Jinv[2][0]*dh1dh7_ref[0][i]+Jinv[2][1]*dh1dh7_ref[1][i]+Jinv[2][2]*dh1dh7_ref[2][i];
|
---|
590 | }
|
---|
591 |
|
---|
592 | }
|
---|
593 | /*}}}*/
|
---|
594 | /*FUNCTION PentaVertexInput::GetNodalFunctionsP1DerivativesReference {{{1*/
|
---|
595 | void PentaVertexInput::GetNodalFunctionsP1DerivativesReference(double* dl1dl6,double* gauss_coord){
|
---|
596 |
|
---|
597 | /*This routine returns the values of the nodal functions derivatives (with respect to the
|
---|
598 | * natural coordinate system) at the gaussian point. Those values vary along xi,eta,z */
|
---|
599 |
|
---|
600 | const int numgrids=6;
|
---|
601 | double A1,A2,A3,z;
|
---|
602 |
|
---|
603 | A1=gauss_coord[0]; //first area coordinate value. In term of xi and eta: A1=(1-xi)/2-eta/(2*SQRT3);
|
---|
604 | A2=gauss_coord[1]; //second area coordinate value In term of xi and eta: A2=(1+xi)/2-eta/(2*SQRT3);
|
---|
605 | A3=gauss_coord[2]; //third area coordinate value In term of xi and eta: A3=y/SQRT3;
|
---|
606 | z=gauss_coord[3]; //fourth vertical coordinate value. Corresponding nodal function: (1-z)/2 and (1+z)/2
|
---|
607 |
|
---|
608 |
|
---|
609 | /*First nodal function derivatives. The corresponding nodal function is N=A1*(1-z)/2. Its derivatives follow*/
|
---|
610 | *(dl1dl6+numgrids*0+0)=-0.5*(1.0-z)/2.0;
|
---|
611 | *(dl1dl6+numgrids*1+0)=-0.5/SQRT3*(1.0-z)/2.0;
|
---|
612 | *(dl1dl6+numgrids*2+0)=-0.5*A1;
|
---|
613 |
|
---|
614 | /*Second nodal function: The corresponding nodal function is N=A2*(1-z)/2. Its derivatives follow*/
|
---|
615 | *(dl1dl6+numgrids*0+1)=0.5*(1.0-z)/2.0;
|
---|
616 | *(dl1dl6+numgrids*1+1)=-0.5/SQRT3*(1.0-z)/2.0;
|
---|
617 | *(dl1dl6+numgrids*2+1)=-0.5*A2;
|
---|
618 |
|
---|
619 | /*Third nodal function: The corresponding nodal function is N=A3*(1-z)/2. Its derivatives follow*/
|
---|
620 | *(dl1dl6+numgrids*0+2)=0.0;
|
---|
621 | *(dl1dl6+numgrids*1+2)=1.0/SQRT3*(1.0-z)/2.0;
|
---|
622 | *(dl1dl6+numgrids*2+2)=-0.5*A3;
|
---|
623 |
|
---|
624 | /*Fourth nodal function: The corresponding nodal function is N=A1*(1+z)/2. Its derivatives follow*/
|
---|
625 | *(dl1dl6+numgrids*0+3)=-0.5*(1.0+z)/2.0;
|
---|
626 | *(dl1dl6+numgrids*1+3)=-0.5/SQRT3*(1.0+z)/2.0;
|
---|
627 | *(dl1dl6+numgrids*2+3)=0.5*A1;
|
---|
628 |
|
---|
629 | /*Fifth nodal function: The corresponding nodal function is N=A2*(1+z)/2. Its derivatives follow*/
|
---|
630 | *(dl1dl6+numgrids*0+4)=0.5*(1.0+z)/2.0;
|
---|
631 | *(dl1dl6+numgrids*1+4)=-0.5/SQRT3*(1.0+z)/2.0;
|
---|
632 | *(dl1dl6+numgrids*2+4)=0.5*A2;
|
---|
633 |
|
---|
634 | /*Sixth nodal function: The corresponding nodal function is N=A3*(1+z)/2. Its derivatives follow*/
|
---|
635 | *(dl1dl6+numgrids*0+5)=0.0;
|
---|
636 | *(dl1dl6+numgrids*1+5)=1.0/SQRT3*(1.0+z)/2.0;
|
---|
637 | *(dl1dl6+numgrids*2+5)=0.5*A3;
|
---|
638 | }
|
---|
639 | /*}}}*/
|
---|
640 | /*FUNCTION PentaVertexInput::GetNodalFunctionsMINIDerivativesReference{{{1*/
|
---|
641 | void PentaVertexInput::GetNodalFunctionsMINIDerivativesReference(double* dl1dl7,double* gauss_coord){
|
---|
642 |
|
---|
643 | /*This routine returns the values of the nodal functions derivatives (with respect to the
|
---|
644 | * natural coordinate system) at the gaussian point. */
|
---|
645 |
|
---|
646 | int numgrids=7; //six plus bubble grids
|
---|
647 |
|
---|
648 | double r=gauss_coord[1]-gauss_coord[0];
|
---|
649 | double s=-3.0/SQRT3*(gauss_coord[0]+gauss_coord[1]-2.0/3.0);
|
---|
650 | double zeta=gauss_coord[3];
|
---|
651 |
|
---|
652 | /*First nodal function: */
|
---|
653 | *(dl1dl7+numgrids*0+0)=-0.5*(1.0-zeta)/2.0;
|
---|
654 | *(dl1dl7+numgrids*1+0)=-SQRT3/6.0*(1.0-zeta)/2.0;
|
---|
655 | *(dl1dl7+numgrids*2+0)=-0.5*(-0.5*r-SQRT3/6.0*s+ONETHIRD);
|
---|
656 |
|
---|
657 | /*Second nodal function: */
|
---|
658 | *(dl1dl7+numgrids*0+1)=0.5*(1.0-zeta)/2.0;
|
---|
659 | *(dl1dl7+numgrids*1+1)=-SQRT3/6.0*(1.0-zeta)/2.0;
|
---|
660 | *(dl1dl7+numgrids*2+1)=-0.5*(0.5*r-SQRT3/6.0*s+ONETHIRD);
|
---|
661 |
|
---|
662 | /*Third nodal function: */
|
---|
663 | *(dl1dl7+numgrids*0+2)=0;
|
---|
664 | *(dl1dl7+numgrids*1+2)=SQRT3/3.0*(1.0-zeta)/2.0;
|
---|
665 | *(dl1dl7+numgrids*2+2)=-0.5*(SQRT3/3.0*s+ONETHIRD);
|
---|
666 |
|
---|
667 | /*Fourth nodal function: */
|
---|
668 | *(dl1dl7+numgrids*0+3)=-0.5*(1.0+zeta)/2.0;
|
---|
669 | *(dl1dl7+numgrids*1+3)=-SQRT3/6.0*(1.0+zeta)/2.0;
|
---|
670 | *(dl1dl7+numgrids*2+3)=0.5*(-0.5*r-SQRT3/6.0*s+ONETHIRD);
|
---|
671 |
|
---|
672 | /*Fith nodal function: */
|
---|
673 | *(dl1dl7+numgrids*0+4)=0.5*(1.0+zeta)/2.0;
|
---|
674 | *(dl1dl7+numgrids*1+4)=-SQRT3/6.0*(1.0+zeta)/2.0;
|
---|
675 | *(dl1dl7+numgrids*2+4)=0.5*(0.5*r-SQRT3/6.0*s+ONETHIRD);
|
---|
676 |
|
---|
677 | /*Sixth nodal function: */
|
---|
678 | *(dl1dl7+numgrids*0+5)=0;
|
---|
679 | *(dl1dl7+numgrids*1+5)=SQRT3/3.0*(1.0+zeta)/2.0;
|
---|
680 | *(dl1dl7+numgrids*2+5)=0.5*(SQRT3/3.0*s+ONETHIRD);
|
---|
681 |
|
---|
682 | /*Seventh nodal function: */
|
---|
683 | *(dl1dl7+numgrids*0+6)=9.0/2.0*r*(1.0+zeta)*(zeta-1.0)*(SQRT3*s+1.0);
|
---|
684 | *(dl1dl7+numgrids*1+6)=9.0/4.0*(1+zeta)*(1-zeta)*(SQRT3*pow(s,2.0)-2.0*s-SQRT3*pow(r,2.0));
|
---|
685 | *(dl1dl7+numgrids*2+6)=27*gauss_coord[0]*gauss_coord[1]*gauss_coord[2]*(-2.0*zeta);
|
---|
686 |
|
---|
687 | }
|
---|
688 | /*}}}*/
|
---|
689 | /*FUNCTION PentaVertexInput::GetJacobian {{{1*/
|
---|
690 | void PentaVertexInput::GetJacobian(double* J, double* xyz_list,double* gauss_coord){
|
---|
691 |
|
---|
692 | const int NDOF3=3;
|
---|
693 | int i,j;
|
---|
694 |
|
---|
695 | /*The Jacobian is constant over the element, discard the gaussian points.
|
---|
696 | * J is assumed to have been allocated of size NDOF2xNDOF2.*/
|
---|
697 |
|
---|
698 | double A1,A2,A3; //area coordinates
|
---|
699 | double xi,eta,zi; //parametric coordinates
|
---|
700 |
|
---|
701 | double x1,x2,x3,x4,x5,x6;
|
---|
702 | double y1,y2,y3,y4,y5,y6;
|
---|
703 | double z1,z2,z3,z4,z5,z6;
|
---|
704 |
|
---|
705 | /*Figure out xi,eta and zi (parametric coordinates), for this gaussian point: */
|
---|
706 | A1=gauss_coord[0];
|
---|
707 | A2=gauss_coord[1];
|
---|
708 | A3=gauss_coord[2];
|
---|
709 |
|
---|
710 | xi=A2-A1;
|
---|
711 | eta=SQRT3*A3;
|
---|
712 | zi=gauss_coord[3];
|
---|
713 |
|
---|
714 | x1=*(xyz_list+3*0+0);
|
---|
715 | x2=*(xyz_list+3*1+0);
|
---|
716 | x3=*(xyz_list+3*2+0);
|
---|
717 | x4=*(xyz_list+3*3+0);
|
---|
718 | x5=*(xyz_list+3*4+0);
|
---|
719 | x6=*(xyz_list+3*5+0);
|
---|
720 |
|
---|
721 | y1=*(xyz_list+3*0+1);
|
---|
722 | y2=*(xyz_list+3*1+1);
|
---|
723 | y3=*(xyz_list+3*2+1);
|
---|
724 | y4=*(xyz_list+3*3+1);
|
---|
725 | y5=*(xyz_list+3*4+1);
|
---|
726 | y6=*(xyz_list+3*5+1);
|
---|
727 |
|
---|
728 | z1=*(xyz_list+3*0+2);
|
---|
729 | z2=*(xyz_list+3*1+2);
|
---|
730 | z3=*(xyz_list+3*2+2);
|
---|
731 | z4=*(xyz_list+3*3+2);
|
---|
732 | z5=*(xyz_list+3*4+2);
|
---|
733 | z6=*(xyz_list+3*5+2);
|
---|
734 |
|
---|
735 | *(J+NDOF3*0+0)=0.25*(x1-x2-x4+x5)*zi+0.25*(-x1+x2-x4+x5);
|
---|
736 | *(J+NDOF3*1+0)=SQRT3/12.0*(x1+x2-2*x3-x4-x5+2*x6)*zi+SQRT3/12.0*(-x1-x2+2*x3-x4-x5+2*x6);
|
---|
737 | *(J+NDOF3*2+0)=SQRT3/12.0*(x1+x2-2*x3-x4-x5+2*x6)*eta+1/4*(x1-x2-x4+x5)*xi +0.25*(-x1+x5-x2+x4);
|
---|
738 |
|
---|
739 | *(J+NDOF3*0+1)=0.25*(y1-y2-y4+y5)*zi+0.25*(-y1+y2-y4+y5);
|
---|
740 | *(J+NDOF3*1+1)=SQRT3/12.0*(y1+y2-2*y3-y4-y5+2*y6)*zi+SQRT3/12.0*(-y1-y2+2*y3-y4-y5+2*y6);
|
---|
741 | *(J+NDOF3*2+1)=SQRT3/12.0*(y1+y2-2*y3-y4-y5+2*y6)*eta+0.25*(y1-y2-y4+y5)*xi+0.25*(y4-y1+y5-y2);
|
---|
742 |
|
---|
743 | *(J+NDOF3*0+2)=0.25*(z1-z2-z4+z5)*zi+0.25*(-z1+z2-z4+z5);
|
---|
744 | *(J+NDOF3*1+2)=SQRT3/12.0*(z1+z2-2*z3-z4-z5+2*z6)*zi+SQRT3/12.0*(-z1-z2+2*z3-z4-z5+2*z6);
|
---|
745 | *(J+NDOF3*2+2)=SQRT3/12.0*(z1+z2-2*z3-z4-z5+2*z6)*eta+0.25*(z1-z2-z4+z5)*xi+0.25*(-z1+z5-z2+z4);
|
---|
746 |
|
---|
747 | }
|
---|
748 | /*}}}*/
|
---|
749 | /*FUNCTION PentaVertexInput::GetJacobianInvert {{{1*/
|
---|
750 | void PentaVertexInput::GetJacobianInvert(double* Jinv, double* xyz_list,double* gauss_coord){
|
---|
751 |
|
---|
752 | double Jdet;
|
---|
753 | const int NDOF3=3;
|
---|
754 |
|
---|
755 | /*Call Jacobian routine to get the jacobian:*/
|
---|
756 | GetJacobian(Jinv, xyz_list, gauss_coord);
|
---|
757 |
|
---|
758 | /*Invert Jacobian matrix: */
|
---|
759 | MatrixInverse(Jinv,NDOF3,NDOF3,NULL,0,&Jdet);
|
---|
760 | }
|
---|
761 | /*}}}*/
|
---|
762 | /*FUNCTION PentaVertexInput::GetBPattyn {{{1*/
|
---|
763 | void PentaVertexInput::GetBPattyn(double* B, double* xyz_list, double* gauss_coord){
|
---|
764 | /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF2.
|
---|
765 | * For grid i, Bi can be expressed in the actual coordinate system
|
---|
766 | * by:
|
---|
767 | * Bi=[ dh/dx 0 ]
|
---|
768 | * [ 0 dh/dy ]
|
---|
769 | * [ 1/2*dh/dy 1/2*dh/dx ]
|
---|
770 | * [ 1/2*dh/dz 0 ]
|
---|
771 | * [ 0 1/2*dh/dz ]
|
---|
772 | * where h is the interpolation function for grid i.
|
---|
773 | *
|
---|
774 | * We assume B has been allocated already, of size: 5x(NDOF2*numgrids)
|
---|
775 | */
|
---|
776 |
|
---|
777 | int i;
|
---|
778 | const int numgrids=6;
|
---|
779 | const int NDOF3=3;
|
---|
780 | const int NDOF2=2;
|
---|
781 |
|
---|
782 | double dh1dh6[NDOF3][numgrids];
|
---|
783 |
|
---|
784 | /*Get dh1dh6 in actual coordinate system: */
|
---|
785 | GetNodalFunctionsP1Derivatives(&dh1dh6[0][0],xyz_list, gauss_coord);
|
---|
786 |
|
---|
787 | /*Build B: */
|
---|
788 | for (i=0;i<numgrids;i++){
|
---|
789 | *(B+NDOF2*numgrids*0+NDOF2*i)=dh1dh6[0][i];
|
---|
790 | *(B+NDOF2*numgrids*0+NDOF2*i+1)=0.0;
|
---|
791 |
|
---|
792 | *(B+NDOF2*numgrids*1+NDOF2*i)=0.0;
|
---|
793 | *(B+NDOF2*numgrids*1+NDOF2*i+1)=dh1dh6[1][i];
|
---|
794 |
|
---|
795 | *(B+NDOF2*numgrids*2+NDOF2*i)=(float).5*dh1dh6[1][i];
|
---|
796 | *(B+NDOF2*numgrids*2+NDOF2*i+1)=(float).5*dh1dh6[0][i];
|
---|
797 |
|
---|
798 | *(B+NDOF2*numgrids*3+NDOF2*i)=(float).5*dh1dh6[2][i];
|
---|
799 | *(B+NDOF2*numgrids*3+NDOF2*i+1)=0.0;
|
---|
800 |
|
---|
801 | *(B+NDOF2*numgrids*4+NDOF2*i)=0.0;
|
---|
802 | *(B+NDOF2*numgrids*4+NDOF2*i+1)=(float).5*dh1dh6[2][i];
|
---|
803 | }
|
---|
804 |
|
---|
805 | }
|
---|
806 | /*}}}*/
|
---|
807 | /*FUNCTION PentaVertexInput::GetBStokes {{{1*/
|
---|
808 | void PentaVertexInput::GetBStokes(double* B, double* xyz_list, double* gauss_coord){
|
---|
809 |
|
---|
810 | /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 3*DOFPERGRID.
|
---|
811 | * For grid i, Bi can be expressed in the actual coordinate system
|
---|
812 | * by: Bi=[ dh/dx 0 0 0 ]
|
---|
813 | * [ 0 dh/dy 0 0 ]
|
---|
814 | * [ 0 0 dh/dy 0 ]
|
---|
815 | * [ 1/2*dh/dy 1/2*dh/dx 0 0 ]
|
---|
816 | * [ 1/2*dh/dz 0 1/2*dh/dx 0 ]
|
---|
817 | * [ 0 1/2*dh/dz 1/2*dh/dy 0 ]
|
---|
818 | * [ 0 0 0 h ]
|
---|
819 | * [ dh/dx dh/dy dh/dz 0 ]
|
---|
820 | * where h is the interpolation function for grid i.
|
---|
821 | * Same thing for Bb except the last column that does not exist.
|
---|
822 | */
|
---|
823 |
|
---|
824 | int i;
|
---|
825 | const int calculationdof=3;
|
---|
826 | const int numgrids=6;
|
---|
827 | int DOFPERGRID=4;
|
---|
828 |
|
---|
829 | double dh1dh7[calculationdof][numgrids+1];
|
---|
830 | double l1l6[numgrids];
|
---|
831 |
|
---|
832 |
|
---|
833 | /*Get dh1dh7 in actual coordinate system: */
|
---|
834 | GetNodalFunctionsMINIDerivatives(&dh1dh7[0][0],xyz_list, gauss_coord);
|
---|
835 | GetNodalFunctionsP1(l1l6, gauss_coord);
|
---|
836 |
|
---|
837 | /*Build B: */
|
---|
838 | for (i=0;i<numgrids+1;i++){
|
---|
839 | *(B+(DOFPERGRID*numgrids+3)*0+DOFPERGRID*i)=dh1dh7[0][i]; //B[0][DOFPERGRID*i]=dh1dh6[0][i];
|
---|
840 | *(B+(DOFPERGRID*numgrids+3)*0+DOFPERGRID*i+1)=0;
|
---|
841 | *(B+(DOFPERGRID*numgrids+3)*0+DOFPERGRID*i+2)=0;
|
---|
842 | *(B+(DOFPERGRID*numgrids+3)*1+DOFPERGRID*i)=0;
|
---|
843 | *(B+(DOFPERGRID*numgrids+3)*1+DOFPERGRID*i+1)=dh1dh7[1][i];
|
---|
844 | *(B+(DOFPERGRID*numgrids+3)*1+DOFPERGRID*i+2)=0;
|
---|
845 | *(B+(DOFPERGRID*numgrids+3)*2+DOFPERGRID*i)=0;
|
---|
846 | *(B+(DOFPERGRID*numgrids+3)*2+DOFPERGRID*i+1)=0;
|
---|
847 | *(B+(DOFPERGRID*numgrids+3)*2+DOFPERGRID*i+2)=dh1dh7[2][i];
|
---|
848 | *(B+(DOFPERGRID*numgrids+3)*3+DOFPERGRID*i)=(float).5*dh1dh7[1][i];
|
---|
849 | *(B+(DOFPERGRID*numgrids+3)*3+DOFPERGRID*i+1)=(float).5*dh1dh7[0][i];
|
---|
850 | *(B+(DOFPERGRID*numgrids+3)*3+DOFPERGRID*i+2)=0;
|
---|
851 | *(B+(DOFPERGRID*numgrids+3)*4+DOFPERGRID*i)=(float).5*dh1dh7[2][i];
|
---|
852 | *(B+(DOFPERGRID*numgrids+3)*4+DOFPERGRID*i+1)=0;
|
---|
853 | *(B+(DOFPERGRID*numgrids+3)*4+DOFPERGRID*i+2)=(float).5*dh1dh7[0][i];
|
---|
854 | *(B+(DOFPERGRID*numgrids+3)*5+DOFPERGRID*i)=0;
|
---|
855 | *(B+(DOFPERGRID*numgrids+3)*5+DOFPERGRID*i+1)=(float).5*dh1dh7[2][i];
|
---|
856 | *(B+(DOFPERGRID*numgrids+3)*5+DOFPERGRID*i+2)=(float).5*dh1dh7[1][i];
|
---|
857 | *(B+(DOFPERGRID*numgrids+3)*6+DOFPERGRID*i)=0;
|
---|
858 | *(B+(DOFPERGRID*numgrids+3)*6+DOFPERGRID*i+1)=0;
|
---|
859 | *(B+(DOFPERGRID*numgrids+3)*6+DOFPERGRID*i+2)=0;
|
---|
860 | *(B+(DOFPERGRID*numgrids+3)*7+DOFPERGRID*i)=dh1dh7[0][i];
|
---|
861 | *(B+(DOFPERGRID*numgrids+3)*7+DOFPERGRID*i+1)=dh1dh7[1][i];
|
---|
862 | *(B+(DOFPERGRID*numgrids+3)*7+DOFPERGRID*i+2)=dh1dh7[2][i];
|
---|
863 | }
|
---|
864 |
|
---|
865 | for (i=0;i<numgrids;i++){ //last column not for the bubble function
|
---|
866 | *(B+(DOFPERGRID*numgrids+3)*0+DOFPERGRID*i+3)=0;
|
---|
867 | *(B+(DOFPERGRID*numgrids+3)*1+DOFPERGRID*i+3)=0;
|
---|
868 | *(B+(DOFPERGRID*numgrids+3)*2+DOFPERGRID*i+3)=0;
|
---|
869 | *(B+(DOFPERGRID*numgrids+3)*3+DOFPERGRID*i+3)=0;
|
---|
870 | *(B+(DOFPERGRID*numgrids+3)*4+DOFPERGRID*i+3)=0;
|
---|
871 | *(B+(DOFPERGRID*numgrids+3)*5+DOFPERGRID*i+3)=0;
|
---|
872 | *(B+(DOFPERGRID*numgrids+3)*6+DOFPERGRID*i+3)=l1l6[i];
|
---|
873 | *(B+(DOFPERGRID*numgrids+3)*7+DOFPERGRID*i+3)=0;
|
---|
874 | }
|
---|
875 |
|
---|
876 | }
|
---|
877 | /*}}}*/
|
---|
878 | /*FUNCTION PentaVertexInput::SquareMin(double* psquaremin, bool process_units){{{1*/
|
---|
879 | void PentaVertexInput::SquareMin(double* psquaremin, bool process_units,Parameters* parameters){
|
---|
880 |
|
---|
881 | int i;
|
---|
882 | const int numnodes=6;
|
---|
883 | double valuescopy[numnodes];
|
---|
884 | double squaremin;
|
---|
885 |
|
---|
886 | /*First, copy values, to process units if requested: */
|
---|
887 | for(i=0;i<numnodes;i++)valuescopy[i]=this->values[i];
|
---|
888 |
|
---|
889 | /*Process units if requested: */
|
---|
890 | if(process_units)NodalValuesUnitConversion(&valuescopy[0],numnodes,enum_type,parameters);
|
---|
891 |
|
---|
892 | /*Now, figure out minimum of valuescopy: */
|
---|
893 | squaremin=pow(valuescopy[0],2);
|
---|
894 | for(i=1;i<numnodes;i++){
|
---|
895 | if(pow(valuescopy[i],2)<squaremin)squaremin=pow(valuescopy[i],2);
|
---|
896 | }
|
---|
897 | /*Assign output pointers:*/
|
---|
898 | *psquaremin=squaremin;
|
---|
899 | }
|
---|
900 | /*}}}*/
|
---|
901 | /*FUNCTION PentaVertexInput::Scale(double scale_factor){{{1*/
|
---|
902 | void PentaVertexInput::Scale(double scale_factor){
|
---|
903 |
|
---|
904 | int i;
|
---|
905 | const int numgrids=6;
|
---|
906 |
|
---|
907 | for(i=0;i<numgrids;i++)values[i]=values[i]*scale_factor;
|
---|
908 | }
|
---|
909 | /*}}}*/
|
---|
910 | /*FUNCTION PentaVertexInput::AXPY(Input* xinput,double scalar);{{{1*/
|
---|
911 | void PentaVertexInput::AXPY(Input* xinput,double scalar){
|
---|
912 |
|
---|
913 | int i;
|
---|
914 | const int numgrids=6;
|
---|
915 | PentaVertexInput* xpentavertexinput=NULL;
|
---|
916 |
|
---|
917 | /*xinput is of the same type, so cast it: */
|
---|
918 | xpentavertexinput=(PentaVertexInput)xinput;
|
---|
919 |
|
---|
920 | /*Carry out the AXPY operation:*/
|
---|
921 | for(i=0;i<numgrids;i++)this->values[i]=this->values[i]+scalar*xpentavertexinput->values[i];
|
---|
922 |
|
---|
923 | }
|
---|
924 | /*}}}*/
|
---|
925 | /*FUNCTION PentaVertexInput::Constrain(double cm_min, double cm_max){{{1*/
|
---|
926 | void PentaVertexInput::Constrain(double cm_min, double cm_max){
|
---|
927 |
|
---|
928 | int i;
|
---|
929 | const int numgrids=6;
|
---|
930 |
|
---|
931 | if(!isnan(cm_min)) for(i=0;i<numgrids;i++)if (this->values[i]<cm_min)this->values[i]=cm_min;
|
---|
932 | if(!isnan(cm_max)) for(i=0;i<numgrids;i++)if (this->values[i]>cm_max)this->values[i]=cm_max;
|
---|
933 |
|
---|
934 | }
|
---|
935 | /*}}}*/
|
---|
936 | /*FUNCTION PentaVertexInput::GetVectorFromInputs(Vec vector,int* doflist){{{1*/
|
---|
937 | void PentaVertexInput::GetVectorFromInputs(Vec vector,int* doflist){
|
---|
938 |
|
---|
939 | const int numvertices=6;
|
---|
940 | VecSetValues(vector,numvertices,doflist,(const double*)this->values,ADD_VALUES);
|
---|
941 |
|
---|
942 |
|
---|
943 | }
|
---|
944 | /*}}}*/
|
---|