| 1 | #include "./EnthalpyAnalysis.h"
|
|---|
| 2 | #include "../toolkits/toolkits.h"
|
|---|
| 3 | #include "../classes/classes.h"
|
|---|
| 4 | #include "../shared/shared.h"
|
|---|
| 5 | #include "../modules/modules.h"
|
|---|
| 6 | #include "../solutionsequences/solutionsequences.h"
|
|---|
| 7 | #include "../cores/cores.h"
|
|---|
| 8 |
|
|---|
| 9 | /*Model processing*/
|
|---|
| 10 | void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
|
|---|
| 11 |
|
|---|
| 12 | /*Intermediary*/
|
|---|
| 13 | int count;
|
|---|
| 14 | int M,N;
|
|---|
| 15 | bool spcpresent = false;
|
|---|
| 16 | int finiteelement;
|
|---|
| 17 | IssmDouble heatcapacity;
|
|---|
| 18 | IssmDouble referencetemperature;
|
|---|
| 19 |
|
|---|
| 20 | /*Output*/
|
|---|
| 21 | IssmDouble *spcvector = NULL;
|
|---|
| 22 | IssmDouble *spcvectorstatic = NULL;
|
|---|
| 23 | IssmDouble* times=NULL;
|
|---|
| 24 | IssmDouble* values=NULL;
|
|---|
| 25 | IssmDouble* issurface = NULL;
|
|---|
| 26 |
|
|---|
| 27 | /*Fetch parameters: */
|
|---|
| 28 | iomodel->FindConstant(&heatcapacity,"md.materials.heatcapacity");
|
|---|
| 29 | iomodel->FindConstant(&referencetemperature,"md.constants.referencetemperature");
|
|---|
| 30 | iomodel->FindConstant(&finiteelement,"md.thermal.fe");
|
|---|
| 31 |
|
|---|
| 32 | /*return if 2d mesh*/
|
|---|
| 33 | if(iomodel->domaintype==Domain2DhorizontalEnum) return;
|
|---|
| 34 |
|
|---|
| 35 | /*Fetch data: */
|
|---|
| 36 | iomodel->FetchData(&issurface,&M,&N,"md.mesh.vertexonsurface"); _assert_(N>0); _assert_(M==iomodel->numberofvertices);
|
|---|
| 37 | iomodel->FetchData(&spcvector,&M,&N,"md.thermal.spctemperature");
|
|---|
| 38 | iomodel->FetchData(&spcvectorstatic,&M,&N,"md.thermal.spctemperature");
|
|---|
| 39 |
|
|---|
| 40 | /*Specific case for PDD, we want the constaints to be updated by the PDD scheme itself*/
|
|---|
| 41 | bool isdynamic = false;
|
|---|
| 42 | if (iomodel->solution_enum==TransientSolutionEnum){
|
|---|
| 43 | int smb_model;
|
|---|
| 44 | iomodel->FindConstant(&smb_model,"md.smb.model");
|
|---|
| 45 | if(smb_model==SMBpddEnum) isdynamic=true;
|
|---|
| 46 | if(smb_model==SMBd18opddEnum) isdynamic=true;
|
|---|
| 47 | if(smb_model==SMBpddSicopolisEnum) isdynamic=true;
|
|---|
| 48 | }
|
|---|
| 49 |
|
|---|
| 50 | /*Convert spcs from temperatures to enthalpy*/
|
|---|
| 51 | _assert_(N>0); _assert_(M>=iomodel->numberofvertices);
|
|---|
| 52 | for(int i=0;i<iomodel->numberofvertices;i++){
|
|---|
| 53 | for(int j=0;j<N;j++){
|
|---|
| 54 | if (isdynamic){
|
|---|
| 55 | if (issurface[i]==1){
|
|---|
| 56 | spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
|
|---|
| 57 | spcvectorstatic[i*N+j] = NAN;
|
|---|
| 58 | }
|
|---|
| 59 | else{
|
|---|
| 60 | spcvector[i*N+j] = NAN;
|
|---|
| 61 | spcvectorstatic[i*N+j] = heatcapacity*(spcvectorstatic[i*N+j]-referencetemperature);
|
|---|
| 62 | }
|
|---|
| 63 | }
|
|---|
| 64 | else{
|
|---|
| 65 | spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
|
|---|
| 66 | }
|
|---|
| 67 | }
|
|---|
| 68 | }
|
|---|
| 69 |
|
|---|
| 70 | if(isdynamic){
|
|---|
| 71 | IoModelToDynamicConstraintsx(constraints,iomodel,spcvector,iomodel->numberofvertices,1,EnthalpyAnalysisEnum,finiteelement);
|
|---|
| 72 | IoModelToConstraintsx(constraints,iomodel,spcvectorstatic,M,N,EnthalpyAnalysisEnum,finiteelement);
|
|---|
| 73 | }
|
|---|
| 74 | else{
|
|---|
| 75 | IoModelToConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
|
|---|
| 76 | }
|
|---|
| 77 |
|
|---|
| 78 | /*Free resources:*/
|
|---|
| 79 | iomodel->DeleteData(spcvector,"md.thermal.spctemperature");
|
|---|
| 80 | iomodel->DeleteData(spcvectorstatic,"md.thermal.spctemperature");
|
|---|
| 81 | iomodel->DeleteData(issurface,"md.mesh.vertexonsurface");
|
|---|
| 82 | xDelete<IssmDouble>(times);
|
|---|
| 83 | xDelete<IssmDouble>(values);
|
|---|
| 84 | }/*}}}*/
|
|---|
| 85 | void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
|
|---|
| 86 |
|
|---|
| 87 | /*No loads */
|
|---|
| 88 | }/*}}}*/
|
|---|
| 89 | void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel,bool isamr){/*{{{*/
|
|---|
| 90 |
|
|---|
| 91 | int finiteelement;
|
|---|
| 92 | iomodel->FindConstant(&finiteelement,"md.thermal.fe");
|
|---|
| 93 |
|
|---|
| 94 | if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
|
|---|
| 95 | ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,finiteelement);
|
|---|
| 96 | iomodel->DeleteData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
|
|---|
| 97 | }/*}}}*/
|
|---|
| 98 | int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
|
|---|
| 99 | return 1;
|
|---|
| 100 | }/*}}}*/
|
|---|
| 101 | void EnthalpyAnalysis::UpdateElements(Elements* elements,Inputs* inputs,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
|
|---|
| 102 |
|
|---|
| 103 | bool dakota_analysis,ismovingfront,isenthalpy;
|
|---|
| 104 | int basalforcing_model,materialstype;
|
|---|
| 105 |
|
|---|
| 106 | /*Now, is the model 3d? otherwise, do nothing: */
|
|---|
| 107 | if(iomodel->domaintype==Domain2DhorizontalEnum)return;
|
|---|
| 108 |
|
|---|
| 109 | /*Is enthalpy requested?*/
|
|---|
| 110 | iomodel->FindConstant(&isenthalpy,"md.thermal.isenthalpy");
|
|---|
| 111 | if(!isenthalpy) return;
|
|---|
| 112 |
|
|---|
| 113 | /*Fetch data needed: */
|
|---|
| 114 | iomodel->FetchData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
|
|---|
| 115 |
|
|---|
| 116 | /*Finite element type*/
|
|---|
| 117 | int finiteelement;
|
|---|
| 118 | iomodel->FindConstant(&finiteelement,"md.thermal.fe");
|
|---|
| 119 |
|
|---|
| 120 | /*Update elements: */
|
|---|
| 121 | int counter=0;
|
|---|
| 122 | for(int i=0;i<iomodel->numberofelements;i++){
|
|---|
| 123 | if(iomodel->my_elements[i]){
|
|---|
| 124 | Element* element=(Element*)elements->GetObjectByOffset(counter);
|
|---|
| 125 | element->Update(inputs,i,iomodel,analysis_counter,analysis_type,finiteelement);
|
|---|
| 126 | counter++;
|
|---|
| 127 | }
|
|---|
| 128 | }
|
|---|
| 129 |
|
|---|
| 130 | iomodel->FindConstant(&dakota_analysis,"md.qmu.isdakota");
|
|---|
| 131 | iomodel->FindConstant(&ismovingfront,"md.transient.ismovingfront");
|
|---|
| 132 | iomodel->FindConstant(&materialstype,"md.materials.type");
|
|---|
| 133 |
|
|---|
| 134 | iomodel->FetchDataToInput(inputs,elements,"md.geometry.thickness",ThicknessEnum);
|
|---|
| 135 | iomodel->FetchDataToInput(inputs,elements,"md.geometry.surface",SurfaceEnum);
|
|---|
| 136 | iomodel->FetchDataToInput(inputs,elements,"md.initialization.sealevel",SealevelEnum,0);
|
|---|
| 137 | iomodel->FetchDataToInput(inputs,elements,"md.geometry.base",BaseEnum);
|
|---|
| 138 | iomodel->FetchDataToInput(inputs,elements,"md.mask.ice_levelset",MaskIceLevelsetEnum);
|
|---|
| 139 | iomodel->FetchDataToInput(inputs,elements,"md.mask.ocean_levelset",MaskOceanLevelsetEnum);
|
|---|
| 140 | if(iomodel->domaintype!=Domain2DhorizontalEnum){
|
|---|
| 141 | iomodel->FetchDataToInput(inputs,elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum);
|
|---|
| 142 | iomodel->FetchDataToInput(inputs,elements,"md.mesh.vertexonsurface",MeshVertexonsurfaceEnum);
|
|---|
| 143 | }
|
|---|
| 144 | iomodel->FetchDataToInput(inputs,elements,"md.initialization.pressure",PressureEnum);
|
|---|
| 145 | iomodel->FetchDataToInput(inputs,elements,"md.initialization.temperature",TemperatureEnum);
|
|---|
| 146 | iomodel->FetchDataToInput(inputs,elements,"md.initialization.waterfraction",WaterfractionEnum);
|
|---|
| 147 | iomodel->FetchDataToInput(inputs,elements,"md.initialization.enthalpy",EnthalpyEnum);
|
|---|
| 148 | iomodel->FetchDataToInput(inputs,elements,"md.initialization.watercolumn",WatercolumnEnum);
|
|---|
| 149 | iomodel->FetchDataToInput(inputs,elements,"md.basalforcings.groundedice_melting_rate",BasalforcingsGroundediceMeltingRateEnum);
|
|---|
| 150 | iomodel->FetchDataToInput(inputs,elements,"md.initialization.vx",VxEnum);
|
|---|
| 151 | iomodel->FetchDataToInput(inputs,elements,"md.initialization.vy",VyEnum);
|
|---|
| 152 | iomodel->FetchDataToInput(inputs,elements,"md.initialization.vz",VzEnum);
|
|---|
| 153 | InputUpdateFromConstantx(inputs,elements,0.,VxMeshEnum);
|
|---|
| 154 | InputUpdateFromConstantx(inputs,elements,0.,VyMeshEnum);
|
|---|
| 155 | InputUpdateFromConstantx(inputs,elements,0.,VzMeshEnum);
|
|---|
| 156 | if(ismovingfront){
|
|---|
| 157 | iomodel->FetchDataToInput(inputs,elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum); // required for updating active nodes
|
|---|
| 158 | }
|
|---|
| 159 |
|
|---|
| 160 | /*Basal forcings variables*/
|
|---|
| 161 | iomodel->FindConstant(&basalforcing_model,"md.basalforcings.model");
|
|---|
| 162 | switch(basalforcing_model){
|
|---|
| 163 | case MantlePlumeGeothermalFluxEnum:
|
|---|
| 164 | break;
|
|---|
| 165 | default:
|
|---|
| 166 | iomodel->FetchDataToInput(inputs,elements,"md.basalforcings.geothermalflux",BasalforcingsGeothermalfluxEnum);
|
|---|
| 167 | break;
|
|---|
| 168 | }
|
|---|
| 169 |
|
|---|
| 170 | /*Rheology type*/
|
|---|
| 171 | iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_B",MaterialsRheologyBEnum);
|
|---|
| 172 | switch(materialstype){
|
|---|
| 173 | case MatenhancediceEnum:
|
|---|
| 174 | iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
|
|---|
| 175 | iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_E",MaterialsRheologyEEnum);
|
|---|
| 176 | break;
|
|---|
| 177 | case MatdamageiceEnum:
|
|---|
| 178 | iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
|
|---|
| 179 | break;
|
|---|
| 180 | case MatestarEnum:
|
|---|
| 181 | iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_Ec",MaterialsRheologyEcEnum);
|
|---|
| 182 | iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_Es",MaterialsRheologyEsEnum);
|
|---|
| 183 | break;
|
|---|
| 184 | case MaticeEnum:
|
|---|
| 185 | iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
|
|---|
| 186 | break;
|
|---|
| 187 | default:
|
|---|
| 188 | _error_("not supported");
|
|---|
| 189 | }
|
|---|
| 190 |
|
|---|
| 191 | /*Friction*/
|
|---|
| 192 | FrictionUpdateInputs(elements, inputs, iomodel);
|
|---|
| 193 |
|
|---|
| 194 | /*Free data: */
|
|---|
| 195 | iomodel->DeleteData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
|
|---|
| 196 |
|
|---|
| 197 | }/*}}}*/
|
|---|
| 198 | void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
|
|---|
| 199 |
|
|---|
| 200 | int numoutputs;
|
|---|
| 201 | char** requestedoutputs = NULL;
|
|---|
| 202 |
|
|---|
| 203 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.stabilization",ThermalStabilizationEnum));
|
|---|
| 204 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.maxiter",ThermalMaxiterEnum));
|
|---|
| 205 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.reltol",ThermalReltolEnum));
|
|---|
| 206 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isenthalpy",ThermalIsenthalpyEnum));
|
|---|
| 207 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdynamicbasalspc",ThermalIsdynamicbasalspcEnum));
|
|---|
| 208 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdrainicecolumn",ThermalIsdrainicecolumnEnum));
|
|---|
| 209 | parameters->AddObject(iomodel->CopyConstantObject("md.thermal.watercolumn_upperlimit",ThermalWatercolumnUpperlimitEnum));
|
|---|
| 210 |
|
|---|
| 211 | iomodel->FindConstant(&requestedoutputs,&numoutputs,"md.thermal.requested_outputs");
|
|---|
| 212 | parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
|
|---|
| 213 | if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
|
|---|
| 214 | iomodel->DeleteData(&requestedoutputs,numoutputs,"md.thermal.requested_outputs");
|
|---|
| 215 |
|
|---|
| 216 | /*Friction*/
|
|---|
| 217 | FrictionUpdateParameters(parameters, iomodel);
|
|---|
| 218 | }/*}}}*/
|
|---|
| 219 |
|
|---|
| 220 | /*Finite Element Analysis*/
|
|---|
| 221 | void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* local_spc,Element* element){/*{{{*/
|
|---|
| 222 |
|
|---|
| 223 | /* Do not check if ice in element, this may lead to inconsistencies between cpu partitions */
|
|---|
| 224 | /* Only update constraints at the base. */
|
|---|
| 225 | if(!(element->IsOnBase())) return;
|
|---|
| 226 |
|
|---|
| 227 | /*Intermediary*/
|
|---|
| 228 | bool isdynamicbasalspc;
|
|---|
| 229 | int numindices;
|
|---|
| 230 | int *indices = NULL;
|
|---|
| 231 | IssmDouble pressure;
|
|---|
| 232 |
|
|---|
| 233 | /*Check wether dynamic basal boundary conditions are activated */
|
|---|
| 234 | element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
|
|---|
| 235 | if(!isdynamicbasalspc) return;
|
|---|
| 236 |
|
|---|
| 237 | /*Get parameters and inputs: */
|
|---|
| 238 | Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
|
|---|
| 239 |
|
|---|
| 240 | /*Fetch indices of basal & surface nodes for this finite element*/
|
|---|
| 241 | Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
|
|---|
| 242 | penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
|
|---|
| 243 |
|
|---|
| 244 | GaussPenta* gauss=new GaussPenta();
|
|---|
| 245 | for(int i=0;i<numindices;i++){
|
|---|
| 246 | gauss->GaussNode(element->GetElementType(),indices[i]);
|
|---|
| 247 |
|
|---|
| 248 | pressure_input->GetInputValue(&pressure,gauss);
|
|---|
| 249 |
|
|---|
| 250 | /*apply or release spc*/
|
|---|
| 251 | Node* node=element->GetNode(indices[i]);
|
|---|
| 252 | if(!node->IsActive()) continue;
|
|---|
| 253 | if(local_spc[node->Lid()]==1.){
|
|---|
| 254 | pressure_input->GetInputValue(&pressure, gauss);
|
|---|
| 255 | node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
|
|---|
| 256 | }
|
|---|
| 257 | else {
|
|---|
| 258 | node->DofInFSet(0);
|
|---|
| 259 | }
|
|---|
| 260 | }
|
|---|
| 261 |
|
|---|
| 262 | /*Free resources:*/
|
|---|
| 263 | xDelete<int>(indices);
|
|---|
| 264 | delete gauss;
|
|---|
| 265 | }/*}}}*/
|
|---|
| 266 | void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
|
|---|
| 267 | /*Compute basal melting rates: */
|
|---|
| 268 | for(Object* & object : femmodel->elements->objects){
|
|---|
| 269 | Element* element=xDynamicCast<Element*>(object);
|
|---|
| 270 | ComputeBasalMeltingrate(element);
|
|---|
| 271 | }
|
|---|
| 272 |
|
|---|
| 273 | /*extrude inputs*/
|
|---|
| 274 | femmodel->parameters->SetParam(BasalforcingsGroundediceMeltingRateEnum,InputToExtrudeEnum);
|
|---|
| 275 | extrudefrombase_core(femmodel);
|
|---|
| 276 | }/*}}}*/
|
|---|
| 277 | void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
|
|---|
| 278 | /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
|
|---|
| 279 | /* melting rate is positive when melting, negative when refreezing*/
|
|---|
| 280 |
|
|---|
| 281 | /* Check if ice in element */
|
|---|
| 282 | if(!element->IsIceInElement()) return;
|
|---|
| 283 |
|
|---|
| 284 | /* Only compute melt rates at the base of grounded ice*/
|
|---|
| 285 | if(!element->IsOnBase() || element->IsAllFloating()) return;
|
|---|
| 286 |
|
|---|
| 287 | /* Intermediaries */
|
|---|
| 288 | bool converged;
|
|---|
| 289 | const int dim=3;
|
|---|
| 290 | int i,is,state;
|
|---|
| 291 | int nodedown,nodeup,numnodes,numsegments;
|
|---|
| 292 | int enthalpy_enum;
|
|---|
| 293 | IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
|
|---|
| 294 | IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
|
|---|
| 295 | IssmDouble dt,yts;
|
|---|
| 296 | IssmDouble melting_overshoot,lambda;
|
|---|
| 297 | IssmDouble vx,vy,vz;
|
|---|
| 298 | IssmDouble *xyz_list = NULL;
|
|---|
| 299 | IssmDouble *xyz_list_base = NULL;
|
|---|
| 300 | int *pairindices = NULL;
|
|---|
| 301 |
|
|---|
| 302 | /*Fetch parameters*/
|
|---|
| 303 | element->GetVerticesCoordinates(&xyz_list);
|
|---|
| 304 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
|---|
| 305 | element->GetInputValue(&converged,ConvergedEnum);
|
|---|
| 306 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 307 | element->FindParam(&yts, ConstantsYtsEnum);
|
|---|
| 308 |
|
|---|
| 309 | if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
|
|---|
| 310 | else enthalpy_enum=EnthalpyEnum;
|
|---|
| 311 |
|
|---|
| 312 | IssmDouble latentheat = element->FindParam(MaterialsLatentheatEnum);
|
|---|
| 313 | IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
|
|---|
| 314 | IssmDouble rho_water = element->FindParam(MaterialsRhoFreshwaterEnum);
|
|---|
| 315 | IssmDouble beta = element->FindParam(MaterialsBetaEnum);
|
|---|
| 316 | IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
|
|---|
| 317 | IssmDouble kappa_mix;
|
|---|
| 318 |
|
|---|
| 319 | /*retrieve inputs*/
|
|---|
| 320 | Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
|
|---|
| 321 | Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
|
|---|
| 322 | Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
|
|---|
| 323 |
|
|---|
| 324 | /*Build friction element, needed later: */
|
|---|
| 325 | Friction* friction=new Friction(element,3);
|
|---|
| 326 |
|
|---|
| 327 | /******** MELTING RATES ************************************//*{{{*/
|
|---|
| 328 | element->NormalBase(&normal_base[0],xyz_list_base);
|
|---|
| 329 | element->VerticalSegmentIndicesBase(&pairindices,&numsegments);
|
|---|
| 330 | IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
|
|---|
| 331 | IssmDouble* heating = xNew<IssmDouble>(numsegments);
|
|---|
| 332 |
|
|---|
| 333 | numnodes=element->GetNumberOfNodes();
|
|---|
| 334 | IssmDouble* enthalpies = xNew<IssmDouble>(numnodes);
|
|---|
| 335 | IssmDouble* pressures = xNew<IssmDouble>(numnodes);
|
|---|
| 336 | IssmDouble* watercolumns = xNew<IssmDouble>(numnodes);
|
|---|
| 337 | IssmDouble* basalmeltingrates = xNew<IssmDouble>(numnodes);
|
|---|
| 338 | element->GetInputListOnNodes(enthalpies,enthalpy_enum);
|
|---|
| 339 | element->GetInputListOnNodes(pressures,PressureEnum);
|
|---|
| 340 | element->GetInputListOnNodes(watercolumns,WatercolumnEnum);
|
|---|
| 341 | element->GetInputListOnNodes(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
|
|---|
| 342 |
|
|---|
| 343 | IssmDouble watercolumnupperlimit = element->FindParam(ThermalWatercolumnUpperlimitEnum);
|
|---|
| 344 |
|
|---|
| 345 | Gauss* gauss=element->NewGauss();
|
|---|
| 346 | for(is=0;is<numsegments;is++){
|
|---|
| 347 | nodedown = pairindices[is*2+0];
|
|---|
| 348 | nodeup = pairindices[is*2+1];
|
|---|
| 349 | gauss->GaussNode(element->GetElementType(),nodedown);
|
|---|
| 350 |
|
|---|
| 351 | state=GetThermalBasalCondition(element, enthalpies[nodedown], enthalpies[nodeup], pressures[nodedown], pressures[nodeup], watercolumns[nodedown], basalmeltingrates[nodedown]);
|
|---|
| 352 | switch (state) {
|
|---|
| 353 | case 0:
|
|---|
| 354 | // cold, dry base: apply basal surface forcing
|
|---|
| 355 | for(i=0;i<3;i++) vec_heatflux[i]=0.;
|
|---|
| 356 | break;
|
|---|
| 357 | case 1: case 2: case 3:
|
|---|
| 358 | // case 1 : cold, wet base: keep at pressure melting point
|
|---|
| 359 | // case 2: temperate, thin refreezing base: release spc
|
|---|
| 360 | // case 3: temperate, thin melting base: set spc
|
|---|
| 361 | enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
|
|---|
| 362 | for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
|
|---|
| 363 | break;
|
|---|
| 364 | case 4:
|
|---|
| 365 | // temperate, thick melting base: set grad H*n=0
|
|---|
| 366 | kappa_mix=GetWetIceConductivity(element, enthalpies[nodedown], pressures[nodedown]);
|
|---|
| 367 | pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
|
|---|
| 368 | for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
|
|---|
| 369 | break;
|
|---|
| 370 | default:
|
|---|
| 371 | _printf0_(" unknown thermal basal state found!");
|
|---|
| 372 | }
|
|---|
| 373 | if(state==0) meltingrate_enthalpy[is]=0.;
|
|---|
| 374 | else{
|
|---|
| 375 | /*heat flux along normal*/
|
|---|
| 376 | heatflux=0.;
|
|---|
| 377 | for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
|
|---|
| 378 |
|
|---|
| 379 | /*basal friction*/
|
|---|
| 380 | friction->GetAlpha2(&alpha2,gauss);
|
|---|
| 381 | friction->GetBasalSlidingSpeeds(&vx, &vy, &vz, gauss);
|
|---|
| 382 | basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
|
|---|
| 383 | geothermalflux_input->GetInputValue(&geothermalflux,gauss);
|
|---|
| 384 | /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
|
|---|
| 385 | heating[is]=(heatflux+basalfriction+geothermalflux);
|
|---|
| 386 | meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
|
|---|
| 387 | }
|
|---|
| 388 | }/*}}}*/
|
|---|
| 389 |
|
|---|
| 390 | /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
|
|---|
| 391 | for(is=0;is<numsegments;is++){
|
|---|
| 392 | nodedown = pairindices[is*2+0];
|
|---|
| 393 | nodeup = pairindices[is*2+1];
|
|---|
| 394 | if(dt!=0.){
|
|---|
| 395 | if(watercolumns[nodedown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
|
|---|
| 396 | lambda = -watercolumns[nodedown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
|
|---|
| 397 | watercolumns[nodedown]=0.;
|
|---|
| 398 | basalmeltingrates[nodedown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
|
|---|
| 399 | enthalpies[nodedown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
|
|---|
| 400 | }
|
|---|
| 401 | else{
|
|---|
| 402 | basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
|
|---|
| 403 | watercolumns[nodedown]+=dt*meltingrate_enthalpy[is];
|
|---|
| 404 | }
|
|---|
| 405 | if(watercolumns[nodedown]>watercolumnupperlimit) watercolumns[nodedown]=watercolumnupperlimit;
|
|---|
| 406 | }
|
|---|
| 407 | else{
|
|---|
| 408 | basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
|
|---|
| 409 | if(watercolumns[nodedown]+meltingrate_enthalpy[is]<0.)
|
|---|
| 410 | watercolumns[nodedown]=0.;
|
|---|
| 411 | else
|
|---|
| 412 | watercolumns[nodedown]+=meltingrate_enthalpy[is];
|
|---|
| 413 | }
|
|---|
| 414 | basalmeltingrates[nodedown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
|
|---|
| 415 | _assert_(watercolumns[nodedown]>=0.);
|
|---|
| 416 | }/*}}}*/
|
|---|
| 417 |
|
|---|
| 418 | /*feed updated variables back into model*/
|
|---|
| 419 | int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
|
|---|
| 420 | if(dt!=0.){
|
|---|
| 421 | element->AddInput(enthalpy_enum,enthalpies,finite_element);
|
|---|
| 422 | element->AddInput(WatercolumnEnum,watercolumns,finite_element);
|
|---|
| 423 | }
|
|---|
| 424 | element->AddInput(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,P1DGEnum);
|
|---|
| 425 |
|
|---|
| 426 | /*Clean up and return*/
|
|---|
| 427 | delete gauss;
|
|---|
| 428 | delete friction;
|
|---|
| 429 | xDelete<int>(pairindices);
|
|---|
| 430 | xDelete<IssmDouble>(enthalpies);
|
|---|
| 431 | xDelete<IssmDouble>(pressures);
|
|---|
| 432 | xDelete<IssmDouble>(watercolumns);
|
|---|
| 433 | xDelete<IssmDouble>(basalmeltingrates);
|
|---|
| 434 | xDelete<IssmDouble>(meltingrate_enthalpy);
|
|---|
| 435 | xDelete<IssmDouble>(heating);
|
|---|
| 436 | xDelete<IssmDouble>(xyz_list);
|
|---|
| 437 | xDelete<IssmDouble>(xyz_list_base);
|
|---|
| 438 | }/*}}}*/
|
|---|
| 439 | void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
|
|---|
| 440 |
|
|---|
| 441 | IssmDouble dt;
|
|---|
| 442 | bool isdynamicbasalspc;
|
|---|
| 443 |
|
|---|
| 444 | femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 445 | femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
|
|---|
| 446 |
|
|---|
| 447 | if(VerboseSolution()) _printf0_(" computing enthalpy\n");
|
|---|
| 448 | femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
|
|---|
| 449 | if((dt>0.) && isdynamicbasalspc) UpdateBasalConstraints(femmodel);
|
|---|
| 450 | solutionsequence_thermal_nonlinear(femmodel);
|
|---|
| 451 |
|
|---|
| 452 | /*transfer enthalpy to enthalpy picard for the next step: */
|
|---|
| 453 | InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
|
|---|
| 454 |
|
|---|
| 455 | PostProcessing(femmodel);
|
|---|
| 456 |
|
|---|
| 457 | }/*}}}*/
|
|---|
| 458 | void EnthalpyAnalysis::PreCore(FemModel* femmodel){/*{{{*/
|
|---|
| 459 | _error_("not implemented");
|
|---|
| 460 | }/*}}}*/
|
|---|
| 461 | ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
|
|---|
| 462 | /*Default, return NULL*/
|
|---|
| 463 | return NULL;
|
|---|
| 464 | }/*}}}*/
|
|---|
| 465 | ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
|
|---|
| 466 | _error_("Not implemented");
|
|---|
| 467 | }/*}}}*/
|
|---|
| 468 | ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
|
|---|
| 469 |
|
|---|
| 470 | /* Check if ice in element */
|
|---|
| 471 | if(!element->IsIceInElement()) return NULL;
|
|---|
| 472 |
|
|---|
| 473 | /*compute all stiffness matrices for this element*/
|
|---|
| 474 | ElementMatrix* Ke1=CreateKMatrixVolume(element);
|
|---|
| 475 | ElementMatrix* Ke2=CreateKMatrixShelf(element);
|
|---|
| 476 | ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
|
|---|
| 477 |
|
|---|
| 478 | /*clean-up and return*/
|
|---|
| 479 | delete Ke1;
|
|---|
| 480 | delete Ke2;
|
|---|
| 481 | return Ke;
|
|---|
| 482 | }/*}}}*/
|
|---|
| 483 | ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
|
|---|
| 484 |
|
|---|
| 485 | /* Check if ice in element */
|
|---|
| 486 | if(!element->IsIceInElement()) return NULL;
|
|---|
| 487 |
|
|---|
| 488 | /*Intermediaries */
|
|---|
| 489 | int stabilization;
|
|---|
| 490 | IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
|
|---|
| 491 | IssmDouble h,hx,hy,hz,vx,vy,vz;
|
|---|
| 492 | IssmDouble tau_parameter,diameter;
|
|---|
| 493 | IssmDouble tau_parameter_anisotropic[2],tau_parameter_hor,tau_parameter_ver;
|
|---|
| 494 | IssmDouble D_scalar;
|
|---|
| 495 | IssmDouble* xyz_list = NULL;
|
|---|
| 496 |
|
|---|
| 497 | /*Fetch number of nodes and dof for this finite element*/
|
|---|
| 498 | int numnodes = element->GetNumberOfNodes();
|
|---|
| 499 |
|
|---|
| 500 | /*Initialize Element vector and other vectors*/
|
|---|
| 501 | ElementMatrix* Ke = element->NewElementMatrix();
|
|---|
| 502 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
|---|
| 503 | IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
|
|---|
| 504 | IssmDouble K[3][3];
|
|---|
| 505 |
|
|---|
| 506 | /*Retrieve all inputs and parameters*/
|
|---|
| 507 | element->GetVerticesCoordinates(&xyz_list);
|
|---|
| 508 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 509 | element->FindParam(&stabilization,ThermalStabilizationEnum);
|
|---|
| 510 | IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
|
|---|
| 511 | IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
|
|---|
| 512 | IssmDouble gravity = element->FindParam(ConstantsGEnum);
|
|---|
| 513 | IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
|
|---|
| 514 | IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
|
|---|
| 515 | Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
|
|---|
| 516 | Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
|
|---|
| 517 | Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
|
|---|
| 518 | Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
|
|---|
| 519 | Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
|
|---|
| 520 | Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
|
|---|
| 521 |
|
|---|
| 522 | /*Enthalpy diffusion parameter*/
|
|---|
| 523 | IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
|
|---|
| 524 |
|
|---|
| 525 | /* Start looping on the number of gaussian points: */
|
|---|
| 526 | Gauss* gauss=element->NewGauss(4);
|
|---|
| 527 | while(gauss->next()){
|
|---|
| 528 |
|
|---|
| 529 | element->JacobianDeterminant(&Jdet,xyz_list,gauss);
|
|---|
| 530 | element->NodalFunctions(basis,gauss);
|
|---|
| 531 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
|---|
| 532 |
|
|---|
| 533 | D_scalar=gauss->weight*Jdet;
|
|---|
| 534 | if(dt!=0.) D_scalar=D_scalar*dt;
|
|---|
| 535 |
|
|---|
| 536 | /*Conduction: */
|
|---|
| 537 | for(int i=0;i<numnodes;i++){
|
|---|
| 538 | for(int j=0;j<numnodes;j++){
|
|---|
| 539 | Ke->values[i*numnodes+j] += D_scalar*kappa/rho_ice*(
|
|---|
| 540 | dbasis[0*numnodes+j]*dbasis[0*numnodes+i] + dbasis[1*numnodes+j]*dbasis[1*numnodes+i] + dbasis[2*numnodes+j]*dbasis[2*numnodes+i]
|
|---|
| 541 | );
|
|---|
| 542 | }
|
|---|
| 543 | }
|
|---|
| 544 |
|
|---|
| 545 | /*Advection: */
|
|---|
| 546 | vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
|
|---|
| 547 | vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
|
|---|
| 548 | vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
|
|---|
| 549 | for(int i=0;i<numnodes;i++){
|
|---|
| 550 | for(int j=0;j<numnodes;j++){
|
|---|
| 551 | Ke->values[i*numnodes+j] += D_scalar*(
|
|---|
| 552 | vx*dbasis[0*numnodes+j]*basis[i] + vy*dbasis[1*numnodes+j]*basis[i] +vz*dbasis[2*numnodes+j]*basis[i]
|
|---|
| 553 | );
|
|---|
| 554 | }
|
|---|
| 555 | }
|
|---|
| 556 |
|
|---|
| 557 | /*Transient: */
|
|---|
| 558 | if(dt!=0.){
|
|---|
| 559 | D_scalar=gauss->weight*Jdet;
|
|---|
| 560 | for(int i=0;i<numnodes;i++){
|
|---|
| 561 | for(int j=0;j<numnodes;j++){
|
|---|
| 562 | Ke->values[i*numnodes+j] += D_scalar*basis[j]*basis[i];
|
|---|
| 563 | }
|
|---|
| 564 | }
|
|---|
| 565 | D_scalar=D_scalar*dt;
|
|---|
| 566 | }
|
|---|
| 567 |
|
|---|
| 568 | /*Artificial diffusivity*/
|
|---|
| 569 | if(stabilization==1){
|
|---|
| 570 | element->ElementSizes(&hx,&hy,&hz);
|
|---|
| 571 | vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
|
|---|
| 572 | h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
|
|---|
| 573 | K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
|
|---|
| 574 | K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
|
|---|
| 575 | K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
|
|---|
| 576 | for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
|
|---|
| 577 |
|
|---|
| 578 | for(int i=0;i<numnodes;i++){
|
|---|
| 579 | for(int j=0;j<numnodes;j++){
|
|---|
| 580 | Ke->values[i*numnodes+j] += (
|
|---|
| 581 | dbasis[0*numnodes+i] *(K[0][0]*dbasis[0*numnodes+j] + K[0][1]*dbasis[1*numnodes+j]+ K[0][2]*dbasis[2*numnodes+j]) +
|
|---|
| 582 | dbasis[1*numnodes+i] *(K[1][0]*dbasis[0*numnodes+j] + K[1][1]*dbasis[1*numnodes+j]+ K[1][2]*dbasis[2*numnodes+j]) +
|
|---|
| 583 | dbasis[2*numnodes+i] *(K[2][0]*dbasis[0*numnodes+j] + K[2][1]*dbasis[1*numnodes+j]+ K[2][2]*dbasis[2*numnodes+j])
|
|---|
| 584 | );
|
|---|
| 585 | }
|
|---|
| 586 | }
|
|---|
| 587 | }
|
|---|
| 588 | /*SUPG*/
|
|---|
| 589 | else if(stabilization==2){
|
|---|
| 590 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
|---|
| 591 | diameter=element->MinEdgeLength(xyz_list);
|
|---|
| 592 | tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
|
|---|
| 593 | for(int i=0;i<numnodes;i++){
|
|---|
| 594 | for(int j=0;j<numnodes;j++){
|
|---|
| 595 | Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
|
|---|
| 596 | ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*
|
|---|
| 597 | ((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
|
|---|
| 598 | }
|
|---|
| 599 | }
|
|---|
| 600 | if(dt!=0.){
|
|---|
| 601 | D_scalar=gauss->weight*Jdet;
|
|---|
| 602 | for(int i=0;i<numnodes;i++){
|
|---|
| 603 | for(int j=0;j<numnodes;j++){
|
|---|
| 604 | Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
|
|---|
| 605 | }
|
|---|
| 606 | }
|
|---|
| 607 | }
|
|---|
| 608 | }
|
|---|
| 609 | /*anisotropic SUPG*/
|
|---|
| 610 | else if(stabilization==3){
|
|---|
| 611 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
|---|
| 612 | element->ElementSizes(&hx,&hy,&hz);
|
|---|
| 613 | element->StabilizationParameterAnisotropic(&tau_parameter_anisotropic[0],u-um,v-vm,w-wm,hx,hy,hz,kappa/rho_ice);
|
|---|
| 614 | tau_parameter_hor=tau_parameter_anisotropic[0];
|
|---|
| 615 | tau_parameter_ver=tau_parameter_anisotropic[1];
|
|---|
| 616 | for(int i=0;i<numnodes;i++){
|
|---|
| 617 | for(int j=0;j<numnodes;j++){
|
|---|
| 618 | Ke->values[i*numnodes+j]+=D_scalar*
|
|---|
| 619 | (sqrt(tau_parameter_hor)*(u-um)*dbasis[0*numnodes+i]+sqrt(tau_parameter_hor)*(v-vm)*dbasis[1*numnodes+i]+sqrt(tau_parameter_ver)*(w-wm)*dbasis[2*numnodes+i])*
|
|---|
| 620 | (sqrt(tau_parameter_hor)*(u-um)*dbasis[0*numnodes+j]+sqrt(tau_parameter_hor)*(v-vm)*dbasis[1*numnodes+j]+sqrt(tau_parameter_ver)*(w-wm)*dbasis[2*numnodes+j]);
|
|---|
| 621 | }
|
|---|
| 622 | }
|
|---|
| 623 | }
|
|---|
| 624 | }
|
|---|
| 625 |
|
|---|
| 626 | /*Clean up and return*/
|
|---|
| 627 | xDelete<IssmDouble>(xyz_list);
|
|---|
| 628 | xDelete<IssmDouble>(basis);
|
|---|
| 629 | xDelete<IssmDouble>(dbasis);
|
|---|
| 630 | delete gauss;
|
|---|
| 631 | return Ke;
|
|---|
| 632 | }/*}}}*/
|
|---|
| 633 | ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
|
|---|
| 634 |
|
|---|
| 635 | /* Check if ice in element */
|
|---|
| 636 | if(!element->IsIceInElement()) return NULL;
|
|---|
| 637 |
|
|---|
| 638 | /*Initialize Element matrix and return if necessary*/
|
|---|
| 639 | if(!element->IsOnBase() || !element->IsAllFloating()) return NULL;
|
|---|
| 640 |
|
|---|
| 641 | /*Intermediaries*/
|
|---|
| 642 | IssmDouble dt,Jdet,D;
|
|---|
| 643 | IssmDouble *xyz_list_base = NULL;
|
|---|
| 644 |
|
|---|
| 645 | /*Fetch number of nodes for this finite element*/
|
|---|
| 646 | int numnodes = element->GetNumberOfNodes();
|
|---|
| 647 |
|
|---|
| 648 | /*Initialize vectors*/
|
|---|
| 649 | ElementMatrix* Ke = element->NewElementMatrix();
|
|---|
| 650 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
|---|
| 651 |
|
|---|
| 652 | /*Retrieve all inputs and parameters*/
|
|---|
| 653 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
|---|
| 654 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 655 | IssmDouble gravity = element->FindParam(ConstantsGEnum);
|
|---|
| 656 | IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
|
|---|
| 657 | IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
|
|---|
| 658 | IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
|
|---|
| 659 | IssmDouble mixed_layer_capacity= element->FindParam(MaterialsMixedLayerCapacityEnum);
|
|---|
| 660 | IssmDouble thermal_exchange_vel= element->FindParam(MaterialsThermalExchangeVelocityEnum);
|
|---|
| 661 |
|
|---|
| 662 | /* Start looping on the number of gaussian points: */
|
|---|
| 663 | Gauss* gauss=element->NewGaussBase(4);
|
|---|
| 664 | while(gauss->next()){
|
|---|
| 665 |
|
|---|
| 666 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
|
|---|
| 667 | element->NodalFunctions(basis,gauss);
|
|---|
| 668 |
|
|---|
| 669 | D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
|
|---|
| 670 | if(reCast<bool,IssmDouble>(dt)) D=dt*D;
|
|---|
| 671 | for(int i=0;i<numnodes;i++) for(int j=0;j<numnodes;j++) Ke->values[i*numnodes+j] += D*basis[i]*basis[j];
|
|---|
| 672 | }
|
|---|
| 673 |
|
|---|
| 674 | /*Clean up and return*/
|
|---|
| 675 | delete gauss;
|
|---|
| 676 | xDelete<IssmDouble>(basis);
|
|---|
| 677 | xDelete<IssmDouble>(xyz_list_base);
|
|---|
| 678 | return Ke;
|
|---|
| 679 | }/*}}}*/
|
|---|
| 680 | ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
|
|---|
| 681 |
|
|---|
| 682 | /* Check if ice in element */
|
|---|
| 683 | if(!element->IsIceInElement()) return NULL;
|
|---|
| 684 |
|
|---|
| 685 | /*compute all load vectors for this element*/
|
|---|
| 686 | ElementVector* pe1=CreatePVectorVolume(element);
|
|---|
| 687 | ElementVector* pe2=CreatePVectorSheet(element);
|
|---|
| 688 | ElementVector* pe3=CreatePVectorShelf(element);
|
|---|
| 689 | ElementVector* pe =new ElementVector(pe1,pe2,pe3);
|
|---|
| 690 |
|
|---|
| 691 | /*clean-up and return*/
|
|---|
| 692 | delete pe1;
|
|---|
| 693 | delete pe2;
|
|---|
| 694 | delete pe3;
|
|---|
| 695 | return pe;
|
|---|
| 696 | }/*}}}*/
|
|---|
| 697 | ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
|
|---|
| 698 |
|
|---|
| 699 | /* Check if ice in element */
|
|---|
| 700 | if(!element->IsIceInElement()) return NULL;
|
|---|
| 701 |
|
|---|
| 702 | /*Intermediaries*/
|
|---|
| 703 | int i, stabilization;
|
|---|
| 704 | IssmDouble Jdet,phi,dt;
|
|---|
| 705 | IssmDouble enthalpy, Hpmp;
|
|---|
| 706 | IssmDouble enthalpypicard, d1enthalpypicard[3];
|
|---|
| 707 | IssmDouble pressure, d1pressure[3], d2pressure;
|
|---|
| 708 | IssmDouble waterfractionpicard;
|
|---|
| 709 | IssmDouble kappa,tau_parameter,diameter,hx,hy,hz,kappa_w;
|
|---|
| 710 | IssmDouble tau_parameter_anisotropic[2],tau_parameter_hor,tau_parameter_ver;
|
|---|
| 711 | IssmDouble u,v,w;
|
|---|
| 712 | IssmDouble scalar_def, scalar_sens ,scalar_transient;
|
|---|
| 713 | IssmDouble* xyz_list = NULL;
|
|---|
| 714 | IssmDouble d1H_d1P, d1P2;
|
|---|
| 715 |
|
|---|
| 716 | /*Fetch number of nodes and dof for this finite element*/
|
|---|
| 717 | int numnodes = element->GetNumberOfNodes();
|
|---|
| 718 | int numvertices = element->GetNumberOfVertices();
|
|---|
| 719 |
|
|---|
| 720 | /*Initialize Element vector*/
|
|---|
| 721 | ElementVector* pe = element->NewElementVector();
|
|---|
| 722 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
|---|
| 723 | IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
|
|---|
| 724 |
|
|---|
| 725 | /*Retrieve all inputs and parameters*/
|
|---|
| 726 | element->GetVerticesCoordinates(&xyz_list);
|
|---|
| 727 | IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
|
|---|
| 728 | IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
|
|---|
| 729 | IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
|
|---|
| 730 | IssmDouble temperateiceconductivity = element->FindParam(MaterialsTemperateiceconductivityEnum);
|
|---|
| 731 | IssmDouble beta = element->FindParam(MaterialsBetaEnum);
|
|---|
| 732 | IssmDouble latentheat = element->FindParam(MaterialsLatentheatEnum);
|
|---|
| 733 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 734 | element->FindParam(&stabilization,ThermalStabilizationEnum);
|
|---|
| 735 | Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
|
|---|
| 736 | Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
|
|---|
| 737 | Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
|
|---|
| 738 | Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
|
|---|
| 739 | Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
|
|---|
| 740 | Input* enthalpy_input=NULL;
|
|---|
| 741 | if(dt>0.){
|
|---|
| 742 | enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);
|
|---|
| 743 | }
|
|---|
| 744 |
|
|---|
| 745 | /* Start looping on the number of gaussian points: */
|
|---|
| 746 | Gauss* gauss=element->NewGauss(4);
|
|---|
| 747 | while(gauss->next()){
|
|---|
| 748 |
|
|---|
| 749 | element->JacobianDeterminant(&Jdet,xyz_list,gauss);
|
|---|
| 750 | element->NodalFunctions(basis,gauss);
|
|---|
| 751 |
|
|---|
| 752 | /*viscous dissipation*/
|
|---|
| 753 | element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
|
|---|
| 754 |
|
|---|
| 755 | scalar_def=phi/rho_ice*Jdet*gauss->weight;
|
|---|
| 756 | if(dt!=0.) scalar_def=scalar_def*dt;
|
|---|
| 757 |
|
|---|
| 758 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
|
|---|
| 759 |
|
|---|
| 760 | /*sensible heat flux in temperate ice*/
|
|---|
| 761 | enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
|
|---|
| 762 | pressure_input->GetInputValue(&pressure,gauss);
|
|---|
| 763 | Hpmp=this->PureIceEnthalpy(element, pressure);
|
|---|
| 764 |
|
|---|
| 765 | if(enthalpypicard>=Hpmp){
|
|---|
| 766 | enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
|
|---|
| 767 | pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
|
|---|
| 768 | d2pressure=0.; // for linear elements, 2nd derivative is zero
|
|---|
| 769 |
|
|---|
| 770 | d1H_d1P=0.;
|
|---|
| 771 | for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
|
|---|
| 772 | d1P2=0.;
|
|---|
| 773 | for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
|
|---|
| 774 |
|
|---|
| 775 | scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
|
|---|
| 776 | if(dt!=0.) scalar_sens=scalar_sens*dt;
|
|---|
| 777 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
|
|---|
| 778 | }
|
|---|
| 779 |
|
|---|
| 780 | /* Build transient now */
|
|---|
| 781 | if(dt>0.){
|
|---|
| 782 | enthalpy_input->GetInputValue(&enthalpy, gauss);
|
|---|
| 783 | scalar_transient=enthalpy*Jdet*gauss->weight;
|
|---|
| 784 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
|
|---|
| 785 | }
|
|---|
| 786 |
|
|---|
| 787 | /* SUPG */
|
|---|
| 788 | if(stabilization==2){
|
|---|
| 789 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
|---|
| 790 | diameter=element->MinEdgeLength(xyz_list);
|
|---|
| 791 | kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
|
|---|
| 792 | vx_input->GetInputValue(&u,gauss);
|
|---|
| 793 | vy_input->GetInputValue(&v,gauss);
|
|---|
| 794 | vz_input->GetInputValue(&w,gauss);
|
|---|
| 795 | tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
|
|---|
| 796 |
|
|---|
| 797 | for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
|
|---|
| 798 |
|
|---|
| 799 | if(dt!=0.){
|
|---|
| 800 | for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
|
|---|
| 801 | }
|
|---|
| 802 | }
|
|---|
| 803 | /* anisotropic SUPG */
|
|---|
| 804 | else if(stabilization==3){
|
|---|
| 805 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
|---|
| 806 | element->ElementSizes(&hx,&hy,&hz);
|
|---|
| 807 | kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
|
|---|
| 808 | vx_input->GetInputValue(&u,gauss);
|
|---|
| 809 | vy_input->GetInputValue(&v,gauss);
|
|---|
| 810 | vz_input->GetInputValue(&w,gauss);
|
|---|
| 811 | element->StabilizationParameterAnisotropic(&tau_parameter_anisotropic[0],u,v,w,hx,hy,hz,kappa/rho_ice);
|
|---|
| 812 | tau_parameter_hor=tau_parameter_anisotropic[0];
|
|---|
| 813 | tau_parameter_ver=tau_parameter_anisotropic[1];
|
|---|
| 814 |
|
|---|
| 815 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*(tau_parameter_hor*u*dbasis[0*numnodes+i]+tau_parameter_hor*v*dbasis[1*numnodes+i]+tau_parameter_ver*w*dbasis[2*numnodes+i]);
|
|---|
| 816 | }
|
|---|
| 817 | }
|
|---|
| 818 |
|
|---|
| 819 | /*Clean up and return*/
|
|---|
| 820 | xDelete<IssmDouble>(basis);
|
|---|
| 821 | xDelete<IssmDouble>(dbasis);
|
|---|
| 822 | xDelete<IssmDouble>(xyz_list);
|
|---|
| 823 | delete gauss;
|
|---|
| 824 | return pe;
|
|---|
| 825 |
|
|---|
| 826 | }/*}}}*/
|
|---|
| 827 | ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
|
|---|
| 828 |
|
|---|
| 829 | /* Check if ice in element */
|
|---|
| 830 | if(!element->IsIceInElement()) return NULL;
|
|---|
| 831 |
|
|---|
| 832 | /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
|
|---|
| 833 | if(!element->IsOnBase() || element->IsAllFloating()) return NULL;
|
|---|
| 834 |
|
|---|
| 835 | bool converged, isdynamicbasalspc;
|
|---|
| 836 | int i, state;
|
|---|
| 837 | int enthalpy_enum;
|
|---|
| 838 | IssmDouble dt,Jdet,scalar;
|
|---|
| 839 | IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
|
|---|
| 840 | IssmDouble vx,vy,vz;
|
|---|
| 841 | IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
|
|---|
| 842 | IssmDouble *xyz_list_base = NULL;
|
|---|
| 843 |
|
|---|
| 844 | /*Fetch number of nodes for this finite element*/
|
|---|
| 845 | int numnodes = element->GetNumberOfNodes();
|
|---|
| 846 |
|
|---|
| 847 | /*Initialize vectors*/
|
|---|
| 848 | ElementVector* pe = element->NewElementVector();
|
|---|
| 849 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
|---|
| 850 |
|
|---|
| 851 | /*Retrieve all inputs and parameters*/
|
|---|
| 852 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
|---|
| 853 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 854 | element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
|
|---|
| 855 | element->GetInputValue(&converged,ConvergedEnum);
|
|---|
| 856 | if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum; // use enthalpy from last iteration
|
|---|
| 857 | else enthalpy_enum=EnthalpyEnum; // use enthalpy from last time step
|
|---|
| 858 | Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
|
|---|
| 859 | Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
|
|---|
| 860 | Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
|
|---|
| 861 | Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
|
|---|
| 862 | Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
|
|---|
| 863 | IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
|
|---|
| 864 |
|
|---|
| 865 | /*Build friction element, needed later: */
|
|---|
| 866 | Friction* friction=new Friction(element,3);
|
|---|
| 867 |
|
|---|
| 868 | /* Start looping on the number of gaussian points: */
|
|---|
| 869 | Gauss* gauss=element->NewGaussBase(4);
|
|---|
| 870 | Gauss* gaussup=element->NewGaussTop(4);
|
|---|
| 871 | while(gauss->next() && gaussup->next()){
|
|---|
| 872 |
|
|---|
| 873 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
|
|---|
| 874 | element->NodalFunctions(basis,gauss);
|
|---|
| 875 |
|
|---|
| 876 | if(isdynamicbasalspc){
|
|---|
| 877 | enthalpy_input->GetInputValue(&enthalpy,gauss);
|
|---|
| 878 | enthalpy_input->GetInputValue(&enthalpyup,gaussup);
|
|---|
| 879 | pressure_input->GetInputValue(&pressure,gauss);
|
|---|
| 880 | pressure_input->GetInputValue(&pressureup,gaussup);
|
|---|
| 881 | watercolumn_input->GetInputValue(&watercolumn,gauss);
|
|---|
| 882 | meltingrate_input->GetInputValue(&meltingrate,gauss);
|
|---|
| 883 | state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
|
|---|
| 884 | }
|
|---|
| 885 | else
|
|---|
| 886 | state=0;
|
|---|
| 887 |
|
|---|
| 888 | switch (state) {
|
|---|
| 889 | case 0: case 1: case 2: case 3:
|
|---|
| 890 | // cold, dry base; cold, wet base; refreezing temperate base; thin temperate base:
|
|---|
| 891 | // Apply basal surface forcing.
|
|---|
| 892 | // Interpolated values of enthalpy on gauss nodes may indicate cold base,
|
|---|
| 893 | // although one node might have become temperate. So keep heat flux switched on.
|
|---|
| 894 | geothermalflux_input->GetInputValue(&geothermalflux,gauss);
|
|---|
| 895 | friction->GetAlpha2(&alpha2,gauss);
|
|---|
| 896 | friction->GetBasalSlidingSpeeds(&vx, &vy, &vz, gauss);
|
|---|
| 897 | basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
|
|---|
| 898 | heatflux=(basalfriction+geothermalflux)/(rho_ice);
|
|---|
| 899 | scalar=gauss->weight*Jdet*heatflux;
|
|---|
| 900 | if(dt!=0.) scalar=dt*scalar;
|
|---|
| 901 | for(i=0;i<numnodes;i++)
|
|---|
| 902 | pe->values[i]+=scalar*basis[i];
|
|---|
| 903 | break;
|
|---|
| 904 | case 4:
|
|---|
| 905 | // temperate, thick melting base: set grad H*n=0
|
|---|
| 906 | for(i=0;i<numnodes;i++)
|
|---|
| 907 | pe->values[i]+=0.;
|
|---|
| 908 | break;
|
|---|
| 909 | default:
|
|---|
| 910 | _printf0_(" unknown thermal basal state found!");
|
|---|
| 911 | }
|
|---|
| 912 | }
|
|---|
| 913 |
|
|---|
| 914 | /*Clean up and return*/
|
|---|
| 915 | delete gauss;
|
|---|
| 916 | delete gaussup;
|
|---|
| 917 | delete friction;
|
|---|
| 918 | xDelete<IssmDouble>(basis);
|
|---|
| 919 | xDelete<IssmDouble>(xyz_list_base);
|
|---|
| 920 | return pe;
|
|---|
| 921 |
|
|---|
| 922 | }/*}}}*/
|
|---|
| 923 | ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
|
|---|
| 924 |
|
|---|
| 925 | /* Check if ice in element */
|
|---|
| 926 | if(!element->IsIceInElement()) return NULL;
|
|---|
| 927 |
|
|---|
| 928 | /*Get basal element*/
|
|---|
| 929 | if(!element->IsOnBase() || !element->IsAllFloating()) return NULL;
|
|---|
| 930 |
|
|---|
| 931 | IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
|
|---|
| 932 | IssmDouble *xyz_list_base = NULL;
|
|---|
| 933 |
|
|---|
| 934 | /*Fetch number of nodes for this finite element*/
|
|---|
| 935 | int numnodes = element->GetNumberOfNodes();
|
|---|
| 936 |
|
|---|
| 937 | /*Initialize vectors*/
|
|---|
| 938 | ElementVector* pe = element->NewElementVector();
|
|---|
| 939 | IssmDouble* basis = xNew<IssmDouble>(numnodes);
|
|---|
| 940 |
|
|---|
| 941 | /*Retrieve all inputs and parameters*/
|
|---|
| 942 | element->GetVerticesCoordinatesBase(&xyz_list_base);
|
|---|
| 943 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 944 | Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
|
|---|
| 945 | IssmDouble gravity = element->FindParam(ConstantsGEnum);
|
|---|
| 946 | IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
|
|---|
| 947 | IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
|
|---|
| 948 | IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
|
|---|
| 949 | IssmDouble mixed_layer_capacity= element->FindParam(MaterialsMixedLayerCapacityEnum);
|
|---|
| 950 | IssmDouble thermal_exchange_vel= element->FindParam(MaterialsThermalExchangeVelocityEnum);
|
|---|
| 951 |
|
|---|
| 952 | /* Start looping on the number of gaussian points: */
|
|---|
| 953 | Gauss* gauss=element->NewGaussBase(4);
|
|---|
| 954 | while(gauss->next()){
|
|---|
| 955 |
|
|---|
| 956 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
|
|---|
| 957 | element->NodalFunctions(basis,gauss);
|
|---|
| 958 |
|
|---|
| 959 | pressure_input->GetInputValue(&pressure,gauss);
|
|---|
| 960 | Hpmp=element->PureIceEnthalpy(pressure);
|
|---|
| 961 |
|
|---|
| 962 | scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
|
|---|
| 963 | if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
|
|---|
| 964 |
|
|---|
| 965 | for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
|
|---|
| 966 | }
|
|---|
| 967 |
|
|---|
| 968 | /*Clean up and return*/
|
|---|
| 969 | delete gauss;
|
|---|
| 970 | xDelete<IssmDouble>(basis);
|
|---|
| 971 | xDelete<IssmDouble>(xyz_list_base);
|
|---|
| 972 | return pe;
|
|---|
| 973 | }/*}}}*/
|
|---|
| 974 | void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
|
|---|
| 975 | /*Drain excess water fraction in ice column: */
|
|---|
| 976 | ComputeWaterfractionDrainage(femmodel);
|
|---|
| 977 | DrainageUpdateWatercolumn(femmodel);
|
|---|
| 978 | DrainageUpdateEnthalpy(femmodel);
|
|---|
| 979 | }/*}}}*/
|
|---|
| 980 | void EnthalpyAnalysis::ComputeWaterfractionDrainage(FemModel* femmodel){/*{{{*/
|
|---|
| 981 |
|
|---|
| 982 | int k,numnodes;
|
|---|
| 983 | IssmDouble dt;
|
|---|
| 984 | Element* element= NULL;
|
|---|
| 985 |
|
|---|
| 986 | femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 987 |
|
|---|
| 988 | for(Object* & object : femmodel->elements->objects){
|
|---|
| 989 | element=xDynamicCast<Element*>(object);
|
|---|
| 990 | numnodes=element->GetNumberOfNodes();
|
|---|
| 991 | IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
|
|---|
| 992 | IssmDouble* drainage= xNew<IssmDouble>(numnodes);
|
|---|
| 993 |
|
|---|
| 994 | element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
|
|---|
| 995 | for(k=0; k<numnodes;k++){
|
|---|
| 996 | drainage[k]=DrainageFunctionWaterfraction(waterfractions[k], dt);
|
|---|
| 997 | }
|
|---|
| 998 | int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
|
|---|
| 999 | element->AddInput(WaterfractionDrainageEnum,drainage,finite_element);
|
|---|
| 1000 |
|
|---|
| 1001 | xDelete<IssmDouble>(waterfractions);
|
|---|
| 1002 | xDelete<IssmDouble>(drainage);
|
|---|
| 1003 | }
|
|---|
| 1004 | }/*}}}*/
|
|---|
| 1005 | void EnthalpyAnalysis::DrainageUpdateWatercolumn(FemModel* femmodel){/*{{{*/
|
|---|
| 1006 |
|
|---|
| 1007 | int k,numnodes, numbasalnodes;
|
|---|
| 1008 | IssmDouble dt;
|
|---|
| 1009 | int* basalnodeindices=NULL;
|
|---|
| 1010 | Element* element= NULL;
|
|---|
| 1011 |
|
|---|
| 1012 | femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 1013 |
|
|---|
| 1014 | /*depth-integrate the drained water fraction */
|
|---|
| 1015 | femmodel->parameters->SetParam(WaterfractionDrainageEnum,InputToDepthaverageInEnum);
|
|---|
| 1016 | femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToDepthaverageOutEnum);
|
|---|
| 1017 | depthaverage_core(femmodel);
|
|---|
| 1018 | femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToExtrudeEnum);
|
|---|
| 1019 | extrudefrombase_core(femmodel);
|
|---|
| 1020 | /*multiply depth-average by ice thickness*/
|
|---|
| 1021 | for(Object* & object : femmodel->elements->objects){
|
|---|
| 1022 | element=xDynamicCast<Element*>(object);
|
|---|
| 1023 | numnodes=element->GetNumberOfNodes();
|
|---|
| 1024 | IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
|
|---|
| 1025 | IssmDouble* thicknesses= xNew<IssmDouble>(numnodes);
|
|---|
| 1026 |
|
|---|
| 1027 | element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
|
|---|
| 1028 | element->GetInputListOnNodes(thicknesses,ThicknessEnum);
|
|---|
| 1029 | for(k=0;k<numnodes;k++){
|
|---|
| 1030 | drainage_int[k]*=thicknesses[k];
|
|---|
| 1031 | }
|
|---|
| 1032 | int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
|
|---|
| 1033 | element->AddInput(WaterfractionDrainageIntegratedEnum, drainage_int,finite_element);
|
|---|
| 1034 |
|
|---|
| 1035 | xDelete<IssmDouble>(drainage_int);
|
|---|
| 1036 | xDelete<IssmDouble>(thicknesses);
|
|---|
| 1037 | }
|
|---|
| 1038 |
|
|---|
| 1039 | /*update water column*/
|
|---|
| 1040 | for(Object* & object : femmodel->elements->objects){
|
|---|
| 1041 | element=xDynamicCast<Element*>(object);
|
|---|
| 1042 | /* Check if ice in element */
|
|---|
| 1043 | if(!element->IsIceInElement()) continue;
|
|---|
| 1044 | if(!element->IsOnBase()) continue;
|
|---|
| 1045 |
|
|---|
| 1046 | numnodes=element->GetNumberOfNodes();
|
|---|
| 1047 | IssmDouble* watercolumn= xNew<IssmDouble>(numnodes);
|
|---|
| 1048 | IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
|
|---|
| 1049 | element->GetInputListOnNodes(watercolumn,WatercolumnEnum);
|
|---|
| 1050 | element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
|
|---|
| 1051 |
|
|---|
| 1052 | element->BasalNodeIndices(&numbasalnodes,&basalnodeindices,element->GetElementType());
|
|---|
| 1053 | for(k=0;k<numbasalnodes;k++){
|
|---|
| 1054 | watercolumn[basalnodeindices[k]]+=dt*drainage_int[basalnodeindices[k]];
|
|---|
| 1055 | }
|
|---|
| 1056 | int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
|
|---|
| 1057 | element->AddInput(WatercolumnEnum, watercolumn,finite_element);
|
|---|
| 1058 |
|
|---|
| 1059 | xDelete<IssmDouble>(watercolumn);
|
|---|
| 1060 | xDelete<IssmDouble>(drainage_int);
|
|---|
| 1061 | xDelete<int>(basalnodeindices);
|
|---|
| 1062 | }
|
|---|
| 1063 | }/*}}}*/
|
|---|
| 1064 | void EnthalpyAnalysis::DrainageUpdateEnthalpy(FemModel* femmodel){/*{{{*/
|
|---|
| 1065 |
|
|---|
| 1066 | int k,numnodes;
|
|---|
| 1067 | IssmDouble dt;
|
|---|
| 1068 | Element* element= NULL;
|
|---|
| 1069 | femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 1070 |
|
|---|
| 1071 | for(Object* & object : femmodel->elements->objects){
|
|---|
| 1072 | element=xDynamicCast<Element*>(object);
|
|---|
| 1073 | numnodes=element->GetNumberOfNodes();
|
|---|
| 1074 | IssmDouble* enthalpies= xNew<IssmDouble>(numnodes);
|
|---|
| 1075 | IssmDouble* pressures= xNew<IssmDouble>(numnodes);
|
|---|
| 1076 | IssmDouble* temperatures= xNew<IssmDouble>(numnodes);
|
|---|
| 1077 | IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
|
|---|
| 1078 | IssmDouble* drainage= xNew<IssmDouble>(numnodes);
|
|---|
| 1079 |
|
|---|
| 1080 | element->GetInputListOnNodes(pressures,PressureEnum);
|
|---|
| 1081 | element->GetInputListOnNodes(temperatures,TemperatureEnum);
|
|---|
| 1082 | element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
|
|---|
| 1083 | element->GetInputListOnNodes(drainage,WaterfractionDrainageEnum);
|
|---|
| 1084 |
|
|---|
| 1085 | for(k=0;k<numnodes;k++){
|
|---|
| 1086 | if(dt==0.)
|
|---|
| 1087 | waterfractions[k]-=drainage[k];
|
|---|
| 1088 | else
|
|---|
| 1089 | waterfractions[k]-=dt*drainage[k];
|
|---|
| 1090 |
|
|---|
| 1091 | element->ThermalToEnthalpy(&enthalpies[k], temperatures[k], waterfractions[k], pressures[k]);
|
|---|
| 1092 | }
|
|---|
| 1093 | int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
|
|---|
| 1094 | element->AddInput(WaterfractionEnum,waterfractions,finite_element);
|
|---|
| 1095 | element->AddInput(EnthalpyEnum,enthalpies,finite_element);
|
|---|
| 1096 |
|
|---|
| 1097 | xDelete<IssmDouble>(enthalpies);
|
|---|
| 1098 | xDelete<IssmDouble>(pressures);
|
|---|
| 1099 | xDelete<IssmDouble>(temperatures);
|
|---|
| 1100 | xDelete<IssmDouble>(waterfractions);
|
|---|
| 1101 | xDelete<IssmDouble>(drainage);
|
|---|
| 1102 | }
|
|---|
| 1103 | }/*}}}*/
|
|---|
| 1104 | IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
|
|---|
| 1105 |
|
|---|
| 1106 | IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
|
|---|
| 1107 | IssmDouble temperateiceconductivity = element->FindParam(MaterialsTemperateiceconductivityEnum);
|
|---|
| 1108 | IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
|
|---|
| 1109 |
|
|---|
| 1110 | if(enthalpy < PureIceEnthalpy(element,pressure))
|
|---|
| 1111 | return thermalconductivity/heatcapacity;
|
|---|
| 1112 | else
|
|---|
| 1113 | return temperateiceconductivity/heatcapacity;
|
|---|
| 1114 | }/*}}}*/
|
|---|
| 1115 | IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
|
|---|
| 1116 |
|
|---|
| 1117 | int iv;
|
|---|
| 1118 | IssmDouble lambda; /* fraction of cold ice */
|
|---|
| 1119 | IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
|
|---|
| 1120 | IssmDouble Hc,Ht;
|
|---|
| 1121 |
|
|---|
| 1122 | /*Get pressures and enthalpies on vertices*/
|
|---|
| 1123 | int numvertices = element->GetNumberOfVertices();
|
|---|
| 1124 | int effectiveconductivity_averaging;
|
|---|
| 1125 | IssmDouble* pressures = xNew<IssmDouble>(numvertices);
|
|---|
| 1126 | IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
|
|---|
| 1127 | IssmDouble* PIE = xNew<IssmDouble>(numvertices);
|
|---|
| 1128 | IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
|
|---|
| 1129 | element->GetInputListOnVertices(pressures,PressureEnum);
|
|---|
| 1130 | element->GetInputListOnVertices(enthalpies,enthalpy_enum);
|
|---|
| 1131 | element->FindParam(&effectiveconductivity_averaging,MaterialsEffectiveconductivityAveragingEnum);
|
|---|
| 1132 |
|
|---|
| 1133 | for(iv=0;iv<numvertices;iv++){
|
|---|
| 1134 | PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
|
|---|
| 1135 | dHpmp[iv] = enthalpies[iv]-PIE[iv];
|
|---|
| 1136 | }
|
|---|
| 1137 |
|
|---|
| 1138 | bool allequalsign = true;
|
|---|
| 1139 | if(dHpmp[0]<0.){
|
|---|
| 1140 | for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
|
|---|
| 1141 | }
|
|---|
| 1142 | else{
|
|---|
| 1143 | for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
|
|---|
| 1144 | }
|
|---|
| 1145 |
|
|---|
| 1146 | if(allequalsign){
|
|---|
| 1147 | kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
|
|---|
| 1148 | }
|
|---|
| 1149 | else{
|
|---|
| 1150 | kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
|
|---|
| 1151 | kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
|
|---|
| 1152 |
|
|---|
| 1153 | Hc=0.; Ht=0.;
|
|---|
| 1154 | for(iv=0; iv<numvertices;iv++){
|
|---|
| 1155 | if(enthalpies[iv]<PIE[iv])
|
|---|
| 1156 | Hc+=(PIE[iv]-enthalpies[iv]);
|
|---|
| 1157 | else
|
|---|
| 1158 | Ht+=(enthalpies[iv]-PIE[iv]);
|
|---|
| 1159 | }
|
|---|
| 1160 | _assert_((Hc+Ht)>0.);
|
|---|
| 1161 | lambda = Hc/(Hc+Ht);
|
|---|
| 1162 | _assert_(lambda>=0.);
|
|---|
| 1163 | _assert_(lambda<=1.);
|
|---|
| 1164 |
|
|---|
| 1165 | if(effectiveconductivity_averaging==0){
|
|---|
| 1166 | /* return arithmetic mean (volume average) of thermal conductivities, weighted by fraction of cold/temperate ice */
|
|---|
| 1167 | kappa=kappa_c*lambda+(1.-lambda)*kappa_t;
|
|---|
| 1168 | }
|
|---|
| 1169 | else if(effectiveconductivity_averaging==1){
|
|---|
| 1170 | /* return harmonic mean (reciprocal avarage) of thermal conductivities, weighted by fraction of cold/temperate ice, cf Patankar 1980, pp44 */
|
|---|
| 1171 | kappa=kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c);
|
|---|
| 1172 | }
|
|---|
| 1173 | else if(effectiveconductivity_averaging==2){
|
|---|
| 1174 | /* return geometric mean (power law) of thermal conductivities, weighted by fraction of cold/temperate ice */
|
|---|
| 1175 | kappa=pow(kappa_c,lambda)*pow(kappa_t,1.-lambda);
|
|---|
| 1176 | }
|
|---|
| 1177 | else{
|
|---|
| 1178 | _error_("effectiveconductivity_averaging not supported yet");
|
|---|
| 1179 | }
|
|---|
| 1180 | }
|
|---|
| 1181 |
|
|---|
| 1182 | /*Clean up and return*/
|
|---|
| 1183 | xDelete<IssmDouble>(PIE);
|
|---|
| 1184 | xDelete<IssmDouble>(dHpmp);
|
|---|
| 1185 | xDelete<IssmDouble>(pressures);
|
|---|
| 1186 | xDelete<IssmDouble>(enthalpies);
|
|---|
| 1187 | return kappa;
|
|---|
| 1188 | }/*}}}*/
|
|---|
| 1189 | void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
|
|---|
| 1190 |
|
|---|
| 1191 | /*Intermediary*/
|
|---|
| 1192 | bool isdynamicbasalspc;
|
|---|
| 1193 | IssmDouble dt;
|
|---|
| 1194 |
|
|---|
| 1195 | /*Check wether dynamic basal boundary conditions are activated */
|
|---|
| 1196 | element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
|
|---|
| 1197 | if(!isdynamicbasalspc) return;
|
|---|
| 1198 |
|
|---|
| 1199 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 1200 | if(dt==0.){
|
|---|
| 1201 | GetBasalConstraintsSteadystate(vec_spc,element);
|
|---|
| 1202 | }
|
|---|
| 1203 | else{
|
|---|
| 1204 | GetBasalConstraintsTransient(vec_spc,element);
|
|---|
| 1205 | }
|
|---|
| 1206 | }/*}}}*/
|
|---|
| 1207 | void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
|
|---|
| 1208 |
|
|---|
| 1209 | /* Check if ice in element */
|
|---|
| 1210 | if(!element->IsIceInElement()) return;
|
|---|
| 1211 |
|
|---|
| 1212 | /* Only update constraints at the base.
|
|---|
| 1213 | * Floating ice is not affected by basal BC decision chart. */
|
|---|
| 1214 | if(!(element->IsOnBase()) || element->IsAllFloating()) return;
|
|---|
| 1215 |
|
|---|
| 1216 | /*Intermediary*/
|
|---|
| 1217 | int numindices, numindicesup, state;
|
|---|
| 1218 | int *indices = NULL, *indicesup = NULL;
|
|---|
| 1219 | IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
|
|---|
| 1220 |
|
|---|
| 1221 | /*Get parameters and inputs: */
|
|---|
| 1222 | Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
|
|---|
| 1223 | Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
|
|---|
| 1224 | Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
|
|---|
| 1225 | Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
|
|---|
| 1226 |
|
|---|
| 1227 | /*Fetch indices of basal & surface nodes for this finite element*/
|
|---|
| 1228 | Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
|
|---|
| 1229 | penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
|
|---|
| 1230 | penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
|
|---|
| 1231 |
|
|---|
| 1232 | GaussPenta* gauss=new GaussPenta();
|
|---|
| 1233 | GaussPenta* gaussup=new GaussPenta();
|
|---|
| 1234 | for(int i=0;i<numindices;i++){
|
|---|
| 1235 | gauss->GaussNode(element->GetElementType(),indices[i]);
|
|---|
| 1236 | gaussup->GaussNode(element->GetElementType(),indicesup[i]);
|
|---|
| 1237 |
|
|---|
| 1238 | enthalpy_input->GetInputValue(&enthalpy,gauss);
|
|---|
| 1239 | enthalpy_input->GetInputValue(&enthalpyup,gaussup);
|
|---|
| 1240 | pressure_input->GetInputValue(&pressure,gauss);
|
|---|
| 1241 | pressure_input->GetInputValue(&pressureup,gaussup);
|
|---|
| 1242 | watercolumn_input->GetInputValue(&watercolumn,gauss);
|
|---|
| 1243 | meltingrate_input->GetInputValue(&meltingrate,gauss);
|
|---|
| 1244 |
|
|---|
| 1245 | state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
|
|---|
| 1246 | switch (state) {
|
|---|
| 1247 | case 0:
|
|---|
| 1248 | // cold, dry base: apply basal surface forcing
|
|---|
| 1249 | vec_spc->SetValue(element->nodes[i]->Pid(),0.,INS_VAL);
|
|---|
| 1250 | break;
|
|---|
| 1251 | case 1:
|
|---|
| 1252 | // cold, wet base: keep at pressure melting point
|
|---|
| 1253 | vec_spc->SetValue(element->nodes[i]->Pid(),1.,INS_VAL);
|
|---|
| 1254 | break;
|
|---|
| 1255 | case 2:
|
|---|
| 1256 | // temperate, thin refreezing base:
|
|---|
| 1257 | vec_spc->SetValue(element->nodes[i]->Pid(),1.,INS_VAL);
|
|---|
| 1258 | break;
|
|---|
| 1259 | case 3:
|
|---|
| 1260 | // temperate, thin melting base: set spc
|
|---|
| 1261 | vec_spc->SetValue(element->nodes[i]->Pid(),1.,INS_VAL);
|
|---|
| 1262 | break;
|
|---|
| 1263 | case 4:
|
|---|
| 1264 | // temperate, thick melting base:
|
|---|
| 1265 | vec_spc->SetValue(element->nodes[i]->Pid(),1.,INS_VAL);
|
|---|
| 1266 | break;
|
|---|
| 1267 | default:
|
|---|
| 1268 | _printf0_(" unknown thermal basal state found!");
|
|---|
| 1269 | }
|
|---|
| 1270 | }
|
|---|
| 1271 |
|
|---|
| 1272 | /*Free resources:*/
|
|---|
| 1273 | xDelete<int>(indices);
|
|---|
| 1274 | xDelete<int>(indicesup);
|
|---|
| 1275 | delete gauss;
|
|---|
| 1276 | delete gaussup;
|
|---|
| 1277 | }/*}}}*/
|
|---|
| 1278 | void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
|
|---|
| 1279 |
|
|---|
| 1280 | /* Check if ice in element */
|
|---|
| 1281 | if(!element->IsIceInElement()) return;
|
|---|
| 1282 |
|
|---|
| 1283 | /* Only update constraints at the base.
|
|---|
| 1284 | * Floating ice is not affected by basal BC decision chart.*/
|
|---|
| 1285 | if(!(element->IsOnBase()) || element->IsAllFloating()) return;
|
|---|
| 1286 |
|
|---|
| 1287 | /*Intermediary*/
|
|---|
| 1288 | int numindices, numindicesup, state;
|
|---|
| 1289 | int *indices = NULL, *indicesup = NULL;
|
|---|
| 1290 | IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
|
|---|
| 1291 |
|
|---|
| 1292 | /*Get parameters and inputs: */
|
|---|
| 1293 | Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
|
|---|
| 1294 | Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
|
|---|
| 1295 | Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
|
|---|
| 1296 | Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
|
|---|
| 1297 |
|
|---|
| 1298 | /*Fetch indices of basal & surface nodes for this finite element*/
|
|---|
| 1299 | Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
|
|---|
| 1300 | penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
|
|---|
| 1301 | penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
|
|---|
| 1302 |
|
|---|
| 1303 | GaussPenta* gauss=new GaussPenta();
|
|---|
| 1304 | GaussPenta* gaussup=new GaussPenta();
|
|---|
| 1305 |
|
|---|
| 1306 | for(int i=0;i<numindices;i++){
|
|---|
| 1307 | gauss->GaussNode(element->GetElementType(),indices[i]);
|
|---|
| 1308 | gaussup->GaussNode(element->GetElementType(),indicesup[i]);
|
|---|
| 1309 |
|
|---|
| 1310 | enthalpy_input->GetInputValue(&enthalpy,gauss);
|
|---|
| 1311 | enthalpy_input->GetInputValue(&enthalpyup,gaussup);
|
|---|
| 1312 | pressure_input->GetInputValue(&pressure,gauss);
|
|---|
| 1313 | pressure_input->GetInputValue(&pressureup,gaussup);
|
|---|
| 1314 | watercolumn_input->GetInputValue(&watercolumn,gauss);
|
|---|
| 1315 | meltingrate_input->GetInputValue(&meltingrate,gauss);
|
|---|
| 1316 |
|
|---|
| 1317 | state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
|
|---|
| 1318 |
|
|---|
| 1319 | switch (state) {
|
|---|
| 1320 | case 0:
|
|---|
| 1321 | // cold, dry base: apply basal surface forcing
|
|---|
| 1322 | vec_spc->SetValue(element->nodes[i]->Pid(),0.,INS_VAL);
|
|---|
| 1323 | break;
|
|---|
| 1324 | case 1:
|
|---|
| 1325 | // cold, wet base: keep at pressure melting point
|
|---|
| 1326 | vec_spc->SetValue(element->nodes[i]->Pid(),1.,INS_VAL);
|
|---|
| 1327 | break;
|
|---|
| 1328 | case 2:
|
|---|
| 1329 | // temperate, thin refreezing base: release spc
|
|---|
| 1330 | vec_spc->SetValue(element->nodes[i]->Pid(),0.,INS_VAL);
|
|---|
| 1331 | break;
|
|---|
| 1332 | case 3:
|
|---|
| 1333 | // temperate, thin melting base: set spc
|
|---|
| 1334 | vec_spc->SetValue(element->nodes[i]->Pid(),1.,INS_VAL);
|
|---|
| 1335 | break;
|
|---|
| 1336 | case 4:
|
|---|
| 1337 | // temperate, thick melting base: set grad H*n=0
|
|---|
| 1338 | vec_spc->SetValue(element->nodes[i]->Pid(),0.,INS_VAL);
|
|---|
| 1339 | break;
|
|---|
| 1340 | default:
|
|---|
| 1341 | _printf0_(" unknown thermal basal state found!");
|
|---|
| 1342 | }
|
|---|
| 1343 |
|
|---|
| 1344 | }
|
|---|
| 1345 |
|
|---|
| 1346 | /*Free resources:*/
|
|---|
| 1347 | xDelete<int>(indices);
|
|---|
| 1348 | xDelete<int>(indicesup);
|
|---|
| 1349 | delete gauss;
|
|---|
| 1350 | delete gaussup;
|
|---|
| 1351 | }/*}}}*/
|
|---|
| 1352 | void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
|
|---|
| 1353 | /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*1.
|
|---|
| 1354 | * For node i, Bi' can be expressed in the actual coordinate system
|
|---|
| 1355 | * by:
|
|---|
| 1356 | * Bi_conduct=[ dh/dx ]
|
|---|
| 1357 | * [ dh/dy ]
|
|---|
| 1358 | * [ dh/dz ]
|
|---|
| 1359 | * where h is the interpolation function for node i.
|
|---|
| 1360 | *
|
|---|
| 1361 | * We assume B has been allocated already, of size: 3x(1*numnodes)
|
|---|
| 1362 | */
|
|---|
| 1363 |
|
|---|
| 1364 | /*Fetch number of nodes for this finite element*/
|
|---|
| 1365 | int numnodes = element->GetNumberOfNodes();
|
|---|
| 1366 |
|
|---|
| 1367 | /*Get nodal functions derivatives*/
|
|---|
| 1368 | IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
|
|---|
| 1369 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
|
|---|
| 1370 |
|
|---|
| 1371 | /*Build B: */
|
|---|
| 1372 | for(int i=0;i<numnodes;i++){
|
|---|
| 1373 | B[numnodes*0+i] = dbasis[0*numnodes+i];
|
|---|
| 1374 | B[numnodes*1+i] = dbasis[1*numnodes+i];
|
|---|
| 1375 | B[numnodes*2+i] = dbasis[2*numnodes+i];
|
|---|
| 1376 | }
|
|---|
| 1377 |
|
|---|
| 1378 | /*Clean-up*/
|
|---|
| 1379 | xDelete<IssmDouble>(dbasis);
|
|---|
| 1380 | }/*}}}*/
|
|---|
| 1381 | void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
|
|---|
| 1382 | element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
|
|---|
| 1383 | }/*}}}*/
|
|---|
| 1384 | int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
|
|---|
| 1385 |
|
|---|
| 1386 | /* Check if ice in element */
|
|---|
| 1387 | if(!element->IsIceInElement()) return -1;
|
|---|
| 1388 |
|
|---|
| 1389 | /* Only update Constraints at the base of grounded ice*/
|
|---|
| 1390 | if(!(element->IsOnBase())) return -1;
|
|---|
| 1391 |
|
|---|
| 1392 | /*Intermediary*/
|
|---|
| 1393 | int state=-1;
|
|---|
| 1394 | IssmDouble dt;
|
|---|
| 1395 |
|
|---|
| 1396 | /*Get parameters and inputs: */
|
|---|
| 1397 | element->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 1398 |
|
|---|
| 1399 | if(enthalpy<PureIceEnthalpy(element,pressure)){
|
|---|
| 1400 | if(watercolumn<=0.) state=0; // cold, dry base
|
|---|
| 1401 | else state=1; // cold, wet base (refreezing)
|
|---|
| 1402 | }
|
|---|
| 1403 | else{
|
|---|
| 1404 | if(enthalpyup<PureIceEnthalpy(element,pressureup)){
|
|---|
| 1405 | if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
|
|---|
| 1406 | else state=3; // temperate base, but no temperate layer
|
|---|
| 1407 | }
|
|---|
| 1408 | else state=4; // temperate layer with positive thickness
|
|---|
| 1409 | }
|
|---|
| 1410 |
|
|---|
| 1411 | _assert_(state>=0);
|
|---|
| 1412 | return state;
|
|---|
| 1413 | }/*}}}*/
|
|---|
| 1414 | IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
|
|---|
| 1415 |
|
|---|
| 1416 | IssmDouble temperature, waterfraction;
|
|---|
| 1417 | IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
|
|---|
| 1418 | IssmDouble kappa_i = element->FindParam(MaterialsThermalconductivityEnum);
|
|---|
| 1419 | element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
|
|---|
| 1420 |
|
|---|
| 1421 | return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
|
|---|
| 1422 | }/*}}}*/
|
|---|
| 1423 | void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_interp,int control_index){/*{{{*/
|
|---|
| 1424 | _error_("Not implemented yet");
|
|---|
| 1425 | }/*}}}*/
|
|---|
| 1426 | void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
|
|---|
| 1427 |
|
|---|
| 1428 | bool converged;
|
|---|
| 1429 | int i,rheology_law;
|
|---|
| 1430 | IssmDouble B_average,s_average,T_average=0.,P_average=0.;
|
|---|
| 1431 | int *doflist = NULL;
|
|---|
| 1432 | IssmDouble *xyz_list = NULL;
|
|---|
| 1433 |
|
|---|
| 1434 | /*Fetch number of nodes and dof for this finite element*/
|
|---|
| 1435 | int numnodes = element->GetNumberOfNodes();
|
|---|
| 1436 |
|
|---|
| 1437 | /*Fetch dof list and allocate solution vector*/
|
|---|
| 1438 | element->GetDofListLocal(&doflist,NoneApproximationEnum,GsetEnum);
|
|---|
| 1439 | IssmDouble* values = xNew<IssmDouble>(numnodes);
|
|---|
| 1440 | IssmDouble* pressure = xNew<IssmDouble>(numnodes);
|
|---|
| 1441 | IssmDouble* surface = xNew<IssmDouble>(numnodes);
|
|---|
| 1442 | IssmDouble* B = xNew<IssmDouble>(numnodes);
|
|---|
| 1443 | IssmDouble* temperature = xNew<IssmDouble>(numnodes);
|
|---|
| 1444 | IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
|
|---|
| 1445 |
|
|---|
| 1446 | /*Use the dof list to index into the solution vector: */
|
|---|
| 1447 | for(i=0;i<numnodes;i++){
|
|---|
| 1448 | values[i]=solution[doflist[i]];
|
|---|
| 1449 |
|
|---|
| 1450 | /*Check solution*/
|
|---|
| 1451 | if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
|
|---|
| 1452 | if(xIsInf<IssmDouble>(values[i])) _error_("Inf found in solution vector");
|
|---|
| 1453 | }
|
|---|
| 1454 |
|
|---|
| 1455 | /*Get all inputs and parameters*/
|
|---|
| 1456 | element->GetInputValue(&converged,ConvergedEnum);
|
|---|
| 1457 | element->GetInputListOnNodes(&pressure[0],PressureEnum);
|
|---|
| 1458 | int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
|
|---|
| 1459 | if(converged){
|
|---|
| 1460 | for(i=0;i<numnodes;i++){
|
|---|
| 1461 | element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
|
|---|
| 1462 | if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
|
|---|
| 1463 | //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
|
|---|
| 1464 | }
|
|---|
| 1465 | element->AddInput(EnthalpyEnum,values,finite_element);
|
|---|
| 1466 | element->AddInput(WaterfractionEnum,waterfraction,finite_element);
|
|---|
| 1467 | element->AddInput(TemperatureEnum,temperature,finite_element);
|
|---|
| 1468 |
|
|---|
| 1469 | IssmDouble* n = xNew<IssmDouble>(numnodes);
|
|---|
| 1470 | if(element->material->ObjectEnum()==MatestarEnum){
|
|---|
| 1471 | for(i=0;i<numnodes;i++) n[i]=3.;
|
|---|
| 1472 | }
|
|---|
| 1473 | else{
|
|---|
| 1474 | element->GetInputListOnNodes(&n[0],MaterialsRheologyNEnum);
|
|---|
| 1475 | }
|
|---|
| 1476 |
|
|---|
| 1477 | /*Update Rheology only if converged (we must make sure that the temperature is below melting point
|
|---|
| 1478 | * otherwise the rheology could be negative*/
|
|---|
| 1479 | element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
|
|---|
| 1480 | element->GetInputListOnNodes(&surface[0],SurfaceEnum);
|
|---|
| 1481 | switch(rheology_law){
|
|---|
| 1482 | case NoneEnum:
|
|---|
| 1483 | /*Do nothing: B is not temperature dependent*/
|
|---|
| 1484 | break;
|
|---|
| 1485 | case BuddJackaEnum:
|
|---|
| 1486 | for(i=0;i<numnodes;i++) B[i]=BuddJacka(temperature[i]);
|
|---|
| 1487 | element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
|
|---|
| 1488 | break;
|
|---|
| 1489 | case CuffeyEnum:
|
|---|
| 1490 | for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
|
|---|
| 1491 | element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
|
|---|
| 1492 | break;
|
|---|
| 1493 | case CuffeyTemperateEnum:
|
|---|
| 1494 | for(i=0;i<numnodes;i++) B[i]=CuffeyTemperate(temperature[i], waterfraction[i],n[i]);
|
|---|
| 1495 | element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
|
|---|
| 1496 | break;
|
|---|
| 1497 | case PatersonEnum:
|
|---|
| 1498 | for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
|
|---|
| 1499 | element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
|
|---|
| 1500 | break;
|
|---|
| 1501 | case NyeH2OEnum:
|
|---|
| 1502 | for(i=0;i<numnodes;i++) B[i]=NyeH2O(values[i]);
|
|---|
| 1503 | element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
|
|---|
| 1504 | break;
|
|---|
| 1505 | case NyeCO2Enum:
|
|---|
| 1506 | for(i=0;i<numnodes;i++) B[i]=NyeCO2(values[i]);
|
|---|
| 1507 | element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
|
|---|
| 1508 | break;
|
|---|
| 1509 | case ArrheniusEnum:{
|
|---|
| 1510 | element->GetVerticesCoordinates(&xyz_list);
|
|---|
| 1511 | for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],n[i]);
|
|---|
| 1512 | element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
|
|---|
| 1513 | break;
|
|---|
| 1514 | }
|
|---|
| 1515 | case LliboutryDuvalEnum:{
|
|---|
| 1516 | for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],n[i],element->FindParam(MaterialsBetaEnum),element->FindParam(ConstantsReferencetemperatureEnum),element->FindParam(MaterialsHeatcapacityEnum),element->FindParam(MaterialsLatentheatEnum));
|
|---|
| 1517 | element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
|
|---|
| 1518 | break;
|
|---|
| 1519 | }
|
|---|
| 1520 | default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
|
|---|
| 1521 | }
|
|---|
| 1522 | xDelete<IssmDouble>(n);
|
|---|
| 1523 | }
|
|---|
| 1524 | else{
|
|---|
| 1525 | element->AddInput(EnthalpyPicardEnum,values,finite_element);
|
|---|
| 1526 | }
|
|---|
| 1527 |
|
|---|
| 1528 | /*Free resources:*/
|
|---|
| 1529 | xDelete<IssmDouble>(values);
|
|---|
| 1530 | xDelete<IssmDouble>(pressure);
|
|---|
| 1531 | xDelete<IssmDouble>(surface);
|
|---|
| 1532 | xDelete<IssmDouble>(B);
|
|---|
| 1533 | xDelete<IssmDouble>(temperature);
|
|---|
| 1534 | xDelete<IssmDouble>(waterfraction);
|
|---|
| 1535 | xDelete<IssmDouble>(xyz_list);
|
|---|
| 1536 | xDelete<int>(doflist);
|
|---|
| 1537 | }/*}}}*/
|
|---|
| 1538 | void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
|
|---|
| 1539 |
|
|---|
| 1540 | /*Intermediaries*/
|
|---|
| 1541 | bool computebasalmeltingrates=true;
|
|---|
| 1542 | bool isdrainicecolumn;
|
|---|
| 1543 | IssmDouble dt;
|
|---|
| 1544 |
|
|---|
| 1545 | femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
|
|---|
| 1546 | femmodel->parameters->FindParam(&isdrainicecolumn,ThermalIsdrainicecolumnEnum);
|
|---|
| 1547 |
|
|---|
| 1548 | if(isdrainicecolumn){
|
|---|
| 1549 | DrainWaterfraction(femmodel);
|
|---|
| 1550 | }
|
|---|
| 1551 | if(computebasalmeltingrates){
|
|---|
| 1552 | ComputeBasalMeltingrate(femmodel);
|
|---|
| 1553 | }
|
|---|
| 1554 |
|
|---|
| 1555 | }/*}}}*/
|
|---|
| 1556 | IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
|
|---|
| 1557 |
|
|---|
| 1558 | IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
|
|---|
| 1559 | IssmDouble referencetemperature = element->FindParam(ConstantsReferencetemperatureEnum);
|
|---|
| 1560 |
|
|---|
| 1561 | return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
|
|---|
| 1562 | }/*}}}*/
|
|---|
| 1563 | IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
|
|---|
| 1564 |
|
|---|
| 1565 | IssmDouble meltingpoint = element->FindParam(MaterialsMeltingpointEnum);
|
|---|
| 1566 | IssmDouble beta = element->FindParam(MaterialsBetaEnum);
|
|---|
| 1567 |
|
|---|
| 1568 | return meltingpoint-beta*pressure;
|
|---|
| 1569 | }/*}}}*/
|
|---|
| 1570 | void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
|
|---|
| 1571 |
|
|---|
| 1572 | /*Update basal dirichlet BCs for enthalpy: */
|
|---|
| 1573 | int numnodes = femmodel->nodes->NumberOfNodes();
|
|---|
| 1574 | int localmasters = femmodel->nodes->NumberOfNodesLocal();
|
|---|
| 1575 | Vector<IssmDouble>* spc = new Vector<IssmDouble>(localmasters,numnodes);
|
|---|
| 1576 |
|
|---|
| 1577 | /*First create a vector to figure out what elements should be constrained*/
|
|---|
| 1578 | for(Object* & object : femmodel->elements->objects){
|
|---|
| 1579 | Element* element=xDynamicCast<Element*>(object);
|
|---|
| 1580 | GetBasalConstraints(spc,element);
|
|---|
| 1581 | }
|
|---|
| 1582 |
|
|---|
| 1583 | /*Assemble*/
|
|---|
| 1584 | spc->Assemble();
|
|---|
| 1585 |
|
|---|
| 1586 | /*Get local vector with both masters and slaves:*/
|
|---|
| 1587 | IssmDouble *local_spc = NULL;
|
|---|
| 1588 | femmodel->GetLocalVectorWithClonesNodes(&local_spc,spc);
|
|---|
| 1589 | delete spc;
|
|---|
| 1590 |
|
|---|
| 1591 | /*Then update basal constraints nodes accordingly*/
|
|---|
| 1592 | for(Object* & object : femmodel->elements->objects){
|
|---|
| 1593 | Element* element=xDynamicCast<Element*>(object);
|
|---|
| 1594 | ApplyBasalConstraints(local_spc,element);
|
|---|
| 1595 | }
|
|---|
| 1596 |
|
|---|
| 1597 | femmodel->UpdateConstraintsx();
|
|---|
| 1598 |
|
|---|
| 1599 | /*Delete*/
|
|---|
| 1600 | xDelete<IssmDouble>(local_spc);
|
|---|
| 1601 | }/*}}}*/
|
|---|
| 1602 | void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
|
|---|
| 1603 | SetActiveNodesLSMx(femmodel);
|
|---|
| 1604 | }/*}}}*/
|
|---|