[19554] | 1 | /*!\file GEMB module from Alex Gardner.
|
---|
| 2 | * \brief: calculates SMB
|
---|
| 3 | */
|
---|
| 4 |
|
---|
| 5 | #include "./SurfaceMassBalancex.h"
|
---|
| 6 | #include "../../shared/shared.h"
|
---|
| 7 | #include "../../toolkits/toolkits.h"
|
---|
| 8 |
|
---|
[19582] | 9 | const double Pi = 3.141592653589793;
|
---|
[19554] | 10 |
|
---|
| 11 | void Gembx(FemModel* femmodel){ /*{{{*/
|
---|
| 12 |
|
---|
| 13 | for(int i=0;i<femmodel->elements->Size();i++){
|
---|
[21341] | 14 | Element* element=xDynamicCast<Element*>(femmodel->elements->GetObjectByOffset(i));
|
---|
| 15 | element->SmbGemb();
|
---|
[19554] | 16 | }
|
---|
| 17 |
|
---|
| 18 | } /*}}}*/
|
---|
| 19 | void GembgridInitialize(IssmDouble** pdz, int* psize, IssmDouble zTop, IssmDouble dzTop, IssmDouble zMax, IssmDouble zY){ /*{{{*/
|
---|
| 20 |
|
---|
| 21 | /* This file sets up the initial grid spacing and total grid depth. The
|
---|
| 22 | grid structure is set as constant grid length 'dzTop' for the top
|
---|
| 23 | 'zTop' meters of the model grid. Bellow 'zTop' the gid length increases
|
---|
| 24 | linearly with depth */
|
---|
| 25 |
|
---|
| 26 | /*intermediary:*/
|
---|
| 27 | IssmDouble dgpTop;
|
---|
| 28 | int gpTop, gpBottom;
|
---|
| 29 | int i;
|
---|
| 30 | IssmDouble gp0,z0;
|
---|
| 31 | IssmDouble* dzT=NULL;
|
---|
| 32 | IssmDouble* dzB=NULL;
|
---|
| 33 |
|
---|
| 34 | /*output: */
|
---|
| 35 | int m;
|
---|
| 36 | IssmDouble* dz=NULL;
|
---|
| 37 |
|
---|
| 38 | //----------------------Calculate Grid Lengths------------------------------
|
---|
| 39 | //calculate number of top grid points
|
---|
| 40 | dgpTop = zTop/dzTop;
|
---|
| 41 |
|
---|
| 42 | //check to see if the top grid cell structure length (dzTop) goes evenly
|
---|
| 43 | //into specified top structure depth (zTop). Also make sure top grid cell
|
---|
| 44 | //structure length (dzTop) is greater than 5 cm
|
---|
[19613] | 45 | #ifndef _HAVE_ADOLC_ //avoid the round operation check!
|
---|
| 46 | if (dgpTop != round(dgpTop)){
|
---|
[19554] | 47 | _error_("top grid cell structure length does not go evenly into specified top structure depth, adjust dzTop or zTop");
|
---|
| 48 | }
|
---|
[19613] | 49 | #endif
|
---|
| 50 | if(dzTop < 0.05){
|
---|
[19554] | 51 | _printf_("initial top grid cell length (dzTop) is < 0.05 m");
|
---|
| 52 | }
|
---|
[19613] | 53 | gpTop=reCast<int,IssmDouble>(dgpTop);
|
---|
[19554] | 54 |
|
---|
| 55 | //initialize top grid depth vector
|
---|
| 56 | dzT = xNew<IssmDouble>(gpTop);
|
---|
| 57 | for (i=0;i<gpTop;i++)dzT[i]=dzTop;
|
---|
| 58 |
|
---|
| 59 | //bottom grid cell depth = x*zY^(cells from to structure)
|
---|
| 60 | //figure out the number of grid points in the bottom vector (not known a priori)
|
---|
| 61 | gp0 = dzTop;
|
---|
| 62 | z0 = zTop;
|
---|
| 63 | gpBottom = 0;
|
---|
| 64 | while (zMax > z0){
|
---|
| 65 | gp0= gp0 * zY;
|
---|
| 66 | z0 = z0 + gp0;
|
---|
| 67 | gpBottom++;
|
---|
| 68 | }
|
---|
[21341] | 69 | //initialize bottom vectors
|
---|
[19554] | 70 | dzB = xNewZeroInit<IssmDouble>(gpBottom);
|
---|
| 71 | gp0 = dzTop;
|
---|
| 72 | z0 = zTop;
|
---|
| 73 | for(i=0;i<gpBottom;i++){
|
---|
| 74 | gp0=gp0*zY;
|
---|
| 75 | dzB[i]=gp0;
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | //combine top and bottom dz vectors
|
---|
| 79 | dz = xNew<IssmDouble>(gpTop+gpBottom);
|
---|
| 80 | for(i=0;i<gpTop;i++){
|
---|
| 81 | dz[i]=dzT[i];
|
---|
| 82 | }
|
---|
| 83 | for(i=0;i<gpBottom;i++){
|
---|
| 84 | dz[gpTop+i]=dzB[i];
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | /*Free ressouces:*/
|
---|
| 88 | xDelete(dzT);
|
---|
| 89 | xDelete(dzB);
|
---|
| 90 |
|
---|
| 91 | //---------NEED TO IMPLEMENT A PROPER GRID STRECHING ALGORITHM------------
|
---|
| 92 |
|
---|
| 93 | /*assign ouput pointers: */
|
---|
| 94 | *pdz=dz;
|
---|
| 95 | *psize=gpTop+gpBottom;
|
---|
| 96 | } /*}}}*/
|
---|
| 97 | IssmDouble Marbouty(IssmDouble T, IssmDouble d, IssmDouble dT){ /*{{{*/
|
---|
| 98 |
|
---|
| 99 | // calculates grain growth according to Fig. 9 of Marbouty, 1980
|
---|
[21341] | 100 | // ------NO GRAIN GROWTH FOR d > 400 kg m-3 because H is set to zero------
|
---|
[19554] | 101 | // ---------------this is a major limitation of the model-------------------
|
---|
| 102 |
|
---|
| 103 | // initialize
|
---|
[19582] | 104 | IssmDouble F = 0, H=0, G=0;
|
---|
| 105 | const IssmDouble E = 0.09; //[mm d-1] model time growth constant E
|
---|
[19554] | 106 | // convert T from K to ºC
|
---|
| 107 | T = T - 273.15;
|
---|
| 108 |
|
---|
| 109 | // temperature coefficient F
|
---|
[19582] | 110 | if(T>-6.0) F = 0.7 + ((T/-6.0) * 0.3);
|
---|
| 111 | if(T<=-6.0 && T>-22.0) F = 1 - ((T+6.0)/-16.0 * 0.8);
|
---|
| 112 | if(T<=-22.0 && T>-40.0) F = 0.2 - ((T+22.0)/-18.0 * 0.2);
|
---|
[19554] | 113 |
|
---|
| 114 | // density coefficient F
|
---|
[19582] | 115 | if(d<150.0) H=1.0;
|
---|
[19554] | 116 |
|
---|
[19582] | 117 | if(d>=150.0 & d<400.0) H = 1 - ((d-150.0)/250.0);
|
---|
[19554] | 118 |
|
---|
| 119 | // temperature gradient coefficient G
|
---|
| 120 | if(dT >= 0.16 && dT < 0.25) G = ((dT - 0.16)/0.09) * 0.1;
|
---|
| 121 | if(dT >= 0.25 && dT < 0.4) G = 0.1 + (((dT - 0.25)/0.15) * 0.57);
|
---|
| 122 | if(dT >= 0.4 && dT < 0.5) G = 0.67 + (((dT - 0.4)/0.1) * 0.23);
|
---|
| 123 | if(dT >= 0.5 && dT < 0.7) G = 0.9 + (((dT - 0.5)/0.2) * 0.1);
|
---|
| 124 | if(dT >= .7 ) G = 1.0;
|
---|
| 125 |
|
---|
| 126 | // grouped coefficient Q
|
---|
| 127 | return F*H*G*E;
|
---|
| 128 |
|
---|
| 129 | } /*}}}*/
|
---|
[19566] | 130 | void grainGrowth(IssmDouble* re, IssmDouble* gdn, IssmDouble* gsp, IssmDouble* T,IssmDouble* dz,IssmDouble* d, IssmDouble* W,IssmDouble smb_dt,int m,int aIdx,int sid){ /*{{{*/
|
---|
[19554] | 131 |
|
---|
| 132 | /*Created by: Alex S. Gardner, University of Alberta
|
---|
| 133 |
|
---|
| 134 | *Description*: models the effective snow grain size
|
---|
| 135 |
|
---|
| 136 | *Reference:*
|
---|
| 137 | DENDRITIC SNOW METAMORPHISM:
|
---|
| 138 | Brun, E., P. David, M. Sudul, and G. Brunot, 1992: A numerical model to
|
---|
| 139 | simulate snow-cover stratigraphy for operational avalanche forecasting.
|
---|
| 140 | Journal of Glaciology, 38, 13-22.
|
---|
| 141 |
|
---|
| 142 | NONDENDRITIC SNOW METAMORPHISM:
|
---|
| 143 | Dry snow metamorphism:
|
---|
| 144 | Marbouty, D., 1980: An experimental study of temperature-gradient
|
---|
| 145 | metamorphism. Journal of Glaciology, 26, 303-312.
|
---|
| 146 |
|
---|
| 147 | WET SNOW METAMORPHISM:
|
---|
| 148 | Brun, E., 1989: Investigation on wet-snow metamorphism in respect of
|
---|
| 149 | liquid-water content. Annals of Glaciology, 13, 22-26.
|
---|
| 150 |
|
---|
| 151 | INPUTS
|
---|
| 152 | * T: grid cell temperature [k]
|
---|
| 153 | * dz: grid cell depth [m]
|
---|
| 154 | * d: grid cell density [kg m-3]
|
---|
| 155 | * W: water content [kg/m^2]
|
---|
| 156 | * re: effective grain size [mm]
|
---|
| 157 | * gdn: grain dentricity
|
---|
| 158 | * gsp: grain sphericity
|
---|
| 159 | * dt: time step of input data [s]
|
---|
| 160 |
|
---|
| 161 | OUTPUTS
|
---|
| 162 | * re: effective grain size [mm]
|
---|
| 163 | * gdn: grain dentricity
|
---|
| 164 | * gsp: grain sphericity*/
|
---|
| 165 |
|
---|
| 166 | /*intermediary: */
|
---|
| 167 | IssmDouble dt;
|
---|
| 168 | IssmDouble* gsz=NULL;
|
---|
| 169 | IssmDouble* dT=NULL;
|
---|
| 170 | IssmDouble* zGPC=NULL;
|
---|
| 171 | IssmDouble* lwc=NULL;
|
---|
| 172 | IssmDouble Q=0;
|
---|
| 173 |
|
---|
[19566] | 174 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" grain growth module\n");
|
---|
| 175 |
|
---|
[19554] | 176 | /*only when aIdx = 1 or 2 do we run grainGrowth: */
|
---|
| 177 | if(aIdx!=1 & aIdx!=2){
|
---|
| 178 | /*come out as we came in: */
|
---|
| 179 | return;
|
---|
| 180 | }
|
---|
| 181 |
|
---|
| 182 | /*Figure out grain size from effective grain radius: */
|
---|
[19582] | 183 | gsz=xNew<IssmDouble>(m); for(int i=0;i<m;i++)gsz[i]=re[i]*2.0;
|
---|
[19554] | 184 |
|
---|
| 185 | /*Convert dt from seconds to day: */
|
---|
[19582] | 186 | dt=smb_dt/86400.0;
|
---|
[19554] | 187 |
|
---|
| 188 | /*Determine liquid-water content in percentage: */
|
---|
| 189 | lwc=xNew<IssmDouble>(m); for(int i=0;i<m;i++)lwc[i]= W[i] / (d[i]*dz[i])*100.0;
|
---|
| 190 |
|
---|
| 191 | //set maximum water content by mass to 9 percent (Brun, 1980)
|
---|
[19582] | 192 | for(int i=0;i<m;i++)if(lwc[i]>9.0) lwc[i]=9.0;
|
---|
[19554] | 193 |
|
---|
| 194 |
|
---|
| 195 | /* Calculate temperature gradiant across grid cells
|
---|
| 196 | * Returns the avereage gradient across the upper and lower grid cell */
|
---|
| 197 |
|
---|
| 198 | //initialize
|
---|
| 199 | dT=xNewZeroInit<IssmDouble>(m);
|
---|
| 200 |
|
---|
| 201 | //depth of grid point center from surface
|
---|
| 202 | zGPC=xNewZeroInit<IssmDouble>(m);
|
---|
| 203 | for(int i=0;i<m;i++){
|
---|
| 204 | for (int j=0;j<=i;j++) zGPC[i]+=dz[j];
|
---|
| 205 | zGPC[i]-=dz[i]/2;
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | // Take forward differences on left and right edges
|
---|
| 209 | dT[0] = (T[1] - T[0])/(zGPC[1]-zGPC[0]);
|
---|
| 210 | dT[m-1] = (T[m-1] - T[m-2])/(zGPC[m-1]-zGPC[m-2]);
|
---|
| 211 |
|
---|
| 212 | //Take centered differences on interior points
|
---|
| 213 | for(int i=1;i<m-1;i++) dT[i] = (T[i+1]-T[i-1])/(zGPC[i+1]-zGPC[i-1]);
|
---|
| 214 |
|
---|
| 215 | // take absolute value of temperature gradient
|
---|
[19613] | 216 | for(int i=0;i<m;i++)dT[i]=fabs(dT[i]);
|
---|
[19554] | 217 |
|
---|
| 218 | /*Snow metamorphism. Depends on value of snow dendricity and wetness of the snowpack: */
|
---|
| 219 | for(int i=0;i<m;i++){
|
---|
| 220 | if (gdn[i]>0){
|
---|
| 221 |
|
---|
| 222 | //_printf_("Dendritic dry snow metamorphism\n");
|
---|
| 223 |
|
---|
| 224 | //index for dentricity > 0 and T gradients < 5 degC m-1 and >= 5 degC m-1
|
---|
[19582] | 225 | if(dT[i]<5.0){
|
---|
[19554] | 226 | //determine coefficients
|
---|
| 227 | IssmDouble A = - 2e8 * exp(-6e3 / T[i]) * dt;
|
---|
| 228 | IssmDouble B = 1e9 * exp(-6e3 / T[i]) * dt;
|
---|
| 229 | //new dentricity and sphericity for dT < 5 degC m-1
|
---|
| 230 | gdn[i] += A;
|
---|
| 231 | gsp[i] += B;
|
---|
| 232 | }
|
---|
| 233 | else{
|
---|
| 234 | // new dendricity and sphericity for dT >= 5 degC m-1
|
---|
| 235 |
|
---|
| 236 | //determine coefficients
|
---|
| 237 | IssmDouble C = (-2e8 * exp(-6e3 / T[i]) * dt) * pow(dT[i],.4);
|
---|
| 238 | gdn[i] +=C;
|
---|
| 239 | gsp[i] +=C;
|
---|
| 240 | }
|
---|
| 241 |
|
---|
| 242 | // wet snow metamorphism
|
---|
[19582] | 243 | if(W[i]>0.0){
|
---|
[19554] | 244 |
|
---|
| 245 | //_printf_("D}ritic wet snow metamorphism\n");
|
---|
| 246 |
|
---|
| 247 | //determine coefficient
|
---|
[19582] | 248 | IssmDouble D = (1.0/16.0) * pow(lwc[i],3.0) * dt;
|
---|
[19554] | 249 |
|
---|
| 250 | // new dendricity and sphericity for wet snow
|
---|
| 251 | gdn[i] -= D;
|
---|
| 252 | gsp[i] += D;
|
---|
| 253 | }
|
---|
| 254 |
|
---|
| 255 | // dendricity and sphericity can not be > 1 or < 0
|
---|
[19582] | 256 | if (gdn[i]<0.0)gdn[i]=0.0;
|
---|
| 257 | if (gsp[i]<0.0)gsp[i]=0.0;
|
---|
| 258 | if (gdn[i]>1.0)gdn[i]=1.0;
|
---|
| 259 | if (gsp[i]>1.0)gsp[i]=1.0;
|
---|
[19554] | 260 |
|
---|
| 261 | // determine new grain size (mm)
|
---|
| 262 | gsz[i] = 0.1 + (1-gdn[i])*0.25 + (0.5-gsp[i])*0.1;
|
---|
| 263 |
|
---|
| 264 | }
|
---|
| 265 | else{
|
---|
| 266 |
|
---|
| 267 | /*Dry snow metamorphism (Marbouty, 1980) grouped model coefficinets
|
---|
| 268 | *from Marbouty, 1980: Figure 9*/
|
---|
| 269 |
|
---|
| 270 | //_printf_("Nond}ritic snow metamorphism\n");
|
---|
| 271 | Q = Marbouty(T[i],d[i],dT[i]);
|
---|
| 272 |
|
---|
| 273 | // calculate grain growth
|
---|
| 274 | gsz[i] += Q* dt;
|
---|
| 275 |
|
---|
| 276 | //Wet snow metamorphism (Brun, 1989)
|
---|
[19582] | 277 | if(W[i]>0.0){
|
---|
[19554] | 278 | //_printf_("Nond}ritic wet snow metamorphism\n");
|
---|
| 279 | //wet rate of change coefficient
|
---|
[19582] | 280 | IssmDouble E = 1.28e-8 + (4.22e-10 * pow(lwc[i],3.0))* (dt *86400.0); // [mm^3 s^-1]
|
---|
[19554] | 281 |
|
---|
| 282 | // calculate change in grain volume and convert to grain size
|
---|
[19582] | 283 | gsz[i] = 2.0 * pow(3.0/(Pi * 4.0)*((4.0/ 3.0)*Pi*pow(gsz[i]/2.0,3.0) + E),1.0/3.0);
|
---|
[19554] | 284 |
|
---|
| 285 | }
|
---|
| 286 |
|
---|
| 287 | // grains with sphericity == 1 can not have grain sizes > 2 mm (Brun, 1992)
|
---|
[19582] | 288 | if (gsp[i]==1.0 && gsz[i]>2.0) gsz[i]=2.0;
|
---|
[19554] | 289 |
|
---|
| 290 | // grains with sphericity == 0 can not have grain sizes > 5 mm (Brun, 1992)
|
---|
| 291 | if (gsp[i]!=1.0 && gsz[i]>5.0) gsz[i]=5.0;
|
---|
| 292 | }
|
---|
| 293 |
|
---|
| 294 | //convert grain size back to effective grain radius:
|
---|
[19582] | 295 | re[i]=gsz[i]/2.0;
|
---|
[19554] | 296 | }
|
---|
| 297 |
|
---|
| 298 | /*Free ressources:*/
|
---|
| 299 | xDelete<IssmDouble>(gsz);
|
---|
| 300 | xDelete<IssmDouble>(dT);
|
---|
| 301 | xDelete<IssmDouble>(zGPC);
|
---|
| 302 | xDelete<IssmDouble>(lwc);
|
---|
| 303 |
|
---|
| 304 | } /*}}}*/
|
---|
[19566] | 305 | void albedo(IssmDouble* a, int aIdx, IssmDouble* re, IssmDouble* d, IssmDouble cldFrac, IssmDouble aIce, IssmDouble aSnow, IssmDouble* TK, IssmDouble* W, IssmDouble P, IssmDouble EC, IssmDouble t0wet, IssmDouble t0dry, IssmDouble K, IssmDouble dt, int m,int sid) { /*{{{*/
|
---|
[19554] | 306 |
|
---|
| 307 | //// Calculates Snow, firn and ice albedo as a function of:
|
---|
| 308 | // 1 : effective grain radius (Gardner & Sharp, 2009)
|
---|
| 309 | // 2 : effective grain radius (Brun et al., 2009)
|
---|
| 310 | // 3 : density and cloud amount (Greuell & Konzelmann, 1994)
|
---|
| 311 | // 4 : exponential time decay & wetness (Bougamont & Bamber, 2005)
|
---|
| 312 |
|
---|
| 313 | //// Inputs
|
---|
| 314 | // aIdx = albedo method to use
|
---|
| 315 |
|
---|
| 316 | // Methods 1 & 2
|
---|
| 317 | // re = surface effective grain radius [mm]
|
---|
| 318 |
|
---|
| 319 | // Methods 3
|
---|
| 320 | // d = snow surface density [kg m-3]
|
---|
| 321 | // n = cloud amount
|
---|
| 322 | // aIce = albedo of ice
|
---|
| 323 | // aSnow = albedo of fresh snow
|
---|
| 324 |
|
---|
| 325 | // Methods 4
|
---|
| 326 | // aIce = albedo of ice
|
---|
| 327 | // aSnow = albedo of fresh snow
|
---|
| 328 | // a = grid cell albedo from prevous time step;
|
---|
| 329 | // T = grid cell temperature [k]
|
---|
| 330 | // W = pore water [kg]
|
---|
| 331 | // P = precipitation [mm w.e.] or [kg m-3]
|
---|
| 332 | // EC = surface evaporation (-) condensation (+) [kg m-2]
|
---|
| 333 | // t0wet = time scale for wet snow (15-21.9) [d]
|
---|
| 334 | // t0dry = warm snow timescale [15] [d]
|
---|
| 335 | // K = time scale temperature coef. (7) [d]
|
---|
| 336 | // dt = time step of input data [s]
|
---|
| 337 |
|
---|
| 338 | //// Output
|
---|
| 339 | // a = grid cell albedo
|
---|
| 340 |
|
---|
| 341 | //// Usage
|
---|
| 342 | // Method 1
|
---|
| 343 | // a = albedo(1, 0.1);
|
---|
| 344 |
|
---|
| 345 | // Method 4
|
---|
| 346 | // a = albedo(4, [], [], [], 0.48, 0.85, [0.8 0.5 ... 0.48], ...
|
---|
| 347 | // [273 272.5 ... 265], [0 0.001 ... 0], 0, 0.01, 15, 15, 7, 3600)
|
---|
[19566] | 348 |
|
---|
| 349 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" albedo module\n");
|
---|
[19554] | 350 |
|
---|
| 351 | //some constants:
|
---|
| 352 | const IssmDouble dSnow = 300; // density of fresh snow [kg m-3]
|
---|
| 353 | const IssmDouble dIce = 910; // density of ice [kg m-3]
|
---|
| 354 |
|
---|
| 355 | if(aIdx==1){
|
---|
[21341] | 356 | //function of effective grain radius
|
---|
[19554] | 357 |
|
---|
| 358 | //convert effective radius to specific surface area [cm2 g-1]
|
---|
[21341] | 359 | IssmDouble S = 3.0 / (.091 * re[0]);
|
---|
[19554] | 360 |
|
---|
| 361 | //determine broadband albedo
|
---|
| 362 | a[0]= 1.48 - pow(S,-.07);
|
---|
| 363 | }
|
---|
| 364 | else if(aIdx==2){
|
---|
| 365 |
|
---|
[21341] | 366 | // Spectral fractions (Lefebre et al., 2003)
|
---|
[19554] | 367 | // [0.3-0.8um 0.8-1.5um 1.5-2.8um]
|
---|
| 368 |
|
---|
[21341] | 369 | IssmDouble sF[3] = {0.606, 0.301, 0.093};
|
---|
[19554] | 370 |
|
---|
| 371 | // convert effective radius to grain size in meters
|
---|
| 372 | IssmDouble gsz = (re[0] * 2) / 1000.0;
|
---|
| 373 |
|
---|
| 374 | // spectral range:
|
---|
| 375 | // 0.3 - 0.8um
|
---|
| 376 | IssmDouble a0 = fmin(0.98, 1 - 1.58 *pow(gsz,0.5));
|
---|
| 377 | // 0.8 - 1.5um
|
---|
| 378 | IssmDouble a1 = fmax(0, 0.95 - 15.4 *pow(gsz,0.5));
|
---|
| 379 | // 1.5 - 2.8um
|
---|
| 380 | IssmDouble a2 = fmax(0.127, 0.88 + 346.3*gsz - 32.31*pow(gsz,0.5));
|
---|
| 381 |
|
---|
| 382 | // broadband surface albedo
|
---|
| 383 | a[0] = sF[0]*a0 + sF[1]*a1 + sF[2]*a2;
|
---|
| 384 |
|
---|
| 385 | }
|
---|
| 386 | else if(aIdx==3){
|
---|
| 387 |
|
---|
[21341] | 388 | // a as a function of density
|
---|
[19554] | 389 |
|
---|
| 390 | // calculate albedo
|
---|
| 391 | a[0] = aIce + (d[0] - dIce)*(aSnow - aIce) / (dSnow - dIce) + (0.05 * (cldFrac - 0.5));
|
---|
| 392 | }
|
---|
| 393 | else if(aIdx==4){
|
---|
| 394 |
|
---|
[21341] | 395 | // exponential time decay & wetness
|
---|
[19554] | 396 |
|
---|
| 397 | // change in albedo with time:
|
---|
| 398 | // (d_a) = (a - a_old)/(t0)
|
---|
| 399 | // where: t0 = timescale for albedo decay
|
---|
| 400 |
|
---|
| 401 | dt = dt / 86400; // convert from [s] to [d]
|
---|
| 402 |
|
---|
| 403 | // initialize variables
|
---|
[21341] | 404 | IssmDouble* t0=xNew<IssmDouble>(m);
|
---|
| 405 | IssmDouble* T=xNew<IssmDouble>(m);
|
---|
| 406 | IssmDouble* t0warm=xNew<IssmDouble>(m);
|
---|
| 407 | IssmDouble* d_a=xNew<IssmDouble>(m);
|
---|
[19554] | 408 |
|
---|
| 409 | // specify constants
|
---|
| 410 | // a_wet = 0.15; // water albedo (0.15)
|
---|
| 411 | // a_new = aSnow // new snow albedo (0.64 - 0.89)
|
---|
| 412 | // a_old = aIce; // old snow/ice albedo (0.27-0.53)
|
---|
| 413 | // t0_wet = t0wet; // time scale for wet snow (15-21.9) [d]
|
---|
| 414 | // t0_dry = t0dry; // warm snow timescale [15] [d]
|
---|
| 415 | // K = 7 // time scale temperature coef. (7) [d]
|
---|
| 416 | // W0 = 300; // 200 - 600 [mm]
|
---|
| 417 | const IssmDouble z_snow = 15; // 16 - 32 [mm]
|
---|
| 418 |
|
---|
| 419 | // determine timescale for albedo decay
|
---|
[21341] | 420 | for(int i=0;i<m;i++)if(W[i]>0)t0[i]=t0wet; // wet snow timescale
|
---|
| 421 | for(int i=0;i<m;i++)T[i]=TK[i] - 273.15; // change T from K to degC
|
---|
| 422 | for(int i=0;i<m;i++) t0warm[i]= fabs(T[i]) * K + t0dry; //// 'warm' snow timescale
|
---|
[19554] | 423 | for(int i=0;i<m;i++)if(W[i]==0.0 && T[i]>=-10)t0[i]= t0warm[i];
|
---|
| 424 | for(int i=0;i<m;i++)if(T[i]<-10) t0[i] = 10 * K + t0dry; // 'cold' snow timescale
|
---|
| 425 |
|
---|
| 426 | // calculate new albedo
|
---|
| 427 | for(int i=0;i<m;i++)d_a[i] = (a[i] - aIce) / t0[i] * dt; // change in albedo
|
---|
| 428 | for(int i=0;i<m;i++)a[i] -= d_a[i]; // new albedo
|
---|
| 429 |
|
---|
| 430 | // modification of albedo due to thin layer of snow or solid
|
---|
| 431 | // condensation (deposition) at the surface surface
|
---|
| 432 |
|
---|
| 433 | // check if condensation occurs & if it is deposited in solid phase
|
---|
| 434 | if ( EC > 0 && T[0] < 0) P = P + (EC/dSnow) * 1000; // add cond to precip [mm]
|
---|
| 435 |
|
---|
| 436 | a[0] = aSnow - (aSnow - a[0]) * exp(-P/z_snow);
|
---|
| 437 |
|
---|
| 438 | //----------THIS NEEDS TO BE IMPLEMENTED AT A LATER DATE------------
|
---|
| 439 | // modification of albedo due to thin layer of water on the surface
|
---|
| 440 | // a_surf = a_wet - (a_wet - a_surf) * exp(-W_surf/W0);
|
---|
| 441 |
|
---|
[21341] | 442 | /*Free ressources:*/
|
---|
| 443 | xDelete<IssmDouble>(t0);
|
---|
| 444 | xDelete<IssmDouble>(T);
|
---|
| 445 | xDelete<IssmDouble>(t0warm);
|
---|
| 446 | xDelete<IssmDouble>(d_a);
|
---|
[19554] | 447 |
|
---|
| 448 | }
|
---|
| 449 | else _error_("albedo method switch should range from 1 to 4!");
|
---|
| 450 |
|
---|
| 451 | // Check for erroneous values
|
---|
| 452 | if (a[0] > 1) _printf_("albedo > 1.0\n");
|
---|
| 453 | else if (a[0] < 0) _printf_("albedo is negative\n");
|
---|
[19613] | 454 | else if (xIsNan(a[0])) _error_("albedo == NAN\n");
|
---|
[19554] | 455 | } /*}}}*/
|
---|
[19566] | 456 | void thermo(IssmDouble* pEC, IssmDouble* T, IssmDouble* dz, IssmDouble* d, IssmDouble* swf, IssmDouble dlwrf, IssmDouble Ta, IssmDouble V, IssmDouble eAir, IssmDouble pAir, IssmDouble Ws, IssmDouble dt0, int m, IssmDouble Vz, IssmDouble Tz,int sid) { /*{{{*/
|
---|
[19554] | 457 |
|
---|
| 458 | /* ENGLACIAL THERMODYNAMICS*/
|
---|
| 459 |
|
---|
| 460 | /* Description:
|
---|
| 461 | computes new temperature profile accounting for energy absorption and
|
---|
| 462 | thermal diffusion.*/
|
---|
| 463 |
|
---|
| 464 | // INPUTS
|
---|
| 465 | // T: grid cell temperature [k]
|
---|
| 466 | // dz: grid cell depth [m]
|
---|
| 467 | // d: grid cell density [kg m-3]
|
---|
| 468 | // swf: shortwave radiation fluxes [W m-2]
|
---|
| 469 | // dlwrf: downward longwave radiation fluxes [W m-2]
|
---|
| 470 | // Ta: 2 m air temperature
|
---|
| 471 | // V: wind velocity [m s-1]
|
---|
| 472 | // eAir: screen level vapor pressure [Pa]
|
---|
| 473 | // Ws: surface water content [kg]
|
---|
| 474 | // dt0: time step of input data [s]
|
---|
| 475 | // elev: surface elevation [m a.s.l.]
|
---|
| 476 | // Vz: air temperature height above surface [m]
|
---|
| 477 | // Tz: wind height above surface [m]
|
---|
| 478 |
|
---|
| 479 | // OUTPUTS
|
---|
| 480 | // T: grid cell temperature [k]
|
---|
| 481 | // EC: evaporation/condensation [kg]
|
---|
| 482 |
|
---|
| 483 | /*intermediary: */
|
---|
| 484 | IssmDouble* K = NULL;
|
---|
| 485 | IssmDouble* KU = NULL;
|
---|
| 486 | IssmDouble* KD = NULL;
|
---|
| 487 | IssmDouble* KP = NULL;
|
---|
| 488 | IssmDouble* Au = NULL;
|
---|
| 489 | IssmDouble* Ad = NULL;
|
---|
| 490 | IssmDouble* Ap = NULL;
|
---|
| 491 | IssmDouble* Nu = NULL;
|
---|
| 492 | IssmDouble* Nd = NULL;
|
---|
| 493 | IssmDouble* Np = NULL;
|
---|
| 494 | IssmDouble* dzU = NULL;
|
---|
| 495 | IssmDouble* dzD = NULL;
|
---|
| 496 | IssmDouble* sw = NULL;
|
---|
| 497 | IssmDouble* dT_sw = NULL;
|
---|
| 498 | IssmDouble* lw = NULL;
|
---|
| 499 | IssmDouble* T0 = NULL;
|
---|
| 500 | IssmDouble* Tu = NULL;
|
---|
| 501 | IssmDouble* Td = NULL;
|
---|
| 502 |
|
---|
| 503 | IssmDouble z0;
|
---|
| 504 | IssmDouble dt;
|
---|
| 505 | IssmDouble max_fdt=0;
|
---|
[19582] | 506 | IssmDouble Ts=0;
|
---|
[19554] | 507 | IssmDouble L;
|
---|
| 508 | IssmDouble eS;
|
---|
[19582] | 509 | IssmDouble Ri=0;
|
---|
[19554] | 510 | IssmDouble coefM;
|
---|
| 511 | IssmDouble coefH;
|
---|
| 512 | IssmDouble An;
|
---|
| 513 | IssmDouble C;
|
---|
| 514 | IssmDouble shf;
|
---|
| 515 | IssmDouble SB;
|
---|
| 516 | IssmDouble CI;
|
---|
| 517 | IssmDouble ds;
|
---|
| 518 | IssmDouble dAir;
|
---|
| 519 | IssmDouble TCs;
|
---|
| 520 | IssmDouble lhf;
|
---|
| 521 | IssmDouble EC_day;
|
---|
| 522 | IssmDouble dT_turb;
|
---|
| 523 | IssmDouble turb;
|
---|
| 524 | IssmDouble ulw;
|
---|
| 525 | IssmDouble dT_ulw;
|
---|
| 526 | IssmDouble dlw;
|
---|
| 527 | IssmDouble dT_dlw;
|
---|
| 528 |
|
---|
| 529 | /*outputs:*/
|
---|
| 530 | IssmDouble EC;
|
---|
| 531 |
|
---|
[19566] | 532 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" thermal module\n");
|
---|
| 533 |
|
---|
[19554] | 534 | // INITIALIZE
|
---|
| 535 | CI = 2102; // heat capacity of snow/ice (J kg-1 k-1)
|
---|
| 536 | // CA = 1005; // heat capacity of air (J kg-1 k-1)
|
---|
| 537 | // LF = 0.3345E6; // latent heat of fusion(J kg-1)
|
---|
| 538 | // LV = 2.495E6; // latent heat of vaporization(J kg-1)
|
---|
| 539 | // dIce = 910; // density of ice [kg m-3]
|
---|
| 540 | // dSnow = 300; // density of snow [kg m-3]
|
---|
| 541 | SB = 5.67E-8; // Stefan-Boltzmann constant [W m-2 K-4]
|
---|
| 542 |
|
---|
| 543 | ds = d[0]; // density of top grid cell
|
---|
| 544 |
|
---|
| 545 | // calculated air density [kg/m3]
|
---|
| 546 | dAir = 0.029 * pAir /(8.314 * Ta);
|
---|
| 547 |
|
---|
| 548 | // thermal capacity of top grid cell [J/k]
|
---|
| 549 | TCs = d[0]*dz[0]*CI;
|
---|
| 550 |
|
---|
| 551 | //initialize Evaporation - Condenstation
|
---|
| 552 | EC = 0;
|
---|
| 553 |
|
---|
| 554 | // check if all SW applied to surface or distributed throught subsurface
|
---|
| 555 | // swIdx = length(swf) > 1
|
---|
| 556 |
|
---|
| 557 | // SURFACE ROUGHNESS (Bougamont, 2006)
|
---|
| 558 | // wind/temperature surface roughness height [m]
|
---|
| 559 | if (ds < 910 && Ws == 0) z0 = 0.00012; // 0.12 mm for dry snow
|
---|
| 560 | else if (ds >= 910) z0 = 0.0032; // 3.2 mm for ice
|
---|
| 561 | else z0 = 0.0013; // 1.3 mm for wet snow
|
---|
| 562 |
|
---|
| 563 | // if V = 0 goes to infinity therfore if V = 0 change
|
---|
| 564 | if(V<.01)V=.01;
|
---|
| 565 |
|
---|
| 566 | // Bulk-transfer coefficient for turbulent fluxes
|
---|
| 567 | An = pow(0.4,2) / pow(log(Tz/z0),2); // Bulk-transfer coefficient
|
---|
| 568 | C = An * dAir * V; // shf & lhf common coefficient
|
---|
| 569 |
|
---|
| 570 | // THERMAL CONDUCTIVITY (Sturm, 1997: J. Glaciology)
|
---|
| 571 | // calculate new K profile [W m-1 K-1]
|
---|
| 572 |
|
---|
| 573 | // initialize conductivity
|
---|
| 574 | K= xNewZeroInit<IssmDouble>(m);
|
---|
| 575 |
|
---|
| 576 | // for snow and firn (density < 910 kg m-3) (Sturn et al, 1997)
|
---|
| 577 | for(int i=0;i<m;i++) if(d[i]<910) K[i] = 0.138 - 1.01E-3 * d[i] + 3.233E-6 * (pow(d[i],2));
|
---|
| 578 |
|
---|
| 579 | // for ice (density >= 910 kg m-3)
|
---|
| 580 | for(int i=0;i<m;i++) if(d[i]>=910) K[i] = 9.828 * exp(-5.7E-3*T[i]);
|
---|
| 581 |
|
---|
| 582 | // THERMAL DIFFUSION COEFFICIENTS
|
---|
| 583 |
|
---|
| 584 | // A discretization scheme which truncates the Taylor-Series expansion
|
---|
| 585 | // after the 3rd term is used. See Patankar 1980, Ch. 3&4
|
---|
| 586 |
|
---|
| 587 | // discretized heat equation:
|
---|
| 588 |
|
---|
| 589 | // Tp = (Au*Tu° + Ad*Td° + (Ap-Au-Ad)Tp° + S) / Ap
|
---|
| 590 |
|
---|
| 591 | // where neighbor coefficients Au, Ap, & Ad are
|
---|
| 592 |
|
---|
| 593 | // Au = [dz_u/2KP + dz_p/2KE]^-1
|
---|
| 594 | // Ad = [dz_d/2KP + dz_d/2KD]^-1
|
---|
| 595 | // Ap = d*CI*dz/Dt
|
---|
| 596 |
|
---|
| 597 | // and u & d represent grid points up and down from the center grid point
|
---|
| 598 | // p and // u & d represent grid points up and down from the center grid
|
---|
| 599 | // point p and ° identifies previous time step values. S is a source term.
|
---|
| 600 |
|
---|
| 601 | // u, d, and p conductivities
|
---|
| 602 | KU = xNew<IssmDouble>(m);
|
---|
| 603 | KD = xNew<IssmDouble>(m);
|
---|
| 604 | KP = xNew<IssmDouble>(m);
|
---|
| 605 |
|
---|
| 606 | KU[0] = UNDEF;
|
---|
| 607 | KD[m-1] = UNDEF;
|
---|
| 608 | for(int i=1;i<m;i++) KU[i]= K[i-1];
|
---|
| 609 | for(int i=0;i<m-1;i++) KD[i] = K[i+1];
|
---|
| 610 | for(int i=0;i<m;i++) KP[i] = K[i];
|
---|
| 611 |
|
---|
| 612 | // determine u, d & p cell widths
|
---|
| 613 | dzU = xNew<IssmDouble>(m);
|
---|
| 614 | dzD = xNew<IssmDouble>(m);
|
---|
| 615 | dzU[0]=UNDEF;
|
---|
| 616 | dzD[m-1]=UNDEF;
|
---|
| 617 |
|
---|
| 618 | for(int i=1;i<m;i++) dzU[i]= dz[i-1];
|
---|
| 619 | for(int i=0;i<m-1;i++) dzD[i] = dz[i+1];
|
---|
| 620 |
|
---|
| 621 | // determine minimum acceptable delta t (diffusion number > 1/2) [s]
|
---|
| 622 | dt=1e12;
|
---|
| 623 | for(int i=0;i<m;i++)dt = fmin(dt,CI * pow(dz[i],2) * d[i] / (3 * K[i]));
|
---|
| 624 |
|
---|
| 625 | // smallest possible even integer of 60 min where diffusion number > 1/2
|
---|
| 626 | // must go evenly into one hour or the data frequency if it is smaller
|
---|
| 627 |
|
---|
[19566] | 628 | // all integer factors of the number of second in a day (86400 [s])
|
---|
[19554] | 629 | int f[45] = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30, 36, 40, 45, 48, 50, 60,
|
---|
| 630 | 72, 75, 80, 90, 100, 120, 144, 150, 180, 200, 225, 240, 300, 360, 400, 450, 600, 720, 900, 1200, 1800, 3600};
|
---|
| 631 |
|
---|
| 632 | // return the min integer factor that is < dt
|
---|
[19566] | 633 | max_fdt=f[0];
|
---|
[19554] | 634 | for(int i=0;i<45;i++){
|
---|
| 635 | if (f[i]<dt)if(f[i]>=max_fdt)max_fdt=f[i];
|
---|
| 636 | }
|
---|
| 637 | dt=max_fdt;
|
---|
| 638 |
|
---|
| 639 | // determine mean (harmonic mean) of K/dz for u, d, & p
|
---|
| 640 | Au = xNew<IssmDouble>(m);
|
---|
| 641 | Ad = xNew<IssmDouble>(m);
|
---|
| 642 | Ap = xNew<IssmDouble>(m);
|
---|
| 643 | for(int i=0;i<m;i++){
|
---|
| 644 | Au[i] = pow((dzU[i]/2/KP[i] + dz[i]/2/KU[i]),-1);
|
---|
| 645 | Ad[i] = pow((dzD[i]/2/KP[i] + dz[i]/2/KD[i]),-1);
|
---|
| 646 | Ap[i] = (d[i]*dz[i]*CI)/dt;
|
---|
| 647 | }
|
---|
| 648 |
|
---|
| 649 | // create "neighbor" coefficient matrix
|
---|
| 650 | Nu = xNew<IssmDouble>(m);
|
---|
| 651 | Nd = xNew<IssmDouble>(m);
|
---|
| 652 | Np = xNew<IssmDouble>(m);
|
---|
| 653 | for(int i=0;i<m;i++){
|
---|
| 654 | Nu[i] = Au[i] / Ap[i];
|
---|
| 655 | Nd[i] = Ad[i] / Ap[i];
|
---|
| 656 | Np[i]= 1 - Nu[i] - Nd[i];
|
---|
| 657 | }
|
---|
| 658 |
|
---|
| 659 | // specify boundary conditions: constant flux at bottom
|
---|
| 660 | Nu[m-1] = 0;
|
---|
| 661 | Np[m-1] = 1;
|
---|
| 662 |
|
---|
| 663 | // zero flux at surface
|
---|
| 664 | Np[0] = 1 - Nd[0];
|
---|
| 665 |
|
---|
| 666 | // Create neighbor arrays for diffusion calculations instead of a tridiagonal matrix
|
---|
| 667 | Nu[0] = 0;
|
---|
| 668 | Nd[m-1] = 0;
|
---|
| 669 |
|
---|
| 670 | /* RADIATIVE FLUXES*/
|
---|
| 671 |
|
---|
| 672 | // energy supplied by shortwave radiation [J]
|
---|
| 673 | sw = xNew<IssmDouble>(m);
|
---|
| 674 | for(int i=0;i<m;i++) sw[i]= swf[i] * dt;
|
---|
| 675 |
|
---|
| 676 | // temperature change due to SW
|
---|
| 677 | dT_sw = xNew<IssmDouble>(m);
|
---|
| 678 | for(int i=0;i<m;i++) dT_sw[i]= sw[i] / (CI * d[i] * dz[i]);
|
---|
| 679 |
|
---|
| 680 | // Upward longwave radiation flux is calculated from the snow surface
|
---|
| 681 | // temperature which is set equal to the average temperature of the
|
---|
| 682 | // top grid cells.
|
---|
| 683 |
|
---|
| 684 | // energy supplied by downward longwave radiation to the top grid cell [J]
|
---|
| 685 | dlw = dlwrf * dt;
|
---|
| 686 |
|
---|
| 687 | // temperature change due to dlw_surf
|
---|
| 688 | dT_dlw = dlw / TCs;
|
---|
| 689 |
|
---|
| 690 | // PREALLOCATE ARRAYS BEFORE LOOP FOR IMPROVED PERFORMANCE
|
---|
[19582] | 691 | T0 = xNewZeroInit<IssmDouble>(m+2);
|
---|
[19554] | 692 | Tu=xNew<IssmDouble>(m);
|
---|
| 693 | Td=xNew<IssmDouble>(m);
|
---|
| 694 |
|
---|
| 695 | /* CALCULATE ENERGY SOURCES AND DIFFUSION FOR EVERY TIME STEP [dt]*/
|
---|
[19613] | 696 | for (IssmDouble i=1;i<=dt0;i+=dt){
|
---|
[19554] | 697 |
|
---|
| 698 | // PART OF ENERGY CONSERVATION CHECK
|
---|
| 699 | // store initial temperature
|
---|
| 700 | //T_init = T;
|
---|
| 701 |
|
---|
| 702 | // calculate temperature of snow surface (Ts)
|
---|
| 703 | // when incoming SW radition is allowed to penetrate the surface,
|
---|
| 704 | // the modeled energy balance becomes very sensitive to how Ts is
|
---|
| 705 | // calculated. The estimated enegy balance & melt are significanly
|
---|
| 706 | // less when Ts is taken as the mean of the x top grid cells.
|
---|
| 707 | Ts = (T[0] + T[1])/2;
|
---|
| 708 | Ts = fmin(273.15,Ts); // don't allow Ts to exceed 273.15 K (0°C)
|
---|
| 709 |
|
---|
| 710 | //TURBULENT HEAT FLUX
|
---|
| 711 |
|
---|
| 712 | // MoninObukhov Stability Correction
|
---|
| 713 | // Reference:
|
---|
| 714 | // Ohmura, A., 1982: Climate and Energy-Balance on the Arctic Tundra.
|
---|
| 715 | // Journal of Climatology, 2, 65-84.
|
---|
| 716 |
|
---|
| 717 | // calculate the Bulk Richardson Number (Ri)
|
---|
| 718 | Ri = (2*9.81* (Vz - z0) * (Ta - Ts)) / ((Ta + Ts)* pow(V,2.0));
|
---|
| 719 |
|
---|
| 720 | // calculate Monin-Obukhov stability factors 'coefM' and 'coefH'
|
---|
| 721 |
|
---|
| 722 | // do not allow Ri to exceed 0.19
|
---|
| 723 | Ri = fmin(Ri, 0.19);
|
---|
| 724 |
|
---|
| 725 | // calculate momentum 'coefM' stability factor
|
---|
| 726 | if (Ri > 0){
|
---|
| 727 | // if stable
|
---|
| 728 | coefM = 1/(1-5.2*Ri);
|
---|
| 729 | }
|
---|
| 730 | else {
|
---|
| 731 | coefM =pow (1-18*Ri,-0.25);
|
---|
| 732 | }
|
---|
| 733 |
|
---|
| 734 | // calculate heat/wind 'coef_H' stability factor
|
---|
| 735 | if (Ri < -0.03) coefH = 1.3 * coefM;
|
---|
| 736 | else coefH = coefM;
|
---|
| 737 |
|
---|
| 738 | //// Sensible Heat
|
---|
| 739 | // calculate the sensible heat flux [W m-2](Patterson, 1998)
|
---|
| 740 | shf = C * 1005 * (Ta - Ts);
|
---|
| 741 |
|
---|
| 742 | // adjust using MoninObukhov stability theory
|
---|
| 743 | shf = shf / (coefM * coefH);
|
---|
| 744 |
|
---|
| 745 | //// Latent Heat
|
---|
| 746 | // determine if snow pack is melting & calcualte surface vapour pressure over ice or liquid water
|
---|
| 747 | if (Ts >= 273.15){
|
---|
| 748 | L = 2.495E6;
|
---|
| 749 |
|
---|
| 750 | // for an ice surface Murphy and Koop, 2005 [Equation 7]
|
---|
| 751 | eS = exp(9.550426 - 5723.265/Ts + 3.53068 * log(Ts) - 0.00728332 * Ts);
|
---|
| 752 | }
|
---|
| 753 | else{
|
---|
| 754 | L = 2.8295E6; // latent heat of sublimation for liquid surface (assume liquid on surface when Ts == 0 deg C)
|
---|
| 755 | // Wright (1997), US Meteorological Handbook from Murphy and Koop, 2005 Appendix A
|
---|
| 756 | eS = 611.21 * exp(17.502 * (Ts - 273.15) / (240.97 + Ts - 273.15));
|
---|
| 757 | }
|
---|
| 758 |
|
---|
| 759 | // Latent heat flux [W m-2]
|
---|
| 760 | lhf = C * L * (eAir - eS) * 0.622 / pAir;
|
---|
| 761 |
|
---|
| 762 | // adjust using MoninObukhov stability theory (if lhf '+' then there is energy and mass gained at the surface,
|
---|
| 763 | // if '-' then there is mass and energy loss at the surface.
|
---|
| 764 | lhf = lhf / (coefM * coefH);
|
---|
| 765 |
|
---|
| 766 | //mass loss (-)/acreation(+) due to evaporation/condensation [kg]
|
---|
| 767 | EC_day = lhf * 86400 / L;
|
---|
| 768 |
|
---|
| 769 | // temperature change due turbulent fluxes
|
---|
| 770 | turb = (shf + lhf)* dt;
|
---|
| 771 | dT_turb = turb / TCs;
|
---|
| 772 |
|
---|
| 773 | // upward longwave contribution
|
---|
| 774 | ulw = - SB * pow(Ts,4.0) * dt;
|
---|
| 775 | dT_ulw = ulw / TCs;
|
---|
| 776 |
|
---|
| 777 | // new grid point temperature
|
---|
| 778 |
|
---|
| 779 | //SW penetrates surface
|
---|
[19566] | 780 | for(int j=0;j<m;j++) T[j] = T[j] + dT_sw[j];
|
---|
[19554] | 781 | T[0] = T[0] + dT_dlw + dT_ulw + dT_turb;
|
---|
| 782 |
|
---|
| 783 | // temperature diffusion
|
---|
[19566] | 784 | for(int j=0;j<m;j++)T0[1+j]=T[j];
|
---|
| 785 | for(int j=0;j<m;j++) Tu[j] = T0[j];
|
---|
| 786 | for(int j=0;j<m;j++) Td[j] = T0[2+j];
|
---|
| 787 | for(int j=0;j<m;j++) T[j] = (Np[j] * T[j]) + (Nu[j] * Tu[j]) + (Nd[j] * Td[j]);
|
---|
[19554] | 788 |
|
---|
| 789 | // calculate cumulative evaporation (+)/condensation(-)
|
---|
| 790 | EC = EC + (EC_day/86400)*dt;
|
---|
| 791 |
|
---|
| 792 | /* CHECK FOR ENERGY (E) CONSERVATION [UNITS: J]
|
---|
| 793 | //energy flux across lower boundary (energy supplied by underling ice)
|
---|
| 794 | base_flux = Ad(-1)*(T_init()-T_init(-1)) * dt;
|
---|
| 795 |
|
---|
| 796 | E_used = sum((T - T_init) * (d*dz*CI));
|
---|
| 797 | E_sup = ((sum(swf) * dt) + dlw + ulw + turb + base_flux);
|
---|
| 798 |
|
---|
| 799 | E_diff = E_used - E_sup;
|
---|
| 800 |
|
---|
| 801 | if abs(E_diff) > 1E-6 || isnan(E_diff)
|
---|
| 802 | disp(T(1))
|
---|
| 803 | _error_("energy not conserved in thermodynamics equations");
|
---|
| 804 | */
|
---|
| 805 | }
|
---|
| 806 |
|
---|
| 807 | /*Free ressources:*/
|
---|
| 808 | xDelete<IssmDouble>(K);
|
---|
| 809 | xDelete<IssmDouble>(KU);
|
---|
| 810 | xDelete<IssmDouble>(KD);
|
---|
| 811 | xDelete<IssmDouble>(KP);
|
---|
| 812 | xDelete<IssmDouble>(Au);
|
---|
| 813 | xDelete<IssmDouble>(Ad);
|
---|
| 814 | xDelete<IssmDouble>(Ap);
|
---|
| 815 | xDelete<IssmDouble>(Nu);
|
---|
| 816 | xDelete<IssmDouble>(Nd);
|
---|
| 817 | xDelete<IssmDouble>(Np);
|
---|
| 818 | xDelete<IssmDouble>(dzU);
|
---|
| 819 | xDelete<IssmDouble>(dzD);
|
---|
| 820 | xDelete<IssmDouble>(sw);
|
---|
| 821 | xDelete<IssmDouble>(dT_sw);
|
---|
| 822 | xDelete<IssmDouble>(lw);
|
---|
| 823 | xDelete<IssmDouble>(T0);
|
---|
| 824 | xDelete<IssmDouble>(Tu);
|
---|
| 825 | xDelete<IssmDouble>(Td);
|
---|
| 826 |
|
---|
| 827 |
|
---|
| 828 | /*Assign output pointers:*/
|
---|
| 829 | *pEC=EC;
|
---|
| 830 |
|
---|
| 831 | } /*}}}*/
|
---|
[19582] | 832 | void shortwave(IssmDouble** pswf, int swIdx, int aIdx, IssmDouble dsw, IssmDouble as, IssmDouble* d, IssmDouble* dz, IssmDouble* re, int m, int sid){ /*{{{*/
|
---|
[19554] | 833 |
|
---|
| 834 | // DISTRIBUTES ABSORBED SHORTWAVE RADIATION WITHIN SNOW/ICE
|
---|
| 835 |
|
---|
| 836 | // swIdx = 0 : all absorbed SW energy is assigned to the top grid cell
|
---|
| 837 |
|
---|
| 838 | // swIdx = 1 : absorbed SW is distributed with depth as a function of:
|
---|
| 839 | // 1 : snow density (taken from Bassford, 2004)
|
---|
| 840 | // 2 : grain size in 3 spectral bands (Brun et al., 1992)
|
---|
| 841 |
|
---|
| 842 | // Inputs
|
---|
| 843 | // swIdx = shortwave allowed to penetrate surface (0 = No, 1 = Yes)
|
---|
| 844 | // aIdx = method for calculating albedo (1-4)
|
---|
| 845 | // dsw = downward shortwave radiative flux [w m-2]
|
---|
| 846 | // as = surface albedo
|
---|
| 847 | // d = grid cell density [kg m-3]
|
---|
| 848 | // dz = grid cell depth [m]
|
---|
| 849 | // re = grid cell effective grain radius [mm]
|
---|
| 850 |
|
---|
| 851 | // Outputs
|
---|
| 852 | // swf = absorbed shortwave radiation [W m-2]
|
---|
[19582] | 853 | //
|
---|
| 854 |
|
---|
| 855 | /*outputs: */
|
---|
| 856 | IssmDouble* swf=NULL;
|
---|
[19554] | 857 |
|
---|
[19566] | 858 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" shortwave module\n");
|
---|
[19554] | 859 |
|
---|
[19582] | 860 | /*Initialize and allocate: */
|
---|
| 861 | swf=xNewZeroInit<IssmDouble>(m);
|
---|
| 862 |
|
---|
| 863 |
|
---|
[19554] | 864 | // SHORTWAVE FUNCTION
|
---|
| 865 | if (swIdx == 0) {// all sw radation is absorbed in by the top grid cell
|
---|
| 866 |
|
---|
| 867 | // calculate surface shortwave radiation fluxes [W m-2]
|
---|
| 868 | swf[0] = (1 - as) * dsw;
|
---|
| 869 | }
|
---|
| 870 | else{ // sw radation is absorbed at depth within the glacier
|
---|
| 871 |
|
---|
| 872 | if (aIdx == 2){ // function of effective radius (3 spectral bands)
|
---|
| 873 |
|
---|
| 874 | IssmDouble * gsz=NULL;
|
---|
| 875 | IssmDouble * B1_cum=NULL;
|
---|
| 876 | IssmDouble * B2_cum=NULL;
|
---|
| 877 | IssmDouble* h =NULL;
|
---|
| 878 | IssmDouble* B1 =NULL;
|
---|
| 879 | IssmDouble* B2 =NULL;
|
---|
| 880 | IssmDouble* exp1 = NULL;
|
---|
| 881 | IssmDouble* exp2 = NULL;
|
---|
| 882 | IssmDouble* Qs1 = NULL;
|
---|
| 883 | IssmDouble* Qs2 = NULL;
|
---|
| 884 |
|
---|
| 885 | // convert effective radius [mm] to grain size [m]
|
---|
| 886 | gsz=xNew<IssmDouble>(m);
|
---|
| 887 | for(int i=0;i<m;i++) gsz[i]= (re[i] * 2) / 1000;
|
---|
| 888 |
|
---|
| 889 | // Spectral fractions [0.3-0.8um 0.8-1.5um 1.5-2.8um]
|
---|
| 890 | // (Lefebre et al., 2003)
|
---|
| 891 | IssmDouble sF[3] = {0.606, 0.301, 0.093};
|
---|
| 892 |
|
---|
| 893 | // initialize variables
|
---|
| 894 | B1_cum=xNew<IssmDouble>(m+1);
|
---|
| 895 | B2_cum=xNew<IssmDouble>(m+1);
|
---|
| 896 | for(int i=0;i<m+1;i++){
|
---|
| 897 | B1_cum[i]=1;
|
---|
| 898 | B2_cum[i]=1;
|
---|
| 899 | }
|
---|
| 900 |
|
---|
| 901 |
|
---|
| 902 | // spectral albedos:
|
---|
| 903 | // 0.3 - 0.8um
|
---|
| 904 | IssmDouble a0 = fmin(0.98, 1 - 1.58 *pow(gsz[0],0.5));
|
---|
| 905 | // 0.8 - 1.5um
|
---|
| 906 | IssmDouble a1 = fmax(0, 0.95 - 15.4 *pow(gsz[0],0.5));
|
---|
| 907 | // 1.5 - 2.8um
|
---|
| 908 | IssmDouble a2 = fmax(0.127, 0.88 + 346.3*gsz[0] - 32.31*pow(gsz[0],0.5));
|
---|
| 909 |
|
---|
| 910 | // separate net shortwave radiative flux into spectral ranges
|
---|
| 911 | IssmDouble swfS[3];
|
---|
| 912 | swfS[0] = (sF[0] * dsw) * (1 - a0);
|
---|
| 913 | swfS[1] = (sF[1] * dsw) * (1 - a1);
|
---|
| 914 | swfS[2] = (sF[2] * dsw) * (1 - a2);
|
---|
| 915 |
|
---|
| 916 | // absorption coeficient for spectral range:
|
---|
| 917 | h =xNew<IssmDouble>(m);
|
---|
| 918 | B1 =xNew<IssmDouble>(m);
|
---|
| 919 | B2 =xNew<IssmDouble>(m);
|
---|
| 920 | for(int i=0;i<m;i++) h[i]= d[i] /(pow(gsz[i],0.5));
|
---|
| 921 | for(int i=0;i<m;i++) B1[i] = .0192 * h[i]; // 0.3 - 0.8um
|
---|
| 922 | for(int i=0;i<m;i++) B2[i]= .1098 * h[i]; // 0.8 - 1.5um
|
---|
| 923 | // B3 = +inf // 1.5 - 2.8um
|
---|
| 924 |
|
---|
| 925 | // cumulative extinction factors
|
---|
| 926 | exp1 = xNew<IssmDouble>(m);
|
---|
| 927 | exp2 = xNew<IssmDouble>(m);
|
---|
| 928 | for(int i=0;i<m;i++) exp1[i]=exp(-B1[i]*dz[i]);
|
---|
| 929 | for(int i=0;i<m;i++) exp2[i]=exp(-B2[i]*dz[i]);
|
---|
| 930 |
|
---|
| 931 | for(int i=0;i<m;i++){
|
---|
| 932 | IssmDouble cum1=exp1[0];
|
---|
| 933 | IssmDouble cum2=exp2[0];
|
---|
| 934 | for(int j=1;j<=i;j++){
|
---|
| 935 | cum1 = cum1*exp1[j];
|
---|
| 936 | cum2 = cum2*exp2[j];
|
---|
| 937 | }
|
---|
| 938 | B1_cum[i+1]=cum1;
|
---|
| 939 | B2_cum[i+1]=cum2;
|
---|
| 940 | }
|
---|
| 941 |
|
---|
| 942 |
|
---|
| 943 | // flux across grid cell boundaries
|
---|
| 944 | Qs1 = xNew<IssmDouble>(m+1);
|
---|
| 945 | Qs2 = xNew<IssmDouble>(m+1);
|
---|
| 946 | for(int i=0;i<m+1;i++){
|
---|
| 947 | Qs1[i] = swfS[0] * B1_cum[i];
|
---|
| 948 | Qs2[i] = swfS[1] * B2_cum[i];
|
---|
| 949 | }
|
---|
| 950 |
|
---|
| 951 | // net energy flux to each grid cell
|
---|
| 952 | for(int i=0;i<m;i++) swf[i]= (Qs1[i]-Qs1[i+1]) + (Qs2[i]-Qs2[i+1]);
|
---|
| 953 |
|
---|
| 954 | // add flux absorbed at surface
|
---|
| 955 | swf[0] = swf[0]+ swfS[2];
|
---|
| 956 |
|
---|
| 957 | /*Free ressources: */
|
---|
| 958 | xDelete<IssmDouble>(gsz);
|
---|
| 959 | xDelete<IssmDouble>(B1_cum);
|
---|
| 960 | xDelete<IssmDouble>(B2_cum);
|
---|
| 961 | xDelete<IssmDouble>(h);
|
---|
| 962 | xDelete<IssmDouble>(B1);
|
---|
| 963 | xDelete<IssmDouble>(B2);
|
---|
| 964 | xDelete<IssmDouble>(exp1);
|
---|
| 965 | xDelete<IssmDouble>(exp2);
|
---|
| 966 | xDelete<IssmDouble>(Qs1);
|
---|
| 967 | xDelete<IssmDouble>(Qs2);
|
---|
[19613] | 968 |
|
---|
| 969 |
|
---|
[19554] | 970 | }
|
---|
| 971 | else{ //function of grid cell density
|
---|
| 972 |
|
---|
| 973 | /*intermediary: */
|
---|
| 974 | IssmDouble* B_cum = NULL;
|
---|
| 975 | IssmDouble* exp_B = NULL;
|
---|
| 976 | IssmDouble* Qs = NULL;
|
---|
| 977 | IssmDouble* B = NULL;
|
---|
| 978 |
|
---|
| 979 | // fraction of sw radiation absorbed in top grid cell (wavelength > 0.8um)
|
---|
| 980 | IssmDouble SWs = 0.36;
|
---|
| 981 |
|
---|
| 982 | // SWs and SWss coefficients need to be better constranted. Greuell
|
---|
| 983 | // and Konzelmann 1994 used SWs = 0.36 and SWss = 0.64 as this the
|
---|
| 984 | // the // of SW radiation with wavelengths > and < 800 nm
|
---|
| 985 | // respectively. This, however, may not account for the fact that
|
---|
| 986 | // the albedo of wavelengths > 800 nm has a much lower albedo.
|
---|
| 987 |
|
---|
| 988 | // calculate surface shortwave radiation fluxes [W m-2]
|
---|
| 989 | IssmDouble swf_s = SWs * (1 - as) * dsw;
|
---|
| 990 |
|
---|
| 991 | // calculate surface shortwave radiation fluxes [W m-2]
|
---|
| 992 | IssmDouble swf_ss = (1-SWs) * (1 - as) * dsw;
|
---|
| 993 |
|
---|
| 994 | // SW allowed to penetrate into snowpack
|
---|
| 995 | IssmDouble Bs = 10; // snow SW extinction coefficient [m-1] (Bassford,2006)
|
---|
| 996 | IssmDouble Bi = 1.3; // ice SW extinction coefficient [m-1] (Bassford,2006)
|
---|
| 997 |
|
---|
| 998 | // calculate extinction coefficient B [m-1] vector
|
---|
| 999 | B=xNew<IssmDouble>(m);
|
---|
| 1000 | for(int i=0;i<m;i++) B[i] = Bs + (300 - d[i]) * ((Bs - Bi)/(910 - 300));
|
---|
| 1001 |
|
---|
| 1002 | // cumulative extinction factor
|
---|
| 1003 | B_cum = xNew<IssmDouble>(m+1);
|
---|
| 1004 | exp_B = xNew<IssmDouble>(m);
|
---|
| 1005 | for(int i=0;i<m;i++)exp_B[i]=exp(-B[i]*dz[i]);
|
---|
| 1006 |
|
---|
| 1007 | B_cum[0]=1;
|
---|
| 1008 | for(int i=0;i<m;i++){
|
---|
| 1009 | IssmDouble cum_B=exp_B[0];
|
---|
| 1010 | for(int j=1;j<=i;j++) cum_B=cum_B*exp_B[j];
|
---|
| 1011 | B_cum[i+1]= cum_B;
|
---|
| 1012 | }
|
---|
| 1013 |
|
---|
| 1014 | // flux across grid cell boundaries
|
---|
| 1015 | Qs=xNew<IssmDouble>(m+1);
|
---|
| 1016 | for(int i=0;i<m+1;i++) Qs[i] = swf_ss * B_cum[i];
|
---|
| 1017 |
|
---|
| 1018 | // net energy flux to each grid cell
|
---|
| 1019 | for(int i=0;i<m;i++) swf[i] = (Qs[i]-Qs[i+1]);
|
---|
| 1020 |
|
---|
| 1021 | // add flux absorbed at surface
|
---|
[19566] | 1022 | swf[0] += swf_s;
|
---|
[19554] | 1023 |
|
---|
| 1024 | /*Free ressources:*/
|
---|
| 1025 | xDelete<IssmDouble>(B_cum);
|
---|
| 1026 | xDelete<IssmDouble>(exp_B);
|
---|
| 1027 | xDelete<IssmDouble>(Qs);
|
---|
| 1028 | xDelete<IssmDouble>(B);
|
---|
| 1029 | }
|
---|
| 1030 | }
|
---|
[19582] | 1031 | /*Assign output pointers: */
|
---|
| 1032 | *pswf=swf;
|
---|
| 1033 |
|
---|
[19554] | 1034 | } /*}}}*/
|
---|
[19566] | 1035 | void accumulation(IssmDouble** pT, IssmDouble** pdz, IssmDouble** pd, IssmDouble** pW, IssmDouble** pa, IssmDouble** pre, IssmDouble** pgdn, IssmDouble** pgsp, int* pm, IssmDouble T_air, IssmDouble P, IssmDouble dzMin, IssmDouble aSnow, int sid){ /*{{{*/
|
---|
[19554] | 1036 |
|
---|
| 1037 | // Adds precipitation and deposition to the model grid
|
---|
| 1038 |
|
---|
| 1039 | // Author: Alex Gardner, University of Alberta
|
---|
| 1040 | // Date last modified: JAN, 2008
|
---|
| 1041 |
|
---|
| 1042 | /* Description:
|
---|
| 1043 | adjusts the properties of the top grid cell to account for accumulation
|
---|
| 1044 | T_air & T = Air and top grid cell temperatures [K]
|
---|
| 1045 | dz = topgrid cell length [m]
|
---|
| 1046 | d = density of top grid gell [kg m-3]
|
---|
| 1047 | P = precipitation [mm w.e.] or [kg m-3]
|
---|
| 1048 | re = effective grain radius [mm]
|
---|
| 1049 | gdn = grain dentricity
|
---|
| 1050 | gsp = grain sphericity*/
|
---|
| 1051 |
|
---|
| 1052 | // MAIN FUNCTION
|
---|
| 1053 | // specify constants
|
---|
| 1054 | const IssmDouble dIce = 910; // density of ice [kg m-3]
|
---|
| 1055 | const IssmDouble dSnow = 150; // density of snow [kg m-3]
|
---|
| 1056 | const IssmDouble reNew = 0.1; // new snow grain size [mm]
|
---|
| 1057 | const IssmDouble gdnNew = 1; // new snow dendricity
|
---|
| 1058 | const IssmDouble gspNew = 0.5; // new snow sphericity
|
---|
| 1059 |
|
---|
| 1060 | /*intermediary: */
|
---|
| 1061 | IssmDouble* mInit=NULL;
|
---|
| 1062 | bool top=true;
|
---|
| 1063 | IssmDouble mass, massinit, mass_diff;
|
---|
| 1064 |
|
---|
| 1065 | /*output: */
|
---|
| 1066 | IssmDouble* T=NULL;
|
---|
| 1067 | IssmDouble* dz=NULL;
|
---|
| 1068 | IssmDouble* d=NULL;
|
---|
| 1069 | IssmDouble* W=NULL;
|
---|
| 1070 | IssmDouble* a=NULL;
|
---|
| 1071 | IssmDouble* re=NULL;
|
---|
| 1072 | IssmDouble* gdn=NULL;
|
---|
| 1073 | IssmDouble* gsp=NULL;
|
---|
| 1074 | int m;
|
---|
| 1075 |
|
---|
[19566] | 1076 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" accumulation module\n");
|
---|
| 1077 |
|
---|
[19554] | 1078 | /*Recover pointers: */
|
---|
| 1079 | T=*pT;
|
---|
| 1080 | dz=*pdz;
|
---|
| 1081 | d=*pd;
|
---|
| 1082 | W=*pW;
|
---|
| 1083 | a=*pa;
|
---|
| 1084 | re=*pre;
|
---|
| 1085 | gdn=*pgdn;
|
---|
| 1086 | gsp=*pgsp;
|
---|
| 1087 | m=*pm;
|
---|
| 1088 |
|
---|
[19582] | 1089 | // determine initial mass
|
---|
[19554] | 1090 | mInit=xNew<IssmDouble>(m);
|
---|
[19582] | 1091 | for(int i=0;i<m;i++) mInit[i]= d[i] * dz[i];
|
---|
| 1092 | massinit=0; for(int i=0;i<m;i++)massinit+=mInit[i];
|
---|
[19554] | 1093 |
|
---|
| 1094 | if (P > 0){
|
---|
[19582] | 1095 |
|
---|
[19554] | 1096 |
|
---|
| 1097 | if (T_air <= 273.15){ // if snow
|
---|
| 1098 |
|
---|
| 1099 | IssmDouble z_snow = P/dSnow; // depth of snow
|
---|
| 1100 |
|
---|
| 1101 | // if snow depth is greater than specified min dz, new cell created
|
---|
| 1102 | if (z_snow > dzMin){
|
---|
| 1103 |
|
---|
| 1104 | newcell(&T,T_air,top,m); //new cell T
|
---|
| 1105 | newcell(&dz,z_snow,top,m); //new cell dz
|
---|
| 1106 | newcell(&d,dSnow,top,m); //new cell d
|
---|
| 1107 | newcell(&W,0,top,m); //new cell W
|
---|
| 1108 | newcell(&a,aSnow,top,m); //new cell a
|
---|
| 1109 | newcell(&re,reNew,top,m); //new cell grain size
|
---|
| 1110 | newcell(&gdn,gdnNew,top,m); //new cell grain dendricity
|
---|
| 1111 | newcell(&gsp,gspNew,top,m); //new cell grain sphericity
|
---|
| 1112 | m=m+1;
|
---|
| 1113 | }
|
---|
| 1114 | else { // if snow depth is less than specified minimum dz snow
|
---|
| 1115 |
|
---|
| 1116 | IssmDouble mass = mInit[0] + P; // grid cell adjust mass
|
---|
| 1117 |
|
---|
| 1118 | dz[0] = dz[0] + P/dSnow; // adjust grid cell depth
|
---|
| 1119 | d[0] = mass / dz[0]; // adjust grid cell density
|
---|
| 1120 |
|
---|
| 1121 | // adjust variables as a linearly weighted function of mass
|
---|
| 1122 | // adjust temperature (assume P is same temp as air)
|
---|
| 1123 | T[0] = (T_air * P + T[0] * mInit[0])/mass;
|
---|
| 1124 |
|
---|
| 1125 | // adjust a, re, gdn & gsp
|
---|
| 1126 | a[0] = (aSnow * P + a[0] * mInit[0])/mass;
|
---|
| 1127 | re[0] = (reNew * P + re[0] * mInit[0])/mass;
|
---|
| 1128 | gdn[0] = (gdnNew * P + gdn[0] * mInit[0])/mass;
|
---|
| 1129 | gsp[0] = (gspNew * P + gsp[0] * mInit[0])/mass;
|
---|
| 1130 | }
|
---|
| 1131 | }
|
---|
| 1132 | else{ // if rain
|
---|
| 1133 |
|
---|
| 1134 | /*rain is added by increasing the mass and temperature of the ice
|
---|
| 1135 | of the top grid cell. Temperatures are set artifically high to
|
---|
| 1136 | account for the latent heat of fusion. This is the same as
|
---|
| 1137 | directly adding liquid water to the the snow pack surface but
|
---|
| 1138 | makes the numerics easier.*/
|
---|
| 1139 |
|
---|
| 1140 | IssmDouble LF = 0.3345E6; // latent heat of fusion(J kg-1)
|
---|
| 1141 | IssmDouble CI = 2102; // specific heat capacity of snow/ice (J kg-1 k-1)
|
---|
| 1142 |
|
---|
| 1143 | // grid cell adjust mass
|
---|
| 1144 | mass = mInit[0] + P;
|
---|
| 1145 |
|
---|
| 1146 | // adjust temperature
|
---|
| 1147 | // liquid: must account for latent heat of fusion
|
---|
| 1148 | T[0] = (P *(T_air + LF/CI) + T[0] * mInit[0]) / mass;
|
---|
| 1149 |
|
---|
| 1150 | // adjust grid cell density
|
---|
| 1151 | d[0] = mass / dz[0];
|
---|
| 1152 |
|
---|
| 1153 | // if d > the density of ice, d = dIce
|
---|
| 1154 | if (d[0] > dIce){
|
---|
| 1155 | d[0] = dIce; // adjust d
|
---|
| 1156 | dz[0] = mass / d[0]; // dz is adjusted to conserve mass
|
---|
| 1157 | }
|
---|
| 1158 | }
|
---|
| 1159 |
|
---|
| 1160 | // check for conservation of mass
|
---|
| 1161 | mass=0; for(int i=0;i<m;i++)mass+=d[i]*dz[i];
|
---|
| 1162 |
|
---|
| 1163 | mass_diff = mass - massinit - P;
|
---|
[19613] | 1164 |
|
---|
| 1165 | #ifndef _HAVE_ADOLC_ //avoid round operation. only check in forward mode.
|
---|
[19554] | 1166 | mass_diff = round(mass_diff * 100)/100;
|
---|
| 1167 | if (mass_diff > 0) _error_("mass not conserved in accumulation function");
|
---|
[19613] | 1168 | #endif
|
---|
[19554] | 1169 |
|
---|
| 1170 | }
|
---|
| 1171 | /*Free ressources:*/
|
---|
| 1172 | if(mInit)xDelete<IssmDouble>(mInit);
|
---|
| 1173 |
|
---|
| 1174 | /*Assign output pointers:*/
|
---|
| 1175 | *pT=T;
|
---|
| 1176 | *pdz=dz;
|
---|
| 1177 | *pd=d;
|
---|
| 1178 | *pW=W;
|
---|
| 1179 | *pa=a;
|
---|
| 1180 | *pre=re;
|
---|
| 1181 | *pgdn=gdn;
|
---|
| 1182 | *pgsp=gsp;
|
---|
| 1183 | *pm=m;
|
---|
| 1184 | } /*}}}*/
|
---|
[21341] | 1185 | void melt(IssmDouble* pM, IssmDouble* pR, IssmDouble* pmAdd, IssmDouble* pdz_add, IssmDouble** pT, IssmDouble** pd, IssmDouble** pdz, IssmDouble** pW, IssmDouble** pa, IssmDouble** pre, IssmDouble** pgdn, IssmDouble** pgsp, int* pn, IssmDouble dzMin, IssmDouble zMax, IssmDouble zMin, IssmDouble zTop, int sid){ /*{{{*/
|
---|
[19554] | 1186 |
|
---|
| 1187 | //// MELT ROUTINE
|
---|
| 1188 |
|
---|
| 1189 | // Description:
|
---|
| 1190 | // computes the quantity of meltwater due to snow temperature in excess of
|
---|
| 1191 | // 0 deg C, determines pore water content and adjusts grid spacing
|
---|
| 1192 |
|
---|
| 1193 | /*intermediary:*/
|
---|
| 1194 | IssmDouble* m=NULL;
|
---|
| 1195 | IssmDouble* maxF=NULL;
|
---|
| 1196 | IssmDouble* dW=NULL;
|
---|
| 1197 | IssmDouble* exsW=NULL;
|
---|
| 1198 | IssmDouble* exsT=NULL;
|
---|
| 1199 | IssmDouble* surpT=NULL;
|
---|
| 1200 | IssmDouble* surpE=NULL;
|
---|
| 1201 | IssmDouble* F=NULL;
|
---|
| 1202 | IssmDouble* flxDn=NULL;
|
---|
[19582] | 1203 | IssmDouble ER=0;
|
---|
[19554] | 1204 | IssmDouble* EI=NULL;
|
---|
| 1205 | IssmDouble* EW=NULL;
|
---|
| 1206 | IssmDouble* M=NULL;
|
---|
| 1207 | int* D=NULL;
|
---|
| 1208 |
|
---|
| 1209 | IssmDouble sumM;
|
---|
| 1210 | IssmDouble sumER;
|
---|
| 1211 | IssmDouble addE;
|
---|
| 1212 | IssmDouble mSum0;
|
---|
| 1213 | IssmDouble sumE0;
|
---|
| 1214 | IssmDouble mSum1;
|
---|
| 1215 | IssmDouble sumE1;
|
---|
| 1216 | IssmDouble dE;
|
---|
| 1217 | IssmDouble dm;
|
---|
| 1218 | IssmDouble X;
|
---|
| 1219 | IssmDouble Wi;
|
---|
[21341] | 1220 |
|
---|
| 1221 | IssmDouble Ztot;
|
---|
| 1222 | IssmDouble T_bot;
|
---|
| 1223 | IssmDouble m_bot;
|
---|
| 1224 | IssmDouble dz_bot;
|
---|
| 1225 | IssmDouble d_bot;
|
---|
| 1226 | IssmDouble W_bot;
|
---|
| 1227 | IssmDouble a_bot;
|
---|
| 1228 | IssmDouble re_bot;
|
---|
| 1229 | IssmDouble gdn_bot;
|
---|
| 1230 | IssmDouble gsp_bot;
|
---|
| 1231 | bool top=false;
|
---|
| 1232 |
|
---|
| 1233 | IssmDouble* Zcum=NULL;
|
---|
| 1234 | IssmDouble* dzMin2=NULL;
|
---|
| 1235 | IssmDouble zY2=1.025;
|
---|
| 1236 | bool lastCellFlag;
|
---|
| 1237 | int X1=0;
|
---|
| 1238 | int X2=0;
|
---|
| 1239 |
|
---|
[19554] | 1240 | int D_size;
|
---|
| 1241 |
|
---|
| 1242 | /*outputs:*/
|
---|
| 1243 | IssmDouble mAdd;
|
---|
[21341] | 1244 | IssmDouble dz_add;
|
---|
[19554] | 1245 | IssmDouble Rsum;
|
---|
| 1246 | IssmDouble* T=*pT;
|
---|
| 1247 | IssmDouble* d=*pd;
|
---|
| 1248 | IssmDouble* dz=*pdz;
|
---|
| 1249 | IssmDouble* W=*pW;
|
---|
| 1250 | IssmDouble* a=*pa;
|
---|
| 1251 | IssmDouble* re=*pre;
|
---|
| 1252 | IssmDouble* gdn=*pgdn;
|
---|
| 1253 | IssmDouble* gsp=*pgsp;
|
---|
| 1254 | int n=*pn;
|
---|
[19582] | 1255 | IssmDouble* R=0;
|
---|
[19554] | 1256 |
|
---|
[19566] | 1257 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" melt module\n");
|
---|
| 1258 |
|
---|
[19554] | 1259 | //// INITIALIZATION
|
---|
| 1260 |
|
---|
| 1261 | /*Allocations: */
|
---|
| 1262 | M=xNewZeroInit<IssmDouble>(n);
|
---|
| 1263 | maxF=xNew<IssmDouble>(n);
|
---|
| 1264 | dW=xNew<IssmDouble>(n);
|
---|
| 1265 |
|
---|
| 1266 | // specify constants
|
---|
| 1267 | const IssmDouble CtoK = 273.15; // clecius to Kelvin conversion
|
---|
| 1268 | const IssmDouble CI = 2102; // specific heat capacity of snow/ice (J kg-1 k-1)
|
---|
| 1269 | const IssmDouble LF = 0.3345E6; // latent heat of fusion(J kg-1)
|
---|
| 1270 | const IssmDouble dPHC = 830; // pore hole close off density[kg m-3]
|
---|
| 1271 | const IssmDouble dIce = 910; // density of ice [kg m-3]
|
---|
| 1272 |
|
---|
| 1273 | // store initial mass [kg] and energy [J]
|
---|
| 1274 | m=xNew<IssmDouble>(n); for(int i=0;i<n;i++) m[i] = dz[i]* d[i]; // grid cell mass [kg]
|
---|
| 1275 | EI=xNew<IssmDouble>(n); for(int i=0;i<n;i++)EI[i] = m[i] * T[i] * CI; // initial enegy of snow/ice
|
---|
| 1276 | EW=xNew<IssmDouble>(n); for(int i=0;i<n;i++)EW[i]= W[i] * (LF + CtoK * CI); // initial enegy of water
|
---|
| 1277 |
|
---|
| 1278 | mSum0 = cellsum(W,n) + cellsum(m,n); // total mass [kg]
|
---|
| 1279 | sumE0 = cellsum(EI,n) + cellsum(EW,n); // total energy [J]
|
---|
| 1280 |
|
---|
| 1281 | // initialize melt and runoff scalars
|
---|
[19582] | 1282 | Rsum = 0; // runoff [kg]
|
---|
[19554] | 1283 | sumM = 0; // total melt [kg]
|
---|
| 1284 | mAdd = 0; // mass added/removed to/from base of model [kg]
|
---|
| 1285 | addE = 0; // energy added/removed to/from base of model [J]
|
---|
[21341] | 1286 | dz_add=0; // thickness of the layer added/removed to/from base of model [m]
|
---|
[19554] | 1287 |
|
---|
[19582] | 1288 | // calculate temperature excess above 0 deg C
|
---|
[19554] | 1289 | exsT=xNewZeroInit<IssmDouble>(n);
|
---|
| 1290 | for(int i=0;i<n;i++) exsT[i]= fmax(0, T[i] - CtoK); // [K] to [°C]
|
---|
| 1291 |
|
---|
| 1292 | // new grid point center temperature, T [K]
|
---|
| 1293 | for(int i=0;i<n;i++) T[i]-=exsT[i];
|
---|
| 1294 |
|
---|
| 1295 | // specify irreducible water content saturation [fraction]
|
---|
| 1296 | const IssmDouble Swi = 0.07; // assumed constant after Colbeck, 1974
|
---|
| 1297 |
|
---|
| 1298 | //// REFREEZE PORE WATER
|
---|
| 1299 | // check if any pore water
|
---|
| 1300 | if (cellsum(W,n) > 0){
|
---|
[19582] | 1301 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" pore water refreeze\n");
|
---|
[19554] | 1302 | // calculate maximum freeze amount, maxF [kg]
|
---|
| 1303 | for(int i=0;i<n;i++) maxF[i] = fmax(0, -((T[i] - CtoK) * m[i] * CI) / LF);
|
---|
| 1304 |
|
---|
| 1305 | // freeze pore water and change snow/ice properties
|
---|
| 1306 | for(int i=0;i<n;i++) dW[i] = fmin(maxF[i], W[i]); // freeze mass [kg]
|
---|
| 1307 | for(int i=0;i<n;i++) W[i] -= dW[i]; // pore water mass [kg]
|
---|
| 1308 | for(int i=0;i<n;i++) m[i] += dW[i]; // new mass [kg]
|
---|
| 1309 | for(int i=0;i<n;i++) d[i] = m[i] / dz[i]; // density [kg m-3]
|
---|
| 1310 | for(int i=0;i<n;i++) T[i] = T[i] + (dW[i]*(LF+(CtoK - T[i])*CI)/(m[i]*CI)); // temperature [K]
|
---|
| 1311 |
|
---|
| 1312 | // if pore water froze in ice then adjust d and dz thickness
|
---|
[19582] | 1313 | for(int i=0;i<n;i++)if(d[i]>dIce)d[i]=dIce;
|
---|
| 1314 | for(int i=0;i<n;i++) dz[i]= m[i]/d[i];
|
---|
[19554] | 1315 | }
|
---|
| 1316 |
|
---|
| 1317 | // squeeze water from snow pack
|
---|
[19582] | 1318 | exsW=xNew<IssmDouble>(n);
|
---|
| 1319 | for(int i=0;i<n;i++){
|
---|
[19554] | 1320 | Wi= (910 - d[i]) * Swi * (m[i] / d[i]); // irreducible water content [kg]
|
---|
| 1321 | exsW[i] = fmax(0, W[i] - Wi); // water "squeezed" from snow [kg]
|
---|
| 1322 | }
|
---|
| 1323 |
|
---|
| 1324 | //// MELT, PERCOLATION AND REFREEZE
|
---|
| 1325 |
|
---|
| 1326 | // run melt algorithm if there is melt water or excess pore water
|
---|
| 1327 | if ((cellsum(exsT,n) > 0) || (cellsum(exsW,n) > 0)){
|
---|
| 1328 | // _printf_(""MELT OCCURS");
|
---|
| 1329 | // check to see if thermal energy exceeds energy to melt entire cell
|
---|
| 1330 | // if so redistribute temperature to lower cells (temperature surplus)
|
---|
| 1331 | // (maximum T of snow before entire grid cell melts is a constant
|
---|
| 1332 | // LF/CI = 159.1342)
|
---|
| 1333 | surpT=xNew<IssmDouble>(n); for(int i=0;i<n;i++)surpT[i] = fmax(0, exsT [i]- 159.1342);
|
---|
[21341] | 1334 |
|
---|
[19554] | 1335 | if (cellsum(surpT,n) > 0 ){
|
---|
| 1336 | // _printf_("T Surplus");
|
---|
| 1337 | // calculate surplus energy
|
---|
[21341] | 1338 | surpE=xNew<IssmDouble>(n); for(int i=0;i<n;i++)surpE[i] = surpT[i] * CI * m[i];
|
---|
| 1339 |
|
---|
[19554] | 1340 | int i = 0;
|
---|
| 1341 | while (cellsum(surpE,n) > 0){
|
---|
| 1342 | // use surplus energy to increase the temperature of lower cell
|
---|
[21341] | 1343 | T[i+1] = surpE[i]/m[i+1]/CI + T[i+1];
|
---|
| 1344 |
|
---|
| 1345 | exsT[i+1] = fmax(0, T[i+1] - CtoK) + exsT[i+1];
|
---|
| 1346 | T[i+1] = fmin(CtoK, T[i+1]);
|
---|
| 1347 |
|
---|
| 1348 | surpT[i+1] = fmax(0, exsT[i+1] - 159.1342);
|
---|
| 1349 | surpE[i+1] = surpT[i+1] * CI * m[i+1];
|
---|
| 1350 |
|
---|
[19554] | 1351 | // adjust current cell properties (again 159.1342 is the max T)
|
---|
[21341] | 1352 | exsT[i] = 159.1342;
|
---|
| 1353 | surpE[i] = 0;
|
---|
[19554] | 1354 | i = i + 1;
|
---|
| 1355 | }
|
---|
| 1356 | }
|
---|
| 1357 |
|
---|
| 1358 | // convert temperature excess to melt [kg]
|
---|
| 1359 | for(int i=0;i<n;i++) M[i] = exsT[i] * d[i] * dz[i] * CI / LF; // melt
|
---|
| 1360 | sumM = cellsum(M,n); // total melt [kg]
|
---|
| 1361 |
|
---|
| 1362 | // calculate maximum refreeze amount, maxF [kg]
|
---|
| 1363 | for(int i=0;i<n;i++)maxF[i] = fmax(0, -((T[i] - CtoK) * d[i] * dz[i] * CI)/ LF);
|
---|
| 1364 |
|
---|
| 1365 | // initialize refreeze, runoff, flxDn and dW vectors [kg]
|
---|
[21341] | 1366 | IssmDouble* F = xNewZeroInit<IssmDouble>(n);
|
---|
| 1367 | IssmDouble* R=xNewZeroInit<IssmDouble>(n);
|
---|
[19582] | 1368 |
|
---|
[19554] | 1369 | for(int i=0;i<n;i++)dW[i] = 0;
|
---|
| 1370 | flxDn=xNewZeroInit<IssmDouble>(n+1); for(int i=0;i<n;i++)flxDn[i+1]=F[i];
|
---|
| 1371 |
|
---|
| 1372 | // determine the deepest grid cell where melt/pore water is generated
|
---|
| 1373 | X = 0;
|
---|
| 1374 | for(int i=n-1;i>=0;i--){
|
---|
[19613] | 1375 | if(M[i]>0 || reCast<int,IssmDouble>(exsW[i])){
|
---|
[19554] | 1376 | X=i;
|
---|
| 1377 | break;
|
---|
| 1378 | }
|
---|
| 1379 | }
|
---|
| 1380 |
|
---|
| 1381 | //// meltwater percolation
|
---|
| 1382 | for(int i=0;i<n;i++){
|
---|
| 1383 | // calculate total melt water entering cell
|
---|
| 1384 | IssmDouble inM = M[i]+ flxDn[i];
|
---|
| 1385 |
|
---|
| 1386 | // break loop if there is no meltwater and if depth is > mw_depth
|
---|
| 1387 | if (inM == 0 && i > X){
|
---|
| 1388 | break;
|
---|
| 1389 | }
|
---|
| 1390 |
|
---|
| 1391 | // if reaches impermeable ice layer all liquid water runs off (R)
|
---|
[21341] | 1392 | else if (d[i] >= dIce){ // dPHC = pore hole close off [kg m-3]
|
---|
[19554] | 1393 | // _printf_("ICE LAYER");
|
---|
| 1394 | // no water freezes in this cell
|
---|
| 1395 | // no water percolates to lower cell
|
---|
| 1396 | // cell ice temperature & density do not change
|
---|
| 1397 |
|
---|
| 1398 | m[i] = m[i] - M[i]; // mass after melt
|
---|
| 1399 | Wi = (910-d[i]) * Swi * (m[i]/d[i]); // irreducible water
|
---|
| 1400 | dW[i] = fmin(inM, Wi - W[i]); // change in pore water
|
---|
| 1401 | R[i] = fmax(0, inM - dW[i]); // runoff
|
---|
| 1402 | }
|
---|
[21341] | 1403 | // check if no energy to refreeze meltwater
|
---|
[19554] | 1404 | else if (maxF[i] == 0){
|
---|
| 1405 | // _printf_("REFREEZE == 0");
|
---|
| 1406 | // no water freezes in this cell
|
---|
| 1407 | // cell ice temperature & density do not change
|
---|
| 1408 |
|
---|
| 1409 | m[i] = m[i] - M[i]; // mass after melt
|
---|
| 1410 | Wi = (910-d[i]) * Swi * (m[i]/d[i]); // irreducible water
|
---|
| 1411 | dW[i] = fmin(inM, Wi-W[i]); // change in pore water
|
---|
| 1412 | flxDn[i+1] = fmax(0, inM-dW[i]); // meltwater out
|
---|
| 1413 | F[i] = 0; // no freeze
|
---|
| 1414 | }
|
---|
| 1415 | // some or all meltwater refreezes
|
---|
| 1416 | else{
|
---|
| 1417 | // change in density density and temperature
|
---|
| 1418 | // _printf_("MELT REFREEZE");
|
---|
| 1419 | //-----------------------melt water-----------------------------
|
---|
| 1420 | IssmDouble dz_0 = m[i]/d[i];
|
---|
| 1421 | IssmDouble dMax = (dIce - d[i])*dz_0; // d max = dIce
|
---|
| 1422 | IssmDouble F1 = fmin(fmin(inM,dMax),maxF[i]); // maximum refreeze
|
---|
| 1423 | m[i] = m[i] + F1; // mass after refreeze
|
---|
| 1424 | d[i] = m[i]/dz_0;
|
---|
| 1425 |
|
---|
| 1426 | //-----------------------pore water-----------------------------
|
---|
| 1427 | Wi = (910-d[i])* Swi * dz_0; // irreducible water
|
---|
| 1428 | dW[i] = fmin(inM - F1, Wi-W[i]); // change in pore water
|
---|
| 1429 | if (-dW[i]>W[i] ){
|
---|
| 1430 | dW[i]= W[i];
|
---|
| 1431 | }
|
---|
| 1432 | IssmDouble F2 = 0;
|
---|
| 1433 |
|
---|
[21341] | 1434 | if (dW[i] < 0){ // excess pore water
|
---|
[19554] | 1435 | dMax = (dIce - d[i])*dz_0; // maximum refreeze
|
---|
| 1436 | IssmDouble maxF2 = fmin(dMax, maxF[i]-F1); // maximum refreeze
|
---|
| 1437 | F2 = fmin(-dW[i], maxF2); // pore water refreeze
|
---|
| 1438 | m[i] = m[i] + F2; // mass after refreeze
|
---|
| 1439 | d[i] = m[i]/dz_0;
|
---|
| 1440 | }
|
---|
| 1441 |
|
---|
| 1442 | flxDn[i+1] = inM - F1 - dW[i] - F2; // meltwater out
|
---|
| 1443 | T[i] = T[i] + ((F1+F2)*(LF+(CtoK - T[i])*CI)/(m[i]*CI));// change in temperature
|
---|
| 1444 |
|
---|
| 1445 |
|
---|
| 1446 | // check if an ice layer forms
|
---|
| 1447 | if (d[i] == dIce){
|
---|
| 1448 | // _printf_("ICE LAYER FORMS");
|
---|
| 1449 | // excess water runs off
|
---|
| 1450 | R[i] = flxDn[i+1];
|
---|
| 1451 | // no water percolates to lower cell
|
---|
| 1452 | flxDn[i+1] = 0;
|
---|
| 1453 | }
|
---|
| 1454 | }
|
---|
| 1455 | }
|
---|
| 1456 |
|
---|
| 1457 |
|
---|
| 1458 | //// GRID CELL SPACING AND MODEL DEPTH
|
---|
| 1459 | for(int i=0;i<n;i++)if (W[i] < 0) _error_("negative pore water generated in melt equations");
|
---|
| 1460 |
|
---|
| 1461 | // delete all cells with zero mass
|
---|
| 1462 | // adjust pore water
|
---|
| 1463 | for(int i=0;i<n;i++)W[i] += dW[i];
|
---|
| 1464 |
|
---|
| 1465 | // delete all cells with zero mass
|
---|
[21341] | 1466 | D_size=0; for(int i=0;i<n;i++)if(m[i]!=0)D_size++; D=xNew<int>(D_size);
|
---|
[19554] | 1467 | D_size=0; for(int i=0;i<n;i++)if(m[i]!=0){ D[D_size] = i; D_size++;}
|
---|
| 1468 |
|
---|
| 1469 | celldelete(&m,n,D,D_size);
|
---|
| 1470 | celldelete(&W,n,D,D_size);
|
---|
| 1471 | celldelete(&d,n,D,D_size);
|
---|
| 1472 | celldelete(&T,n,D,D_size);
|
---|
| 1473 | celldelete(&a,n,D,D_size);
|
---|
| 1474 | celldelete(&re,n,D,D_size);
|
---|
| 1475 | celldelete(&gdn,n,D,D_size);
|
---|
| 1476 | celldelete(&gsp,n,D,D_size);
|
---|
[19582] | 1477 | celldelete(&EI,n,D,D_size);
|
---|
| 1478 | celldelete(&EW,n,D,D_size);
|
---|
| 1479 | celldelete(&R,n,D,D_size);
|
---|
[19554] | 1480 | n=D_size;
|
---|
[19613] | 1481 | xDelete<int>(D);
|
---|
[19554] | 1482 |
|
---|
| 1483 | // calculate new grid lengths
|
---|
| 1484 | for(int i=0;i<n;i++)dz[i] = m[i] / d[i];
|
---|
[19582] | 1485 |
|
---|
[21341] | 1486 | //calculate Rsum:
|
---|
[19582] | 1487 | Rsum=cellsum(R,n);
|
---|
[19613] | 1488 |
|
---|
| 1489 | /*Free ressources:*/
|
---|
| 1490 | xDelete<IssmDouble>(F);
|
---|
| 1491 | xDelete<IssmDouble>(R);
|
---|
[19554] | 1492 | }
|
---|
[21341] | 1493 |
|
---|
| 1494 | //Merging of cells as they are burried under snow.
|
---|
| 1495 | Zcum=xNew<IssmDouble>(n);
|
---|
| 1496 | dzMin2=xNew<IssmDouble>(n);
|
---|
| 1497 |
|
---|
| 1498 | Zcum[0]=dz[0]; // Compute a cumulative depth vector
|
---|
| 1499 |
|
---|
| 1500 | for (int i=1;i<n;i++){
|
---|
| 1501 | Zcum[i]=Zcum[i-1]+dz[i];
|
---|
| 1502 | }
|
---|
| 1503 |
|
---|
| 1504 | for (int i=0;i<n;i++){
|
---|
| 1505 | if (Zcum[i]<=zTop){
|
---|
| 1506 | dzMin2[i]=dzMin;
|
---|
| 1507 | }
|
---|
| 1508 | else{
|
---|
| 1509 | dzMin2[i]=zY2*dzMin2[i-1];
|
---|
| 1510 | }
|
---|
| 1511 | }
|
---|
[19554] | 1512 |
|
---|
| 1513 | // check if depth is too small
|
---|
| 1514 | X = 0;
|
---|
| 1515 | for(int i=n-1;i>=0;i--){
|
---|
[21341] | 1516 | if(dz[i]<dzMin2[i]){
|
---|
[19554] | 1517 | X=i;
|
---|
| 1518 | break;
|
---|
| 1519 | }
|
---|
| 1520 | }
|
---|
[21341] | 1521 |
|
---|
| 1522 | //Last cell has to be treated separately if has to be merged (no underlying cell so need to merge with overlying cell)
|
---|
| 1523 | if(X==n-1){
|
---|
| 1524 | lastCellFlag = true;
|
---|
| 1525 | X = X-1;
|
---|
| 1526 | }
|
---|
| 1527 | else{
|
---|
| 1528 | lastCellFlag = false;
|
---|
| 1529 | }
|
---|
[19554] | 1530 |
|
---|
| 1531 | for (int i = 0; i<=X;i++){
|
---|
[21341] | 1532 | if (dz [i] < dzMin2[i]){ // merge top cells
|
---|
| 1533 | // _printf_("dz > dzMin * 2')
|
---|
[19554] | 1534 | // adjust variables as a linearly weighted function of mass
|
---|
| 1535 | IssmDouble m_new = m[i] + m[i+1];
|
---|
| 1536 | T[i+1] = (T[i]*m[i] + T[i+1]*m[i+1]) / m_new;
|
---|
| 1537 | a[i+1] = (a[i]*m[i] + a[i+1]*m[i+1]) / m_new;
|
---|
| 1538 | re[i+1] = (re[i]*m[i] + re[i+1]*m[i+1]) / m_new;
|
---|
| 1539 | gdn[i+1] = (gdn[i]*m[i] + gdn[i+1]*m[i+1]) / m_new;
|
---|
| 1540 | gsp[i+1] = (gsp[i]*m[i] + gsp[i+1]*m[i+1]) / m_new;
|
---|
[21341] | 1541 |
|
---|
[19554] | 1542 | // merge with underlying grid cell and delete old cell
|
---|
| 1543 | dz [i+1] = dz[i] + dz[i+1]; // combine cell depths
|
---|
| 1544 | d[i+1] = m_new / dz[i+1]; // combine top densities
|
---|
| 1545 | W[i+1] = W[i+1] + W[i]; // combine liquid water
|
---|
| 1546 | m[i+1] = m_new; // combine top masses
|
---|
[21341] | 1547 |
|
---|
[19554] | 1548 | // set cell to 99999 for deletion
|
---|
| 1549 | m[i] = 99999;
|
---|
| 1550 | }
|
---|
| 1551 | }
|
---|
| 1552 |
|
---|
[21341] | 1553 | //If last cell has to be merged
|
---|
| 1554 | if(lastCellFlag){
|
---|
| 1555 | //find closest cell to merge with
|
---|
| 1556 | for(int i=n-2;i>=0;i--){
|
---|
| 1557 | if(m[i]!=99999){
|
---|
| 1558 | X2=i;
|
---|
| 1559 | X1=n-1;
|
---|
| 1560 | break;
|
---|
| 1561 | }
|
---|
| 1562 | }
|
---|
| 1563 |
|
---|
| 1564 | // adjust variables as a linearly weighted function of mass
|
---|
| 1565 | IssmDouble m_new = m[X2] + m[X1];
|
---|
| 1566 | T[X1] = (T[X2]*m[X2] + T[X1]*m[X1]) / m_new;
|
---|
| 1567 | a[X1] = (a[X2]*m[X2] + a[X1]*m[X1]) / m_new;
|
---|
| 1568 | re[X1] = (re[X2]*m[X2] + re[X1]*m[X1]) / m_new;
|
---|
| 1569 | gdn[X1] = (gdn[X2]*m[X2] + gdn[X1]*m[X1]) / m_new;
|
---|
| 1570 | gsp[X1] = (gsp[X2]*m[X2] + gsp[X1]*m[X1]) / m_new;
|
---|
| 1571 |
|
---|
| 1572 | // merge with underlying grid cell and delete old cell
|
---|
| 1573 | dz [X1] = dz[X2] + dz[X1]; // combine cell depths
|
---|
| 1574 | d[X1] = m_new / dz[X1]; // combine top densities
|
---|
| 1575 | W[X1] = W[X1] + W[X2]; // combine liquid water
|
---|
| 1576 | m[X1] = m_new; // combine top masses
|
---|
| 1577 |
|
---|
| 1578 | // set cell to 99999 for deletion
|
---|
| 1579 | m[X2] = 99999;
|
---|
| 1580 | }
|
---|
| 1581 |
|
---|
[19554] | 1582 | // delete combined cells
|
---|
[19613] | 1583 | D_size=0; for(int i=0;i<n;i++)if(m[i]!=99999)D_size++; D=xNew<int>(D_size);
|
---|
[19554] | 1584 | D_size=0; for(int i=0;i<n;i++)if(m[i]!=99999){ D[D_size] = i; D_size++;}
|
---|
| 1585 |
|
---|
[19582] | 1586 | celldelete(&m,n,D,D_size);
|
---|
| 1587 | celldelete(&W,n,D,D_size);
|
---|
| 1588 | celldelete(&dz,n,D,D_size);
|
---|
| 1589 | celldelete(&d,n,D,D_size);
|
---|
| 1590 | celldelete(&T,n,D,D_size);
|
---|
| 1591 | celldelete(&a,n,D,D_size);
|
---|
| 1592 | celldelete(&re,n,D,D_size);
|
---|
| 1593 | celldelete(&gdn,n,D,D_size);
|
---|
| 1594 | celldelete(&gsp,n,D,D_size);
|
---|
| 1595 | celldelete(&EI,n,D,D_size);
|
---|
| 1596 | celldelete(&EW,n,D,D_size);
|
---|
| 1597 | n=D_size;
|
---|
[19613] | 1598 | xDelete<int>(D);
|
---|
[21341] | 1599 |
|
---|
[19582] | 1600 | // check if any of the top 10 cell depths are too large
|
---|
| 1601 | X=0;
|
---|
| 1602 | for(int i=9;i>=0;i--){
|
---|
| 1603 | if(dz[i]> 2* dzMin){
|
---|
| 1604 | X=i;
|
---|
| 1605 | break;
|
---|
| 1606 | }
|
---|
| 1607 | }
|
---|
| 1608 |
|
---|
[21341] | 1609 | int i=0;
|
---|
[19582] | 1610 | while(i<=X){
|
---|
| 1611 | if (dz [i] > dzMin *2){
|
---|
| 1612 |
|
---|
[21341] | 1613 | // _printf_("dz > dzMin * 2");
|
---|
| 1614 | // split in two
|
---|
| 1615 | cellsplit(&dz, n, i,.5);
|
---|
| 1616 | cellsplit(&W, n, i,.5);
|
---|
| 1617 | cellsplit(&m, n, i,.5);
|
---|
| 1618 | cellsplit(&T, n, i,1.0);
|
---|
| 1619 | cellsplit(&d, n, i,1.0);
|
---|
| 1620 | cellsplit(&a, n, i,1.0);
|
---|
| 1621 | cellsplit(&EI, n, i,1.0);
|
---|
| 1622 | cellsplit(&EW, n, i,1.0);
|
---|
| 1623 | cellsplit(&re, n, i,1.0);
|
---|
| 1624 | cellsplit(&gdn, n, i,1.0);
|
---|
| 1625 | cellsplit(&gsp, n, i,1.0);
|
---|
| 1626 | n++;
|
---|
| 1627 | X=X+1;
|
---|
[19582] | 1628 | }
|
---|
| 1629 | else i++;
|
---|
| 1630 | }
|
---|
| 1631 |
|
---|
[19554] | 1632 | //// CORRECT FOR TOTAL MODEL DEPTH
|
---|
| 1633 | // WORKS FINE BUT HAS BEEN DISABLED FOR CONVIENCE OF MODEL OUTPUT
|
---|
| 1634 | // INTERPRETATION
|
---|
| 1635 | // // calculate total model depth
|
---|
[21341] | 1636 | Ztot = cellsum(dz,n);
|
---|
| 1637 |
|
---|
| 1638 | if (Ztot < zMin){
|
---|
| 1639 | // printf("Total depth < zMin %f \n", Ztot);
|
---|
| 1640 | // mass and energy to be added
|
---|
| 1641 | mAdd = m[n-1]+W[n-1];
|
---|
| 1642 | addE = T[n-1]*m[n-1]*CI;
|
---|
| 1643 |
|
---|
| 1644 | // add a grid cell of the same size and temperature to the bottom
|
---|
| 1645 | dz_bot=dz[n-1];
|
---|
| 1646 | T_bot=T[n-1];
|
---|
| 1647 | W_bot=W[n-1];
|
---|
| 1648 | m_bot=m[n-1];
|
---|
| 1649 | d_bot=d[n-1];
|
---|
| 1650 | a_bot=a[n-1];
|
---|
| 1651 | re_bot=re[n-1];
|
---|
| 1652 | gdn_bot=gdn[n-1];
|
---|
| 1653 | gsp_bot=gsp[n-1];
|
---|
| 1654 |
|
---|
| 1655 | dz_add=dz_bot;
|
---|
| 1656 |
|
---|
| 1657 | newcell(&dz,dz_bot,top,n);
|
---|
| 1658 | newcell(&T,T_bot,top,n);
|
---|
| 1659 | newcell(&W,W_bot,top,n);
|
---|
| 1660 | newcell(&m,m_bot,top,n);
|
---|
| 1661 | newcell(&d,d_bot,top,n);
|
---|
| 1662 | newcell(&a,a_bot,top,n);
|
---|
| 1663 | newcell(&re,re_bot,top,n);
|
---|
| 1664 | newcell(&gdn,gdn_bot,top,n);
|
---|
| 1665 | newcell(&gsp,gsp_bot,top,n);
|
---|
| 1666 | n=n+1;
|
---|
| 1667 | }
|
---|
| 1668 | else if (Ztot > zMax){
|
---|
| 1669 | // printf("Total depth > zMax %f \n", Ztot);
|
---|
| 1670 | // mass and energy loss
|
---|
| 1671 | mAdd = -(m[n-1]+W[n-1]);
|
---|
| 1672 | addE = -(T[n-1]*m[n-1]*CI);
|
---|
| 1673 | dz_add=-(dz[n-1]);
|
---|
| 1674 |
|
---|
| 1675 | // add a grid cell of the same size and temperature to the bottom
|
---|
| 1676 | D_size=n-1;
|
---|
| 1677 | D=xNew<int>(D_size);
|
---|
| 1678 |
|
---|
| 1679 | for(int i=0;i<n-1;i++) D[i]=i;
|
---|
| 1680 | celldelete(&dz,n,D,D_size);
|
---|
| 1681 | celldelete(&T,n,D,D_size);
|
---|
| 1682 | celldelete(&W,n,D,D_size);
|
---|
| 1683 | celldelete(&m,n,D,D_size);
|
---|
| 1684 | celldelete(&d,n,D,D_size);
|
---|
| 1685 | celldelete(&a,n,D,D_size);
|
---|
| 1686 | celldelete(&re,n,D,D_size);
|
---|
| 1687 | celldelete(&gdn,n,D,D_size);
|
---|
| 1688 | celldelete(&gsp,n,D,D_size);
|
---|
| 1689 | n=D_size;
|
---|
| 1690 | xDelete<int>(D);
|
---|
| 1691 |
|
---|
| 1692 | }
|
---|
[19554] | 1693 |
|
---|
| 1694 | //// CHECK FOR MASS AND ENERGY CONSERVATION
|
---|
| 1695 |
|
---|
| 1696 | // calculate final mass [kg] and energy [J]
|
---|
[19582] | 1697 | sumER = Rsum * (LF + CtoK * CI);
|
---|
[19554] | 1698 | for(int i=0;i<n;i++)EI[i] = m[i] * T[i] * CI;
|
---|
| 1699 | for(int i=0;i<n;i++)EW[i] = W[i] * (LF + CtoK * CI);
|
---|
| 1700 |
|
---|
| 1701 | mSum1 = cellsum(W,n) + cellsum(m,n) + Rsum;
|
---|
| 1702 | sumE1 = cellsum(EI,n) + cellsum(EW,n);
|
---|
| 1703 |
|
---|
[19613] | 1704 | /*checks: */
|
---|
| 1705 | for(int i=0;i<n;i++) if (W[i]<0) _error_("negative pore water generated in melt equations\n");
|
---|
| 1706 |
|
---|
| 1707 | /*only in forward mode! avoid round in AD mode as it is not differentiable: */
|
---|
| 1708 | #ifndef _HAVE_ADOLC_
|
---|
[19554] | 1709 | dm = round(mSum0 - mSum1 + mAdd);
|
---|
| 1710 | dE = round(sumE0 - sumE1 - sumER + addE);
|
---|
[21341] | 1711 | if (dm !=0 || dE !=0) _error_("mass or energy are not conserved in melt equations\n"
|
---|
[19582] | 1712 | << "dm: " << dm << " dE: " << dE << "\n");
|
---|
[19613] | 1713 | #endif
|
---|
[19582] | 1714 |
|
---|
[19554] | 1715 | /*Free ressources:*/
|
---|
| 1716 | if(m)xDelete<IssmDouble>(m);
|
---|
| 1717 | if(EI)xDelete<IssmDouble>(EI);
|
---|
[19582] | 1718 | if(EW)xDelete<IssmDouble>(EW);
|
---|
[19554] | 1719 | if(maxF)xDelete<IssmDouble>(maxF);
|
---|
| 1720 | if(dW)xDelete<IssmDouble>(dW);
|
---|
| 1721 | if(exsW)xDelete<IssmDouble>(exsW);
|
---|
| 1722 | if(exsT)xDelete<IssmDouble>(exsT);
|
---|
| 1723 | if(surpT)xDelete<IssmDouble>(surpT);
|
---|
| 1724 | if(surpE)xDelete<IssmDouble>(surpE);
|
---|
| 1725 | if(flxDn)xDelete<IssmDouble>(flxDn);
|
---|
| 1726 | if(D)xDelete<int>(D);
|
---|
| 1727 | if(M)xDelete<IssmDouble>(M);
|
---|
[21341] | 1728 | xDelete<IssmDouble>(Zcum);
|
---|
| 1729 | xDelete<IssmDouble>(dzMin2);
|
---|
| 1730 |
|
---|
[19554] | 1731 | /*Assign output pointers:*/
|
---|
| 1732 | *pM=sumM;
|
---|
| 1733 | *pR=Rsum;
|
---|
| 1734 | *pmAdd=mAdd;
|
---|
[21341] | 1735 | *pdz_add=dz_add;
|
---|
| 1736 |
|
---|
[19554] | 1737 | *pT=T;
|
---|
| 1738 | *pd=d;
|
---|
| 1739 | *pdz=dz;
|
---|
| 1740 | *pW=W;
|
---|
| 1741 | *pa=a;
|
---|
| 1742 | *pre=re;
|
---|
| 1743 | *pgdn=gdn;
|
---|
| 1744 | *pgsp=gsp;
|
---|
| 1745 | *pn=n;
|
---|
| 1746 |
|
---|
| 1747 | } /*}}}*/
|
---|
[19566] | 1748 | void densification(IssmDouble* d,IssmDouble* dz, IssmDouble* T, IssmDouble* re, int denIdx, IssmDouble C, IssmDouble dt, IssmDouble Tmean,IssmDouble dIce, int m, int sid){ /*{{{*/
|
---|
[19554] | 1749 |
|
---|
| 1750 | //// THIS NEEDS TO BE DOUBLE CHECKED AS THERE SEAMS TO BE LITTLE DENSIFICATION IN THE MODEL OUTOUT [MAYBE COMPATION IS COMPNSATED FOR BY TRACES OF SNOW???]
|
---|
| 1751 |
|
---|
| 1752 | //// FUNCTION INFO
|
---|
| 1753 |
|
---|
| 1754 | // Author: Alex Gardner, University of Alberta
|
---|
| 1755 | // Date last modified: FEB, 2008
|
---|
| 1756 |
|
---|
| 1757 | // Description:
|
---|
| 1758 | // computes the densification of snow/firn using the emperical model of
|
---|
| 1759 | // Herron and Langway (1980) or the semi-emperical model of Anthern et al.
|
---|
| 1760 | // (2010)
|
---|
| 1761 |
|
---|
| 1762 | // Inputs:
|
---|
| 1763 | // denIdx = densification model to use:
|
---|
| 1764 | // 1 = emperical model of Herron and Langway (1980)
|
---|
| 1765 | // 2 = semi-imerical model of Anthern et al. (2010)
|
---|
| 1766 | // 3 = physical model from Appendix B of Anthern et al. (2010)
|
---|
| 1767 | // d = initial snow/firn density [kg m-3]
|
---|
| 1768 | // T = temperature [K]
|
---|
| 1769 | // dz = grid cell size [m]
|
---|
| 1770 | // C = average accumulation rate [kg m-2 yr-1]
|
---|
| 1771 | // dt = time lapsed [s]
|
---|
| 1772 | // re = effective grain radius [mm];
|
---|
| 1773 | // Ta = mean annual temperature
|
---|
| 1774 |
|
---|
| 1775 | // Reference:
|
---|
| 1776 | // Herron and Langway (1980), Anthern et al. (2010)
|
---|
| 1777 |
|
---|
| 1778 | //// FOR TESTING
|
---|
| 1779 | // denIdx = 2;
|
---|
| 1780 | // d = 800;
|
---|
| 1781 | // T = 270;
|
---|
| 1782 | // dz = 0.005;
|
---|
| 1783 | // C = 200;
|
---|
| 1784 | // dt = 60*60;
|
---|
| 1785 | // re = 0.7;
|
---|
| 1786 | // Tmean = 273.15-18;
|
---|
| 1787 |
|
---|
| 1788 | //// MAIN FUNCTION
|
---|
| 1789 | // specify constants
|
---|
| 1790 | dt = dt / 86400; // convert from [s] to [d]
|
---|
| 1791 | // R = 8.314 // gas constant [mol-1 K-1]
|
---|
| 1792 | // Ec = 60 // activation energy for self-diffusion of water
|
---|
| 1793 | // // molecules through the ice tattice [kJ mol-1]
|
---|
| 1794 | // Eg = 42.4 // activation energy for grain growth [kJ mol-1]
|
---|
| 1795 |
|
---|
| 1796 | /*intermediary: */
|
---|
| 1797 | IssmDouble c0,c1,H;
|
---|
[19566] | 1798 |
|
---|
| 1799 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" densification module\n");
|
---|
[19554] | 1800 |
|
---|
| 1801 | // initial mass
|
---|
| 1802 | IssmDouble* mass_init = xNew<IssmDouble>(m);for(int i=0;i<m;i++) mass_init[i]=d[i] * dz[i];
|
---|
| 1803 |
|
---|
| 1804 | /*allocations and initialization of overburden pressure and factor H: */
|
---|
| 1805 | IssmDouble* cumdz = xNew<IssmDouble>(m-1);
|
---|
| 1806 | cumdz[0]=dz[0];
|
---|
| 1807 | for(int i=1;i<m-1;i++)cumdz[i]=cumdz[i-1]+dz[i];
|
---|
| 1808 |
|
---|
| 1809 | IssmDouble* obp = xNew<IssmDouble>(m);
|
---|
| 1810 | obp[0]=0;
|
---|
[19582] | 1811 | for(int i=1;i<m;i++)obp[i]=cumdz[i-1]*d[i-1];
|
---|
[19554] | 1812 |
|
---|
| 1813 | // calculate new snow/firn density for:
|
---|
| 1814 | // snow with densities <= 550 [kg m-3]
|
---|
| 1815 | // snow with densities > 550 [kg m-3]
|
---|
| 1816 |
|
---|
| 1817 |
|
---|
| 1818 | for(int i=0;i<m;i++){
|
---|
| 1819 | switch (denIdx){
|
---|
| 1820 | case 1: // Herron and Langway (1980)
|
---|
| 1821 | c0 = (11 * exp(-10160 / (T[i] * 8.314))) * C/1000;
|
---|
| 1822 | c1 = (575 * exp(-21400 / (T[i]* 8.314))) * pow(C/1000,.5);
|
---|
| 1823 | break;
|
---|
| 1824 | case 2: // Arthern et al. (2010) [semi-emperical]
|
---|
| 1825 | // common variable
|
---|
| 1826 | // NOTE: Ec=60000, Eg=42400 (i.e. should be in J not kJ)
|
---|
| 1827 | H = exp((-60000./(T[i] * 8.314)) + (42400./(Tmean * 8.314))) * (C * 9.81);
|
---|
| 1828 | c0 = 0.07 * H;
|
---|
| 1829 | c1 = 0.03 * H;
|
---|
| 1830 | break;
|
---|
| 1831 |
|
---|
| 1832 | case 3: // Arthern et al. (2010) [physical model eqn. B1]
|
---|
| 1833 |
|
---|
| 1834 | // common variable
|
---|
| 1835 | H = exp((-60/(T[i] * 8.314))) * obp[i] / pow(re[i]/1000,2.0);
|
---|
[19582] | 1836 | c0 = 9.2e-9 * H;
|
---|
| 1837 | c1 = 3.7e-9 * H;
|
---|
[19554] | 1838 | break;
|
---|
| 1839 |
|
---|
| 1840 | case 4: // Li and Zwally (2004)
|
---|
| 1841 | c0 = (C/dIce) * (139.21 - 0.542*Tmean)*8.36*pow(273.15 - T[i],-2.061);
|
---|
| 1842 | c1 = c0;
|
---|
| 1843 | break;
|
---|
| 1844 |
|
---|
| 1845 | case 5: // Helsen et al. (2008)
|
---|
| 1846 | // common variable
|
---|
| 1847 | c0 = (C/dIce) * (76.138 - 0.28965*Tmean)*8.36*pow(273.15 - T[i],-2.061);
|
---|
| 1848 | c1 = c0;
|
---|
| 1849 | break;
|
---|
| 1850 | }
|
---|
| 1851 |
|
---|
| 1852 | // new snow density
|
---|
| 1853 | if(d[i] <= 550) d[i] = d[i] + (c0 * (dIce - d[i]) / 365 * dt);
|
---|
| 1854 | else d[i] = d[i] + (c1 * (dIce - d[i]) / 365 * dt);
|
---|
| 1855 |
|
---|
| 1856 | //disp((num2str(nanmean(c0 .* (dIce - d(idx)) / 365 * dt))))
|
---|
| 1857 |
|
---|
| 1858 | // do not allow densities to exceed the density of ice
|
---|
| 1859 | if(d[i]>dIce)d[i]=dIce;
|
---|
| 1860 |
|
---|
| 1861 | // calculate new grid cell length
|
---|
| 1862 | dz[i] = mass_init[i] / d[i];
|
---|
| 1863 | }
|
---|
[19566] | 1864 |
|
---|
[19554] | 1865 | /*Free ressources:*/
|
---|
| 1866 | xDelete<IssmDouble>(mass_init);
|
---|
| 1867 | xDelete<IssmDouble>(cumdz);
|
---|
| 1868 | xDelete<IssmDouble>(obp);
|
---|
| 1869 |
|
---|
| 1870 | } /*}}}*/
|
---|
[19566] | 1871 | void turbulentFlux(IssmDouble* pshf, IssmDouble* plhf, IssmDouble* pEC, IssmDouble Ta, IssmDouble Ts, IssmDouble V, IssmDouble eAir, IssmDouble pAir, IssmDouble ds, IssmDouble Ws, IssmDouble Vz, IssmDouble Tz, int sid){ /*{{{*/
|
---|
[19554] | 1872 |
|
---|
| 1873 | //// TURBULENT HEAT FLUX
|
---|
| 1874 |
|
---|
| 1875 | // Description:
|
---|
| 1876 | // computed the surface sensible and latent heat fluxes [W m-2], this
|
---|
| 1877 | // function also calculated the mass loss/acreation due to
|
---|
| 1878 | // condensation/evaporation [kg]
|
---|
| 1879 |
|
---|
| 1880 | // Reference:
|
---|
| 1881 | // Dingman, 2002.
|
---|
| 1882 |
|
---|
| 1883 | //// INPUTS:
|
---|
| 1884 | // Ta: 2m air temperature [K]
|
---|
| 1885 | // Ts: snow/firn/ice surface temperature [K]
|
---|
| 1886 | // V: wind speed [m s^-^1]
|
---|
| 1887 | // eAir: screen level vapor pressure [Pa]
|
---|
| 1888 | // pAir: surface pressure [Pa]
|
---|
| 1889 | // ds: surface density [kg/m^3]
|
---|
| 1890 | // Ws: surface liquid water content [kg/m^2]
|
---|
| 1891 | // Vz: height above ground at which wind (V) eas sampled [m]
|
---|
| 1892 | // Tz: height above ground at which temperature (T) was sampled [m]
|
---|
| 1893 |
|
---|
| 1894 | //// FUNCTION INITILIZATION
|
---|
| 1895 |
|
---|
| 1896 | // CA = 1005; // heat capacity of air (J kg-1 k-1)
|
---|
| 1897 | // LF = 0.3345E6; // latent heat of fusion(J kg-1)
|
---|
| 1898 | // LV = 2.495E6; // latent heat of vaporization(J kg-1)
|
---|
| 1899 | // dIce = 910; // density of ice [kg m-3]
|
---|
| 1900 |
|
---|
| 1901 | /*intermediary:*/
|
---|
| 1902 | IssmDouble d_air;
|
---|
| 1903 | IssmDouble Ri;
|
---|
| 1904 | IssmDouble z0;
|
---|
| 1905 | IssmDouble coef_M,coef_H;
|
---|
| 1906 | IssmDouble An, C;
|
---|
| 1907 | IssmDouble L, eS;
|
---|
| 1908 |
|
---|
| 1909 | /*output: */
|
---|
| 1910 | IssmDouble shf, lhf, EC;
|
---|
[19566] | 1911 |
|
---|
| 1912 | if(VerboseSmb() && sid==0 && IssmComm::GetRank()==0)_printf0_(" turbulentFlux module\n");
|
---|
[19554] | 1913 |
|
---|
| 1914 | // calculated air density [kg/m3]
|
---|
| 1915 | d_air = 0.029 * pAir /(8.314 * Ta);
|
---|
| 1916 |
|
---|
| 1917 | //// Determine Surface Roughness
|
---|
| 1918 | // Bougamont, 2006
|
---|
| 1919 | // wind/temperature surface roughness height [m]
|
---|
| 1920 | if (ds < 910 && Ws == 0) z0 = 0.00012; // 0.12 mm for dry snow
|
---|
| 1921 | else if (ds >= 910) z0 = 0.0032; // 3.2 mm for ice
|
---|
| 1922 | else z0 = 0.0013; // 1.3 mm for wet snow
|
---|
| 1923 |
|
---|
| 1924 | //// MoninObukhov Stability Correction
|
---|
| 1925 | // Reference:
|
---|
| 1926 | // Ohmura, A., 1982: Climate and Energy-Balance on the Arctic Tundra.
|
---|
| 1927 | // Journal of Climatology, 2, 65-84.
|
---|
| 1928 |
|
---|
| 1929 | // if V = 0 goes to infinity therfore if V = 0 change
|
---|
| 1930 | if(V< .01) V=.01;
|
---|
| 1931 |
|
---|
| 1932 | // calculate the Bulk Richardson Number (Ri)
|
---|
| 1933 | Ri = (2*9.81* (Vz - z0) * (Ta - Ts)) / ((Ta + Ts)* pow(V,2));
|
---|
| 1934 |
|
---|
| 1935 | // calculate MoninObukhov stability factors 'coef_M' and 'coef_H'
|
---|
| 1936 |
|
---|
| 1937 | // do not allow Ri to exceed 0.19
|
---|
| 1938 | if(Ri>.19)Ri= 0.19;
|
---|
| 1939 |
|
---|
| 1940 | // calculate momentum 'coef_M' stability factor
|
---|
| 1941 | if (Ri > 0) coef_M = pow(1-5.2*Ri,-1); // if stable
|
---|
| 1942 | else coef_M = pow(1-18*Ri,-0.25);
|
---|
| 1943 |
|
---|
| 1944 | // calculate heat/wind 'coef_H' stability factor
|
---|
| 1945 | if (Ri < -0.03) coef_H = 1.3 * coef_M;
|
---|
| 1946 | else coef_H = coef_M;
|
---|
| 1947 |
|
---|
| 1948 | //// Bulk-transfer coefficient
|
---|
| 1949 | An = pow(0.4,2) / pow(log(Tz/z0),2); // Bulk-transfer coefficient
|
---|
| 1950 | C = An * d_air * V; // shf & lhf common coefficient
|
---|
| 1951 |
|
---|
| 1952 | //// Sensible Heat
|
---|
| 1953 | // calculate the sensible heat flux [W m-2](Patterson, 1998)
|
---|
| 1954 | shf = C * 1005 * (Ta - Ts);
|
---|
| 1955 |
|
---|
| 1956 | // adjust using MoninObukhov stability theory
|
---|
| 1957 | shf = shf / (coef_M * coef_H);
|
---|
| 1958 |
|
---|
| 1959 | //// Latent Heat
|
---|
| 1960 | // determine if snow pack is melting & calcualte surface vapour pressure
|
---|
| 1961 | // over ice or liquid water
|
---|
| 1962 | if (Ts >= 273.15){
|
---|
| 1963 | L = 2.495E6;
|
---|
| 1964 |
|
---|
| 1965 | // for an ice surface Murphy and Koop, 2005 [Equation 7]
|
---|
| 1966 | eS = exp(9.550426 - 5723.265/Ts + 3.53068 * log(Ts)- 0.00728332 * Ts);
|
---|
| 1967 | }
|
---|
| 1968 | else{
|
---|
| 1969 | L = 2.8295E6; // latent heat of sublimation
|
---|
| 1970 | // for liquid surface (assume liquid on surface when Ts == 0 deg C)
|
---|
| 1971 | // Wright (1997), US Meteorological Handbook from Murphy and Koop,
|
---|
| 1972 | // 2005 Apendix A
|
---|
| 1973 | eS = 611.21 * exp(17.502 * (Ts - 273.15) / (240.97 + Ts - 273.15));
|
---|
| 1974 | }
|
---|
| 1975 |
|
---|
| 1976 | // Latent heat flux [W m-2]
|
---|
| 1977 | lhf = C * L * (eAir - eS) * 0.622 / pAir;
|
---|
| 1978 |
|
---|
| 1979 | // adjust using MoninObukhov stability theory (if lhf '+' then there is
|
---|
| 1980 | // energy and mass gained at the surface, if '-' then there is mass and
|
---|
| 1981 | // energy loss at the surface.
|
---|
| 1982 | lhf = lhf / (coef_M * coef_H);
|
---|
| 1983 |
|
---|
| 1984 | // mass loss (-)/acreation(+) due to evaporation/condensation [kg]
|
---|
| 1985 | EC = lhf * 86400 / L;
|
---|
| 1986 |
|
---|
| 1987 | /*assign output poitners: */
|
---|
| 1988 | *pshf=shf;
|
---|
| 1989 | *plhf=lhf;
|
---|
| 1990 | *pEC=EC;
|
---|
| 1991 |
|
---|
| 1992 | } /*}}}*/
|
---|