| 1 | #include "./EnthalpyAnalysis.h" | 
|---|
| 2 | #include "../toolkits/toolkits.h" | 
|---|
| 3 | #include "../classes/classes.h" | 
|---|
| 4 | #include "../shared/shared.h" | 
|---|
| 5 | #include "../modules/modules.h" | 
|---|
| 6 |  | 
|---|
| 7 | /*Model processing*/ | 
|---|
| 8 | int  EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/ | 
|---|
| 9 | return 1; | 
|---|
| 10 | }/*}}}*/ | 
|---|
| 11 | void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/ | 
|---|
| 12 |  | 
|---|
| 13 | int     numoutputs; | 
|---|
| 14 | char**  requestedoutputs = NULL; | 
|---|
| 15 |  | 
|---|
| 16 | parameters->AddObject(iomodel->CopyConstantObject(ThermalStabilizationEnum)); | 
|---|
| 17 | parameters->AddObject(iomodel->CopyConstantObject(ThermalIsenthalpyEnum)); | 
|---|
| 18 | parameters->AddObject(iomodel->CopyConstantObject(ThermalIsdynamicbasalspcEnum)); | 
|---|
| 19 | parameters->AddObject(iomodel->CopyConstantObject(FrictionLawEnum)); | 
|---|
| 20 |  | 
|---|
| 21 | iomodel->FetchData(&requestedoutputs,&numoutputs,ThermalRequestedOutputsEnum); | 
|---|
| 22 | parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs)); | 
|---|
| 23 | if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs)); | 
|---|
| 24 | iomodel->DeleteData(&requestedoutputs,numoutputs,ThermalRequestedOutputsEnum); | 
|---|
| 25 | }/*}}}*/ | 
|---|
| 26 | void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/ | 
|---|
| 27 |  | 
|---|
| 28 | bool dakota_analysis,islevelset,isenthalpy; | 
|---|
| 29 | int frictionlaw; | 
|---|
| 30 |  | 
|---|
| 31 | /*Now, is the model 3d? otherwise, do nothing: */ | 
|---|
| 32 | if(iomodel->domaintype==Domain2DhorizontalEnum)return; | 
|---|
| 33 |  | 
|---|
| 34 | /*Is enthalpy requested?*/ | 
|---|
| 35 | iomodel->Constant(&isenthalpy,ThermalIsenthalpyEnum); | 
|---|
| 36 | if(!isenthalpy) return; | 
|---|
| 37 |  | 
|---|
| 38 | /*Fetch data needed: */ | 
|---|
| 39 | iomodel->FetchData(3,TemperatureEnum,WaterfractionEnum,PressureEnum); | 
|---|
| 40 |  | 
|---|
| 41 | /*Update elements: */ | 
|---|
| 42 | int counter=0; | 
|---|
| 43 | for(int i=0;i<iomodel->numberofelements;i++){ | 
|---|
| 44 | if(iomodel->my_elements[i]){ | 
|---|
| 45 | Element* element=(Element*)elements->GetObjectByOffset(counter); | 
|---|
| 46 | element->Update(i,iomodel,analysis_counter,analysis_type,P1Enum); | 
|---|
| 47 | counter++; | 
|---|
| 48 | } | 
|---|
| 49 | } | 
|---|
| 50 |  | 
|---|
| 51 | iomodel->Constant(&dakota_analysis,QmuIsdakotaEnum); | 
|---|
| 52 | iomodel->Constant(&islevelset,TransientIslevelsetEnum); | 
|---|
| 53 |  | 
|---|
| 54 | iomodel->FetchDataToInput(elements,ThicknessEnum); | 
|---|
| 55 | iomodel->FetchDataToInput(elements,SurfaceEnum); | 
|---|
| 56 | iomodel->FetchDataToInput(elements,BaseEnum); | 
|---|
| 57 | iomodel->FetchDataToInput(elements,MaskIceLevelsetEnum); | 
|---|
| 58 | iomodel->FetchDataToInput(elements,MaskGroundediceLevelsetEnum); | 
|---|
| 59 | if(iomodel->domaintype!=Domain2DhorizontalEnum){ | 
|---|
| 60 | iomodel->FetchDataToInput(elements,MeshVertexonbaseEnum); | 
|---|
| 61 | iomodel->FetchDataToInput(elements,MeshVertexonsurfaceEnum); | 
|---|
| 62 | } | 
|---|
| 63 | iomodel->FetchDataToInput(elements,FlowequationElementEquationEnum); | 
|---|
| 64 | iomodel->FetchDataToInput(elements,MaterialsRheologyBEnum); | 
|---|
| 65 | iomodel->FetchDataToInput(elements,MaterialsRheologyNEnum); | 
|---|
| 66 | iomodel->FetchDataToInput(elements,PressureEnum); | 
|---|
| 67 | iomodel->FetchDataToInput(elements,TemperatureEnum); | 
|---|
| 68 | iomodel->FetchDataToInput(elements,WaterfractionEnum); | 
|---|
| 69 | iomodel->FetchDataToInput(elements,EnthalpyEnum); | 
|---|
| 70 | iomodel->FetchDataToInput(elements,BasalforcingsGeothermalfluxEnum); | 
|---|
| 71 | iomodel->FetchDataToInput(elements,WatercolumnEnum); | 
|---|
| 72 | iomodel->FetchDataToInput(elements,BasalforcingsMeltingRateEnum); | 
|---|
| 73 | iomodel->FetchDataToInput(elements,VxEnum); | 
|---|
| 74 | iomodel->FetchDataToInput(elements,VyEnum); | 
|---|
| 75 | iomodel->FetchDataToInput(elements,VzEnum); | 
|---|
| 76 | InputUpdateFromConstantx(elements,0.,VxMeshEnum); | 
|---|
| 77 | InputUpdateFromConstantx(elements,0.,VyMeshEnum); | 
|---|
| 78 | InputUpdateFromConstantx(elements,0.,VzMeshEnum); | 
|---|
| 79 | if(dakota_analysis){ | 
|---|
| 80 | elements->InputDuplicate(TemperatureEnum,QmuTemperatureEnum); | 
|---|
| 81 | elements->InputDuplicate(BasalforcingsMeltingRateEnum,QmuMeltingEnum); | 
|---|
| 82 | elements->InputDuplicate(VxMeshEnum,QmuVxMeshEnum); | 
|---|
| 83 | elements->InputDuplicate(VxMeshEnum,QmuVyMeshEnum); | 
|---|
| 84 | elements->InputDuplicate(VxMeshEnum,QmuVzMeshEnum); | 
|---|
| 85 | } | 
|---|
| 86 | if(islevelset){ | 
|---|
| 87 | iomodel->FetchDataToInput(elements,IceMaskNodeActivationEnum); | 
|---|
| 88 | iomodel->FetchDataToInput(elements,MeshVertexonbaseEnum); // required for updating active nodes | 
|---|
| 89 | } | 
|---|
| 90 |  | 
|---|
| 91 | /*Friction law variables*/ | 
|---|
| 92 | switch(frictionlaw){ | 
|---|
| 93 | case 1: | 
|---|
| 94 | iomodel->FetchDataToInput(elements,FrictionCoefficientEnum); | 
|---|
| 95 | iomodel->FetchDataToInput(elements,FrictionPEnum); | 
|---|
| 96 | iomodel->FetchDataToInput(elements,FrictionQEnum); | 
|---|
| 97 | break; | 
|---|
| 98 | case 2: | 
|---|
| 99 | iomodel->FetchDataToInput(elements,FrictionCEnum); | 
|---|
| 100 | iomodel->FetchDataToInput(elements,FrictionMEnum); | 
|---|
| 101 | break; | 
|---|
| 102 | default: | 
|---|
| 103 | _error_("not supported"); | 
|---|
| 104 | } | 
|---|
| 105 | /*Free data: */ | 
|---|
| 106 | iomodel->DeleteData(3,TemperatureEnum,WaterfractionEnum,PressureEnum); | 
|---|
| 107 | }/*}}}*/ | 
|---|
| 108 | void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/ | 
|---|
| 109 |  | 
|---|
| 110 | if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,MeshVertexonbaseEnum,MeshVertexonsurfaceEnum); | 
|---|
| 111 | ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,P1Enum); | 
|---|
| 112 | iomodel->DeleteData(2,MeshVertexonbaseEnum,MeshVertexonsurfaceEnum); | 
|---|
| 113 | }/*}}}*/ | 
|---|
| 114 | void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/ | 
|---|
| 115 |  | 
|---|
| 116 | /*Intermediary*/ | 
|---|
| 117 | int        count; | 
|---|
| 118 | int        M,N; | 
|---|
| 119 | bool       spcpresent = false; | 
|---|
| 120 | IssmDouble heatcapacity; | 
|---|
| 121 | IssmDouble referencetemperature; | 
|---|
| 122 |  | 
|---|
| 123 | /*Output*/ | 
|---|
| 124 | IssmDouble *spcvector  = NULL; | 
|---|
| 125 | IssmDouble* times=NULL; | 
|---|
| 126 | IssmDouble* values=NULL; | 
|---|
| 127 |  | 
|---|
| 128 | /*Fetch parameters: */ | 
|---|
| 129 | iomodel->Constant(&heatcapacity,MaterialsHeatcapacityEnum); | 
|---|
| 130 | iomodel->Constant(&referencetemperature,ConstantsReferencetemperatureEnum); | 
|---|
| 131 |  | 
|---|
| 132 | /*return if 2d mesh*/ | 
|---|
| 133 | if(iomodel->domaintype==Domain2DhorizontalEnum) return; | 
|---|
| 134 |  | 
|---|
| 135 | /*Fetch data: */ | 
|---|
| 136 | iomodel->FetchData(&spcvector,&M,&N,ThermalSpctemperatureEnum); | 
|---|
| 137 |  | 
|---|
| 138 | //FIX ME: SHOULD USE IOMODELCREATECONSTRAINTS | 
|---|
| 139 | /*Transient or static?:*/ | 
|---|
| 140 | if(M==iomodel->numberofvertices){ | 
|---|
| 141 | /*static: just create Constraints objects*/ | 
|---|
| 142 | count=0; | 
|---|
| 143 |  | 
|---|
| 144 | for(int i=0;i<iomodel->numberofvertices;i++){ | 
|---|
| 145 | /*keep only this partition's nodes:*/ | 
|---|
| 146 | if((iomodel->my_vertices[i])){ | 
|---|
| 147 |  | 
|---|
| 148 | if (!xIsNan<IssmDouble>(spcvector[i])){ | 
|---|
| 149 |  | 
|---|
| 150 | constraints->AddObject(new SpcStatic(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,0,heatcapacity*(spcvector[i]-referencetemperature),EnthalpyAnalysisEnum)); | 
|---|
| 151 | count++; | 
|---|
| 152 |  | 
|---|
| 153 | } | 
|---|
| 154 | } | 
|---|
| 155 | } | 
|---|
| 156 | } | 
|---|
| 157 | else if (M==(iomodel->numberofvertices+1)){ | 
|---|
| 158 | /*transient: create transient SpcTransient objects. Same logic, except we need to retrieve | 
|---|
| 159 | * various times and values to initialize an SpcTransient object: */ | 
|---|
| 160 | count=0; | 
|---|
| 161 |  | 
|---|
| 162 | /*figure out times: */ | 
|---|
| 163 | times=xNew<IssmDouble>(N); | 
|---|
| 164 | for(int j=0;j<N;j++){ | 
|---|
| 165 | times[j]=spcvector[(M-1)*N+j]; | 
|---|
| 166 | } | 
|---|
| 167 |  | 
|---|
| 168 | /*Create constraints from x,y,z: */ | 
|---|
| 169 | for(int i=0;i<iomodel->numberofvertices;i++){ | 
|---|
| 170 |  | 
|---|
| 171 | /*keep only this partition's nodes:*/ | 
|---|
| 172 | if((iomodel->my_vertices[i])){ | 
|---|
| 173 |  | 
|---|
| 174 | /*figure out times and values: */ | 
|---|
| 175 | values=xNew<IssmDouble>(N); | 
|---|
| 176 | spcpresent=false; | 
|---|
| 177 | for(int j=0;j<N;j++){ | 
|---|
| 178 | values[j]=heatcapacity*(spcvector[i*N+j]-referencetemperature); | 
|---|
| 179 | if(!xIsNan<IssmDouble>(values[j]))spcpresent=true; //NaN means no spc by default | 
|---|
| 180 | } | 
|---|
| 181 |  | 
|---|
| 182 | if(spcpresent){ | 
|---|
| 183 | constraints->AddObject(new SpcTransient(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,0,N,times,values,EnthalpyAnalysisEnum)); | 
|---|
| 184 | count++; | 
|---|
| 185 | } | 
|---|
| 186 | xDelete<IssmDouble>(values); | 
|---|
| 187 | } | 
|---|
| 188 | } | 
|---|
| 189 | } | 
|---|
| 190 | else{ | 
|---|
| 191 | _error_("Size of field " << EnumToStringx(ThermalSpctemperatureEnum) << " not supported"); | 
|---|
| 192 | } | 
|---|
| 193 |  | 
|---|
| 194 | /*Free ressources:*/ | 
|---|
| 195 | iomodel->DeleteData(spcvector,ThermalSpctemperatureEnum); | 
|---|
| 196 | xDelete<IssmDouble>(times); | 
|---|
| 197 | xDelete<IssmDouble>(values); | 
|---|
| 198 | }/*}}}*/ | 
|---|
| 199 | void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/ | 
|---|
| 200 |  | 
|---|
| 201 | /*No loads */ | 
|---|
| 202 | }/*}}}*/ | 
|---|
| 203 |  | 
|---|
| 204 | /*Finite Element Analysis*/ | 
|---|
| 205 | void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/ | 
|---|
| 206 | _error_("not implemented"); | 
|---|
| 207 | }/*}}}*/ | 
|---|
| 208 | ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/ | 
|---|
| 209 | /*Default, return NULL*/ | 
|---|
| 210 | return NULL; | 
|---|
| 211 | }/*}}}*/ | 
|---|
| 212 | ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/ | 
|---|
| 213 | _error_("Not implemented"); | 
|---|
| 214 | }/*}}}*/ | 
|---|
| 215 | ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/ | 
|---|
| 216 |  | 
|---|
| 217 | /* Check if ice in element */ | 
|---|
| 218 | if(!element->IsIceInElement()) return NULL; | 
|---|
| 219 |  | 
|---|
| 220 | /*compute all stiffness matrices for this element*/ | 
|---|
| 221 | ElementMatrix* Ke1=CreateKMatrixVolume(element); | 
|---|
| 222 | ElementMatrix* Ke2=CreateKMatrixShelf(element); | 
|---|
| 223 | ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2); | 
|---|
| 224 |  | 
|---|
| 225 | /*clean-up and return*/ | 
|---|
| 226 | delete Ke1; | 
|---|
| 227 | delete Ke2; | 
|---|
| 228 | return Ke; | 
|---|
| 229 | }/*}}}*/ | 
|---|
| 230 | ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/ | 
|---|
| 231 |  | 
|---|
| 232 | /* Check if ice in element */ | 
|---|
| 233 | if(!element->IsIceInElement()) return NULL; | 
|---|
| 234 |  | 
|---|
| 235 | /*Intermediaries */ | 
|---|
| 236 | int         stabilization; | 
|---|
| 237 | IssmDouble  Jdet,dt,u,v,w,um,vm,wm,vel; | 
|---|
| 238 | IssmDouble  h,hx,hy,hz,vx,vy,vz; | 
|---|
| 239 | IssmDouble  tau_parameter,diameter; | 
|---|
| 240 | IssmDouble  D_scalar; | 
|---|
| 241 | IssmDouble* xyz_list = NULL; | 
|---|
| 242 |  | 
|---|
| 243 | /*Fetch number of nodes and dof for this finite element*/ | 
|---|
| 244 | int numnodes    = element->GetNumberOfNodes(); | 
|---|
| 245 |  | 
|---|
| 246 | /*Initialize Element vector and other vectors*/ | 
|---|
| 247 | ElementMatrix* Ke       = element->NewElementMatrix(); | 
|---|
| 248 | IssmDouble*    basis    = xNew<IssmDouble>(numnodes); | 
|---|
| 249 | IssmDouble*    dbasis   = xNew<IssmDouble>(3*numnodes); | 
|---|
| 250 | IssmDouble*    B        = xNew<IssmDouble>(3*numnodes); | 
|---|
| 251 | IssmDouble*    Bprime   = xNew<IssmDouble>(3*numnodes); | 
|---|
| 252 | IssmDouble     D[3][3]  = {0.}; | 
|---|
| 253 | IssmDouble     K[3][3]; | 
|---|
| 254 |  | 
|---|
| 255 | /*Retrieve all inputs and parameters*/ | 
|---|
| 256 | element->GetVerticesCoordinates(&xyz_list); | 
|---|
| 257 | element->FindParam(&dt,TimesteppingTimeStepEnum); | 
|---|
| 258 | element->FindParam(&stabilization,ThermalStabilizationEnum); | 
|---|
| 259 | IssmDouble  rho_water           = element->GetMaterialParameter(MaterialsRhoSeawaterEnum); | 
|---|
| 260 | IssmDouble  rho_ice             = element->GetMaterialParameter(MaterialsRhoIceEnum); | 
|---|
| 261 | IssmDouble  gravity             = element->GetMaterialParameter(ConstantsGEnum); | 
|---|
| 262 | IssmDouble  heatcapacity        = element->GetMaterialParameter(MaterialsHeatcapacityEnum); | 
|---|
| 263 | IssmDouble  thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum); | 
|---|
| 264 | Input* vx_input  = element->GetInput(VxEnum);     _assert_(vx_input); | 
|---|
| 265 | Input* vy_input  = element->GetInput(VyEnum);     _assert_(vy_input); | 
|---|
| 266 | Input* vz_input  = element->GetInput(VzEnum);     _assert_(vz_input); | 
|---|
| 267 | Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input); | 
|---|
| 268 | Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input); | 
|---|
| 269 | Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input); | 
|---|
| 270 | if(stabilization==2) diameter=element->MinEdgeLength(xyz_list); | 
|---|
| 271 |  | 
|---|
| 272 | /*Enthalpy diffusion parameter*/ | 
|---|
| 273 | IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.); | 
|---|
| 274 |  | 
|---|
| 275 | /* Start  looping on the number of gaussian points: */ | 
|---|
| 276 | Gauss* gauss=element->NewGauss(2); | 
|---|
| 277 | for(int ig=gauss->begin();ig<gauss->end();ig++){ | 
|---|
| 278 | gauss->GaussPoint(ig); | 
|---|
| 279 |  | 
|---|
| 280 | element->JacobianDeterminant(&Jdet,xyz_list,gauss); | 
|---|
| 281 | D_scalar=gauss->weight*Jdet; | 
|---|
| 282 | if(dt!=0.) D_scalar=D_scalar*dt; | 
|---|
| 283 |  | 
|---|
| 284 | /*Conduction: */ | 
|---|
| 285 | GetBConduct(B,element,xyz_list,gauss); | 
|---|
| 286 | D[0][0]=D_scalar*kappa/rho_ice; | 
|---|
| 287 | D[1][1]=D_scalar*kappa/rho_ice; | 
|---|
| 288 | D[2][2]=D_scalar*kappa/rho_ice; | 
|---|
| 289 | TripleMultiply(B,3,numnodes,1, | 
|---|
| 290 | &D[0][0],3,3,0, | 
|---|
| 291 | B,3,numnodes,0, | 
|---|
| 292 | &Ke->values[0],1); | 
|---|
| 293 |  | 
|---|
| 294 | /*Advection: */ | 
|---|
| 295 | GetBAdvec(B,element,xyz_list,gauss); | 
|---|
| 296 | GetBAdvecprime(Bprime,element,xyz_list,gauss); | 
|---|
| 297 | vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um; | 
|---|
| 298 | vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm; | 
|---|
| 299 | vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm; | 
|---|
| 300 | D[0][0]=D_scalar*vx; | 
|---|
| 301 | D[1][1]=D_scalar*vy; | 
|---|
| 302 | D[2][2]=D_scalar*vz; | 
|---|
| 303 | TripleMultiply(B,3,numnodes,1, | 
|---|
| 304 | &D[0][0],3,3,0, | 
|---|
| 305 | Bprime,3,numnodes,0, | 
|---|
| 306 | &Ke->values[0],1); | 
|---|
| 307 |  | 
|---|
| 308 | /*Transient: */ | 
|---|
| 309 | if(dt!=0.){ | 
|---|
| 310 | D_scalar=gauss->weight*Jdet; | 
|---|
| 311 | element->NodalFunctions(basis,gauss); | 
|---|
| 312 | TripleMultiply(basis,numnodes,1,0, | 
|---|
| 313 | &D_scalar,1,1,0, | 
|---|
| 314 | basis,1,numnodes,0, | 
|---|
| 315 | &Ke->values[0],1); | 
|---|
| 316 | D_scalar=D_scalar*dt; | 
|---|
| 317 | } | 
|---|
| 318 |  | 
|---|
| 319 | /*Artifficial diffusivity*/ | 
|---|
| 320 | if(stabilization==1){ | 
|---|
| 321 | element->ElementSizes(&hx,&hy,&hz); | 
|---|
| 322 | vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14; | 
|---|
| 323 | h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2)); | 
|---|
| 324 | K[0][0]=h/(2.*vel)*vx*vx;  K[0][1]=h/(2.*vel)*vx*vy; K[0][2]=h/(2.*vel)*vx*vz; | 
|---|
| 325 | K[1][0]=h/(2.*vel)*vy*vx;  K[1][1]=h/(2.*vel)*vy*vy; K[1][2]=h/(2.*vel)*vy*vz; | 
|---|
| 326 | K[2][0]=h/(2.*vel)*vz*vx;  K[2][1]=h/(2.*vel)*vz*vy; K[2][2]=h/(2.*vel)*vz*vz; | 
|---|
| 327 | for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j]; | 
|---|
| 328 |  | 
|---|
| 329 | GetBAdvecprime(Bprime,element,xyz_list,gauss); | 
|---|
| 330 | TripleMultiply(Bprime,3,numnodes,1, | 
|---|
| 331 | &K[0][0],3,3,0, | 
|---|
| 332 | Bprime,3,numnodes,0, | 
|---|
| 333 | &Ke->values[0],1); | 
|---|
| 334 | } | 
|---|
| 335 | else if(stabilization==2){ | 
|---|
| 336 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss); | 
|---|
| 337 | tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice); | 
|---|
| 338 | for(int i=0;i<numnodes;i++){ | 
|---|
| 339 | for(int j=0;j<numnodes;j++){ | 
|---|
| 340 | Ke->values[i*numnodes+j]+=tau_parameter*D_scalar* | 
|---|
| 341 | ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]); | 
|---|
| 342 | } | 
|---|
| 343 | } | 
|---|
| 344 | if(dt!=0.){ | 
|---|
| 345 | D_scalar=gauss->weight*Jdet; | 
|---|
| 346 | for(int i=0;i<numnodes;i++){ | 
|---|
| 347 | for(int j=0;j<numnodes;j++){ | 
|---|
| 348 | Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]); | 
|---|
| 349 | } | 
|---|
| 350 | } | 
|---|
| 351 | } | 
|---|
| 352 | } | 
|---|
| 353 | } | 
|---|
| 354 |  | 
|---|
| 355 | /*Clean up and return*/ | 
|---|
| 356 | xDelete<IssmDouble>(xyz_list); | 
|---|
| 357 | xDelete<IssmDouble>(basis); | 
|---|
| 358 | xDelete<IssmDouble>(dbasis); | 
|---|
| 359 | xDelete<IssmDouble>(B); | 
|---|
| 360 | xDelete<IssmDouble>(Bprime); | 
|---|
| 361 | delete gauss; | 
|---|
| 362 | return Ke; | 
|---|
| 363 | }/*}}}*/ | 
|---|
| 364 | ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/ | 
|---|
| 365 |  | 
|---|
| 366 | /* Check if ice in element */ | 
|---|
| 367 | if(!element->IsIceInElement()) return NULL; | 
|---|
| 368 |  | 
|---|
| 369 | /*Initialize Element matrix and return if necessary*/ | 
|---|
| 370 | if(!element->IsOnBase() || !element->IsFloating()) return NULL; | 
|---|
| 371 |  | 
|---|
| 372 | /*Intermediaries*/ | 
|---|
| 373 | IssmDouble  dt,Jdet,D; | 
|---|
| 374 | IssmDouble *xyz_list_base = NULL; | 
|---|
| 375 |  | 
|---|
| 376 | /*Fetch number of nodes for this finite element*/ | 
|---|
| 377 | int numnodes = element->GetNumberOfNodes(); | 
|---|
| 378 |  | 
|---|
| 379 | /*Initialize vectors*/ | 
|---|
| 380 | ElementMatrix* Ke    = element->NewElementMatrix(); | 
|---|
| 381 | IssmDouble*    basis = xNew<IssmDouble>(numnodes); | 
|---|
| 382 |  | 
|---|
| 383 | /*Retrieve all inputs and parameters*/ | 
|---|
| 384 | element->GetVerticesCoordinatesBase(&xyz_list_base); | 
|---|
| 385 | element->FindParam(&dt,TimesteppingTimeStepEnum); | 
|---|
| 386 | IssmDouble  gravity             = element->GetMaterialParameter(ConstantsGEnum); | 
|---|
| 387 | IssmDouble  rho_water           = element->GetMaterialParameter(MaterialsRhoSeawaterEnum); | 
|---|
| 388 | IssmDouble  rho_ice             = element->GetMaterialParameter(MaterialsRhoIceEnum); | 
|---|
| 389 | IssmDouble  heatcapacity        = element->GetMaterialParameter(MaterialsHeatcapacityEnum); | 
|---|
| 390 | IssmDouble  mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum); | 
|---|
| 391 | IssmDouble  thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum); | 
|---|
| 392 |  | 
|---|
| 393 | /* Start  looping on the number of gaussian points: */ | 
|---|
| 394 | Gauss* gauss=element->NewGaussBase(2); | 
|---|
| 395 | for(int ig=gauss->begin();ig<gauss->end();ig++){ | 
|---|
| 396 | gauss->GaussPoint(ig); | 
|---|
| 397 |  | 
|---|
| 398 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss); | 
|---|
| 399 | element->NodalFunctions(basis,gauss); | 
|---|
| 400 |  | 
|---|
| 401 | D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice); | 
|---|
| 402 | if(reCast<bool,IssmDouble>(dt)) D=dt*D; | 
|---|
| 403 | TripleMultiply(basis,numnodes,1,0, | 
|---|
| 404 | &D,1,1,0, | 
|---|
| 405 | basis,1,numnodes,0, | 
|---|
| 406 | &Ke->values[0],1); | 
|---|
| 407 |  | 
|---|
| 408 | } | 
|---|
| 409 |  | 
|---|
| 410 | /*Clean up and return*/ | 
|---|
| 411 | delete gauss; | 
|---|
| 412 | xDelete<IssmDouble>(basis); | 
|---|
| 413 | xDelete<IssmDouble>(xyz_list_base); | 
|---|
| 414 | return Ke; | 
|---|
| 415 | }/*}}}*/ | 
|---|
| 416 | ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/ | 
|---|
| 417 |  | 
|---|
| 418 | /* Check if ice in element */ | 
|---|
| 419 | if(!element->IsIceInElement()) return NULL; | 
|---|
| 420 |  | 
|---|
| 421 | /*compute all load vectors for this element*/ | 
|---|
| 422 | ElementVector* pe1=CreatePVectorVolume(element); | 
|---|
| 423 | ElementVector* pe2=CreatePVectorSheet(element); | 
|---|
| 424 | ElementVector* pe3=CreatePVectorShelf(element); | 
|---|
| 425 | ElementVector* pe =new ElementVector(pe1,pe2,pe3); | 
|---|
| 426 |  | 
|---|
| 427 | /*clean-up and return*/ | 
|---|
| 428 | delete pe1; | 
|---|
| 429 | delete pe2; | 
|---|
| 430 | delete pe3; | 
|---|
| 431 | return pe; | 
|---|
| 432 | }/*}}}*/ | 
|---|
| 433 | ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/ | 
|---|
| 434 |  | 
|---|
| 435 | /* Check if ice in element */ | 
|---|
| 436 | if(!element->IsIceInElement()) return NULL; | 
|---|
| 437 |  | 
|---|
| 438 | /*Intermediaries*/ | 
|---|
| 439 | int         i, stabilization; | 
|---|
| 440 | IssmDouble  Jdet,phi,dt; | 
|---|
| 441 | IssmDouble  enthalpy, Hpmp; | 
|---|
| 442 | IssmDouble  enthalpypicard, d1enthalpypicard[3]; | 
|---|
| 443 | IssmDouble  pressure, d1pressure[3], d2pressure; | 
|---|
| 444 | IssmDouble  waterfractionpicard; | 
|---|
| 445 | IssmDouble  kappa,tau_parameter,diameter,kappa_w; | 
|---|
| 446 | IssmDouble  u,v,w; | 
|---|
| 447 | IssmDouble  scalar_def, scalar_sens ,scalar_transient; | 
|---|
| 448 | IssmDouble* xyz_list = NULL; | 
|---|
| 449 | IssmDouble  d1H_d1P, d1P2; | 
|---|
| 450 |  | 
|---|
| 451 | /*Fetch number of nodes and dof for this finite element*/ | 
|---|
| 452 | int numnodes    = element->GetNumberOfNodes(); | 
|---|
| 453 | int numvertices = element->GetNumberOfVertices(); | 
|---|
| 454 |  | 
|---|
| 455 | /*Initialize Element vector*/ | 
|---|
| 456 | ElementVector* pe             = element->NewElementVector(); | 
|---|
| 457 | IssmDouble*    basis          = xNew<IssmDouble>(numnodes); | 
|---|
| 458 | IssmDouble*    dbasis         = xNew<IssmDouble>(3*numnodes); | 
|---|
| 459 |  | 
|---|
| 460 | /*Retrieve all inputs and parameters*/ | 
|---|
| 461 | element->GetVerticesCoordinates(&xyz_list); | 
|---|
| 462 | IssmDouble  rho_ice             = element->GetMaterialParameter(MaterialsRhoIceEnum); | 
|---|
| 463 | IssmDouble  heatcapacity        = element->GetMaterialParameter(MaterialsHeatcapacityEnum); | 
|---|
| 464 | IssmDouble  thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum); | 
|---|
| 465 | IssmDouble  temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum); | 
|---|
| 466 | IssmDouble  beta                = element->GetMaterialParameter(MaterialsBetaEnum); | 
|---|
| 467 | IssmDouble  latentheat          = element->GetMaterialParameter(MaterialsLatentheatEnum); | 
|---|
| 468 | element->FindParam(&dt,TimesteppingTimeStepEnum); | 
|---|
| 469 | element->FindParam(&stabilization,ThermalStabilizationEnum); | 
|---|
| 470 | Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input); | 
|---|
| 471 | Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input); | 
|---|
| 472 | Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input); | 
|---|
| 473 | Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input); | 
|---|
| 474 | Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input); | 
|---|
| 475 | Input* enthalpy_input=NULL; | 
|---|
| 476 | if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);} | 
|---|
| 477 | if(stabilization==2){ | 
|---|
| 478 | diameter=element->MinEdgeLength(xyz_list); | 
|---|
| 479 | kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.); | 
|---|
| 480 | } | 
|---|
| 481 |  | 
|---|
| 482 | /* Start  looping on the number of gaussian points: */ | 
|---|
| 483 | Gauss* gauss=element->NewGauss(3); | 
|---|
| 484 | for(int ig=gauss->begin();ig<gauss->end();ig++){ | 
|---|
| 485 | gauss->GaussPoint(ig); | 
|---|
| 486 |  | 
|---|
| 487 | element->JacobianDeterminant(&Jdet,xyz_list,gauss); | 
|---|
| 488 | element->NodalFunctions(basis,gauss); | 
|---|
| 489 |  | 
|---|
| 490 | /*viscous dissipation*/ | 
|---|
| 491 | element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input); | 
|---|
| 492 |  | 
|---|
| 493 | scalar_def=phi/rho_ice*Jdet*gauss->weight; | 
|---|
| 494 | if(dt!=0.) scalar_def=scalar_def*dt; | 
|---|
| 495 |  | 
|---|
| 496 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i]; | 
|---|
| 497 |  | 
|---|
| 498 | /*sensible heat flux in temperate ice*/ | 
|---|
| 499 | enthalpypicard_input->GetInputValue(&enthalpypicard,gauss); | 
|---|
| 500 | pressure_input->GetInputValue(&pressure,gauss); | 
|---|
| 501 | Hpmp=this->PureIceEnthalpy(element, pressure); | 
|---|
| 502 |  | 
|---|
| 503 | if(enthalpypicard>=Hpmp){ | 
|---|
| 504 | enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss); | 
|---|
| 505 | pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss); | 
|---|
| 506 | d2pressure=0.; // for linear elements, 2nd derivative is zero | 
|---|
| 507 |  | 
|---|
| 508 | d1H_d1P=0.; | 
|---|
| 509 | for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i]; | 
|---|
| 510 | d1P2=0.; | 
|---|
| 511 | for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.); | 
|---|
| 512 |  | 
|---|
| 513 | scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice; | 
|---|
| 514 | if(dt!=0.) scalar_sens=scalar_sens*dt; | 
|---|
| 515 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i]; | 
|---|
| 516 | } | 
|---|
| 517 |  | 
|---|
| 518 | /* Build transient now */ | 
|---|
| 519 | if(reCast<bool,IssmDouble>(dt)){ | 
|---|
| 520 | enthalpy_input->GetInputValue(&enthalpy, gauss); | 
|---|
| 521 | scalar_transient=enthalpy*Jdet*gauss->weight; | 
|---|
| 522 | for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i]; | 
|---|
| 523 | } | 
|---|
| 524 |  | 
|---|
| 525 | if(stabilization==2){ | 
|---|
| 526 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss); | 
|---|
| 527 |  | 
|---|
| 528 | vx_input->GetInputValue(&u,gauss); | 
|---|
| 529 | vy_input->GetInputValue(&v,gauss); | 
|---|
| 530 | vz_input->GetInputValue(&w,gauss); | 
|---|
| 531 | tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice); | 
|---|
| 532 |  | 
|---|
| 533 | for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]); | 
|---|
| 534 |  | 
|---|
| 535 | if(dt!=0.){ | 
|---|
| 536 | for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]); | 
|---|
| 537 | } | 
|---|
| 538 | } | 
|---|
| 539 | } | 
|---|
| 540 |  | 
|---|
| 541 | /*Clean up and return*/ | 
|---|
| 542 | xDelete<IssmDouble>(basis); | 
|---|
| 543 | xDelete<IssmDouble>(dbasis); | 
|---|
| 544 | xDelete<IssmDouble>(xyz_list); | 
|---|
| 545 | delete gauss; | 
|---|
| 546 | return pe; | 
|---|
| 547 |  | 
|---|
| 548 | }/*}}}*/ | 
|---|
| 549 | ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/ | 
|---|
| 550 |  | 
|---|
| 551 | /* Check if ice in element */ | 
|---|
| 552 | if(!element->IsIceInElement()) return NULL; | 
|---|
| 553 |  | 
|---|
| 554 | /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */ | 
|---|
| 555 | if(!element->IsOnBase() || element->IsFloating()) return NULL; | 
|---|
| 556 |  | 
|---|
| 557 | IssmDouble  dt,Jdet,enthalpy,pressure,watercolumn,geothermalflux,vx,vy,vz; | 
|---|
| 558 | IssmDouble  enthalpyup,pressureup,alpha2,scalar,basalfriction,heatflux; | 
|---|
| 559 | IssmDouble *xyz_list_base = NULL; | 
|---|
| 560 |  | 
|---|
| 561 | /*Fetch number of nodes for this finite element*/ | 
|---|
| 562 | int numnodes = element->GetNumberOfNodes(); | 
|---|
| 563 |  | 
|---|
| 564 | /*Initialize vectors*/ | 
|---|
| 565 | ElementVector* pe    = element->NewElementVector(); | 
|---|
| 566 | IssmDouble*    basis = xNew<IssmDouble>(numnodes); | 
|---|
| 567 |  | 
|---|
| 568 | /*Retrieve all inputs and parameters*/ | 
|---|
| 569 | element->GetVerticesCoordinatesBase(&xyz_list_base); | 
|---|
| 570 | element->FindParam(&dt,TimesteppingTimeStepEnum); | 
|---|
| 571 | Input* vx_input             = element->GetInput(VxEnum);                          _assert_(vx_input); | 
|---|
| 572 | Input* vy_input             = element->GetInput(VyEnum);                          _assert_(vy_input); | 
|---|
| 573 | Input* vz_input             = element->GetInput(VzEnum);                          _assert_(vz_input); | 
|---|
| 574 | Input* enthalpy_input       = element->GetInput(EnthalpyPicardEnum);              _assert_(enthalpy_input); | 
|---|
| 575 | Input* pressure_input       = element->GetInput(PressureEnum);                    _assert_(pressure_input); | 
|---|
| 576 | Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input); | 
|---|
| 577 | Input* watercolumn_input    = element->GetInput(WatercolumnEnum);                 _assert_(watercolumn_input); | 
|---|
| 578 | IssmDouble  rho_ice             = element->GetMaterialParameter(MaterialsRhoIceEnum); | 
|---|
| 579 | IssmDouble  heatcapacity        = element->GetMaterialParameter(MaterialsHeatcapacityEnum); | 
|---|
| 580 |  | 
|---|
| 581 | /*Build friction element, needed later: */ | 
|---|
| 582 | Friction* friction=new Friction(element,3); | 
|---|
| 583 |  | 
|---|
| 584 | /* Start  looping on the number of gaussian points: */ | 
|---|
| 585 | Gauss* gauss   = element->NewGaussBase(2); | 
|---|
| 586 | Gauss* gaussup = element->NewGaussTop(2); | 
|---|
| 587 | for(int ig=gauss->begin();ig<gauss->end();ig++){ | 
|---|
| 588 | gauss->GaussPoint(ig); | 
|---|
| 589 |  | 
|---|
| 590 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss); | 
|---|
| 591 | element->NodalFunctions(basis,gauss); | 
|---|
| 592 |  | 
|---|
| 593 | enthalpy_input->GetInputValue(&enthalpy,gauss); | 
|---|
| 594 | pressure_input->GetInputValue(&pressure,gauss); | 
|---|
| 595 | watercolumn_input->GetInputValue(&watercolumn,gauss); | 
|---|
| 596 |  | 
|---|
| 597 | if((watercolumn<=0.) && (enthalpy<PureIceEnthalpy(element,pressure))){ | 
|---|
| 598 | /* the above check is equivalent to | 
|---|
| 599 | NOT [(watercolumn>0.) AND (enthalpy<PIE)] AND (enthalpy<PIE)*/ | 
|---|
| 600 | geothermalflux_input->GetInputValue(&geothermalflux,gauss); | 
|---|
| 601 |  | 
|---|
| 602 | friction->GetAlpha2(&alpha2,gauss); | 
|---|
| 603 | vx_input->GetInputValue(&vx,gauss); | 
|---|
| 604 | vy_input->GetInputValue(&vy,gauss); | 
|---|
| 605 | vz_input->GetInputValue(&vz,gauss); | 
|---|
| 606 | basalfriction = alpha2*(vx*vx + vy*vy + vz*vz); | 
|---|
| 607 | heatflux      = (basalfriction+geothermalflux)/(rho_ice); | 
|---|
| 608 |  | 
|---|
| 609 | scalar = gauss->weight*Jdet*heatflux; | 
|---|
| 610 | if(dt!=0.) scalar=dt*scalar; | 
|---|
| 611 |  | 
|---|
| 612 | for(int i=0;i<numnodes;i++) pe->values[i]+=scalar*basis[i]; | 
|---|
| 613 | } | 
|---|
| 614 | else if(enthalpy >= PureIceEnthalpy(element,pressure)){ | 
|---|
| 615 | /* check positive thickness of temperate basal ice layer */ | 
|---|
| 616 | enthalpy_input->GetInputValue(&enthalpyup,gaussup); | 
|---|
| 617 | pressure_input->GetInputValue(&pressureup,gaussup); | 
|---|
| 618 | if(enthalpyup >= PureIceEnthalpy(element,pressureup)){ | 
|---|
| 619 | // do nothing, set grad enthalpy*n=0. | 
|---|
| 620 | } | 
|---|
| 621 | else{ | 
|---|
| 622 | // only base temperate, set Dirichlet BCs in Penta::UpdateBasalConstraintsEnthalpy() | 
|---|
| 623 | } | 
|---|
| 624 | } | 
|---|
| 625 | else{ | 
|---|
| 626 | // base cold, but watercolumn positive. Set base to pressure melting point enthalpy | 
|---|
| 627 | } | 
|---|
| 628 | } | 
|---|
| 629 |  | 
|---|
| 630 | /*Clean up and return*/ | 
|---|
| 631 | delete gauss; | 
|---|
| 632 | delete gaussup; | 
|---|
| 633 | delete friction; | 
|---|
| 634 | xDelete<IssmDouble>(basis); | 
|---|
| 635 | xDelete<IssmDouble>(xyz_list_base); | 
|---|
| 636 | return pe; | 
|---|
| 637 |  | 
|---|
| 638 | }/*}}}*/ | 
|---|
| 639 | ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/ | 
|---|
| 640 |  | 
|---|
| 641 | /* Check if ice in element */ | 
|---|
| 642 | if(!element->IsIceInElement()) return NULL; | 
|---|
| 643 |  | 
|---|
| 644 | /*Get basal element*/ | 
|---|
| 645 | if(!element->IsOnBase() || !element->IsFloating()) return NULL; | 
|---|
| 646 |  | 
|---|
| 647 | IssmDouble  h_pmp,dt,Jdet,scalar_ocean,pressure; | 
|---|
| 648 | IssmDouble *xyz_list_base = NULL; | 
|---|
| 649 |  | 
|---|
| 650 | /*Fetch number of nodes for this finite element*/ | 
|---|
| 651 | int numnodes = element->GetNumberOfNodes(); | 
|---|
| 652 |  | 
|---|
| 653 | /*Initialize vectors*/ | 
|---|
| 654 | ElementVector* pe    = element->NewElementVector(); | 
|---|
| 655 | IssmDouble*    basis = xNew<IssmDouble>(numnodes); | 
|---|
| 656 |  | 
|---|
| 657 | /*Retrieve all inputs and parameters*/ | 
|---|
| 658 | element->GetVerticesCoordinatesBase(&xyz_list_base); | 
|---|
| 659 | element->FindParam(&dt,TimesteppingTimeStepEnum); | 
|---|
| 660 | Input*      pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input); | 
|---|
| 661 | IssmDouble  gravity             = element->GetMaterialParameter(ConstantsGEnum); | 
|---|
| 662 | IssmDouble  rho_water           = element->GetMaterialParameter(MaterialsRhoSeawaterEnum); | 
|---|
| 663 | IssmDouble  rho_ice             = element->GetMaterialParameter(MaterialsRhoIceEnum); | 
|---|
| 664 | IssmDouble  heatcapacity        = element->GetMaterialParameter(MaterialsHeatcapacityEnum); | 
|---|
| 665 | IssmDouble  mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum); | 
|---|
| 666 | IssmDouble  thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum); | 
|---|
| 667 |  | 
|---|
| 668 | /* Start  looping on the number of gaussian points: */ | 
|---|
| 669 | Gauss* gauss=element->NewGaussBase(2); | 
|---|
| 670 | for(int ig=gauss->begin();ig<gauss->end();ig++){ | 
|---|
| 671 | gauss->GaussPoint(ig); | 
|---|
| 672 |  | 
|---|
| 673 | element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss); | 
|---|
| 674 | element->NodalFunctions(basis,gauss); | 
|---|
| 675 |  | 
|---|
| 676 | pressure_input->GetInputValue(&pressure,gauss); | 
|---|
| 677 | h_pmp=element->PureIceEnthalpy(pressure); | 
|---|
| 678 |  | 
|---|
| 679 | scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*h_pmp/(heatcapacity*rho_ice); | 
|---|
| 680 | if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean; | 
|---|
| 681 |  | 
|---|
| 682 | for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i]; | 
|---|
| 683 | } | 
|---|
| 684 |  | 
|---|
| 685 | /*Clean up and return*/ | 
|---|
| 686 | delete gauss; | 
|---|
| 687 | xDelete<IssmDouble>(basis); | 
|---|
| 688 | xDelete<IssmDouble>(xyz_list_base); | 
|---|
| 689 | return pe; | 
|---|
| 690 | }/*}}}*/ | 
|---|
| 691 | void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/ | 
|---|
| 692 | /*Compute B  matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1. | 
|---|
| 693 | * For node i, Bi' can be expressed in the actual coordinate system | 
|---|
| 694 | * by: | 
|---|
| 695 | *       Bi_conduct=[ dh/dx ] | 
|---|
| 696 | *                  [ dh/dy ] | 
|---|
| 697 | *                  [ dh/dz ] | 
|---|
| 698 | * where h is the interpolation function for node i. | 
|---|
| 699 | * | 
|---|
| 700 | * We assume B has been allocated already, of size: 3x(NDOF1*numnodes) | 
|---|
| 701 | */ | 
|---|
| 702 |  | 
|---|
| 703 | /*Fetch number of nodes for this finite element*/ | 
|---|
| 704 | int numnodes = element->GetNumberOfNodes(); | 
|---|
| 705 |  | 
|---|
| 706 | /*Get nodal functions derivatives*/ | 
|---|
| 707 | IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes); | 
|---|
| 708 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss); | 
|---|
| 709 |  | 
|---|
| 710 | /*Build B: */ | 
|---|
| 711 | for(int i=0;i<numnodes;i++){ | 
|---|
| 712 | B[numnodes*0+i] = dbasis[0*numnodes+i]; | 
|---|
| 713 | B[numnodes*1+i] = dbasis[1*numnodes+i]; | 
|---|
| 714 | B[numnodes*2+i] = dbasis[2*numnodes+i]; | 
|---|
| 715 | } | 
|---|
| 716 |  | 
|---|
| 717 | /*Clean-up*/ | 
|---|
| 718 | xDelete<IssmDouble>(dbasis); | 
|---|
| 719 | }/*}}}*/ | 
|---|
| 720 | void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/ | 
|---|
| 721 | /*Compute B  matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1. | 
|---|
| 722 | * For node i, Bi' can be expressed in the actual coordinate system | 
|---|
| 723 | * by: | 
|---|
| 724 | *       Bi_advec =[ h ] | 
|---|
| 725 | *                 [ h ] | 
|---|
| 726 | *                 [ h ] | 
|---|
| 727 | * where h is the interpolation function for node i. | 
|---|
| 728 | * | 
|---|
| 729 | * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1) | 
|---|
| 730 | */ | 
|---|
| 731 |  | 
|---|
| 732 | /*Fetch number of nodes for this finite element*/ | 
|---|
| 733 | int numnodes = element->GetNumberOfNodes(); | 
|---|
| 734 |  | 
|---|
| 735 | /*Get nodal functions*/ | 
|---|
| 736 | IssmDouble* basis=xNew<IssmDouble>(numnodes); | 
|---|
| 737 | element->NodalFunctions(basis,gauss); | 
|---|
| 738 |  | 
|---|
| 739 | /*Build B: */ | 
|---|
| 740 | for(int i=0;i<numnodes;i++){ | 
|---|
| 741 | B[numnodes*0+i] = basis[i]; | 
|---|
| 742 | B[numnodes*1+i] = basis[i]; | 
|---|
| 743 | B[numnodes*2+i] = basis[i]; | 
|---|
| 744 | } | 
|---|
| 745 |  | 
|---|
| 746 | /*Clean-up*/ | 
|---|
| 747 | xDelete<IssmDouble>(basis); | 
|---|
| 748 | }/*}}}*/ | 
|---|
| 749 | void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/ | 
|---|
| 750 | /*Compute B  matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1. | 
|---|
| 751 | * For node i, Bi' can be expressed in the actual coordinate system | 
|---|
| 752 | * by: | 
|---|
| 753 | *       Biprime_advec=[ dh/dx ] | 
|---|
| 754 | *                     [ dh/dy ] | 
|---|
| 755 | *                     [ dh/dz ] | 
|---|
| 756 | * where h is the interpolation function for node i. | 
|---|
| 757 | * | 
|---|
| 758 | * We assume B has been allocated already, of size: 3x(NDOF1*numnodes) | 
|---|
| 759 | */ | 
|---|
| 760 |  | 
|---|
| 761 | /*Fetch number of nodes for this finite element*/ | 
|---|
| 762 | int numnodes = element->GetNumberOfNodes(); | 
|---|
| 763 |  | 
|---|
| 764 | /*Get nodal functions derivatives*/ | 
|---|
| 765 | IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes); | 
|---|
| 766 | element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss); | 
|---|
| 767 |  | 
|---|
| 768 | /*Build B: */ | 
|---|
| 769 | for(int i=0;i<numnodes;i++){ | 
|---|
| 770 | B[numnodes*0+i] = dbasis[0*numnodes+i]; | 
|---|
| 771 | B[numnodes*1+i] = dbasis[1*numnodes+i]; | 
|---|
| 772 | B[numnodes*2+i] = dbasis[2*numnodes+i]; | 
|---|
| 773 | } | 
|---|
| 774 |  | 
|---|
| 775 | /*Clean-up*/ | 
|---|
| 776 | xDelete<IssmDouble>(dbasis); | 
|---|
| 777 | }/*}}}*/ | 
|---|
| 778 | void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/ | 
|---|
| 779 | element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum); | 
|---|
| 780 | }/*}}}*/ | 
|---|
| 781 | void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/ | 
|---|
| 782 |  | 
|---|
| 783 | bool        converged; | 
|---|
| 784 | int         i,rheology_law; | 
|---|
| 785 | IssmDouble  B_average,s_average,T_average=0.,P_average=0.; | 
|---|
| 786 | int        *doflist   = NULL; | 
|---|
| 787 | IssmDouble *xyz_list  = NULL; | 
|---|
| 788 |  | 
|---|
| 789 | /*Fetch number of nodes and dof for this finite element*/ | 
|---|
| 790 | int numnodes    = element->GetNumberOfNodes(); | 
|---|
| 791 |  | 
|---|
| 792 | /*Fetch dof list and allocate solution vector*/ | 
|---|
| 793 | element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum); | 
|---|
| 794 | IssmDouble* values        = xNew<IssmDouble>(numnodes); | 
|---|
| 795 | IssmDouble* pressure      = xNew<IssmDouble>(numnodes); | 
|---|
| 796 | IssmDouble* surface       = xNew<IssmDouble>(numnodes); | 
|---|
| 797 | IssmDouble* B             = xNew<IssmDouble>(numnodes); | 
|---|
| 798 | IssmDouble* temperature   = xNew<IssmDouble>(numnodes); | 
|---|
| 799 | IssmDouble* waterfraction = xNew<IssmDouble>(numnodes); | 
|---|
| 800 |  | 
|---|
| 801 | /*Use the dof list to index into the solution vector: */ | 
|---|
| 802 | for(i=0;i<numnodes;i++){ | 
|---|
| 803 | values[i]=solution[doflist[i]]; | 
|---|
| 804 |  | 
|---|
| 805 | /*Check solution*/ | 
|---|
| 806 | if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector"); | 
|---|
| 807 | } | 
|---|
| 808 |  | 
|---|
| 809 | /*Get all inputs and parameters*/ | 
|---|
| 810 | element->GetInputValue(&converged,ConvergedEnum); | 
|---|
| 811 | element->GetInputListOnNodes(&pressure[0],PressureEnum); | 
|---|
| 812 | if(converged){ | 
|---|
| 813 | for(i=0;i<numnodes;i++){ | 
|---|
| 814 | element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]); | 
|---|
| 815 | if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector"); | 
|---|
| 816 | //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector"); | 
|---|
| 817 | } | 
|---|
| 818 | element->AddInput(EnthalpyEnum,values,element->GetElementType()); | 
|---|
| 819 | element->AddInput(WaterfractionEnum,waterfraction,element->GetElementType()); | 
|---|
| 820 | element->AddInput(TemperatureEnum,temperature,element->GetElementType()); | 
|---|
| 821 |  | 
|---|
| 822 | /*Update Rheology only if converged (we must make sure that the temperature is below melting point | 
|---|
| 823 | * otherwise the rheology could be negative*/ | 
|---|
| 824 | element->FindParam(&rheology_law,MaterialsRheologyLawEnum); | 
|---|
| 825 | element->GetInputListOnNodes(&surface[0],SurfaceEnum); | 
|---|
| 826 | switch(rheology_law){ | 
|---|
| 827 | case NoneEnum: | 
|---|
| 828 | /*Do nothing: B is not temperature dependent*/ | 
|---|
| 829 | break; | 
|---|
| 830 | case CuffeyEnum: | 
|---|
| 831 | for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]); | 
|---|
| 832 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType()); | 
|---|
| 833 | break; | 
|---|
| 834 | case PatersonEnum: | 
|---|
| 835 | for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]); | 
|---|
| 836 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType()); | 
|---|
| 837 | break; | 
|---|
| 838 | case ArrheniusEnum: | 
|---|
| 839 | element->GetVerticesCoordinates(&xyz_list); | 
|---|
| 840 | for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],element->GetMaterialParameter(MaterialsRheologyNEnum)); | 
|---|
| 841 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType()); | 
|---|
| 842 | break; | 
|---|
| 843 | case LliboutryDuvalEnum: | 
|---|
| 844 | for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],element->GetMaterialParameter(MaterialsRheologyNEnum),element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum)); | 
|---|
| 845 | element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType()); | 
|---|
| 846 | break; | 
|---|
| 847 | default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet"); | 
|---|
| 848 | } | 
|---|
| 849 | } | 
|---|
| 850 | else{ | 
|---|
| 851 | element->AddInput(EnthalpyPicardEnum,values,element->GetElementType()); | 
|---|
| 852 | } | 
|---|
| 853 |  | 
|---|
| 854 | /*Free ressources:*/ | 
|---|
| 855 | xDelete<IssmDouble>(values); | 
|---|
| 856 | xDelete<IssmDouble>(pressure); | 
|---|
| 857 | xDelete<IssmDouble>(surface); | 
|---|
| 858 | xDelete<IssmDouble>(B); | 
|---|
| 859 | xDelete<IssmDouble>(temperature); | 
|---|
| 860 | xDelete<IssmDouble>(waterfraction); | 
|---|
| 861 | xDelete<IssmDouble>(xyz_list); | 
|---|
| 862 | xDelete<int>(doflist); | 
|---|
| 863 | }/*}}}*/ | 
|---|
| 864 | void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/ | 
|---|
| 865 |  | 
|---|
| 866 | bool islevelset; | 
|---|
| 867 | femmodel->parameters->FindParam(&islevelset,TransientIslevelsetEnum); | 
|---|
| 868 | if(islevelset){ | 
|---|
| 869 | SetActiveNodesLSMx(femmodel); | 
|---|
| 870 | } | 
|---|
| 871 | return; | 
|---|
| 872 | }/*}}}*/ | 
|---|
| 873 |  | 
|---|
| 874 | /*Modules*/ | 
|---|
| 875 | void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/ | 
|---|
| 876 |  | 
|---|
| 877 | /*Intermediaries*/ | 
|---|
| 878 | int solution_type, i; | 
|---|
| 879 | bool computebasalmeltingrates=true; | 
|---|
| 880 | bool isdrainage=true; | 
|---|
| 881 | bool updatebasalconstraints=true; | 
|---|
| 882 |  | 
|---|
| 883 | if(isdrainage){ | 
|---|
| 884 | /*Drain excess water fraction in ice column: */ | 
|---|
| 885 | for(i=0;i<femmodel->elements->Size();i++){ | 
|---|
| 886 | Element* element=dynamic_cast<Element*>(femmodel->elements->GetObjectByOffset(i)); | 
|---|
| 887 | DrainWaterfractionIcecolumn(element); | 
|---|
| 888 | } | 
|---|
| 889 | } | 
|---|
| 890 |  | 
|---|
| 891 | if(computebasalmeltingrates){ | 
|---|
| 892 | /*Compute basal melting rates: */ | 
|---|
| 893 | for(i=0;i<femmodel->elements->Size();i++){ | 
|---|
| 894 | Element* element=dynamic_cast<Element*>(femmodel->elements->GetObjectByOffset(i)); | 
|---|
| 895 | ComputeBasalMeltingrate(element); | 
|---|
| 896 | } | 
|---|
| 897 | } | 
|---|
| 898 |  | 
|---|
| 899 | if(updatebasalconstraints){ | 
|---|
| 900 | /*Update basal dirichlet BCs for enthalpy in transient runs: */ | 
|---|
| 901 | femmodel->parameters->FindParam(&solution_type,SolutionTypeEnum); | 
|---|
| 902 | if(solution_type==TransientSolutionEnum){ | 
|---|
| 903 | for(i=0;i<femmodel->elements->Size();i++){ | 
|---|
| 904 | Element* element=dynamic_cast<Element*>(femmodel->elements->GetObjectByOffset(i)); | 
|---|
| 905 | UpdateBasalConstraints(element); | 
|---|
| 906 | } | 
|---|
| 907 | } | 
|---|
| 908 | } | 
|---|
| 909 | }/*}}}*/ | 
|---|
| 910 | void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/ | 
|---|
| 911 | /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/ | 
|---|
| 912 | /* melting rate is positive when melting, negative when refreezing*/ | 
|---|
| 913 |  | 
|---|
| 914 | /* Check if ice in element */ | 
|---|
| 915 | if(!element->IsIceInElement()) return; | 
|---|
| 916 |  | 
|---|
| 917 | /* Only compute melt rates at the base of grounded ice*/ | 
|---|
| 918 | if(!element->IsOnBase() || element->IsFloating()) return; | 
|---|
| 919 |  | 
|---|
| 920 | /* Intermediaries */ | 
|---|
| 921 | const int   dim=3; | 
|---|
| 922 | int         i,is,vertexdown,vertexup,numvertices,numsegments; | 
|---|
| 923 | IssmDouble  heatflux; | 
|---|
| 924 | IssmDouble  vec_heatflux[dim],normal_base[dim],d1enthalpy[dim]; | 
|---|
| 925 | IssmDouble  basalfriction,alpha2; | 
|---|
| 926 | IssmDouble  dt,yts; | 
|---|
| 927 | IssmDouble  melting_overshoot,lambda; | 
|---|
| 928 | IssmDouble  geothermalflux; | 
|---|
| 929 | IssmDouble  vx,vy,vz; | 
|---|
| 930 | IssmDouble *xyz_list      = NULL; | 
|---|
| 931 | IssmDouble *xyz_list_base = NULL; | 
|---|
| 932 | int        *pairindices   = NULL; | 
|---|
| 933 |  | 
|---|
| 934 | /*Fetch parameters and inputs */ | 
|---|
| 935 | element->GetVerticesCoordinates(&xyz_list); | 
|---|
| 936 | element->GetVerticesCoordinatesBase(&xyz_list_base); | 
|---|
| 937 | IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum); | 
|---|
| 938 | IssmDouble rho_ice    = element->GetMaterialParameter(MaterialsRhoIceEnum); | 
|---|
| 939 | IssmDouble rho_water  = element->GetMaterialParameter(MaterialsRhoFreshwaterEnum); | 
|---|
| 940 | Input* enthalpy_input         = element->GetInput(EnthalpyEnum);                    _assert_(enthalpy_input); | 
|---|
| 941 | Input* geothermalflux_input   = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input); | 
|---|
| 942 | Input* vx_input               = element->GetInput(VxEnum);                          _assert_(vx_input); | 
|---|
| 943 | Input* vy_input               = element->GetInput(VyEnum);                          _assert_(vy_input); | 
|---|
| 944 | Input* vz_input               = element->GetInput(VzEnum);                          _assert_(vz_input); | 
|---|
| 945 | IssmDouble kappa=EnthalpyDiffusionParameterVolume(element,EnthalpyEnum);     _assert_(kappa>=0.); | 
|---|
| 946 | element->NormalBase(&normal_base[0],xyz_list_base); | 
|---|
| 947 | element->VerticalSegmentIndices(&pairindices,&numsegments); | 
|---|
| 948 | IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments); | 
|---|
| 949 | IssmDouble* heating = xNew<IssmDouble>(numsegments); | 
|---|
| 950 |  | 
|---|
| 951 | /*Build friction element, needed later: */ | 
|---|
| 952 | Friction* friction=new Friction(element,dim); | 
|---|
| 953 |  | 
|---|
| 954 | /******** MELTING RATES  ************************************/ | 
|---|
| 955 | numvertices=element->GetNumberOfVertices(); | 
|---|
| 956 | IssmDouble* enthalpy = xNew<IssmDouble>(numvertices); | 
|---|
| 957 | IssmDouble* pressure = xNew<IssmDouble>(numvertices); | 
|---|
| 958 | IssmDouble* watercolumn = xNew<IssmDouble>(numvertices); | 
|---|
| 959 | IssmDouble* basalmeltingrate = xNew<IssmDouble>(numvertices); | 
|---|
| 960 | element->GetInputListOnVertices(enthalpy,EnthalpyEnum); | 
|---|
| 961 | element->GetInputListOnVertices(pressure,PressureEnum); | 
|---|
| 962 | element->GetInputListOnVertices(watercolumn,WatercolumnEnum); | 
|---|
| 963 | element->GetInputListOnVertices(basalmeltingrate,BasalforcingsMeltingRateEnum); | 
|---|
| 964 |  | 
|---|
| 965 | Gauss* gauss=element->NewGauss(); | 
|---|
| 966 |  | 
|---|
| 967 | for(int is=0;is<numsegments;is++){ | 
|---|
| 968 | vertexdown = pairindices[is*2+0]; | 
|---|
| 969 | vertexup   = pairindices[is*2+1]; | 
|---|
| 970 | gauss->GaussVertex(vertexdown); | 
|---|
| 971 |  | 
|---|
| 972 | bool checkpositivethickness=true; | 
|---|
| 973 | _assert_(watercolumn[vertexdown]>=0.); | 
|---|
| 974 |  | 
|---|
| 975 | /*Calculate basal meltingrate after Fig.5 of A.Aschwanden 2012*/ | 
|---|
| 976 | meltingrate_enthalpy[is]=0.; | 
|---|
| 977 | heating[is]=0.; | 
|---|
| 978 | if((watercolumn[vertexdown]>0.) && (enthalpy[vertexdown]<PureIceEnthalpy(element,pressure[vertexdown]))){ | 
|---|
| 979 | /*ensure that no ice is at T<Tm(p), if water layer present*/ | 
|---|
| 980 | enthalpy[vertexdown]=element->PureIceEnthalpy(pressure[vertexdown]); | 
|---|
| 981 | } | 
|---|
| 982 | else if(enthalpy[vertexdown]<element->PureIceEnthalpy(pressure[vertexdown])){ | 
|---|
| 983 | /*cold base: set q*n=q_geo*n+frictionheating as Neumann BC in Penta::CreatePVectorEnthalpySheet*/ | 
|---|
| 984 | checkpositivethickness=false; // cold base, skip next test | 
|---|
| 985 | } | 
|---|
| 986 | else{/*we have a temperate base, go to next test*/} | 
|---|
| 987 |  | 
|---|
| 988 | if(checkpositivethickness){ | 
|---|
| 989 | /*From here on all basal ice is temperate. Check for positive thickness of layer of temperate ice. */ | 
|---|
| 990 | bool istemperatelayer=false; | 
|---|
| 991 | if(enthalpy[vertexup]>=element->PureIceEnthalpy(pressure[vertexup])) istemperatelayer=true; | 
|---|
| 992 | if(istemperatelayer) for(i=0;i<dim;i++) vec_heatflux[i]=0.; // TODO: add -k*nabla T_pmp | 
|---|
| 993 | else{ | 
|---|
| 994 | enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss); | 
|---|
| 995 | for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i]; | 
|---|
| 996 | } | 
|---|
| 997 |  | 
|---|
| 998 | /*heat flux along normal*/ | 
|---|
| 999 | heatflux=0.; | 
|---|
| 1000 | for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i]; | 
|---|
| 1001 |  | 
|---|
| 1002 | /*basal friction*/ | 
|---|
| 1003 | friction->GetAlpha2(&alpha2,gauss); | 
|---|
| 1004 | vx_input->GetInputValue(&vx,gauss); | 
|---|
| 1005 | vy_input->GetInputValue(&vy,gauss); | 
|---|
| 1006 | vz_input->GetInputValue(&vz,gauss); | 
|---|
| 1007 | basalfriction=alpha2*(vx*vx + vy*vy + vz*vz); | 
|---|
| 1008 |  | 
|---|
| 1009 | geothermalflux_input->GetInputValue(&geothermalflux,gauss); | 
|---|
| 1010 | /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/ | 
|---|
| 1011 | heating[is]=(heatflux+basalfriction+geothermalflux); | 
|---|
| 1012 | meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent | 
|---|
| 1013 | } | 
|---|
| 1014 | } | 
|---|
| 1015 | /******** UPDATE MELTINGRATES AND WATERCOLUMN **************/ | 
|---|
| 1016 | element->FindParam(&dt,TimesteppingTimeStepEnum); | 
|---|
| 1017 | for(is=0;is<numsegments;is++){ | 
|---|
| 1018 | vertexdown = pairindices[is*2+0]; | 
|---|
| 1019 | vertexup   = pairindices[is*2+1]; | 
|---|
| 1020 | if(dt!=0.){ | 
|---|
| 1021 | if(watercolumn[vertexdown]+meltingrate_enthalpy[is]*dt<0.){     // prevent too much freeze on | 
|---|
| 1022 | lambda = -watercolumn[vertexdown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.); | 
|---|
| 1023 | watercolumn[vertexdown]=0.; | 
|---|
| 1024 | basalmeltingrate[vertexdown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn | 
|---|
| 1025 | enthalpy[vertexdown]+=(1.-lambda)*meltingrate_enthalpy[is]*dt*latentheat; // use rest of energy to cool down base | 
|---|
| 1026 | } | 
|---|
| 1027 | else{ | 
|---|
| 1028 | basalmeltingrate[vertexdown]=meltingrate_enthalpy[is]; | 
|---|
| 1029 | watercolumn[vertexdown]+=dt*meltingrate_enthalpy[is]; | 
|---|
| 1030 | } | 
|---|
| 1031 | } | 
|---|
| 1032 | else{ | 
|---|
| 1033 | basalmeltingrate[vertexdown]=meltingrate_enthalpy[is]; | 
|---|
| 1034 | watercolumn[vertexdown]+=meltingrate_enthalpy[is]; | 
|---|
| 1035 | } | 
|---|
| 1036 | basalmeltingrate[vertexdown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent | 
|---|
| 1037 | _assert_(watercolumn[vertexdown]>=0.); | 
|---|
| 1038 | } | 
|---|
| 1039 |  | 
|---|
| 1040 | /*feed updated variables back into model*/ | 
|---|
| 1041 | element->AddInput(EnthalpyEnum,enthalpy,P1Enum); | 
|---|
| 1042 | element->AddInput(WatercolumnEnum,watercolumn,P1Enum); | 
|---|
| 1043 | element->AddInput(BasalforcingsMeltingRateEnum,basalmeltingrate,P1Enum); | 
|---|
| 1044 |  | 
|---|
| 1045 | /*Clean up and return*/ | 
|---|
| 1046 | delete gauss; | 
|---|
| 1047 | delete friction; | 
|---|
| 1048 | xDelete<IssmDouble>(enthalpy); | 
|---|
| 1049 | xDelete<IssmDouble>(pressure); | 
|---|
| 1050 | xDelete<IssmDouble>(watercolumn); | 
|---|
| 1051 | xDelete<IssmDouble>(basalmeltingrate); | 
|---|
| 1052 | xDelete<IssmDouble>(meltingrate_enthalpy); | 
|---|
| 1053 | xDelete<IssmDouble>(heating); | 
|---|
| 1054 | xDelete<IssmDouble>(xyz_list); | 
|---|
| 1055 | }/*}}}*/ | 
|---|
| 1056 | void EnthalpyAnalysis::DrainWaterfractionIcecolumn(Element* element){/*{{{*/ | 
|---|
| 1057 |  | 
|---|
| 1058 | /* Check if ice in element */ | 
|---|
| 1059 | if(!element->IsIceInElement()) return; | 
|---|
| 1060 |  | 
|---|
| 1061 | /* Only drain waterfraction of ice column from element at base*/ | 
|---|
| 1062 | if(!element->IsOnBase()) return; //FIXME: allow freeze on for floating elements | 
|---|
| 1063 |  | 
|---|
| 1064 | /* Intermediaries*/ | 
|---|
| 1065 | int is, numvertices, numsegments; | 
|---|
| 1066 | int *pairindices   = NULL; | 
|---|
| 1067 |  | 
|---|
| 1068 | numvertices=element->GetNumberOfVertices(); | 
|---|
| 1069 | element->VerticalSegmentIndices(&pairindices,&numsegments); | 
|---|
| 1070 |  | 
|---|
| 1071 | IssmDouble* watercolumn = xNew<IssmDouble>(numvertices); | 
|---|
| 1072 | IssmDouble* drainrate_column  = xNew<IssmDouble>(numsegments); | 
|---|
| 1073 | IssmDouble* drainrate_element = xNew<IssmDouble>(numsegments); | 
|---|
| 1074 |  | 
|---|
| 1075 | element->GetInputListOnVertices(watercolumn,WatercolumnEnum); | 
|---|
| 1076 |  | 
|---|
| 1077 | for(is=0;is<numsegments;is++)   drainrate_column[is]=0.; | 
|---|
| 1078 | Element* elementi = element; | 
|---|
| 1079 | for(;;){ | 
|---|
| 1080 | for(is=0;is<numsegments;is++)   drainrate_element[is]=0.; | 
|---|
| 1081 | DrainWaterfraction(elementi,drainrate_element); // TODO: make sure every vertex is only drained once | 
|---|
| 1082 | for(is=0;is<numsegments;is++)   drainrate_column[is]+=drainrate_element[is]; | 
|---|
| 1083 |  | 
|---|
| 1084 | if(elementi->IsOnSurface()) break; | 
|---|
| 1085 | elementi=elementi->GetUpperElement(); | 
|---|
| 1086 | } | 
|---|
| 1087 | /* add drained water to water column*/ | 
|---|
| 1088 | for(is=0;is<numsegments;is++) watercolumn[is]+=drainrate_column[is]; | 
|---|
| 1089 | /* Feed updated water column back into model */ | 
|---|
| 1090 | element->AddInput(WatercolumnEnum,watercolumn,P1Enum); | 
|---|
| 1091 |  | 
|---|
| 1092 | xDelete<int>(pairindices); | 
|---|
| 1093 | xDelete<IssmDouble>(drainrate_column); | 
|---|
| 1094 | xDelete<IssmDouble>(drainrate_element); | 
|---|
| 1095 | xDelete<IssmDouble>(watercolumn); | 
|---|
| 1096 | }/*}}}*/ | 
|---|
| 1097 | void EnthalpyAnalysis::DrainWaterfraction(Element* element, IssmDouble* pdrainrate_element){/*{{{*/ | 
|---|
| 1098 |  | 
|---|
| 1099 | /* Check if ice in element */ | 
|---|
| 1100 | if(!element->IsIceInElement()) return; | 
|---|
| 1101 |  | 
|---|
| 1102 | /*Intermediaries*/ | 
|---|
| 1103 | int iv,is,vertexdown,vertexup,numsegments; | 
|---|
| 1104 | IssmDouble dt, height_element; | 
|---|
| 1105 | IssmDouble rho_water, rho_ice; | 
|---|
| 1106 | int numvertices = element->GetNumberOfVertices(); | 
|---|
| 1107 |  | 
|---|
| 1108 | IssmDouble* xyz_list = NULL; | 
|---|
| 1109 | IssmDouble* enthalpies = xNew<IssmDouble>(numvertices); | 
|---|
| 1110 | IssmDouble* pressures = xNew<IssmDouble>(numvertices); | 
|---|
| 1111 | IssmDouble* temperatures = xNew<IssmDouble>(numvertices); | 
|---|
| 1112 | IssmDouble* waterfractions = xNew<IssmDouble>(numvertices); | 
|---|
| 1113 | IssmDouble* deltawaterfractions = xNew<IssmDouble>(numvertices); | 
|---|
| 1114 | int        *pairindices   = NULL; | 
|---|
| 1115 |  | 
|---|
| 1116 | rho_ice=element->GetMaterialParameter(MaterialsRhoIceEnum); | 
|---|
| 1117 | rho_water=element->GetMaterialParameter(MaterialsRhoSeawaterEnum); | 
|---|
| 1118 |  | 
|---|
| 1119 | element->GetVerticesCoordinates(&xyz_list); | 
|---|
| 1120 | element->GetInputListOnVertices(enthalpies,EnthalpyEnum); | 
|---|
| 1121 | element->GetInputListOnVertices(pressures,PressureEnum); | 
|---|
| 1122 |  | 
|---|
| 1123 | element->FindParam(&dt,TimesteppingTimeStepEnum); | 
|---|
| 1124 | for(iv=0;iv<numvertices;iv++){ | 
|---|
| 1125 | element->EnthalpyToThermal(&temperatures[iv],&waterfractions[iv], enthalpies[iv],pressures[iv]); | 
|---|
| 1126 | deltawaterfractions[iv]=DrainageFunctionWaterfraction(waterfractions[iv], dt); | 
|---|
| 1127 | } | 
|---|
| 1128 |  | 
|---|
| 1129 | /*drain waterfraction, feed updated variables back into model*/ | 
|---|
| 1130 | for(iv=0;iv<numvertices;iv++){ | 
|---|
| 1131 | if(reCast<bool,IssmDouble>(dt)) | 
|---|
| 1132 | waterfractions[iv]-=deltawaterfractions[iv]*dt; | 
|---|
| 1133 | else | 
|---|
| 1134 | waterfractions[iv]-=deltawaterfractions[iv]; | 
|---|
| 1135 | element->ThermalToEnthalpy(&enthalpies[iv], temperatures[iv], waterfractions[iv], pressures[iv]); | 
|---|
| 1136 | } | 
|---|
| 1137 | element->AddInput(EnthalpyEnum,enthalpies,P1Enum); | 
|---|
| 1138 | element->AddInput(WaterfractionEnum,waterfractions,P1Enum); | 
|---|
| 1139 |  | 
|---|
| 1140 | /*return meltwater column equivalent to drained water*/ | 
|---|
| 1141 | element->VerticalSegmentIndices(&pairindices,&numsegments); | 
|---|
| 1142 | for(is=0;is<numsegments;is++){ | 
|---|
| 1143 | vertexdown = pairindices[is*2+0]; | 
|---|
| 1144 | vertexup   = pairindices[is*2+1]; | 
|---|
| 1145 | height_element=fabs(xyz_list[vertexup*3+2]-xyz_list[vertexdown*3+2]); | 
|---|
| 1146 | pdrainrate_element[is]=(deltawaterfractions[vertexdown]+deltawaterfractions[vertexup])/2.*height_element; // return water equivalent of drainage | 
|---|
| 1147 | _assert_(pdrainrate_element[is]>=0.); | 
|---|
| 1148 | } | 
|---|
| 1149 |  | 
|---|
| 1150 | /*Clean up and return*/ | 
|---|
| 1151 | xDelete<int>(pairindices); | 
|---|
| 1152 | xDelete<IssmDouble>(xyz_list); | 
|---|
| 1153 | xDelete<IssmDouble>(enthalpies); | 
|---|
| 1154 | xDelete<IssmDouble>(pressures); | 
|---|
| 1155 | xDelete<IssmDouble>(temperatures); | 
|---|
| 1156 | xDelete<IssmDouble>(waterfractions); | 
|---|
| 1157 | xDelete<IssmDouble>(deltawaterfractions); | 
|---|
| 1158 | }/*}}}*/ | 
|---|
| 1159 | void EnthalpyAnalysis::UpdateBasalConstraints(Element* element){/*{{{*/ | 
|---|
| 1160 |  | 
|---|
| 1161 | /* Check if ice in element */ | 
|---|
| 1162 | if(!element->IsIceInElement()) return; | 
|---|
| 1163 |  | 
|---|
| 1164 | /* Only update Constraints at the base of grounded ice*/ | 
|---|
| 1165 | if(!(element->IsOnBase()) || element->IsFloating()) return; | 
|---|
| 1166 |  | 
|---|
| 1167 | /*Intermediary*/ | 
|---|
| 1168 | bool        isdynamicbasalspc,setspc; | 
|---|
| 1169 | int         numindices, numindicesup; | 
|---|
| 1170 | IssmDouble  pressure, pressureup; | 
|---|
| 1171 | IssmDouble  h_pmp, enthalpy, enthalpyup; | 
|---|
| 1172 | IssmDouble  watercolumn; | 
|---|
| 1173 | int        *indices = NULL, *indicesup = NULL; | 
|---|
| 1174 | Node*       node = NULL; | 
|---|
| 1175 |  | 
|---|
| 1176 | /*Check wether dynamic basal boundary conditions are activated */ | 
|---|
| 1177 | element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum); | 
|---|
| 1178 | if(!isdynamicbasalspc) return; | 
|---|
| 1179 |  | 
|---|
| 1180 | /*Fetch indices of basal & surface nodes for this finite element*/ | 
|---|
| 1181 | Penta *penta =  (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element* | 
|---|
| 1182 | penta->BasalNodeIndices(&numindices,&indices,element->GetElementType()); | 
|---|
| 1183 | penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType()); | 
|---|
| 1184 | _assert_(numindices==numindicesup); | 
|---|
| 1185 |  | 
|---|
| 1186 | /*Get parameters and inputs: */ | 
|---|
| 1187 | Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input); | 
|---|
| 1188 | Input* enthalpy_input=element->GetInput(EnthalpyEnum); _assert_(enthalpy_input); | 
|---|
| 1189 | Input* watercolumn_input=element->GetInput(WatercolumnEnum); _assert_(watercolumn_input); | 
|---|
| 1190 |  | 
|---|
| 1191 | /*if there is a temperate layer of zero thickness, set spc enthalpy=h_pmp at that node*/ | 
|---|
| 1192 | GaussPenta* gauss=new GaussPenta(); | 
|---|
| 1193 | GaussPenta* gaussup=new GaussPenta(); | 
|---|
| 1194 | for(int i=0;i<numindices;i++){ | 
|---|
| 1195 | gauss->GaussNode(element->GetElementType(),indices[i]); | 
|---|
| 1196 | gaussup->GaussNode(element->GetElementType(),indicesup[i]); | 
|---|
| 1197 |  | 
|---|
| 1198 | /*Check wether there is a temperate layer at the base or not */ | 
|---|
| 1199 | /*check if node is temperate, else continue*/ | 
|---|
| 1200 | enthalpy_input->GetInputValue(&enthalpy, gauss); | 
|---|
| 1201 | pressure_input->GetInputValue(&pressure, gauss); | 
|---|
| 1202 | watercolumn_input->GetInputValue(&watercolumn,gauss); | 
|---|
| 1203 | h_pmp=PureIceEnthalpy(element,pressure); | 
|---|
| 1204 | if (enthalpy>=h_pmp){ | 
|---|
| 1205 | /*check if upper node is temperate, too. | 
|---|
| 1206 | if yes, then we have a temperate layer of positive thickness and reset the spc. | 
|---|
| 1207 | if not, apply dirichlet BC.*/ | 
|---|
| 1208 | enthalpy_input->GetInputValue(&enthalpyup, gaussup); | 
|---|
| 1209 | pressure_input->GetInputValue(&pressureup, gaussup); | 
|---|
| 1210 | setspc=((enthalpyup<PureIceEnthalpy(element,pressureup)) && (watercolumn>=0.))?true:false; | 
|---|
| 1211 | } | 
|---|
| 1212 | else | 
|---|
| 1213 | setspc = false; | 
|---|
| 1214 |  | 
|---|
| 1215 | node=element->GetNode(indices[i]); | 
|---|
| 1216 | if(setspc) | 
|---|
| 1217 | node->ApplyConstraint(0,h_pmp); /*apply spc*/ | 
|---|
| 1218 | else | 
|---|
| 1219 | node->DofInFSet(0); /*remove spc*/ | 
|---|
| 1220 | } | 
|---|
| 1221 |  | 
|---|
| 1222 | /*Free ressources:*/ | 
|---|
| 1223 | xDelete<int>(indices); | 
|---|
| 1224 | xDelete<int>(indicesup); | 
|---|
| 1225 | delete gauss; | 
|---|
| 1226 | delete gaussup; | 
|---|
| 1227 | }/*}}}*/ | 
|---|
| 1228 |  | 
|---|
| 1229 | /*Intermediaries*/ | 
|---|
| 1230 | IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/ | 
|---|
| 1231 |  | 
|---|
| 1232 | IssmDouble heatcapacity             = element->GetMaterialParameter(MaterialsHeatcapacityEnum); | 
|---|
| 1233 | IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum); | 
|---|
| 1234 | IssmDouble thermalconductivity      = element->GetMaterialParameter(MaterialsThermalconductivityEnum); | 
|---|
| 1235 |  | 
|---|
| 1236 | if(enthalpy < PureIceEnthalpy(element,pressure)){ | 
|---|
| 1237 | return thermalconductivity/heatcapacity; | 
|---|
| 1238 | } | 
|---|
| 1239 | else{ | 
|---|
| 1240 | return temperateiceconductivity/heatcapacity; | 
|---|
| 1241 | } | 
|---|
| 1242 | }/*}}}*/ | 
|---|
| 1243 | IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/ | 
|---|
| 1244 |  | 
|---|
| 1245 | int         iv; | 
|---|
| 1246 | IssmDouble  lambda;                   /* fraction of cold ice    */ | 
|---|
| 1247 | IssmDouble  kappa,kappa_c,kappa_t; /* enthalpy conductivities */ | 
|---|
| 1248 | IssmDouble  Hc,Ht; | 
|---|
| 1249 |  | 
|---|
| 1250 | /*Get pressures and enthalpies on vertices*/ | 
|---|
| 1251 | int         numvertices = element->GetNumberOfVertices(); | 
|---|
| 1252 | IssmDouble* pressures   = xNew<IssmDouble>(numvertices); | 
|---|
| 1253 | IssmDouble* enthalpies  = xNew<IssmDouble>(numvertices); | 
|---|
| 1254 | IssmDouble* PIE         = xNew<IssmDouble>(numvertices); | 
|---|
| 1255 | IssmDouble* dHpmp       = xNew<IssmDouble>(numvertices); | 
|---|
| 1256 | element->GetInputListOnVertices(pressures,PressureEnum); | 
|---|
| 1257 | element->GetInputListOnVertices(enthalpies,enthalpy_enum); | 
|---|
| 1258 | for(iv=0;iv<numvertices;iv++){ | 
|---|
| 1259 | PIE[iv]   = PureIceEnthalpy(element,pressures[iv]); | 
|---|
| 1260 | dHpmp[iv] = enthalpies[iv]-PIE[iv]; | 
|---|
| 1261 | } | 
|---|
| 1262 |  | 
|---|
| 1263 | bool allequalsign = true; | 
|---|
| 1264 | if(dHpmp[0]<0.){ | 
|---|
| 1265 | for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.)); | 
|---|
| 1266 | } | 
|---|
| 1267 | else{ | 
|---|
| 1268 | for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.)); | 
|---|
| 1269 | } | 
|---|
| 1270 |  | 
|---|
| 1271 | if(allequalsign){ | 
|---|
| 1272 | kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]); | 
|---|
| 1273 | } | 
|---|
| 1274 | else{ | 
|---|
| 1275 | /* return harmonic mean of thermal conductivities, weighted by fraction of cold/temperate ice, | 
|---|
| 1276 | cf Patankar 1980, pp44 */ | 
|---|
| 1277 | kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.); | 
|---|
| 1278 | kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.); | 
|---|
| 1279 | Hc=0.; Ht=0.; | 
|---|
| 1280 | for(iv=0; iv<numvertices;iv++){ | 
|---|
| 1281 | if(enthalpies[iv]<PIE[iv]) | 
|---|
| 1282 | Hc+=(PIE[iv]-enthalpies[iv]); | 
|---|
| 1283 | else | 
|---|
| 1284 | Ht+=(enthalpies[iv]-PIE[iv]); | 
|---|
| 1285 | } | 
|---|
| 1286 | _assert_((Hc+Ht)>0.); | 
|---|
| 1287 | lambda = Hc/(Hc+Ht); | 
|---|
| 1288 | kappa  = kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c); // ==(lambda/kappa_c + (1.-lambda)/kappa_t)^-1 | 
|---|
| 1289 | } | 
|---|
| 1290 |  | 
|---|
| 1291 | /*Clean up and return*/ | 
|---|
| 1292 | xDelete<IssmDouble>(PIE); | 
|---|
| 1293 | xDelete<IssmDouble>(dHpmp); | 
|---|
| 1294 | xDelete<IssmDouble>(pressures); | 
|---|
| 1295 | xDelete<IssmDouble>(enthalpies); | 
|---|
| 1296 | return kappa; | 
|---|
| 1297 | }/*}}}*/ | 
|---|
| 1298 | IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/ | 
|---|
| 1299 |  | 
|---|
| 1300 | IssmDouble heatcapacity         = element->GetMaterialParameter(MaterialsHeatcapacityEnum); | 
|---|
| 1301 | IssmDouble referencetemperature = element->GetMaterialParameter(ConstantsReferencetemperatureEnum); | 
|---|
| 1302 |  | 
|---|
| 1303 | return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature); | 
|---|
| 1304 | }/*}}}*/ | 
|---|
| 1305 | IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/ | 
|---|
| 1306 |  | 
|---|
| 1307 | IssmDouble meltingpoint = element->GetMaterialParameter(MaterialsMeltingpointEnum); | 
|---|
| 1308 | IssmDouble beta         = element->GetMaterialParameter(MaterialsBetaEnum); | 
|---|
| 1309 |  | 
|---|
| 1310 | return meltingpoint-beta*pressure; | 
|---|
| 1311 | }/*}}}*/ | 
|---|