source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 27102

Last change on this file since 27102 was 27102, checked in by Mathieu Morlighem, 3 years ago

CHG: typo: ressources -> resources

File size: 67.4 KB
Line 
1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
6#include "../solutionsequences/solutionsequences.h"
7#include "../cores/cores.h"
8
9/*Model processing*/
10void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
11
12 /*Intermediary*/
13 int count;
14 int M,N;
15 bool spcpresent = false;
16 int finiteelement;
17 IssmDouble heatcapacity;
18 IssmDouble referencetemperature;
19
20 /*Output*/
21 IssmDouble *spcvector = NULL;
22 IssmDouble *spcvectorstatic = NULL;
23 IssmDouble* times=NULL;
24 IssmDouble* values=NULL;
25 IssmDouble* issurface = NULL;
26
27 /*Fetch parameters: */
28 iomodel->FindConstant(&heatcapacity,"md.materials.heatcapacity");
29 iomodel->FindConstant(&referencetemperature,"md.constants.referencetemperature");
30 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
31
32 /*return if 2d mesh*/
33 if(iomodel->domaintype==Domain2DhorizontalEnum) return;
34
35 /*Fetch data: */
36 iomodel->FetchData(&issurface,&M,&N,"md.mesh.vertexonsurface"); _assert_(N>0); _assert_(M==iomodel->numberofvertices);
37 iomodel->FetchData(&spcvector,&M,&N,"md.thermal.spctemperature");
38 iomodel->FetchData(&spcvectorstatic,&M,&N,"md.thermal.spctemperature");
39
40 /*Specific case for PDD, we want the constaints to be updated by the PDD scheme itself*/
41 bool isdynamic = false;
42 if (iomodel->solution_enum==TransientSolutionEnum){
43 int smb_model;
44 iomodel->FindConstant(&smb_model,"md.smb.model");
45 if(smb_model==SMBpddEnum) isdynamic=true;
46 if(smb_model==SMBd18opddEnum) isdynamic=true;
47 if(smb_model==SMBpddSicopolisEnum) isdynamic=true;
48 }
49
50 /*Convert spcs from temperatures to enthalpy*/
51 _assert_(N>0); _assert_(M>=iomodel->numberofvertices);
52 for(int i=0;i<iomodel->numberofvertices;i++){
53 for(int j=0;j<N;j++){
54 if (isdynamic){
55 if (issurface[i]==1){
56 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
57 spcvectorstatic[i*N+j] = NAN;
58 }
59 else{
60 spcvector[i*N+j] = NAN;
61 spcvectorstatic[i*N+j] = heatcapacity*(spcvectorstatic[i*N+j]-referencetemperature);
62 }
63 }
64 else{
65 spcvector[i*N+j] = heatcapacity*(spcvector[i*N+j]-referencetemperature);
66 }
67 }
68 }
69
70 if(isdynamic){
71 IoModelToDynamicConstraintsx(constraints,iomodel,spcvector,iomodel->numberofvertices,1,EnthalpyAnalysisEnum,finiteelement);
72 IoModelToConstraintsx(constraints,iomodel,spcvectorstatic,M,N,EnthalpyAnalysisEnum,finiteelement);
73 }
74 else{
75 IoModelToConstraintsx(constraints,iomodel,spcvector,M,N,EnthalpyAnalysisEnum,finiteelement);
76 }
77
78 /*Free resources:*/
79 iomodel->DeleteData(spcvector,"md.thermal.spctemperature");
80 iomodel->DeleteData(spcvectorstatic,"md.thermal.spctemperature");
81 iomodel->DeleteData(issurface,"md.mesh.vertexonsurface");
82 xDelete<IssmDouble>(times);
83 xDelete<IssmDouble>(values);
84}/*}}}*/
85void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
86
87 /*No loads */
88}/*}}}*/
89void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel,bool isamr){/*{{{*/
90
91 int finiteelement;
92 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
93
94 if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
95 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,finiteelement);
96 iomodel->DeleteData(2,"md.mesh.vertexonbase","md.mesh.vertexonsurface");
97}/*}}}*/
98int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
99 return 1;
100}/*}}}*/
101void EnthalpyAnalysis::UpdateElements(Elements* elements,Inputs* inputs,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
102
103 bool dakota_analysis,ismovingfront,isenthalpy;
104 int frictionlaw,basalforcing_model,materialstype;
105 int FrictionCoupling;
106
107 /*Now, is the model 3d? otherwise, do nothing: */
108 if(iomodel->domaintype==Domain2DhorizontalEnum)return;
109
110 /*Is enthalpy requested?*/
111 iomodel->FindConstant(&isenthalpy,"md.thermal.isenthalpy");
112 if(!isenthalpy) return;
113
114 /*Fetch data needed: */
115 iomodel->FetchData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
116
117 /*Finite element type*/
118 int finiteelement;
119 iomodel->FindConstant(&finiteelement,"md.thermal.fe");
120
121 /*Update elements: */
122 int counter=0;
123 for(int i=0;i<iomodel->numberofelements;i++){
124 if(iomodel->my_elements[i]){
125 Element* element=(Element*)elements->GetObjectByOffset(counter);
126 element->Update(inputs,i,iomodel,analysis_counter,analysis_type,finiteelement);
127 counter++;
128 }
129 }
130
131 iomodel->FindConstant(&dakota_analysis,"md.qmu.isdakota");
132 iomodel->FindConstant(&ismovingfront,"md.transient.ismovingfront");
133 iomodel->FindConstant(&frictionlaw,"md.friction.law");
134 iomodel->FindConstant(&materialstype,"md.materials.type");
135
136 iomodel->FetchDataToInput(inputs,elements,"md.geometry.thickness",ThicknessEnum);
137 iomodel->FetchDataToInput(inputs,elements,"md.geometry.surface",SurfaceEnum);
138 iomodel->FetchDataToInput(inputs,elements,"md.initialization.sealevel",SealevelEnum,0);
139 iomodel->FetchDataToInput(inputs,elements,"md.geometry.base",BaseEnum);
140 iomodel->FetchDataToInput(inputs,elements,"md.mask.ice_levelset",MaskIceLevelsetEnum);
141 iomodel->FetchDataToInput(inputs,elements,"md.mask.ocean_levelset",MaskOceanLevelsetEnum);
142 if(iomodel->domaintype!=Domain2DhorizontalEnum){
143 iomodel->FetchDataToInput(inputs,elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum);
144 iomodel->FetchDataToInput(inputs,elements,"md.mesh.vertexonsurface",MeshVertexonsurfaceEnum);
145 }
146 iomodel->FetchDataToInput(inputs,elements,"md.initialization.pressure",PressureEnum);
147 iomodel->FetchDataToInput(inputs,elements,"md.initialization.temperature",TemperatureEnum);
148 iomodel->FetchDataToInput(inputs,elements,"md.initialization.waterfraction",WaterfractionEnum);
149 iomodel->FetchDataToInput(inputs,elements,"md.initialization.enthalpy",EnthalpyEnum);
150 iomodel->FetchDataToInput(inputs,elements,"md.initialization.watercolumn",WatercolumnEnum);
151 iomodel->FetchDataToInput(inputs,elements,"md.basalforcings.groundedice_melting_rate",BasalforcingsGroundediceMeltingRateEnum);
152 iomodel->FetchDataToInput(inputs,elements,"md.initialization.vx",VxEnum);
153 iomodel->FetchDataToInput(inputs,elements,"md.initialization.vy",VyEnum);
154 iomodel->FetchDataToInput(inputs,elements,"md.initialization.vz",VzEnum);
155 InputUpdateFromConstantx(inputs,elements,0.,VxMeshEnum);
156 InputUpdateFromConstantx(inputs,elements,0.,VyMeshEnum);
157 InputUpdateFromConstantx(inputs,elements,0.,VzMeshEnum);
158 if(ismovingfront){
159 iomodel->FetchDataToInput(inputs,elements,"md.mesh.vertexonbase",MeshVertexonbaseEnum); // required for updating active nodes
160 }
161
162 /*Basal forcings variables*/
163 iomodel->FindConstant(&basalforcing_model,"md.basalforcings.model");
164 switch(basalforcing_model){
165 case MantlePlumeGeothermalFluxEnum:
166 break;
167 default:
168 iomodel->FetchDataToInput(inputs,elements,"md.basalforcings.geothermalflux",BasalforcingsGeothermalfluxEnum);
169 break;
170 }
171
172 /*Rheology type*/
173 iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_B",MaterialsRheologyBEnum);
174 switch(materialstype){
175 case MatenhancediceEnum:
176 iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
177 iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_E",MaterialsRheologyEEnum);
178 break;
179 case MatdamageiceEnum:
180 iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
181 break;
182 case MatestarEnum:
183 iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_Ec",MaterialsRheologyEcEnum);
184 iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_Es",MaterialsRheologyEsEnum);
185 break;
186 case MaticeEnum:
187 iomodel->FetchDataToInput(inputs,elements,"md.materials.rheology_n",MaterialsRheologyNEnum);
188 break;
189 default:
190 _error_("not supported");
191 }
192
193 /*Friction law variables*/
194 switch(frictionlaw){
195 case 1:
196 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
197 iomodel->FetchDataToInput(inputs,elements,"md.friction.coefficient",FrictionCoefficientEnum);
198 iomodel->FetchDataToInput(inputs,elements,"md.friction.p",FrictionPEnum);
199 iomodel->FetchDataToInput(inputs,elements,"md.friction.q",FrictionQEnum);
200 if (FrictionCoupling==3){
201 iomodel->FetchDataToInput(inputs,elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
202 else if(FrictionCoupling==4){
203 iomodel->FetchDataToInput(inputs,elements,"md.friction.effective_pressure",EffectivePressureEnum);
204 }
205 break;
206 case 2:
207 iomodel->FetchDataToInput(inputs,elements,"md.friction.C",FrictionCEnum);
208 iomodel->FetchDataToInput(inputs,elements,"md.friction.m",FrictionMEnum);
209 break;
210 case 3:
211 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
212 iomodel->FetchDataToInput(inputs,elements,"md.friction.C",FrictionCEnum);
213 iomodel->FetchDataToInput(inputs,elements,"md.friction.As",FrictionAsEnum);
214 iomodel->FetchDataToInput(inputs,elements,"md.friction.q",FrictionQEnum);
215 if (FrictionCoupling==3){
216 iomodel->FetchDataToInput(inputs,elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
217 else if(FrictionCoupling==4){
218 iomodel->FetchDataToInput(inputs,elements,"md.friction.effective_pressure",EffectivePressureEnum);
219 }
220 break;
221 case 4:
222 iomodel->FetchDataToInput(inputs,elements,"md.friction.coefficient",FrictionCoefficientEnum);
223 iomodel->FetchDataToInput(inputs,elements,"md.friction.p",FrictionPEnum);
224 iomodel->FetchDataToInput(inputs,elements,"md.friction.q",FrictionQEnum);
225 iomodel->FetchDataToInput(inputs,elements,"md.initialization.pressure",PressureEnum);
226 iomodel->FetchDataToInput(inputs,elements,"md.initialization.temperature",TemperatureEnum);
227 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
228 break;
229 case 5:
230 iomodel->FetchDataToInput(inputs,elements,"md.friction.coefficient",FrictionCoefficientEnum);
231 iomodel->FetchDataToInput(inputs,elements,"md.friction.p",FrictionPEnum);
232 iomodel->FetchDataToInput(inputs,elements,"md.friction.q",FrictionQEnum);
233 iomodel->FetchDataToInput(inputs,elements,"md.friction.water_layer",FrictionWaterLayerEnum);
234 break;
235 case 6:
236 iomodel->FetchDataToInput(inputs,elements,"md.friction.C",FrictionCEnum);
237 iomodel->FetchDataToInput(inputs,elements,"md.friction.m",FrictionMEnum);
238 iomodel->FetchDataToInput(inputs,elements,"md.initialization.pressure",PressureEnum);
239 iomodel->FetchDataToInput(inputs,elements,"md.initialization.temperature",TemperatureEnum);
240 break;
241 case 7:
242 iomodel->FindConstant(&FrictionCoupling,"md.friction.coupling");
243 iomodel->FetchDataToInput(inputs,elements,"md.friction.coefficient",FrictionCoefficientEnum);
244 iomodel->FetchDataToInput(inputs,elements,"md.friction.coefficientcoulomb",FrictionCoefficientcoulombEnum);
245 iomodel->FetchDataToInput(inputs,elements,"md.friction.p",FrictionPEnum);
246 iomodel->FetchDataToInput(inputs,elements,"md.friction.q",FrictionQEnum);
247 if (FrictionCoupling==3){
248 iomodel->FetchDataToInput(inputs,elements,"md.friction.effective_pressure",FrictionEffectivePressureEnum);}
249 else if(FrictionCoupling==4){
250 iomodel->FetchDataToInput(inputs,elements,"md.friction.effective_pressure",EffectivePressureEnum);
251 }
252 break;
253 case 9:
254 iomodel->FetchDataToInput(inputs,elements,"md.friction.coefficient",FrictionCoefficientEnum);
255 iomodel->FetchDataToInput(inputs,elements,"md.friction.pressure_adjusted_temperature",FrictionPressureAdjustedTemperatureEnum);
256 InputUpdateFromConstantx(inputs,elements,1.,FrictionPEnum);
257 InputUpdateFromConstantx(inputs,elements,1.,FrictionQEnum);
258 break;
259 default:
260 _error_("friction law not supported");
261 }
262
263 /*Free data: */
264 iomodel->DeleteData(3,"md.initialization.temperature","md.initialization.waterfraction","md.initialization.pressure");
265
266}/*}}}*/
267void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
268
269 int numoutputs;
270 char** requestedoutputs = NULL;
271
272 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.stabilization",ThermalStabilizationEnum));
273 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.maxiter",ThermalMaxiterEnum));
274 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.reltol",ThermalReltolEnum));
275 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isenthalpy",ThermalIsenthalpyEnum));
276 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdynamicbasalspc",ThermalIsdynamicbasalspcEnum));
277 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.isdrainicecolumn",ThermalIsdrainicecolumnEnum));
278 parameters->AddObject(iomodel->CopyConstantObject("md.thermal.watercolumn_upperlimit",ThermalWatercolumnUpperlimitEnum));
279 parameters->AddObject(iomodel->CopyConstantObject("md.friction.law",FrictionLawEnum));
280
281 iomodel->FindConstant(&requestedoutputs,&numoutputs,"md.thermal.requested_outputs");
282 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
283 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
284 iomodel->DeleteData(&requestedoutputs,numoutputs,"md.thermal.requested_outputs");
285
286 /*Deal with friction parameters*/
287 int frictionlaw;
288 iomodel->FindConstant(&frictionlaw,"md.friction.law");
289 if(frictionlaw==6){
290 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
291 }
292 if(frictionlaw==4){
293 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
294 parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
295 parameters->AddObject(iomodel->CopyConstantObject("md.friction.effective_pressure_limit",FrictionEffectivePressureLimitEnum));
296 }
297 if(frictionlaw==1 || frictionlaw==3 || frictionlaw==7){
298 parameters->AddObject(iomodel->CopyConstantObject("md.friction.coupling",FrictionCouplingEnum));
299 parameters->AddObject(iomodel->CopyConstantObject("md.friction.effective_pressure_limit",FrictionEffectivePressureLimitEnum));
300 }
301 if(frictionlaw==9){
302 parameters->AddObject(iomodel->CopyConstantObject("md.friction.gamma",FrictionGammaEnum));
303 parameters->AddObject(iomodel->CopyConstantObject("md.friction.effective_pressure_limit",FrictionEffectivePressureLimitEnum));
304 parameters->AddObject(new IntParam(FrictionCouplingEnum,0));
305 }
306}/*}}}*/
307
308/*Finite Element Analysis*/
309void EnthalpyAnalysis::ApplyBasalConstraints(IssmDouble* local_spc,Element* element){/*{{{*/
310
311 /* Do not check if ice in element, this may lead to inconsistencies between cpu partitions */
312 /* Only update constraints at the base. */
313 if(!(element->IsOnBase())) return;
314
315 /*Intermediary*/
316 bool isdynamicbasalspc;
317 int numindices;
318 int *indices = NULL;
319 IssmDouble pressure;
320
321 /*Check wether dynamic basal boundary conditions are activated */
322 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
323 if(!isdynamicbasalspc) return;
324
325 /*Get parameters and inputs: */
326 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
327
328 /*Fetch indices of basal & surface nodes for this finite element*/
329 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
330 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
331
332 GaussPenta* gauss=new GaussPenta();
333 for(int i=0;i<numindices;i++){
334 gauss->GaussNode(element->GetElementType(),indices[i]);
335
336 pressure_input->GetInputValue(&pressure,gauss);
337
338 /*apply or release spc*/
339 Node* node=element->GetNode(indices[i]);
340 if(!node->IsActive()) continue;
341 if(local_spc[node->Lid()]==1.){
342 pressure_input->GetInputValue(&pressure, gauss);
343 node->ApplyConstraint(0,PureIceEnthalpy(element,pressure));
344 }
345 else {
346 node->DofInFSet(0);
347 }
348 }
349
350 /*Free resources:*/
351 xDelete<int>(indices);
352 delete gauss;
353}/*}}}*/
354void EnthalpyAnalysis::ComputeBasalMeltingrate(FemModel* femmodel){/*{{{*/
355 /*Compute basal melting rates: */
356 for(Object* & object : femmodel->elements->objects){
357 Element* element=xDynamicCast<Element*>(object);
358 ComputeBasalMeltingrate(element);
359 }
360
361 /*extrude inputs*/
362 femmodel->parameters->SetParam(BasalforcingsGroundediceMeltingRateEnum,InputToExtrudeEnum);
363 extrudefrombase_core(femmodel);
364}/*}}}*/
365void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
366 /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
367 /* melting rate is positive when melting, negative when refreezing*/
368
369 /* Check if ice in element */
370 if(!element->IsIceInElement()) return;
371
372 /* Only compute melt rates at the base of grounded ice*/
373 if(!element->IsOnBase() || element->IsAllFloating()) return;
374
375 /* Intermediaries */
376 bool converged;
377 const int dim=3;
378 int i,is,state;
379 int nodedown,nodeup,numnodes,numsegments;
380 int enthalpy_enum;
381 IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim],d1pressure[dim];
382 IssmDouble basalfriction,alpha2,geothermalflux,heatflux;
383 IssmDouble dt,yts;
384 IssmDouble melting_overshoot,lambda;
385 IssmDouble vx,vy,vz;
386 IssmDouble *xyz_list = NULL;
387 IssmDouble *xyz_list_base = NULL;
388 int *pairindices = NULL;
389
390 /*Fetch parameters*/
391 element->GetVerticesCoordinates(&xyz_list);
392 element->GetVerticesCoordinatesBase(&xyz_list_base);
393 element->GetInputValue(&converged,ConvergedEnum);
394 element->FindParam(&dt,TimesteppingTimeStepEnum);
395 element->FindParam(&yts, ConstantsYtsEnum);
396
397 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum;
398 else enthalpy_enum=EnthalpyEnum;
399
400 IssmDouble latentheat = element->FindParam(MaterialsLatentheatEnum);
401 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
402 IssmDouble rho_water = element->FindParam(MaterialsRhoFreshwaterEnum);
403 IssmDouble beta = element->FindParam(MaterialsBetaEnum);
404 IssmDouble kappa = EnthalpyDiffusionParameterVolume(element,enthalpy_enum); _assert_(kappa>=0.);
405 IssmDouble kappa_mix;
406
407 /*retrieve inputs*/
408 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
409 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
410 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
411
412 /*Build friction element, needed later: */
413 Friction* friction=new Friction(element,3);
414
415 /******** MELTING RATES ************************************//*{{{*/
416 element->NormalBase(&normal_base[0],xyz_list_base);
417 element->VerticalSegmentIndicesBase(&pairindices,&numsegments);
418 IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
419 IssmDouble* heating = xNew<IssmDouble>(numsegments);
420
421 numnodes=element->GetNumberOfNodes();
422 IssmDouble* enthalpies = xNew<IssmDouble>(numnodes);
423 IssmDouble* pressures = xNew<IssmDouble>(numnodes);
424 IssmDouble* watercolumns = xNew<IssmDouble>(numnodes);
425 IssmDouble* basalmeltingrates = xNew<IssmDouble>(numnodes);
426 element->GetInputListOnNodes(enthalpies,enthalpy_enum);
427 element->GetInputListOnNodes(pressures,PressureEnum);
428 element->GetInputListOnNodes(watercolumns,WatercolumnEnum);
429 element->GetInputListOnNodes(basalmeltingrates,BasalforcingsGroundediceMeltingRateEnum);
430
431 IssmDouble watercolumnupperlimit = element->FindParam(ThermalWatercolumnUpperlimitEnum);
432
433 Gauss* gauss=element->NewGauss();
434 for(is=0;is<numsegments;is++){
435 nodedown = pairindices[is*2+0];
436 nodeup = pairindices[is*2+1];
437 gauss->GaussNode(element->GetElementType(),nodedown);
438
439 state=GetThermalBasalCondition(element, enthalpies[nodedown], enthalpies[nodeup], pressures[nodedown], pressures[nodeup], watercolumns[nodedown], basalmeltingrates[nodedown]);
440 switch (state) {
441 case 0:
442 // cold, dry base: apply basal surface forcing
443 for(i=0;i<3;i++) vec_heatflux[i]=0.;
444 break;
445 case 1: case 2: case 3:
446 // case 1 : cold, wet base: keep at pressure melting point
447 // case 2: temperate, thin refreezing base: release spc
448 // case 3: temperate, thin melting base: set spc
449 enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
450 for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
451 break;
452 case 4:
453 // temperate, thick melting base: set grad H*n=0
454 kappa_mix=GetWetIceConductivity(element, enthalpies[nodedown], pressures[nodedown]);
455 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
456 for(i=0;i<3;i++) vec_heatflux[i]=kappa_mix*beta*d1pressure[i];
457 break;
458 default:
459 _printf0_(" unknown thermal basal state found!");
460 }
461 if(state==0) meltingrate_enthalpy[is]=0.;
462 else{
463 /*heat flux along normal*/
464 heatflux=0.;
465 for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
466
467 /*basal friction*/
468 friction->GetAlpha2(&alpha2,gauss);
469 friction->GetBasalSlidingSpeeds(&vx, &vy, &vz, gauss);
470 basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
471 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
472 /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
473 heating[is]=(heatflux+basalfriction+geothermalflux);
474 meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
475 }
476 }/*}}}*/
477
478 /******** UPDATE MELTINGRATES AND WATERCOLUMN **************//*{{{*/
479 for(is=0;is<numsegments;is++){
480 nodedown = pairindices[is*2+0];
481 nodeup = pairindices[is*2+1];
482 if(dt!=0.){
483 if(watercolumns[nodedown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
484 lambda = -watercolumns[nodedown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
485 watercolumns[nodedown]=0.;
486 basalmeltingrates[nodedown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
487 enthalpies[nodedown]+=(1.-lambda)*dt/yts*meltingrate_enthalpy[is]*latentheat*rho_ice; // use rest of energy to cool down base: dE=L*m, m=(1-lambda)*meltingrate*rho_ice
488 }
489 else{
490 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
491 watercolumns[nodedown]+=dt*meltingrate_enthalpy[is];
492 }
493 if(watercolumns[nodedown]>watercolumnupperlimit) watercolumns[nodedown]=watercolumnupperlimit;
494 }
495 else{
496 basalmeltingrates[nodedown]=meltingrate_enthalpy[is];
497 if(watercolumns[nodedown]+meltingrate_enthalpy[is]<0.)
498 watercolumns[nodedown]=0.;
499 else
500 watercolumns[nodedown]+=meltingrate_enthalpy[is];
501 }
502 basalmeltingrates[nodedown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
503 _assert_(watercolumns[nodedown]>=0.);
504 }/*}}}*/
505
506 /*feed updated variables back into model*/
507 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
508 if(dt!=0.){
509 element->AddInput(enthalpy_enum,enthalpies,finite_element);
510 element->AddInput(WatercolumnEnum,watercolumns,finite_element);
511 }
512 element->AddInput(BasalforcingsGroundediceMeltingRateEnum,basalmeltingrates,P1DGEnum);
513
514 /*Clean up and return*/
515 delete gauss;
516 delete friction;
517 xDelete<int>(pairindices);
518 xDelete<IssmDouble>(enthalpies);
519 xDelete<IssmDouble>(pressures);
520 xDelete<IssmDouble>(watercolumns);
521 xDelete<IssmDouble>(basalmeltingrates);
522 xDelete<IssmDouble>(meltingrate_enthalpy);
523 xDelete<IssmDouble>(heating);
524 xDelete<IssmDouble>(xyz_list);
525 xDelete<IssmDouble>(xyz_list_base);
526}/*}}}*/
527void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
528
529 IssmDouble dt;
530 bool isdynamicbasalspc;
531
532 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
533 femmodel->parameters->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
534
535 if(VerboseSolution()) _printf0_(" computing enthalpy\n");
536 femmodel->SetCurrentConfiguration(EnthalpyAnalysisEnum);
537 if((dt>0.) && isdynamicbasalspc) UpdateBasalConstraints(femmodel);
538 solutionsequence_thermal_nonlinear(femmodel);
539
540 /*transfer enthalpy to enthalpy picard for the next step: */
541 InputDuplicatex(femmodel,EnthalpyEnum,EnthalpyPicardEnum);
542
543 PostProcessing(femmodel);
544
545}/*}}}*/
546void EnthalpyAnalysis::PreCore(FemModel* femmodel){/*{{{*/
547 _error_("not implemented");
548}/*}}}*/
549ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
550 /*Default, return NULL*/
551 return NULL;
552}/*}}}*/
553ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
554_error_("Not implemented");
555}/*}}}*/
556ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
557
558 /* Check if ice in element */
559 if(!element->IsIceInElement()) return NULL;
560
561 /*compute all stiffness matrices for this element*/
562 ElementMatrix* Ke1=CreateKMatrixVolume(element);
563 ElementMatrix* Ke2=CreateKMatrixShelf(element);
564 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
565
566 /*clean-up and return*/
567 delete Ke1;
568 delete Ke2;
569 return Ke;
570}/*}}}*/
571ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
572
573 /* Check if ice in element */
574 if(!element->IsIceInElement()) return NULL;
575
576 /*Intermediaries */
577 int stabilization;
578 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
579 IssmDouble h,hx,hy,hz,vx,vy,vz;
580 IssmDouble tau_parameter,diameter;
581 IssmDouble tau_parameter_anisotropic[2],tau_parameter_hor,tau_parameter_ver;
582 IssmDouble D_scalar;
583 IssmDouble* xyz_list = NULL;
584
585 /*Fetch number of nodes and dof for this finite element*/
586 int numnodes = element->GetNumberOfNodes();
587
588 /*Initialize Element vector and other vectors*/
589 ElementMatrix* Ke = element->NewElementMatrix();
590 IssmDouble* basis = xNew<IssmDouble>(numnodes);
591 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
592 IssmDouble K[3][3];
593
594 /*Retrieve all inputs and parameters*/
595 element->GetVerticesCoordinates(&xyz_list);
596 element->FindParam(&dt,TimesteppingTimeStepEnum);
597 element->FindParam(&stabilization,ThermalStabilizationEnum);
598 IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
599 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
600 IssmDouble gravity = element->FindParam(ConstantsGEnum);
601 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
602 IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
603 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
604 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
605 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
606 Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
607 Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
608 Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
609
610 /*Enthalpy diffusion parameter*/
611 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
612
613 /* Start looping on the number of gaussian points: */
614 Gauss* gauss=element->NewGauss(4);
615 while(gauss->next()){
616
617 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
618 element->NodalFunctions(basis,gauss);
619 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
620
621 D_scalar=gauss->weight*Jdet;
622 if(dt!=0.) D_scalar=D_scalar*dt;
623
624 /*Conduction: */
625 for(int i=0;i<numnodes;i++){
626 for(int j=0;j<numnodes;j++){
627 Ke->values[i*numnodes+j] += D_scalar*kappa/rho_ice*(
628 dbasis[0*numnodes+j]*dbasis[0*numnodes+i] + dbasis[1*numnodes+j]*dbasis[1*numnodes+i] + dbasis[2*numnodes+j]*dbasis[2*numnodes+i]
629 );
630 }
631 }
632
633 /*Advection: */
634 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
635 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
636 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
637 for(int i=0;i<numnodes;i++){
638 for(int j=0;j<numnodes;j++){
639 Ke->values[i*numnodes+j] += D_scalar*(
640 vx*dbasis[0*numnodes+j]*basis[i] + vy*dbasis[1*numnodes+j]*basis[i] +vz*dbasis[2*numnodes+j]*basis[i]
641 );
642 }
643 }
644
645 /*Transient: */
646 if(dt!=0.){
647 D_scalar=gauss->weight*Jdet;
648 for(int i=0;i<numnodes;i++){
649 for(int j=0;j<numnodes;j++){
650 Ke->values[i*numnodes+j] += D_scalar*basis[j]*basis[i];
651 }
652 }
653 D_scalar=D_scalar*dt;
654 }
655
656 /*Artificial diffusivity*/
657 if(stabilization==1){
658 element->ElementSizes(&hx,&hy,&hz);
659 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
660 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
661 K[0][0]=h/(2.*vel)*fabs(vx*vx); K[0][1]=h/(2.*vel)*fabs(vx*vy); K[0][2]=h/(2.*vel)*fabs(vx*vz);
662 K[1][0]=h/(2.*vel)*fabs(vy*vx); K[1][1]=h/(2.*vel)*fabs(vy*vy); K[1][2]=h/(2.*vel)*fabs(vy*vz);
663 K[2][0]=h/(2.*vel)*fabs(vz*vx); K[2][1]=h/(2.*vel)*fabs(vz*vy); K[2][2]=h/(2.*vel)*fabs(vz*vz);
664 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
665
666 for(int i=0;i<numnodes;i++){
667 for(int j=0;j<numnodes;j++){
668 Ke->values[i*numnodes+j] += (
669 dbasis[0*numnodes+i] *(K[0][0]*dbasis[0*numnodes+j] + K[0][1]*dbasis[1*numnodes+j]+ K[0][2]*dbasis[2*numnodes+j]) +
670 dbasis[1*numnodes+i] *(K[1][0]*dbasis[0*numnodes+j] + K[1][1]*dbasis[1*numnodes+j]+ K[1][2]*dbasis[2*numnodes+j]) +
671 dbasis[2*numnodes+i] *(K[2][0]*dbasis[0*numnodes+j] + K[2][1]*dbasis[1*numnodes+j]+ K[2][2]*dbasis[2*numnodes+j])
672 );
673 }
674 }
675 }
676 /*SUPG*/
677 else if(stabilization==2){
678 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
679 diameter=element->MinEdgeLength(xyz_list);
680 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
681 for(int i=0;i<numnodes;i++){
682 for(int j=0;j<numnodes;j++){
683 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
684 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*
685 ((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
686 }
687 }
688 if(dt!=0.){
689 D_scalar=gauss->weight*Jdet;
690 for(int i=0;i<numnodes;i++){
691 for(int j=0;j<numnodes;j++){
692 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
693 }
694 }
695 }
696 }
697 /*anisotropic SUPG*/
698 else if(stabilization==3){
699 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
700 element->ElementSizes(&hx,&hy,&hz);
701 element->StabilizationParameterAnisotropic(&tau_parameter_anisotropic[0],u-um,v-vm,w-wm,hx,hy,hz,kappa/rho_ice);
702 tau_parameter_hor=tau_parameter_anisotropic[0];
703 tau_parameter_ver=tau_parameter_anisotropic[1];
704 for(int i=0;i<numnodes;i++){
705 for(int j=0;j<numnodes;j++){
706 Ke->values[i*numnodes+j]+=D_scalar*
707 (sqrt(tau_parameter_hor)*(u-um)*dbasis[0*numnodes+i]+sqrt(tau_parameter_hor)*(v-vm)*dbasis[1*numnodes+i]+sqrt(tau_parameter_ver)*(w-wm)*dbasis[2*numnodes+i])*
708 (sqrt(tau_parameter_hor)*(u-um)*dbasis[0*numnodes+j]+sqrt(tau_parameter_hor)*(v-vm)*dbasis[1*numnodes+j]+sqrt(tau_parameter_ver)*(w-wm)*dbasis[2*numnodes+j]);
709 }
710 }
711 }
712 }
713
714 /*Clean up and return*/
715 xDelete<IssmDouble>(xyz_list);
716 xDelete<IssmDouble>(basis);
717 xDelete<IssmDouble>(dbasis);
718 delete gauss;
719 return Ke;
720}/*}}}*/
721ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
722
723 /* Check if ice in element */
724 if(!element->IsIceInElement()) return NULL;
725
726 /*Initialize Element matrix and return if necessary*/
727 if(!element->IsOnBase() || !element->IsAllFloating()) return NULL;
728
729 /*Intermediaries*/
730 IssmDouble dt,Jdet,D;
731 IssmDouble *xyz_list_base = NULL;
732
733 /*Fetch number of nodes for this finite element*/
734 int numnodes = element->GetNumberOfNodes();
735
736 /*Initialize vectors*/
737 ElementMatrix* Ke = element->NewElementMatrix();
738 IssmDouble* basis = xNew<IssmDouble>(numnodes);
739
740 /*Retrieve all inputs and parameters*/
741 element->GetVerticesCoordinatesBase(&xyz_list_base);
742 element->FindParam(&dt,TimesteppingTimeStepEnum);
743 IssmDouble gravity = element->FindParam(ConstantsGEnum);
744 IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
745 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
746 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
747 IssmDouble mixed_layer_capacity= element->FindParam(MaterialsMixedLayerCapacityEnum);
748 IssmDouble thermal_exchange_vel= element->FindParam(MaterialsThermalExchangeVelocityEnum);
749
750 /* Start looping on the number of gaussian points: */
751 Gauss* gauss=element->NewGaussBase(4);
752 while(gauss->next()){
753
754 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
755 element->NodalFunctions(basis,gauss);
756
757 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
758 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
759 for(int i=0;i<numnodes;i++) for(int j=0;j<numnodes;j++) Ke->values[i*numnodes+j] += D*basis[i]*basis[j];
760 }
761
762 /*Clean up and return*/
763 delete gauss;
764 xDelete<IssmDouble>(basis);
765 xDelete<IssmDouble>(xyz_list_base);
766 return Ke;
767}/*}}}*/
768ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
769
770 /* Check if ice in element */
771 if(!element->IsIceInElement()) return NULL;
772
773 /*compute all load vectors for this element*/
774 ElementVector* pe1=CreatePVectorVolume(element);
775 ElementVector* pe2=CreatePVectorSheet(element);
776 ElementVector* pe3=CreatePVectorShelf(element);
777 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
778
779 /*clean-up and return*/
780 delete pe1;
781 delete pe2;
782 delete pe3;
783 return pe;
784}/*}}}*/
785ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
786
787 /* Check if ice in element */
788 if(!element->IsIceInElement()) return NULL;
789
790 /*Intermediaries*/
791 int i, stabilization;
792 IssmDouble Jdet,phi,dt;
793 IssmDouble enthalpy, Hpmp;
794 IssmDouble enthalpypicard, d1enthalpypicard[3];
795 IssmDouble pressure, d1pressure[3], d2pressure;
796 IssmDouble waterfractionpicard;
797 IssmDouble kappa,tau_parameter,diameter,hx,hy,hz,kappa_w;
798 IssmDouble tau_parameter_anisotropic[2],tau_parameter_hor,tau_parameter_ver;
799 IssmDouble u,v,w;
800 IssmDouble scalar_def, scalar_sens ,scalar_transient;
801 IssmDouble* xyz_list = NULL;
802 IssmDouble d1H_d1P, d1P2;
803
804 /*Fetch number of nodes and dof for this finite element*/
805 int numnodes = element->GetNumberOfNodes();
806 int numvertices = element->GetNumberOfVertices();
807
808 /*Initialize Element vector*/
809 ElementVector* pe = element->NewElementVector();
810 IssmDouble* basis = xNew<IssmDouble>(numnodes);
811 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
812
813 /*Retrieve all inputs and parameters*/
814 element->GetVerticesCoordinates(&xyz_list);
815 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
816 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
817 IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
818 IssmDouble temperateiceconductivity = element->FindParam(MaterialsTemperateiceconductivityEnum);
819 IssmDouble beta = element->FindParam(MaterialsBetaEnum);
820 IssmDouble latentheat = element->FindParam(MaterialsLatentheatEnum);
821 element->FindParam(&dt,TimesteppingTimeStepEnum);
822 element->FindParam(&stabilization,ThermalStabilizationEnum);
823 Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
824 Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
825 Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
826 Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
827 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
828 Input* enthalpy_input=NULL;
829 if(dt>0.){
830 enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);
831 }
832
833 /* Start looping on the number of gaussian points: */
834 Gauss* gauss=element->NewGauss(4);
835 while(gauss->next()){
836
837 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
838 element->NodalFunctions(basis,gauss);
839
840 /*viscous dissipation*/
841 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
842
843 scalar_def=phi/rho_ice*Jdet*gauss->weight;
844 if(dt!=0.) scalar_def=scalar_def*dt;
845
846 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
847
848 /*sensible heat flux in temperate ice*/
849 enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
850 pressure_input->GetInputValue(&pressure,gauss);
851 Hpmp=this->PureIceEnthalpy(element, pressure);
852
853 if(enthalpypicard>=Hpmp){
854 enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
855 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
856 d2pressure=0.; // for linear elements, 2nd derivative is zero
857
858 d1H_d1P=0.;
859 for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
860 d1P2=0.;
861 for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
862
863 scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
864 if(dt!=0.) scalar_sens=scalar_sens*dt;
865 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
866 }
867
868 /* Build transient now */
869 if(dt>0.){
870 enthalpy_input->GetInputValue(&enthalpy, gauss);
871 scalar_transient=enthalpy*Jdet*gauss->weight;
872 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
873 }
874
875 /* SUPG */
876 if(stabilization==2){
877 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
878 diameter=element->MinEdgeLength(xyz_list);
879 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
880 vx_input->GetInputValue(&u,gauss);
881 vy_input->GetInputValue(&v,gauss);
882 vz_input->GetInputValue(&w,gauss);
883 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
884
885 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
886
887 if(dt!=0.){
888 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
889 }
890 }
891 /* anisotropic SUPG */
892 else if(stabilization==3){
893 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
894 element->ElementSizes(&hx,&hy,&hz);
895 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
896 vx_input->GetInputValue(&u,gauss);
897 vy_input->GetInputValue(&v,gauss);
898 vz_input->GetInputValue(&w,gauss);
899 element->StabilizationParameterAnisotropic(&tau_parameter_anisotropic[0],u,v,w,hx,hy,hz,kappa/rho_ice);
900 tau_parameter_hor=tau_parameter_anisotropic[0];
901 tau_parameter_ver=tau_parameter_anisotropic[1];
902
903 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*(tau_parameter_hor*u*dbasis[0*numnodes+i]+tau_parameter_hor*v*dbasis[1*numnodes+i]+tau_parameter_ver*w*dbasis[2*numnodes+i]);
904 }
905 }
906
907 /*Clean up and return*/
908 xDelete<IssmDouble>(basis);
909 xDelete<IssmDouble>(dbasis);
910 xDelete<IssmDouble>(xyz_list);
911 delete gauss;
912 return pe;
913
914}/*}}}*/
915ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
916
917 /* Check if ice in element */
918 if(!element->IsIceInElement()) return NULL;
919
920 /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
921 if(!element->IsOnBase() || element->IsAllFloating()) return NULL;
922
923 bool converged, isdynamicbasalspc;
924 int i, state;
925 int enthalpy_enum;
926 IssmDouble dt,Jdet,scalar;
927 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
928 IssmDouble vx,vy,vz;
929 IssmDouble alpha2,basalfriction,geothermalflux,heatflux;
930 IssmDouble *xyz_list_base = NULL;
931
932 /*Fetch number of nodes for this finite element*/
933 int numnodes = element->GetNumberOfNodes();
934
935 /*Initialize vectors*/
936 ElementVector* pe = element->NewElementVector();
937 IssmDouble* basis = xNew<IssmDouble>(numnodes);
938
939 /*Retrieve all inputs and parameters*/
940 element->GetVerticesCoordinatesBase(&xyz_list_base);
941 element->FindParam(&dt,TimesteppingTimeStepEnum);
942 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
943 element->GetInputValue(&converged,ConvergedEnum);
944 if(dt==0. && !converged) enthalpy_enum=EnthalpyPicardEnum; // use enthalpy from last iteration
945 else enthalpy_enum=EnthalpyEnum; // use enthalpy from last time step
946 Input* enthalpy_input = element->GetInput(enthalpy_enum); _assert_(enthalpy_input);
947 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
948 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
949 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
950 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
951 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
952
953 /*Build friction element, needed later: */
954 Friction* friction=new Friction(element,3);
955
956 /* Start looping on the number of gaussian points: */
957 Gauss* gauss=element->NewGaussBase(4);
958 Gauss* gaussup=element->NewGaussTop(4);
959 while(gauss->next() && gaussup->next()){
960
961 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
962 element->NodalFunctions(basis,gauss);
963
964 if(isdynamicbasalspc){
965 enthalpy_input->GetInputValue(&enthalpy,gauss);
966 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
967 pressure_input->GetInputValue(&pressure,gauss);
968 pressure_input->GetInputValue(&pressureup,gaussup);
969 watercolumn_input->GetInputValue(&watercolumn,gauss);
970 meltingrate_input->GetInputValue(&meltingrate,gauss);
971 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
972 }
973 else
974 state=0;
975
976 switch (state) {
977 case 0: case 1: case 2: case 3:
978 // cold, dry base; cold, wet base; refreezing temperate base; thin temperate base:
979 // Apply basal surface forcing.
980 // Interpolated values of enthalpy on gauss nodes may indicate cold base,
981 // although one node might have become temperate. So keep heat flux switched on.
982 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
983 friction->GetAlpha2(&alpha2,gauss);
984 friction->GetBasalSlidingSpeeds(&vx, &vy, &vz, gauss);
985 basalfriction=alpha2*(vx*vx+vy*vy+vz*vz);
986 heatflux=(basalfriction+geothermalflux)/(rho_ice);
987 scalar=gauss->weight*Jdet*heatflux;
988 if(dt!=0.) scalar=dt*scalar;
989 for(i=0;i<numnodes;i++)
990 pe->values[i]+=scalar*basis[i];
991 break;
992 case 4:
993 // temperate, thick melting base: set grad H*n=0
994 for(i=0;i<numnodes;i++)
995 pe->values[i]+=0.;
996 break;
997 default:
998 _printf0_(" unknown thermal basal state found!");
999 }
1000 }
1001
1002 /*Clean up and return*/
1003 delete gauss;
1004 delete gaussup;
1005 delete friction;
1006 xDelete<IssmDouble>(basis);
1007 xDelete<IssmDouble>(xyz_list_base);
1008 return pe;
1009
1010}/*}}}*/
1011ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
1012
1013 /* Check if ice in element */
1014 if(!element->IsIceInElement()) return NULL;
1015
1016 /*Get basal element*/
1017 if(!element->IsOnBase() || !element->IsAllFloating()) return NULL;
1018
1019 IssmDouble Hpmp,dt,Jdet,scalar_ocean,pressure;
1020 IssmDouble *xyz_list_base = NULL;
1021
1022 /*Fetch number of nodes for this finite element*/
1023 int numnodes = element->GetNumberOfNodes();
1024
1025 /*Initialize vectors*/
1026 ElementVector* pe = element->NewElementVector();
1027 IssmDouble* basis = xNew<IssmDouble>(numnodes);
1028
1029 /*Retrieve all inputs and parameters*/
1030 element->GetVerticesCoordinatesBase(&xyz_list_base);
1031 element->FindParam(&dt,TimesteppingTimeStepEnum);
1032 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
1033 IssmDouble gravity = element->FindParam(ConstantsGEnum);
1034 IssmDouble rho_water = element->FindParam(MaterialsRhoSeawaterEnum);
1035 IssmDouble rho_ice = element->FindParam(MaterialsRhoIceEnum);
1036 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
1037 IssmDouble mixed_layer_capacity= element->FindParam(MaterialsMixedLayerCapacityEnum);
1038 IssmDouble thermal_exchange_vel= element->FindParam(MaterialsThermalExchangeVelocityEnum);
1039
1040 /* Start looping on the number of gaussian points: */
1041 Gauss* gauss=element->NewGaussBase(4);
1042 while(gauss->next()){
1043
1044 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
1045 element->NodalFunctions(basis,gauss);
1046
1047 pressure_input->GetInputValue(&pressure,gauss);
1048 Hpmp=element->PureIceEnthalpy(pressure);
1049
1050 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*Hpmp/(heatcapacity*rho_ice);
1051 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
1052
1053 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
1054 }
1055
1056 /*Clean up and return*/
1057 delete gauss;
1058 xDelete<IssmDouble>(basis);
1059 xDelete<IssmDouble>(xyz_list_base);
1060 return pe;
1061}/*}}}*/
1062void EnthalpyAnalysis::DrainWaterfraction(FemModel* femmodel){/*{{{*/
1063 /*Drain excess water fraction in ice column: */
1064 ComputeWaterfractionDrainage(femmodel);
1065 DrainageUpdateWatercolumn(femmodel);
1066 DrainageUpdateEnthalpy(femmodel);
1067}/*}}}*/
1068void EnthalpyAnalysis::ComputeWaterfractionDrainage(FemModel* femmodel){/*{{{*/
1069
1070 int k,numnodes;
1071 IssmDouble dt;
1072 Element* element= NULL;
1073
1074 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1075
1076 for(Object* & object : femmodel->elements->objects){
1077 element=xDynamicCast<Element*>(object);
1078 numnodes=element->GetNumberOfNodes();
1079 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1080 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1081
1082 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1083 for(k=0; k<numnodes;k++){
1084 drainage[k]=DrainageFunctionWaterfraction(waterfractions[k], dt);
1085 }
1086 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1087 element->AddInput(WaterfractionDrainageEnum,drainage,finite_element);
1088
1089 xDelete<IssmDouble>(waterfractions);
1090 xDelete<IssmDouble>(drainage);
1091 }
1092}/*}}}*/
1093void EnthalpyAnalysis::DrainageUpdateWatercolumn(FemModel* femmodel){/*{{{*/
1094
1095 int k,numnodes, numbasalnodes;
1096 IssmDouble dt;
1097 int* basalnodeindices=NULL;
1098 Element* element= NULL;
1099
1100 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1101
1102 /*depth-integrate the drained water fraction */
1103 femmodel->parameters->SetParam(WaterfractionDrainageEnum,InputToDepthaverageInEnum);
1104 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToDepthaverageOutEnum);
1105 depthaverage_core(femmodel);
1106 femmodel->parameters->SetParam(WaterfractionDrainageIntegratedEnum,InputToExtrudeEnum);
1107 extrudefrombase_core(femmodel);
1108 /*multiply depth-average by ice thickness*/
1109 for(Object* & object : femmodel->elements->objects){
1110 element=xDynamicCast<Element*>(object);
1111 numnodes=element->GetNumberOfNodes();
1112 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1113 IssmDouble* thicknesses= xNew<IssmDouble>(numnodes);
1114
1115 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1116 element->GetInputListOnNodes(thicknesses,ThicknessEnum);
1117 for(k=0;k<numnodes;k++){
1118 drainage_int[k]*=thicknesses[k];
1119 }
1120 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1121 element->AddInput(WaterfractionDrainageIntegratedEnum, drainage_int,finite_element);
1122
1123 xDelete<IssmDouble>(drainage_int);
1124 xDelete<IssmDouble>(thicknesses);
1125 }
1126
1127 /*update water column*/
1128 for(Object* & object : femmodel->elements->objects){
1129 element=xDynamicCast<Element*>(object);
1130 /* Check if ice in element */
1131 if(!element->IsIceInElement()) continue;
1132 if(!element->IsOnBase()) continue;
1133
1134 numnodes=element->GetNumberOfNodes();
1135 IssmDouble* watercolumn= xNew<IssmDouble>(numnodes);
1136 IssmDouble* drainage_int= xNew<IssmDouble>(numnodes);
1137 element->GetInputListOnNodes(watercolumn,WatercolumnEnum);
1138 element->GetInputListOnNodes(drainage_int,WaterfractionDrainageIntegratedEnum);
1139
1140 element->BasalNodeIndices(&numbasalnodes,&basalnodeindices,element->GetElementType());
1141 for(k=0;k<numbasalnodes;k++){
1142 watercolumn[basalnodeindices[k]]+=dt*drainage_int[basalnodeindices[k]];
1143 }
1144 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1145 element->AddInput(WatercolumnEnum, watercolumn,finite_element);
1146
1147 xDelete<IssmDouble>(watercolumn);
1148 xDelete<IssmDouble>(drainage_int);
1149 xDelete<int>(basalnodeindices);
1150 }
1151}/*}}}*/
1152void EnthalpyAnalysis::DrainageUpdateEnthalpy(FemModel* femmodel){/*{{{*/
1153
1154 int k,numnodes;
1155 IssmDouble dt;
1156 Element* element= NULL;
1157 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1158
1159 for(Object* & object : femmodel->elements->objects){
1160 element=xDynamicCast<Element*>(object);
1161 numnodes=element->GetNumberOfNodes();
1162 IssmDouble* enthalpies= xNew<IssmDouble>(numnodes);
1163 IssmDouble* pressures= xNew<IssmDouble>(numnodes);
1164 IssmDouble* temperatures= xNew<IssmDouble>(numnodes);
1165 IssmDouble* waterfractions= xNew<IssmDouble>(numnodes);
1166 IssmDouble* drainage= xNew<IssmDouble>(numnodes);
1167
1168 element->GetInputListOnNodes(pressures,PressureEnum);
1169 element->GetInputListOnNodes(temperatures,TemperatureEnum);
1170 element->GetInputListOnNodes(waterfractions,WaterfractionEnum);
1171 element->GetInputListOnNodes(drainage,WaterfractionDrainageEnum);
1172
1173 for(k=0;k<numnodes;k++){
1174 if(dt==0.)
1175 waterfractions[k]-=drainage[k];
1176 else
1177 waterfractions[k]-=dt*drainage[k];
1178
1179 element->ThermalToEnthalpy(&enthalpies[k], temperatures[k], waterfractions[k], pressures[k]);
1180 }
1181 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1182 element->AddInput(WaterfractionEnum,waterfractions,finite_element);
1183 element->AddInput(EnthalpyEnum,enthalpies,finite_element);
1184
1185 xDelete<IssmDouble>(enthalpies);
1186 xDelete<IssmDouble>(pressures);
1187 xDelete<IssmDouble>(temperatures);
1188 xDelete<IssmDouble>(waterfractions);
1189 xDelete<IssmDouble>(drainage);
1190 }
1191}/*}}}*/
1192IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
1193
1194 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
1195 IssmDouble temperateiceconductivity = element->FindParam(MaterialsTemperateiceconductivityEnum);
1196 IssmDouble thermalconductivity = element->FindParam(MaterialsThermalconductivityEnum);
1197
1198 if(enthalpy < PureIceEnthalpy(element,pressure))
1199 return thermalconductivity/heatcapacity;
1200 else
1201 return temperateiceconductivity/heatcapacity;
1202}/*}}}*/
1203IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
1204
1205 int iv;
1206 IssmDouble lambda; /* fraction of cold ice */
1207 IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
1208 IssmDouble Hc,Ht;
1209
1210 /*Get pressures and enthalpies on vertices*/
1211 int numvertices = element->GetNumberOfVertices();
1212 int effectiveconductivity_averaging;
1213 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1214 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1215 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
1216 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
1217 element->GetInputListOnVertices(pressures,PressureEnum);
1218 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
1219 element->FindParam(&effectiveconductivity_averaging,MaterialsEffectiveconductivityAveragingEnum);
1220
1221 for(iv=0;iv<numvertices;iv++){
1222 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
1223 dHpmp[iv] = enthalpies[iv]-PIE[iv];
1224 }
1225
1226 bool allequalsign = true;
1227 if(dHpmp[0]<0.){
1228 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
1229 }
1230 else{
1231 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
1232 }
1233
1234 if(allequalsign){
1235 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
1236 }
1237 else{
1238 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
1239 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
1240
1241 Hc=0.; Ht=0.;
1242 for(iv=0; iv<numvertices;iv++){
1243 if(enthalpies[iv]<PIE[iv])
1244 Hc+=(PIE[iv]-enthalpies[iv]);
1245 else
1246 Ht+=(enthalpies[iv]-PIE[iv]);
1247 }
1248 _assert_((Hc+Ht)>0.);
1249 lambda = Hc/(Hc+Ht);
1250 _assert_(lambda>=0.);
1251 _assert_(lambda<=1.);
1252
1253 if(effectiveconductivity_averaging==0){
1254 /* return arithmetic mean (volume average) of thermal conductivities, weighted by fraction of cold/temperate ice */
1255 kappa=kappa_c*lambda+(1.-lambda)*kappa_t;
1256 }
1257 else if(effectiveconductivity_averaging==1){
1258 /* return harmonic mean (reciprocal avarage) of thermal conductivities, weighted by fraction of cold/temperate ice, cf Patankar 1980, pp44 */
1259 kappa=kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c);
1260 }
1261 else if(effectiveconductivity_averaging==2){
1262 /* return geometric mean (power law) of thermal conductivities, weighted by fraction of cold/temperate ice */
1263 kappa=pow(kappa_c,lambda)*pow(kappa_t,1.-lambda);
1264 }
1265 else{
1266 _error_("effectiveconductivity_averaging not supported yet");
1267 }
1268 }
1269
1270 /*Clean up and return*/
1271 xDelete<IssmDouble>(PIE);
1272 xDelete<IssmDouble>(dHpmp);
1273 xDelete<IssmDouble>(pressures);
1274 xDelete<IssmDouble>(enthalpies);
1275 return kappa;
1276}/*}}}*/
1277void EnthalpyAnalysis::GetBasalConstraints(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1278
1279 /*Intermediary*/
1280 bool isdynamicbasalspc;
1281 IssmDouble dt;
1282
1283 /*Check wether dynamic basal boundary conditions are activated */
1284 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1285 if(!isdynamicbasalspc) return;
1286
1287 element->FindParam(&dt,TimesteppingTimeStepEnum);
1288 if(dt==0.){
1289 GetBasalConstraintsSteadystate(vec_spc,element);
1290 }
1291 else{
1292 GetBasalConstraintsTransient(vec_spc,element);
1293 }
1294}/*}}}*/
1295void EnthalpyAnalysis::GetBasalConstraintsSteadystate(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1296
1297 /* Check if ice in element */
1298 if(!element->IsIceInElement()) return;
1299
1300 /* Only update constraints at the base.
1301 * Floating ice is not affected by basal BC decision chart. */
1302 if(!(element->IsOnBase()) || element->IsAllFloating()) return;
1303
1304 /*Intermediary*/
1305 int numindices, numindicesup, state;
1306 int *indices = NULL, *indicesup = NULL;
1307 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1308
1309 /*Get parameters and inputs: */
1310 Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
1311 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1312 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1313 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1314
1315 /*Fetch indices of basal & surface nodes for this finite element*/
1316 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1317 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1318 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1319
1320 GaussPenta* gauss=new GaussPenta();
1321 GaussPenta* gaussup=new GaussPenta();
1322 for(int i=0;i<numindices;i++){
1323 gauss->GaussNode(element->GetElementType(),indices[i]);
1324 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1325
1326 enthalpy_input->GetInputValue(&enthalpy,gauss);
1327 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1328 pressure_input->GetInputValue(&pressure,gauss);
1329 pressure_input->GetInputValue(&pressureup,gaussup);
1330 watercolumn_input->GetInputValue(&watercolumn,gauss);
1331 meltingrate_input->GetInputValue(&meltingrate,gauss);
1332
1333 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1334 switch (state) {
1335 case 0:
1336 // cold, dry base: apply basal surface forcing
1337 vec_spc->SetValue(element->nodes[i]->Pid(),0.,INS_VAL);
1338 break;
1339 case 1:
1340 // cold, wet base: keep at pressure melting point
1341 vec_spc->SetValue(element->nodes[i]->Pid(),1.,INS_VAL);
1342 break;
1343 case 2:
1344 // temperate, thin refreezing base:
1345 vec_spc->SetValue(element->nodes[i]->Pid(),1.,INS_VAL);
1346 break;
1347 case 3:
1348 // temperate, thin melting base: set spc
1349 vec_spc->SetValue(element->nodes[i]->Pid(),1.,INS_VAL);
1350 break;
1351 case 4:
1352 // temperate, thick melting base:
1353 vec_spc->SetValue(element->nodes[i]->Pid(),1.,INS_VAL);
1354 break;
1355 default:
1356 _printf0_(" unknown thermal basal state found!");
1357 }
1358 }
1359
1360 /*Free resources:*/
1361 xDelete<int>(indices);
1362 xDelete<int>(indicesup);
1363 delete gauss;
1364 delete gaussup;
1365}/*}}}*/
1366void EnthalpyAnalysis::GetBasalConstraintsTransient(Vector<IssmDouble>* vec_spc,Element* element){/*{{{*/
1367
1368 /* Check if ice in element */
1369 if(!element->IsIceInElement()) return;
1370
1371 /* Only update constraints at the base.
1372 * Floating ice is not affected by basal BC decision chart.*/
1373 if(!(element->IsOnBase()) || element->IsAllFloating()) return;
1374
1375 /*Intermediary*/
1376 int numindices, numindicesup, state;
1377 int *indices = NULL, *indicesup = NULL;
1378 IssmDouble enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate;
1379
1380 /*Get parameters and inputs: */
1381 Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input); //TODO: check EnthalpyPicard?
1382 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
1383 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1384 Input* meltingrate_input = element->GetInput(BasalforcingsGroundediceMeltingRateEnum); _assert_(meltingrate_input);
1385
1386 /*Fetch indices of basal & surface nodes for this finite element*/
1387 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1388 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1389 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); _assert_(numindices==numindicesup);
1390
1391 GaussPenta* gauss=new GaussPenta();
1392 GaussPenta* gaussup=new GaussPenta();
1393
1394 for(int i=0;i<numindices;i++){
1395 gauss->GaussNode(element->GetElementType(),indices[i]);
1396 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1397
1398 enthalpy_input->GetInputValue(&enthalpy,gauss);
1399 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
1400 pressure_input->GetInputValue(&pressure,gauss);
1401 pressure_input->GetInputValue(&pressureup,gaussup);
1402 watercolumn_input->GetInputValue(&watercolumn,gauss);
1403 meltingrate_input->GetInputValue(&meltingrate,gauss);
1404
1405 state=GetThermalBasalCondition(element, enthalpy, enthalpyup, pressure, pressureup, watercolumn, meltingrate);
1406
1407 switch (state) {
1408 case 0:
1409 // cold, dry base: apply basal surface forcing
1410 vec_spc->SetValue(element->nodes[i]->Pid(),0.,INS_VAL);
1411 break;
1412 case 1:
1413 // cold, wet base: keep at pressure melting point
1414 vec_spc->SetValue(element->nodes[i]->Pid(),1.,INS_VAL);
1415 break;
1416 case 2:
1417 // temperate, thin refreezing base: release spc
1418 vec_spc->SetValue(element->nodes[i]->Pid(),0.,INS_VAL);
1419 break;
1420 case 3:
1421 // temperate, thin melting base: set spc
1422 vec_spc->SetValue(element->nodes[i]->Pid(),1.,INS_VAL);
1423 break;
1424 case 4:
1425 // temperate, thick melting base: set grad H*n=0
1426 vec_spc->SetValue(element->nodes[i]->Pid(),0.,INS_VAL);
1427 break;
1428 default:
1429 _printf0_(" unknown thermal basal state found!");
1430 }
1431
1432 }
1433
1434 /*Free resources:*/
1435 xDelete<int>(indices);
1436 xDelete<int>(indicesup);
1437 delete gauss;
1438 delete gaussup;
1439}/*}}}*/
1440void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
1441 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*1.
1442 * For node i, Bi' can be expressed in the actual coordinate system
1443 * by:
1444 * Bi_conduct=[ dh/dx ]
1445 * [ dh/dy ]
1446 * [ dh/dz ]
1447 * where h is the interpolation function for node i.
1448 *
1449 * We assume B has been allocated already, of size: 3x(1*numnodes)
1450 */
1451
1452 /*Fetch number of nodes for this finite element*/
1453 int numnodes = element->GetNumberOfNodes();
1454
1455 /*Get nodal functions derivatives*/
1456 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
1457 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
1458
1459 /*Build B: */
1460 for(int i=0;i<numnodes;i++){
1461 B[numnodes*0+i] = dbasis[0*numnodes+i];
1462 B[numnodes*1+i] = dbasis[1*numnodes+i];
1463 B[numnodes*2+i] = dbasis[2*numnodes+i];
1464 }
1465
1466 /*Clean-up*/
1467 xDelete<IssmDouble>(dbasis);
1468}/*}}}*/
1469void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
1470 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
1471}/*}}}*/
1472int EnthalpyAnalysis::GetThermalBasalCondition(Element* element, IssmDouble enthalpy, IssmDouble enthalpyup, IssmDouble pressure, IssmDouble pressureup, IssmDouble watercolumn, IssmDouble meltingrate){/*{{{*/
1473
1474 /* Check if ice in element */
1475 if(!element->IsIceInElement()) return -1;
1476
1477 /* Only update Constraints at the base of grounded ice*/
1478 if(!(element->IsOnBase())) return -1;
1479
1480 /*Intermediary*/
1481 int state=-1;
1482 IssmDouble dt;
1483
1484 /*Get parameters and inputs: */
1485 element->FindParam(&dt,TimesteppingTimeStepEnum);
1486
1487 if(enthalpy<PureIceEnthalpy(element,pressure)){
1488 if(watercolumn<=0.) state=0; // cold, dry base
1489 else state=1; // cold, wet base (refreezing)
1490 }
1491 else{
1492 if(enthalpyup<PureIceEnthalpy(element,pressureup)){
1493 if((dt==0.) && (meltingrate<0.)) state=2; // refreezing temperate base (non-physical, only for steadystate solver)
1494 else state=3; // temperate base, but no temperate layer
1495 }
1496 else state=4; // temperate layer with positive thickness
1497 }
1498
1499 _assert_(state>=0);
1500 return state;
1501}/*}}}*/
1502IssmDouble EnthalpyAnalysis::GetWetIceConductivity(Element* element, IssmDouble enthalpy, IssmDouble pressure){/*{{{*/
1503
1504 IssmDouble temperature, waterfraction;
1505 IssmDouble kappa_w = 0.6; // thermal conductivity of water (in W/m/K)
1506 IssmDouble kappa_i = element->FindParam(MaterialsThermalconductivityEnum);
1507 element->EnthalpyToThermal(&temperature, &waterfraction, enthalpy, pressure);
1508
1509 return (1.-waterfraction)*kappa_i + waterfraction*kappa_w;
1510}/*}}}*/
1511void EnthalpyAnalysis::GradientJ(Vector<IssmDouble>* gradient,Element* element,int control_type,int control_interp,int control_index){/*{{{*/
1512 _error_("Not implemented yet");
1513}/*}}}*/
1514void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
1515
1516 bool converged;
1517 int i,rheology_law;
1518 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
1519 int *doflist = NULL;
1520 IssmDouble *xyz_list = NULL;
1521
1522 /*Fetch number of nodes and dof for this finite element*/
1523 int numnodes = element->GetNumberOfNodes();
1524
1525 /*Fetch dof list and allocate solution vector*/
1526 element->GetDofListLocal(&doflist,NoneApproximationEnum,GsetEnum);
1527 IssmDouble* values = xNew<IssmDouble>(numnodes);
1528 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
1529 IssmDouble* surface = xNew<IssmDouble>(numnodes);
1530 IssmDouble* B = xNew<IssmDouble>(numnodes);
1531 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
1532 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
1533
1534 /*Use the dof list to index into the solution vector: */
1535 for(i=0;i<numnodes;i++){
1536 values[i]=solution[doflist[i]];
1537
1538 /*Check solution*/
1539 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
1540 if(xIsInf<IssmDouble>(values[i])) _error_("Inf found in solution vector");
1541 }
1542
1543 /*Get all inputs and parameters*/
1544 element->GetInputValue(&converged,ConvergedEnum);
1545 element->GetInputListOnNodes(&pressure[0],PressureEnum);
1546 int finite_element = element->GetElementType(); if(finite_element==P1Enum) finite_element = P1DGEnum;
1547 if(converged){
1548 for(i=0;i<numnodes;i++){
1549 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
1550 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
1551 //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
1552 }
1553 element->AddInput(EnthalpyEnum,values,finite_element);
1554 element->AddInput(WaterfractionEnum,waterfraction,finite_element);
1555 element->AddInput(TemperatureEnum,temperature,finite_element);
1556
1557 IssmDouble* n = xNew<IssmDouble>(numnodes);
1558 if(element->material->ObjectEnum()==MatestarEnum){
1559 for(i=0;i<numnodes;i++) n[i]=3.;
1560 }
1561 else{
1562 element->GetInputListOnNodes(&n[0],MaterialsRheologyNEnum);
1563 }
1564
1565 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
1566 * otherwise the rheology could be negative*/
1567 element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
1568 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
1569 switch(rheology_law){
1570 case NoneEnum:
1571 /*Do nothing: B is not temperature dependent*/
1572 break;
1573 case BuddJackaEnum:
1574 for(i=0;i<numnodes;i++) B[i]=BuddJacka(temperature[i]);
1575 element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
1576 break;
1577 case CuffeyEnum:
1578 for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
1579 element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
1580 break;
1581 case CuffeyTemperateEnum:
1582 for(i=0;i<numnodes;i++) B[i]=CuffeyTemperate(temperature[i], waterfraction[i],n[i]);
1583 element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
1584 break;
1585 case PatersonEnum:
1586 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
1587 element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
1588 break;
1589 case NyeH2OEnum:
1590 for(i=0;i<numnodes;i++) B[i]=NyeH2O(values[i]);
1591 element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
1592 break;
1593 case NyeCO2Enum:
1594 for(i=0;i<numnodes;i++) B[i]=NyeCO2(values[i]);
1595 element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
1596 break;
1597 case ArrheniusEnum:{
1598 element->GetVerticesCoordinates(&xyz_list);
1599 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],n[i]);
1600 element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
1601 break;
1602 }
1603 case LliboutryDuvalEnum:{
1604 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],n[i],element->FindParam(MaterialsBetaEnum),element->FindParam(ConstantsReferencetemperatureEnum),element->FindParam(MaterialsHeatcapacityEnum),element->FindParam(MaterialsLatentheatEnum));
1605 element->AddInput(MaterialsRheologyBEnum,&B[0],finite_element);
1606 break;
1607 }
1608 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
1609 }
1610 xDelete<IssmDouble>(n);
1611 }
1612 else{
1613 element->AddInput(EnthalpyPicardEnum,values,finite_element);
1614 }
1615
1616 /*Free resources:*/
1617 xDelete<IssmDouble>(values);
1618 xDelete<IssmDouble>(pressure);
1619 xDelete<IssmDouble>(surface);
1620 xDelete<IssmDouble>(B);
1621 xDelete<IssmDouble>(temperature);
1622 xDelete<IssmDouble>(waterfraction);
1623 xDelete<IssmDouble>(xyz_list);
1624 xDelete<int>(doflist);
1625}/*}}}*/
1626void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
1627
1628 /*Intermediaries*/
1629 bool computebasalmeltingrates=true;
1630 bool isdrainicecolumn;
1631 IssmDouble dt;
1632
1633 femmodel->parameters->FindParam(&dt,TimesteppingTimeStepEnum);
1634 femmodel->parameters->FindParam(&isdrainicecolumn,ThermalIsdrainicecolumnEnum);
1635
1636 if(isdrainicecolumn){
1637 DrainWaterfraction(femmodel);
1638 }
1639 if(computebasalmeltingrates){
1640 ComputeBasalMeltingrate(femmodel);
1641 }
1642
1643}/*}}}*/
1644IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
1645
1646 IssmDouble heatcapacity = element->FindParam(MaterialsHeatcapacityEnum);
1647 IssmDouble referencetemperature = element->FindParam(ConstantsReferencetemperatureEnum);
1648
1649 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
1650}/*}}}*/
1651IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
1652
1653 IssmDouble meltingpoint = element->FindParam(MaterialsMeltingpointEnum);
1654 IssmDouble beta = element->FindParam(MaterialsBetaEnum);
1655
1656 return meltingpoint-beta*pressure;
1657}/*}}}*/
1658void EnthalpyAnalysis::UpdateBasalConstraints(FemModel* femmodel){/*{{{*/
1659
1660 /*Update basal dirichlet BCs for enthalpy: */
1661 int numnodes = femmodel->nodes->NumberOfNodes();
1662 int localmasters = femmodel->nodes->NumberOfNodesLocal();
1663 Vector<IssmDouble>* spc = new Vector<IssmDouble>(localmasters,numnodes);
1664
1665 /*First create a vector to figure out what elements should be constrained*/
1666 for(Object* & object : femmodel->elements->objects){
1667 Element* element=xDynamicCast<Element*>(object);
1668 GetBasalConstraints(spc,element);
1669 }
1670
1671 /*Assemble*/
1672 spc->Assemble();
1673
1674 /*Get local vector with both masters and slaves:*/
1675 IssmDouble *local_spc = NULL;
1676 femmodel->GetLocalVectorWithClonesNodes(&local_spc,spc);
1677 delete spc;
1678
1679 /*Then update basal constraints nodes accordingly*/
1680 for(Object* & object : femmodel->elements->objects){
1681 Element* element=xDynamicCast<Element*>(object);
1682 ApplyBasalConstraints(local_spc,element);
1683 }
1684
1685 femmodel->UpdateConstraintsx();
1686
1687 /*Delete*/
1688 xDelete<IssmDouble>(local_spc);
1689}/*}}}*/
1690void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
1691 SetActiveNodesLSMx(femmodel);
1692}/*}}}*/
Note: See TracBrowser for help on using the repository browser.