source: issm/trunk-jpl/src/c/analyses/EnthalpyAnalysis.cpp@ 17946

Last change on this file since 17946 was 17946, checked in by Mathieu Morlighem, 11 years ago

CHG: renaming RhoWaterEnum RhoSeawaterEnum:

File size: 49.3 KB
Line 
1#include "./EnthalpyAnalysis.h"
2#include "../toolkits/toolkits.h"
3#include "../classes/classes.h"
4#include "../shared/shared.h"
5#include "../modules/modules.h"
6
7/*Model processing*/
8int EnthalpyAnalysis::DofsPerNode(int** doflist,int domaintype,int approximation){/*{{{*/
9 return 1;
10}/*}}}*/
11void EnthalpyAnalysis::UpdateParameters(Parameters* parameters,IoModel* iomodel,int solution_enum,int analysis_enum){/*{{{*/
12
13 int numoutputs;
14 char** requestedoutputs = NULL;
15
16 parameters->AddObject(iomodel->CopyConstantObject(ThermalStabilizationEnum));
17 parameters->AddObject(iomodel->CopyConstantObject(ThermalIsenthalpyEnum));
18 parameters->AddObject(iomodel->CopyConstantObject(ThermalIsdynamicbasalspcEnum));
19
20 iomodel->FetchData(&requestedoutputs,&numoutputs,ThermalRequestedOutputsEnum);
21 parameters->AddObject(new IntParam(ThermalNumRequestedOutputsEnum,numoutputs));
22 if(numoutputs)parameters->AddObject(new StringArrayParam(ThermalRequestedOutputsEnum,requestedoutputs,numoutputs));
23 iomodel->DeleteData(&requestedoutputs,numoutputs,ThermalRequestedOutputsEnum);
24}/*}}}*/
25void EnthalpyAnalysis::UpdateElements(Elements* elements,IoModel* iomodel,int analysis_counter,int analysis_type){/*{{{*/
26
27 bool dakota_analysis, islevelset;
28 bool isenthalpy;
29
30 /*Now, is the model 3d? otherwise, do nothing: */
31 if(iomodel->domaintype==Domain2DhorizontalEnum)return;
32
33 /*Is enthalpy requested?*/
34 iomodel->Constant(&isenthalpy,ThermalIsenthalpyEnum);
35 if(!isenthalpy) return;
36
37 /*Fetch data needed: */
38 iomodel->FetchData(3,TemperatureEnum,WaterfractionEnum,PressureEnum);
39
40 /*Update elements: */
41 int counter=0;
42 for(int i=0;i<iomodel->numberofelements;i++){
43 if(iomodel->my_elements[i]){
44 Element* element=(Element*)elements->GetObjectByOffset(counter);
45 element->Update(i,iomodel,analysis_counter,analysis_type,P1Enum);
46 counter++;
47 }
48 }
49
50 iomodel->Constant(&dakota_analysis,QmuIsdakotaEnum);
51 iomodel->Constant(&islevelset,TransientIslevelsetEnum);
52
53 iomodel->FetchDataToInput(elements,ThicknessEnum);
54 iomodel->FetchDataToInput(elements,SurfaceEnum);
55 iomodel->FetchDataToInput(elements,BaseEnum);
56 iomodel->FetchDataToInput(elements,FrictionCoefficientEnum);
57 iomodel->FetchDataToInput(elements,FrictionPEnum);
58 iomodel->FetchDataToInput(elements,FrictionQEnum);
59 iomodel->FetchDataToInput(elements,MaskIceLevelsetEnum);
60 iomodel->FetchDataToInput(elements,MaskGroundediceLevelsetEnum);
61 if(iomodel->domaintype!=Domain2DhorizontalEnum){
62 iomodel->FetchDataToInput(elements,MeshVertexonbaseEnum);
63 iomodel->FetchDataToInput(elements,MeshVertexonsurfaceEnum);
64 }
65 iomodel->FetchDataToInput(elements,FlowequationElementEquationEnum);
66 iomodel->FetchDataToInput(elements,MaterialsRheologyBEnum);
67 iomodel->FetchDataToInput(elements,MaterialsRheologyNEnum);
68 iomodel->FetchDataToInput(elements,PressureEnum);
69 iomodel->FetchDataToInput(elements,TemperatureEnum);
70 iomodel->FetchDataToInput(elements,WaterfractionEnum);
71 iomodel->FetchDataToInput(elements,EnthalpyEnum);
72 iomodel->FetchDataToInput(elements,BasalforcingsGeothermalfluxEnum);
73 iomodel->FetchDataToInput(elements,WatercolumnEnum);
74 iomodel->FetchDataToInput(elements,BasalforcingsMeltingRateEnum);
75 iomodel->FetchDataToInput(elements,VxEnum);
76 iomodel->FetchDataToInput(elements,VyEnum);
77 iomodel->FetchDataToInput(elements,VzEnum);
78 InputUpdateFromConstantx(elements,0.,VxMeshEnum);
79 InputUpdateFromConstantx(elements,0.,VyMeshEnum);
80 InputUpdateFromConstantx(elements,0.,VzMeshEnum);
81 if(dakota_analysis){
82 elements->InputDuplicate(TemperatureEnum,QmuTemperatureEnum);
83 elements->InputDuplicate(BasalforcingsMeltingRateEnum,QmuMeltingEnum);
84 elements->InputDuplicate(VxMeshEnum,QmuVxMeshEnum);
85 elements->InputDuplicate(VxMeshEnum,QmuVyMeshEnum);
86 elements->InputDuplicate(VxMeshEnum,QmuVzMeshEnum);
87 }
88 if(islevelset){
89 iomodel->FetchDataToInput(elements,IceMaskNodeActivationEnum);
90 iomodel->FetchDataToInput(elements,MeshVertexonbaseEnum); // required for updating active nodes
91 }
92
93 /*Free data: */
94 iomodel->DeleteData(3,TemperatureEnum,WaterfractionEnum,PressureEnum);
95}/*}}}*/
96void EnthalpyAnalysis::CreateNodes(Nodes* nodes,IoModel* iomodel){/*{{{*/
97
98 if(iomodel->domaintype==Domain3DEnum) iomodel->FetchData(2,MeshVertexonbaseEnum,MeshVertexonsurfaceEnum);
99 ::CreateNodes(nodes,iomodel,EnthalpyAnalysisEnum,P1Enum);
100 iomodel->DeleteData(2,MeshVertexonbaseEnum,MeshVertexonsurfaceEnum);
101}/*}}}*/
102void EnthalpyAnalysis::CreateConstraints(Constraints* constraints,IoModel* iomodel){/*{{{*/
103
104 /*Intermediary*/
105 int count;
106 int M,N;
107 bool spcpresent = false;
108 IssmDouble heatcapacity;
109 IssmDouble referencetemperature;
110
111 /*Output*/
112 IssmDouble *spcvector = NULL;
113 IssmDouble* times=NULL;
114 IssmDouble* values=NULL;
115
116 /*Fetch parameters: */
117 iomodel->Constant(&heatcapacity,MaterialsHeatcapacityEnum);
118 iomodel->Constant(&referencetemperature,ConstantsReferencetemperatureEnum);
119
120 /*return if 2d mesh*/
121 if(iomodel->domaintype==Domain2DhorizontalEnum) return;
122
123 /*Fetch data: */
124 iomodel->FetchData(&spcvector,&M,&N,ThermalSpctemperatureEnum);
125
126 //FIX ME: SHOULD USE IOMODELCREATECONSTRAINTS
127 /*Transient or static?:*/
128 if(M==iomodel->numberofvertices){
129 /*static: just create Constraints objects*/
130 count=0;
131
132 for(int i=0;i<iomodel->numberofvertices;i++){
133 /*keep only this partition's nodes:*/
134 if((iomodel->my_vertices[i])){
135
136 if (!xIsNan<IssmDouble>(spcvector[i])){
137
138 constraints->AddObject(new SpcStatic(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,0,heatcapacity*(spcvector[i]-referencetemperature),EnthalpyAnalysisEnum));
139 count++;
140
141 }
142 }
143 }
144 }
145 else if (M==(iomodel->numberofvertices+1)){
146 /*transient: create transient SpcTransient objects. Same logic, except we need to retrieve
147 * various times and values to initialize an SpcTransient object: */
148 count=0;
149
150 /*figure out times: */
151 times=xNew<IssmDouble>(N);
152 for(int j=0;j<N;j++){
153 times[j]=spcvector[(M-1)*N+j];
154 }
155
156 /*Create constraints from x,y,z: */
157 for(int i=0;i<iomodel->numberofvertices;i++){
158
159 /*keep only this partition's nodes:*/
160 if((iomodel->my_vertices[i])){
161
162 /*figure out times and values: */
163 values=xNew<IssmDouble>(N);
164 spcpresent=false;
165 for(int j=0;j<N;j++){
166 values[j]=heatcapacity*(spcvector[i*N+j]-referencetemperature);
167 if(!xIsNan<IssmDouble>(values[j]))spcpresent=true; //NaN means no spc by default
168 }
169
170 if(spcpresent){
171 constraints->AddObject(new SpcTransient(iomodel->constraintcounter+count+1,iomodel->nodecounter+i+1,0,N,times,values,EnthalpyAnalysisEnum));
172 count++;
173 }
174 xDelete<IssmDouble>(values);
175 }
176 }
177 }
178 else{
179 _error_("Size of field " << EnumToStringx(ThermalSpctemperatureEnum) << " not supported");
180 }
181
182 /*Free ressources:*/
183 iomodel->DeleteData(spcvector,ThermalSpctemperatureEnum);
184 xDelete<IssmDouble>(times);
185 xDelete<IssmDouble>(values);
186}/*}}}*/
187void EnthalpyAnalysis::CreateLoads(Loads* loads, IoModel* iomodel){/*{{{*/
188
189 /*No loads */
190}/*}}}*/
191
192/*Finite Element Analysis*/
193void EnthalpyAnalysis::Core(FemModel* femmodel){/*{{{*/
194 _error_("not implemented");
195}/*}}}*/
196ElementVector* EnthalpyAnalysis::CreateDVector(Element* element){/*{{{*/
197 /*Default, return NULL*/
198 return NULL;
199}/*}}}*/
200ElementMatrix* EnthalpyAnalysis::CreateJacobianMatrix(Element* element){/*{{{*/
201_error_("Not implemented");
202}/*}}}*/
203ElementMatrix* EnthalpyAnalysis::CreateKMatrix(Element* element){/*{{{*/
204
205 /* Check if ice in element */
206 if(!element->IsIceInElement()) return NULL;
207
208 /*compute all stiffness matrices for this element*/
209 ElementMatrix* Ke1=CreateKMatrixVolume(element);
210 ElementMatrix* Ke2=CreateKMatrixShelf(element);
211 ElementMatrix* Ke =new ElementMatrix(Ke1,Ke2);
212
213 /*clean-up and return*/
214 delete Ke1;
215 delete Ke2;
216 return Ke;
217}/*}}}*/
218ElementMatrix* EnthalpyAnalysis::CreateKMatrixVolume(Element* element){/*{{{*/
219
220 /* Check if ice in element */
221 if(!element->IsIceInElement()) return NULL;
222
223 /*Intermediaries */
224 int stabilization;
225 IssmDouble Jdet,dt,u,v,w,um,vm,wm,vel;
226 IssmDouble h,hx,hy,hz,vx,vy,vz;
227 IssmDouble tau_parameter,diameter;
228 IssmDouble D_scalar;
229 IssmDouble* xyz_list = NULL;
230
231 /*Fetch number of nodes and dof for this finite element*/
232 int numnodes = element->GetNumberOfNodes();
233
234 /*Initialize Element vector and other vectors*/
235 ElementMatrix* Ke = element->NewElementMatrix();
236 IssmDouble* basis = xNew<IssmDouble>(numnodes);
237 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
238 IssmDouble* B = xNew<IssmDouble>(3*numnodes);
239 IssmDouble* Bprime = xNew<IssmDouble>(3*numnodes);
240 IssmDouble D[3][3] = {0.};
241 IssmDouble K[3][3];
242
243 /*Retrieve all inputs and parameters*/
244 element->GetVerticesCoordinates(&xyz_list);
245 element->FindParam(&dt,TimesteppingTimeStepEnum);
246 element->FindParam(&stabilization,ThermalStabilizationEnum);
247 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
248 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
249 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
250 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
251 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
252 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
253 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
254 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
255 Input* vxm_input = element->GetInput(VxMeshEnum); _assert_(vxm_input);
256 Input* vym_input = element->GetInput(VyMeshEnum); _assert_(vym_input);
257 Input* vzm_input = element->GetInput(VzMeshEnum); _assert_(vzm_input);
258 if(stabilization==2) diameter=element->MinEdgeLength(xyz_list);
259
260 /*Enthalpy diffusion parameter*/
261 IssmDouble kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
262
263 /* Start looping on the number of gaussian points: */
264 Gauss* gauss=element->NewGauss(2);
265 for(int ig=gauss->begin();ig<gauss->end();ig++){
266 gauss->GaussPoint(ig);
267
268 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
269 D_scalar=gauss->weight*Jdet;
270 if(dt!=0.) D_scalar=D_scalar*dt;
271
272 /*Conduction: */
273 GetBConduct(B,element,xyz_list,gauss);
274 D[0][0]=D_scalar*kappa/rho_ice;
275 D[1][1]=D_scalar*kappa/rho_ice;
276 D[2][2]=D_scalar*kappa/rho_ice;
277 TripleMultiply(B,3,numnodes,1,
278 &D[0][0],3,3,0,
279 B,3,numnodes,0,
280 &Ke->values[0],1);
281
282 /*Advection: */
283 GetBAdvec(B,element,xyz_list,gauss);
284 GetBAdvecprime(Bprime,element,xyz_list,gauss);
285 vx_input->GetInputValue(&u,gauss); vxm_input->GetInputValue(&um,gauss); vx=u-um;
286 vy_input->GetInputValue(&v,gauss); vym_input->GetInputValue(&vm,gauss); vy=v-vm;
287 vz_input->GetInputValue(&w,gauss); vzm_input->GetInputValue(&wm,gauss); vz=w-wm;
288 D[0][0]=D_scalar*vx;
289 D[1][1]=D_scalar*vy;
290 D[2][2]=D_scalar*vz;
291 TripleMultiply(B,3,numnodes,1,
292 &D[0][0],3,3,0,
293 Bprime,3,numnodes,0,
294 &Ke->values[0],1);
295
296 /*Transient: */
297 if(dt!=0.){
298 D_scalar=gauss->weight*Jdet;
299 element->NodalFunctions(basis,gauss);
300 TripleMultiply(basis,numnodes,1,0,
301 &D_scalar,1,1,0,
302 basis,1,numnodes,0,
303 &Ke->values[0],1);
304 D_scalar=D_scalar*dt;
305 }
306
307 /*Artifficial diffusivity*/
308 if(stabilization==1){
309 element->ElementSizes(&hx,&hy,&hz);
310 vel=sqrt(vx*vx + vy*vy + vz*vz)+1.e-14;
311 h=sqrt( pow(hx*vx/vel,2) + pow(hy*vy/vel,2) + pow(hz*vz/vel,2));
312 K[0][0]=h/(2.*vel)*vx*vx; K[0][1]=h/(2.*vel)*vx*vy; K[0][2]=h/(2.*vel)*vx*vz;
313 K[1][0]=h/(2.*vel)*vy*vx; K[1][1]=h/(2.*vel)*vy*vy; K[1][2]=h/(2.*vel)*vy*vz;
314 K[2][0]=h/(2.*vel)*vz*vx; K[2][1]=h/(2.*vel)*vz*vy; K[2][2]=h/(2.*vel)*vz*vz;
315 for(int i=0;i<3;i++) for(int j=0;j<3;j++) K[i][j] = D_scalar*K[i][j];
316
317 GetBAdvecprime(Bprime,element,xyz_list,gauss);
318 TripleMultiply(Bprime,3,numnodes,1,
319 &K[0][0],3,3,0,
320 Bprime,3,numnodes,0,
321 &Ke->values[0],1);
322 }
323 else if(stabilization==2){
324 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
325 tau_parameter=element->StabilizationParameter(u-um,v-vm,w-wm,diameter,kappa/rho_ice);
326 for(int i=0;i<numnodes;i++){
327 for(int j=0;j<numnodes;j++){
328 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*
329 ((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i])*((u-um)*dbasis[0*numnodes+j]+(v-vm)*dbasis[1*numnodes+j]+(w-wm)*dbasis[2*numnodes+j]);
330 }
331 }
332 if(dt!=0.){
333 D_scalar=gauss->weight*Jdet;
334 for(int i=0;i<numnodes;i++){
335 for(int j=0;j<numnodes;j++){
336 Ke->values[i*numnodes+j]+=tau_parameter*D_scalar*basis[j]*((u-um)*dbasis[0*numnodes+i]+(v-vm)*dbasis[1*numnodes+i]+(w-wm)*dbasis[2*numnodes+i]);
337 }
338 }
339 }
340 }
341 }
342
343 /*Clean up and return*/
344 xDelete<IssmDouble>(xyz_list);
345 xDelete<IssmDouble>(basis);
346 xDelete<IssmDouble>(dbasis);
347 xDelete<IssmDouble>(B);
348 xDelete<IssmDouble>(Bprime);
349 delete gauss;
350 return Ke;
351}/*}}}*/
352ElementMatrix* EnthalpyAnalysis::CreateKMatrixShelf(Element* element){/*{{{*/
353
354 /* Check if ice in element */
355 if(!element->IsIceInElement()) return NULL;
356
357 /*Initialize Element matrix and return if necessary*/
358 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
359
360 /*Intermediaries*/
361 IssmDouble dt,Jdet,D;
362 IssmDouble *xyz_list_base = NULL;
363
364 /*Fetch number of nodes for this finite element*/
365 int numnodes = element->GetNumberOfNodes();
366
367 /*Initialize vectors*/
368 ElementMatrix* Ke = element->NewElementMatrix();
369 IssmDouble* basis = xNew<IssmDouble>(numnodes);
370
371 /*Retrieve all inputs and parameters*/
372 element->GetVerticesCoordinatesBase(&xyz_list_base);
373 element->FindParam(&dt,TimesteppingTimeStepEnum);
374 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
375 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
376 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
377 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
378 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
379 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
380
381 /* Start looping on the number of gaussian points: */
382 Gauss* gauss=element->NewGaussBase(2);
383 for(int ig=gauss->begin();ig<gauss->end();ig++){
384 gauss->GaussPoint(ig);
385
386 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
387 element->NodalFunctions(basis,gauss);
388
389 D=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel/(heatcapacity*rho_ice);
390 if(reCast<bool,IssmDouble>(dt)) D=dt*D;
391 TripleMultiply(basis,numnodes,1,0,
392 &D,1,1,0,
393 basis,1,numnodes,0,
394 &Ke->values[0],1);
395
396 }
397
398 /*Clean up and return*/
399 delete gauss;
400 xDelete<IssmDouble>(basis);
401 xDelete<IssmDouble>(xyz_list_base);
402 return Ke;
403}/*}}}*/
404ElementVector* EnthalpyAnalysis::CreatePVector(Element* element){/*{{{*/
405
406 /* Check if ice in element */
407 if(!element->IsIceInElement()) return NULL;
408
409 /*compute all load vectors for this element*/
410 ElementVector* pe1=CreatePVectorVolume(element);
411 ElementVector* pe2=CreatePVectorSheet(element);
412 ElementVector* pe3=CreatePVectorShelf(element);
413 ElementVector* pe =new ElementVector(pe1,pe2,pe3);
414
415 /*clean-up and return*/
416 delete pe1;
417 delete pe2;
418 delete pe3;
419 return pe;
420}/*}}}*/
421ElementVector* EnthalpyAnalysis::CreatePVectorVolume(Element* element){/*{{{*/
422
423 /* Check if ice in element */
424 if(!element->IsIceInElement()) return NULL;
425
426 /*Intermediaries*/
427 int i, stabilization;
428 IssmDouble Jdet,phi,dt;
429 IssmDouble enthalpy, Hpmp;
430 IssmDouble enthalpypicard, d1enthalpypicard[3];
431 IssmDouble pressure, d1pressure[3], d2pressure;
432 IssmDouble waterfractionpicard;
433 IssmDouble kappa,tau_parameter,diameter,kappa_w;
434 IssmDouble u,v,w;
435 IssmDouble scalar_def, scalar_sens ,scalar_transient;
436 IssmDouble* xyz_list = NULL;
437 IssmDouble d1H_d1P, d1P2;
438
439 /*Fetch number of nodes and dof for this finite element*/
440 int numnodes = element->GetNumberOfNodes();
441 int numvertices = element->GetNumberOfVertices();
442
443 /*Initialize Element vector*/
444 ElementVector* pe = element->NewElementVector();
445 IssmDouble* basis = xNew<IssmDouble>(numnodes);
446 IssmDouble* dbasis = xNew<IssmDouble>(3*numnodes);
447
448 /*Retrieve all inputs and parameters*/
449 element->GetVerticesCoordinates(&xyz_list);
450 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
451 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
452 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
453 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
454 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
455 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
456 element->FindParam(&dt,TimesteppingTimeStepEnum);
457 element->FindParam(&stabilization,ThermalStabilizationEnum);
458 Input* vx_input=element->GetInput(VxEnum); _assert_(vx_input);
459 Input* vy_input=element->GetInput(VyEnum); _assert_(vy_input);
460 Input* vz_input=element->GetInput(VzEnum); _assert_(vz_input);
461 Input* enthalpypicard_input=element->GetInput(EnthalpyPicardEnum); _assert_(enthalpypicard_input);
462 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
463 Input* enthalpy_input=NULL;
464 if(reCast<bool,IssmDouble>(dt)){enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);}
465 if(stabilization==2){
466 diameter=element->MinEdgeLength(xyz_list);
467 kappa=this->EnthalpyDiffusionParameterVolume(element,EnthalpyPicardEnum); _assert_(kappa>=0.);
468 }
469
470 /* Start looping on the number of gaussian points: */
471 Gauss* gauss=element->NewGauss(3);
472 for(int ig=gauss->begin();ig<gauss->end();ig++){
473 gauss->GaussPoint(ig);
474
475 element->JacobianDeterminant(&Jdet,xyz_list,gauss);
476 element->NodalFunctions(basis,gauss);
477
478 /*viscous dissipation*/
479 element->ViscousHeating(&phi,xyz_list,gauss,vx_input,vy_input,vz_input);
480
481 scalar_def=phi/rho_ice*Jdet*gauss->weight;
482 if(dt!=0.) scalar_def=scalar_def*dt;
483
484 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_def*basis[i];
485
486 /*sensible heat flux in temperate ice*/
487 enthalpypicard_input->GetInputValue(&enthalpypicard,gauss);
488 pressure_input->GetInputValue(&pressure,gauss);
489 Hpmp=this->PureIceEnthalpy(element, pressure);
490
491 if(enthalpypicard>=Hpmp){
492 enthalpypicard_input->GetInputDerivativeValue(&d1enthalpypicard[0],xyz_list,gauss);
493 pressure_input->GetInputDerivativeValue(&d1pressure[0],xyz_list,gauss);
494 d2pressure=0.; // for linear elements, 2nd derivative is zero
495
496 d1H_d1P=0.;
497 for(i=0;i<3;i++) d1H_d1P+=d1enthalpypicard[i]*d1pressure[i];
498 d1P2=0.;
499 for(i=0;i<3;i++) d1P2+=pow(d1pressure[i],2.);
500
501 scalar_sens=-beta*((temperateiceconductivity - thermalconductivity)/latentheat*(d1H_d1P + beta*heatcapacity*d1P2))/rho_ice;
502 if(dt!=0.) scalar_sens=scalar_sens*dt;
503 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_sens*basis[i];
504 }
505
506 /* Build transient now */
507 if(reCast<bool,IssmDouble>(dt)){
508 enthalpy_input->GetInputValue(&enthalpy, gauss);
509 scalar_transient=enthalpy*Jdet*gauss->weight;
510 for(i=0;i<numnodes;i++) pe->values[i]+=scalar_transient*basis[i];
511 }
512
513 if(stabilization==2){
514 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
515
516 vx_input->GetInputValue(&u,gauss);
517 vy_input->GetInputValue(&v,gauss);
518 vz_input->GetInputValue(&w,gauss);
519 tau_parameter=element->StabilizationParameter(u,v,w,diameter,kappa/rho_ice);
520
521 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_def*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
522
523 if(dt!=0.){
524 for(i=0;i<numnodes;i++) pe->values[i]+=tau_parameter*scalar_transient*(u*dbasis[0*numnodes+i]+v*dbasis[1*numnodes+i]+w*dbasis[2*numnodes+i]);
525 }
526 }
527 }
528
529 /*Clean up and return*/
530 xDelete<IssmDouble>(basis);
531 xDelete<IssmDouble>(dbasis);
532 xDelete<IssmDouble>(xyz_list);
533 delete gauss;
534 return pe;
535
536}/*}}}*/
537ElementVector* EnthalpyAnalysis::CreatePVectorSheet(Element* element){/*{{{*/
538
539 /* Check if ice in element */
540 if(!element->IsIceInElement()) return NULL;
541
542 /* implementation of the basal condition decision chart of Aschwanden 2012, Fig.5 */
543 if(!element->IsOnBase() || element->IsFloating()) return NULL;
544
545 IssmDouble dt,Jdet,enthalpy,pressure,watercolumn,geothermalflux,vx,vy,vz;
546 IssmDouble enthalpyup,pressureup,alpha2,scalar,basalfriction,heatflux;
547 IssmDouble *xyz_list_base = NULL;
548
549 /*Fetch number of nodes for this finite element*/
550 int numnodes = element->GetNumberOfNodes();
551
552 /*Initialize vectors*/
553 ElementVector* pe = element->NewElementVector();
554 IssmDouble* basis = xNew<IssmDouble>(numnodes);
555
556 /*Retrieve all inputs and parameters*/
557 element->GetVerticesCoordinatesBase(&xyz_list_base);
558 element->FindParam(&dt,TimesteppingTimeStepEnum);
559 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
560 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
561 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
562 Input* enthalpy_input = element->GetInput(EnthalpyPicardEnum); _assert_(enthalpy_input);
563 Input* pressure_input = element->GetInput(PressureEnum); _assert_(pressure_input);
564 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
565 Input* watercolumn_input = element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
566 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
567 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
568
569 /*Build friction element, needed later: */
570 Friction* friction=new Friction(element,3);
571
572 /* Start looping on the number of gaussian points: */
573 Gauss* gauss = element->NewGaussBase(2);
574 Gauss* gaussup = element->NewGaussTop(2);
575 for(int ig=gauss->begin();ig<gauss->end();ig++){
576 gauss->GaussPoint(ig);
577
578 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
579 element->NodalFunctions(basis,gauss);
580
581 enthalpy_input->GetInputValue(&enthalpy,gauss);
582 pressure_input->GetInputValue(&pressure,gauss);
583 watercolumn_input->GetInputValue(&watercolumn,gauss);
584
585 if((watercolumn<=0.) && (enthalpy<PureIceEnthalpy(element,pressure))){
586 /* the above check is equivalent to
587 NOT [(watercolumn>0.) AND (enthalpy<PIE)] AND (enthalpy<PIE)*/
588 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
589
590 friction->GetAlpha2(&alpha2,gauss);
591 vx_input->GetInputValue(&vx,gauss);
592 vy_input->GetInputValue(&vy,gauss);
593 vz_input->GetInputValue(&vz,gauss);
594 basalfriction = alpha2*(vx*vx + vy*vy + vz*vz);
595 heatflux = (basalfriction+geothermalflux)/(rho_ice);
596
597 scalar = gauss->weight*Jdet*heatflux;
598 if(dt!=0.) scalar=dt*scalar;
599
600 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar*basis[i];
601 }
602 else if(enthalpy >= PureIceEnthalpy(element,pressure)){
603 /* check positive thickness of temperate basal ice layer */
604 enthalpy_input->GetInputValue(&enthalpyup,gaussup);
605 pressure_input->GetInputValue(&pressureup,gaussup);
606 if(enthalpyup >= PureIceEnthalpy(element,pressureup)){
607 // do nothing, set grad enthalpy*n=0.
608 }
609 else{
610 // only base temperate, set Dirichlet BCs in Penta::UpdateBasalConstraintsEnthalpy()
611 }
612 }
613 else{
614 // base cold, but watercolumn positive. Set base to pressure melting point enthalpy
615 }
616 }
617
618 /*Clean up and return*/
619 delete gauss;
620 delete gaussup;
621 delete friction;
622 xDelete<IssmDouble>(basis);
623 xDelete<IssmDouble>(xyz_list_base);
624 return pe;
625
626}/*}}}*/
627ElementVector* EnthalpyAnalysis::CreatePVectorShelf(Element* element){/*{{{*/
628
629 /* Check if ice in element */
630 if(!element->IsIceInElement()) return NULL;
631
632 /*Get basal element*/
633 if(!element->IsOnBase() || !element->IsFloating()) return NULL;
634
635 IssmDouble h_pmp,dt,Jdet,scalar_ocean,pressure;
636 IssmDouble *xyz_list_base = NULL;
637
638 /*Fetch number of nodes for this finite element*/
639 int numnodes = element->GetNumberOfNodes();
640
641 /*Initialize vectors*/
642 ElementVector* pe = element->NewElementVector();
643 IssmDouble* basis = xNew<IssmDouble>(numnodes);
644
645 /*Retrieve all inputs and parameters*/
646 element->GetVerticesCoordinatesBase(&xyz_list_base);
647 element->FindParam(&dt,TimesteppingTimeStepEnum);
648 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
649 IssmDouble gravity = element->GetMaterialParameter(ConstantsGEnum);
650 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
651 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
652 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
653 IssmDouble mixed_layer_capacity= element->GetMaterialParameter(MaterialsMixedLayerCapacityEnum);
654 IssmDouble thermal_exchange_vel= element->GetMaterialParameter(MaterialsThermalExchangeVelocityEnum);
655
656 /* Start looping on the number of gaussian points: */
657 Gauss* gauss=element->NewGaussBase(2);
658 for(int ig=gauss->begin();ig<gauss->end();ig++){
659 gauss->GaussPoint(ig);
660
661 element->JacobianDeterminantBase(&Jdet,xyz_list_base,gauss);
662 element->NodalFunctions(basis,gauss);
663
664 pressure_input->GetInputValue(&pressure,gauss);
665 h_pmp=element->PureIceEnthalpy(pressure);
666
667 scalar_ocean=gauss->weight*Jdet*rho_water*mixed_layer_capacity*thermal_exchange_vel*h_pmp/(heatcapacity*rho_ice);
668 if(reCast<bool,IssmDouble>(dt)) scalar_ocean=dt*scalar_ocean;
669
670 for(int i=0;i<numnodes;i++) pe->values[i]+=scalar_ocean*basis[i];
671 }
672
673 /*Clean up and return*/
674 delete gauss;
675 xDelete<IssmDouble>(basis);
676 xDelete<IssmDouble>(xyz_list_base);
677 return pe;
678}/*}}}*/
679void EnthalpyAnalysis::GetBConduct(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
680 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
681 * For node i, Bi' can be expressed in the actual coordinate system
682 * by:
683 * Bi_conduct=[ dh/dx ]
684 * [ dh/dy ]
685 * [ dh/dz ]
686 * where h is the interpolation function for node i.
687 *
688 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
689 */
690
691 /*Fetch number of nodes for this finite element*/
692 int numnodes = element->GetNumberOfNodes();
693
694 /*Get nodal functions derivatives*/
695 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
696 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
697
698 /*Build B: */
699 for(int i=0;i<numnodes;i++){
700 B[numnodes*0+i] = dbasis[0*numnodes+i];
701 B[numnodes*1+i] = dbasis[1*numnodes+i];
702 B[numnodes*2+i] = dbasis[2*numnodes+i];
703 }
704
705 /*Clean-up*/
706 xDelete<IssmDouble>(dbasis);
707}/*}}}*/
708void EnthalpyAnalysis::GetBAdvec(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
709 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
710 * For node i, Bi' can be expressed in the actual coordinate system
711 * by:
712 * Bi_advec =[ h ]
713 * [ h ]
714 * [ h ]
715 * where h is the interpolation function for node i.
716 *
717 * We assume B has been allocated already, of size: 3x(NDOF1*NUMNODESP1)
718 */
719
720 /*Fetch number of nodes for this finite element*/
721 int numnodes = element->GetNumberOfNodes();
722
723 /*Get nodal functions*/
724 IssmDouble* basis=xNew<IssmDouble>(numnodes);
725 element->NodalFunctions(basis,gauss);
726
727 /*Build B: */
728 for(int i=0;i<numnodes;i++){
729 B[numnodes*0+i] = basis[i];
730 B[numnodes*1+i] = basis[i];
731 B[numnodes*2+i] = basis[i];
732 }
733
734 /*Clean-up*/
735 xDelete<IssmDouble>(basis);
736}/*}}}*/
737void EnthalpyAnalysis::GetBAdvecprime(IssmDouble* B,Element* element,IssmDouble* xyz_list,Gauss* gauss){/*{{{*/
738 /*Compute B matrix. B=[B1 B2 B3 B4 B5 B6] where Bi is of size 5*NDOF1.
739 * For node i, Bi' can be expressed in the actual coordinate system
740 * by:
741 * Biprime_advec=[ dh/dx ]
742 * [ dh/dy ]
743 * [ dh/dz ]
744 * where h is the interpolation function for node i.
745 *
746 * We assume B has been allocated already, of size: 3x(NDOF1*numnodes)
747 */
748
749 /*Fetch number of nodes for this finite element*/
750 int numnodes = element->GetNumberOfNodes();
751
752 /*Get nodal functions derivatives*/
753 IssmDouble* dbasis=xNew<IssmDouble>(3*numnodes);
754 element->NodalFunctionsDerivatives(dbasis,xyz_list,gauss);
755
756 /*Build B: */
757 for(int i=0;i<numnodes;i++){
758 B[numnodes*0+i] = dbasis[0*numnodes+i];
759 B[numnodes*1+i] = dbasis[1*numnodes+i];
760 B[numnodes*2+i] = dbasis[2*numnodes+i];
761 }
762
763 /*Clean-up*/
764 xDelete<IssmDouble>(dbasis);
765}/*}}}*/
766void EnthalpyAnalysis::GetSolutionFromInputs(Vector<IssmDouble>* solution,Element* element){/*{{{*/
767 element->GetSolutionFromInputsOneDof(solution,EnthalpyEnum);
768}/*}}}*/
769void EnthalpyAnalysis::InputUpdateFromSolution(IssmDouble* solution,Element* element){/*{{{*/
770
771 bool converged;
772 int i,rheology_law;
773 IssmDouble B_average,s_average,T_average=0.,P_average=0.;
774 int *doflist = NULL;
775 IssmDouble *xyz_list = NULL;
776
777 /*Fetch number of nodes and dof for this finite element*/
778 int numnodes = element->GetNumberOfNodes();
779
780 /*Fetch dof list and allocate solution vector*/
781 element->GetDofList(&doflist,NoneApproximationEnum,GsetEnum);
782 IssmDouble* values = xNew<IssmDouble>(numnodes);
783 IssmDouble* pressure = xNew<IssmDouble>(numnodes);
784 IssmDouble* surface = xNew<IssmDouble>(numnodes);
785 IssmDouble* B = xNew<IssmDouble>(numnodes);
786 IssmDouble* temperature = xNew<IssmDouble>(numnodes);
787 IssmDouble* waterfraction = xNew<IssmDouble>(numnodes);
788
789 /*Use the dof list to index into the solution vector: */
790 for(i=0;i<numnodes;i++){
791 values[i]=solution[doflist[i]];
792
793 /*Check solution*/
794 if(xIsNan<IssmDouble>(values[i])) _error_("NaN found in solution vector");
795 }
796
797 /*Get all inputs and parameters*/
798 element->GetInputValue(&converged,ConvergedEnum);
799 element->GetInputListOnNodes(&pressure[0],PressureEnum);
800 if(converged){
801 for(i=0;i<numnodes;i++){
802 element->EnthalpyToThermal(&temperature[i],&waterfraction[i],values[i],pressure[i]);
803 if(waterfraction[i]<0.) _error_("Negative water fraction found in solution vector");
804 //if(waterfraction[i]>1.) _error_("Water fraction >1 found in solution vector");
805 }
806 element->AddInput(EnthalpyEnum,values,element->GetElementType());
807 element->AddInput(WaterfractionEnum,waterfraction,element->GetElementType());
808 element->AddInput(TemperatureEnum,temperature,element->GetElementType());
809
810 /*Update Rheology only if converged (we must make sure that the temperature is below melting point
811 * otherwise the rheology could be negative*/
812 element->FindParam(&rheology_law,MaterialsRheologyLawEnum);
813 element->GetInputListOnNodes(&surface[0],SurfaceEnum);
814 switch(rheology_law){
815 case NoneEnum:
816 /*Do nothing: B is not temperature dependent*/
817 break;
818 case CuffeyEnum:
819 for(i=0;i<numnodes;i++) B[i]=Cuffey(temperature[i]);
820 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
821 break;
822 case PatersonEnum:
823 for(i=0;i<numnodes;i++) B[i]=Paterson(temperature[i]);
824 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
825 break;
826 case ArrheniusEnum:
827 element->GetVerticesCoordinates(&xyz_list);
828 for(i=0;i<numnodes;i++) B[i]=Arrhenius(temperature[i],surface[i]-xyz_list[i*3+2],element->GetMaterialParameter(MaterialsRheologyNEnum));
829 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
830 break;
831 case LliboutryDuvalEnum:
832 for(i=0;i<numnodes;i++) B[i]=LliboutryDuval(values[i],pressure[i],element->GetMaterialParameter(MaterialsRheologyNEnum),element->GetMaterialParameter(MaterialsBetaEnum),element->GetMaterialParameter(ConstantsReferencetemperatureEnum),element->GetMaterialParameter(MaterialsHeatcapacityEnum),element->GetMaterialParameter(MaterialsLatentheatEnum));
833 element->AddInput(MaterialsRheologyBEnum,&B[0],element->GetElementType());
834 break;
835 default: _error_("Rheology law " << EnumToStringx(rheology_law) << " not supported yet");
836 }
837 }
838 else{
839 element->AddInput(EnthalpyPicardEnum,values,element->GetElementType());
840 }
841
842 /*Free ressources:*/
843 xDelete<IssmDouble>(values);
844 xDelete<IssmDouble>(pressure);
845 xDelete<IssmDouble>(surface);
846 xDelete<IssmDouble>(B);
847 xDelete<IssmDouble>(temperature);
848 xDelete<IssmDouble>(waterfraction);
849 xDelete<IssmDouble>(xyz_list);
850 xDelete<int>(doflist);
851}/*}}}*/
852void EnthalpyAnalysis::UpdateConstraints(FemModel* femmodel){/*{{{*/
853
854 bool islevelset;
855 femmodel->parameters->FindParam(&islevelset,TransientIslevelsetEnum);
856 if(islevelset){
857 SetActiveNodesLSMx(femmodel);
858 }
859 return;
860}/*}}}*/
861
862/*Modules*/
863void EnthalpyAnalysis::PostProcessing(FemModel* femmodel){/*{{{*/
864
865 /*Intermediaries*/
866 int solution_type, i;
867 bool computebasalmeltingrates=true;
868 bool isdrainage=true;
869 bool updatebasalconstraints=true;
870
871 if(isdrainage){
872 /*Drain excess water fraction in ice column: */
873 for(i=0;i<femmodel->elements->Size();i++){
874 Element* element=dynamic_cast<Element*>(femmodel->elements->GetObjectByOffset(i));
875 DrainWaterfractionIcecolumn(element);
876 }
877 }
878
879 if(computebasalmeltingrates){
880 /*Compute basal melting rates: */
881 for(i=0;i<femmodel->elements->Size();i++){
882 Element* element=dynamic_cast<Element*>(femmodel->elements->GetObjectByOffset(i));
883 ComputeBasalMeltingrate(element);
884 }
885 }
886
887 if(updatebasalconstraints){
888 /*Update basal dirichlet BCs for enthalpy in transient runs: */
889 femmodel->parameters->FindParam(&solution_type,SolutionTypeEnum);
890 if(solution_type==TransientSolutionEnum){
891 for(i=0;i<femmodel->elements->Size();i++){
892 Element* element=dynamic_cast<Element*>(femmodel->elements->GetObjectByOffset(i));
893 UpdateBasalConstraints(element);
894 }
895 }
896 }
897}/*}}}*/
898void EnthalpyAnalysis::ComputeBasalMeltingrate(Element* element){/*{{{*/
899 /*Calculate the basal melt rates of the enthalpy model after Aschwanden 2012*/
900 /* melting rate is positive when melting, negative when refreezing*/
901
902 /* Check if ice in element */
903 if(!element->IsIceInElement()) return;
904
905 /* Only compute melt rates at the base of grounded ice*/
906 if(!element->IsOnBase() || element->IsFloating()) return;
907
908 /* Intermediaries */
909 const int dim=3;
910 int i,is,vertexdown,vertexup,numvertices,numsegments;
911 IssmDouble heatflux;
912 IssmDouble vec_heatflux[dim],normal_base[dim],d1enthalpy[dim];
913 IssmDouble basalfriction,alpha2;
914 IssmDouble dt,yts;
915 IssmDouble melting_overshoot,lambda;
916 IssmDouble geothermalflux;
917 IssmDouble vx,vy,vz;
918 IssmDouble *xyz_list = NULL;
919 IssmDouble *xyz_list_base = NULL;
920 int *pairindices = NULL;
921
922 /*Fetch parameters and inputs */
923 element->GetVerticesCoordinates(&xyz_list);
924 element->GetVerticesCoordinatesBase(&xyz_list_base);
925 IssmDouble latentheat = element->GetMaterialParameter(MaterialsLatentheatEnum);
926 IssmDouble rho_ice = element->GetMaterialParameter(MaterialsRhoIceEnum);
927 IssmDouble rho_water = element->GetMaterialParameter(MaterialsRhoFreshwaterEnum);
928 Input* enthalpy_input = element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);
929 Input* geothermalflux_input = element->GetInput(BasalforcingsGeothermalfluxEnum); _assert_(geothermalflux_input);
930 Input* vx_input = element->GetInput(VxEnum); _assert_(vx_input);
931 Input* vy_input = element->GetInput(VyEnum); _assert_(vy_input);
932 Input* vz_input = element->GetInput(VzEnum); _assert_(vz_input);
933 IssmDouble kappa=EnthalpyDiffusionParameterVolume(element,EnthalpyEnum); _assert_(kappa>=0.);
934 element->NormalBase(&normal_base[0],xyz_list_base);
935 element->VerticalSegmentIndices(&pairindices,&numsegments);
936 IssmDouble* meltingrate_enthalpy = xNew<IssmDouble>(numsegments);
937 IssmDouble* heating = xNew<IssmDouble>(numsegments);
938
939 /*Build friction element, needed later: */
940 Friction* friction=new Friction(element,dim);
941
942 /******** MELTING RATES ************************************/
943 numvertices=element->GetNumberOfVertices();
944 IssmDouble* enthalpy = xNew<IssmDouble>(numvertices);
945 IssmDouble* pressure = xNew<IssmDouble>(numvertices);
946 IssmDouble* watercolumn = xNew<IssmDouble>(numvertices);
947 IssmDouble* basalmeltingrate = xNew<IssmDouble>(numvertices);
948 element->GetInputListOnVertices(enthalpy,EnthalpyEnum);
949 element->GetInputListOnVertices(pressure,PressureEnum);
950 element->GetInputListOnVertices(watercolumn,WatercolumnEnum);
951 element->GetInputListOnVertices(basalmeltingrate,BasalforcingsMeltingRateEnum);
952
953 Gauss* gauss=element->NewGauss();
954
955 for(int is=0;is<numsegments;is++){
956 vertexdown = pairindices[is*2+0];
957 vertexup = pairindices[is*2+1];
958 gauss->GaussVertex(vertexdown);
959
960 bool checkpositivethickness=true;
961 _assert_(watercolumn[vertexdown]>=0.);
962
963 /*Calculate basal meltingrate after Fig.5 of A.Aschwanden 2012*/
964 meltingrate_enthalpy[is]=0.;
965 heating[is]=0.;
966 if((watercolumn[vertexdown]>0.) && (enthalpy[vertexdown]<PureIceEnthalpy(element,pressure[vertexdown]))){
967 /*ensure that no ice is at T<Tm(p), if water layer present*/
968 enthalpy[vertexdown]=element->PureIceEnthalpy(pressure[vertexdown]);
969 }
970 else if(enthalpy[vertexdown]<element->PureIceEnthalpy(pressure[vertexdown])){
971 /*cold base: set q*n=q_geo*n+frictionheating as Neumann BC in Penta::CreatePVectorEnthalpySheet*/
972 checkpositivethickness=false; // cold base, skip next test
973 }
974 else{/*we have a temperate base, go to next test*/}
975
976 if(checkpositivethickness){
977 /*From here on all basal ice is temperate. Check for positive thickness of layer of temperate ice. */
978 bool istemperatelayer=false;
979 if(enthalpy[vertexup]>=element->PureIceEnthalpy(pressure[vertexup])) istemperatelayer=true;
980 if(istemperatelayer) for(i=0;i<dim;i++) vec_heatflux[i]=0.; // TODO: add -k*nabla T_pmp
981 else{
982 enthalpy_input->GetInputDerivativeValue(&d1enthalpy[0],xyz_list,gauss);
983 for(i=0;i<3;i++) vec_heatflux[i]=-kappa*d1enthalpy[i];
984 }
985
986 /*heat flux along normal*/
987 heatflux=0.;
988 for(i=0;i<3;i++) heatflux+=(vec_heatflux[i])*normal_base[i];
989
990 /*basal friction*/
991 friction->GetAlpha2(&alpha2,gauss);
992 vx_input->GetInputValue(&vx,gauss);
993 vy_input->GetInputValue(&vy,gauss);
994 vz_input->GetInputValue(&vz,gauss);
995 basalfriction=alpha2*(vx*vx + vy*vy + vz*vz);
996
997 geothermalflux_input->GetInputValue(&geothermalflux,gauss);
998 /* -Mb= Fb-(q-q_geo)/((1-w)*L*rho), and (1-w)*rho=rho_ice, cf Aschwanden 2012, eqs.1, 2, 66*/
999 heating[is]=(heatflux+basalfriction+geothermalflux);
1000 meltingrate_enthalpy[is]=heating[is]/(latentheat*rho_ice); // m/s water equivalent
1001 }
1002 }
1003 /******** UPDATE MELTINGRATES AND WATERCOLUMN **************/
1004 element->FindParam(&dt,TimesteppingTimeStepEnum);
1005 for(is=0;is<numsegments;is++){
1006 vertexdown = pairindices[is*2+0];
1007 vertexup = pairindices[is*2+1];
1008 if(dt!=0.){
1009 if(watercolumn[vertexdown]+meltingrate_enthalpy[is]*dt<0.){ // prevent too much freeze on
1010 lambda = -watercolumn[vertexdown]/(dt*meltingrate_enthalpy[is]); _assert_(lambda>=0.); _assert_(lambda<1.);
1011 watercolumn[vertexdown]=0.;
1012 basalmeltingrate[vertexdown]=lambda*meltingrate_enthalpy[is]; // restrict freeze on only to size of watercolumn
1013 enthalpy[vertexdown]+=(1.-lambda)*meltingrate_enthalpy[is]*dt*latentheat; // use rest of energy to cool down base
1014 }
1015 else{
1016 basalmeltingrate[vertexdown]=meltingrate_enthalpy[is];
1017 watercolumn[vertexdown]+=dt*meltingrate_enthalpy[is];
1018 }
1019 }
1020 else{
1021 basalmeltingrate[vertexdown]=meltingrate_enthalpy[is];
1022 watercolumn[vertexdown]+=meltingrate_enthalpy[is];
1023 }
1024 basalmeltingrate[vertexdown]*=rho_water/rho_ice; // convert meltingrate from water to ice equivalent
1025 _assert_(watercolumn[vertexdown]>=0.);
1026 }
1027
1028 /*feed updated variables back into model*/
1029 element->AddInput(EnthalpyEnum,enthalpy,P1Enum);
1030 element->AddInput(WatercolumnEnum,watercolumn,P1Enum);
1031 element->AddInput(BasalforcingsMeltingRateEnum,basalmeltingrate,P1Enum);
1032
1033 /*Clean up and return*/
1034 delete gauss;
1035 delete friction;
1036 xDelete<IssmDouble>(enthalpy);
1037 xDelete<IssmDouble>(pressure);
1038 xDelete<IssmDouble>(watercolumn);
1039 xDelete<IssmDouble>(basalmeltingrate);
1040 xDelete<IssmDouble>(meltingrate_enthalpy);
1041 xDelete<IssmDouble>(heating);
1042 xDelete<IssmDouble>(xyz_list);
1043}/*}}}*/
1044void EnthalpyAnalysis::DrainWaterfractionIcecolumn(Element* element){/*{{{*/
1045
1046 /* Check if ice in element */
1047 if(!element->IsIceInElement()) return;
1048
1049 /* Only drain waterfraction of ice column from element at base*/
1050 if(!element->IsOnBase()) return; //FIXME: allow freeze on for floating elements
1051
1052 /* Intermediaries*/
1053 int is, numvertices, numsegments;
1054 int *pairindices = NULL;
1055
1056 numvertices=element->GetNumberOfVertices();
1057 element->VerticalSegmentIndices(&pairindices,&numsegments);
1058
1059 IssmDouble* watercolumn = xNew<IssmDouble>(numvertices);
1060 IssmDouble* drainrate_column = xNew<IssmDouble>(numsegments);
1061 IssmDouble* drainrate_element = xNew<IssmDouble>(numsegments);
1062
1063 element->GetInputListOnVertices(watercolumn,WatercolumnEnum);
1064
1065 for(is=0;is<numsegments;is++) drainrate_column[is]=0.;
1066 Element* elementi = element;
1067 for(;;){
1068 for(is=0;is<numsegments;is++) drainrate_element[is]=0.;
1069 DrainWaterfraction(elementi,drainrate_element); // TODO: make sure every vertex is only drained once
1070 for(is=0;is<numsegments;is++) drainrate_column[is]+=drainrate_element[is];
1071
1072 if(elementi->IsOnSurface()) break;
1073 elementi=elementi->GetUpperElement();
1074 }
1075 /* add drained water to water column*/
1076 for(is=0;is<numsegments;is++) watercolumn[is]+=drainrate_column[is];
1077 /* Feed updated water column back into model */
1078 element->AddInput(WatercolumnEnum,watercolumn,P1Enum);
1079
1080 xDelete<int>(pairindices);
1081 xDelete<IssmDouble>(drainrate_column);
1082 xDelete<IssmDouble>(drainrate_element);
1083 xDelete<IssmDouble>(watercolumn);
1084}/*}}}*/
1085void EnthalpyAnalysis::DrainWaterfraction(Element* element, IssmDouble* pdrainrate_element){/*{{{*/
1086
1087 /* Check if ice in element */
1088 if(!element->IsIceInElement()) return;
1089
1090 /*Intermediaries*/
1091 int iv,is,vertexdown,vertexup,numsegments;
1092 IssmDouble dt, height_element;
1093 IssmDouble rho_water, rho_ice;
1094 int numvertices = element->GetNumberOfVertices();
1095
1096 IssmDouble* xyz_list = NULL;
1097 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1098 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1099 IssmDouble* temperatures = xNew<IssmDouble>(numvertices);
1100 IssmDouble* waterfractions = xNew<IssmDouble>(numvertices);
1101 IssmDouble* deltawaterfractions = xNew<IssmDouble>(numvertices);
1102 int *pairindices = NULL;
1103
1104 rho_ice=element->GetMaterialParameter(MaterialsRhoIceEnum);
1105 rho_water=element->GetMaterialParameter(MaterialsRhoSeawaterEnum);
1106
1107 element->GetVerticesCoordinates(&xyz_list);
1108 element->GetInputListOnVertices(enthalpies,EnthalpyEnum);
1109 element->GetInputListOnVertices(pressures,PressureEnum);
1110
1111 element->FindParam(&dt,TimesteppingTimeStepEnum);
1112 for(iv=0;iv<numvertices;iv++){
1113 element->EnthalpyToThermal(&temperatures[iv],&waterfractions[iv], enthalpies[iv],pressures[iv]);
1114 deltawaterfractions[iv]=DrainageFunctionWaterfraction(waterfractions[iv], dt);
1115 }
1116
1117 /*drain waterfraction, feed updated variables back into model*/
1118 for(iv=0;iv<numvertices;iv++){
1119 if(reCast<bool,IssmDouble>(dt))
1120 waterfractions[iv]-=deltawaterfractions[iv]*dt;
1121 else
1122 waterfractions[iv]-=deltawaterfractions[iv];
1123 element->ThermalToEnthalpy(&enthalpies[iv], temperatures[iv], waterfractions[iv], pressures[iv]);
1124 }
1125 element->AddInput(EnthalpyEnum,enthalpies,P1Enum);
1126 element->AddInput(WaterfractionEnum,waterfractions,P1Enum);
1127
1128 /*return meltwater column equivalent to drained water*/
1129 element->VerticalSegmentIndices(&pairindices,&numsegments);
1130 for(is=0;is<numsegments;is++){
1131 vertexdown = pairindices[is*2+0];
1132 vertexup = pairindices[is*2+1];
1133 height_element=fabs(xyz_list[vertexup*3+2]-xyz_list[vertexdown*3+2]);
1134 pdrainrate_element[is]=(deltawaterfractions[vertexdown]+deltawaterfractions[vertexup])/2.*height_element; // return water equivalent of drainage
1135 _assert_(pdrainrate_element[is]>=0.);
1136 }
1137
1138 /*Clean up and return*/
1139 xDelete<int>(pairindices);
1140 xDelete<IssmDouble>(xyz_list);
1141 xDelete<IssmDouble>(enthalpies);
1142 xDelete<IssmDouble>(pressures);
1143 xDelete<IssmDouble>(temperatures);
1144 xDelete<IssmDouble>(waterfractions);
1145 xDelete<IssmDouble>(deltawaterfractions);
1146}/*}}}*/
1147void EnthalpyAnalysis::UpdateBasalConstraints(Element* element){/*{{{*/
1148
1149 /* Check if ice in element */
1150 if(!element->IsIceInElement()) return;
1151
1152 /* Only update Constraints at the base of grounded ice*/
1153 if(!(element->IsOnBase()) || element->IsFloating()) return;
1154
1155 /*Intermediary*/
1156 bool isdynamicbasalspc,setspc;
1157 int numindices, numindicesup;
1158 IssmDouble pressure, pressureup;
1159 IssmDouble h_pmp, enthalpy, enthalpyup;
1160 IssmDouble watercolumn;
1161 int *indices = NULL, *indicesup = NULL;
1162 Node* node = NULL;
1163
1164 /*Check wether dynamic basal boundary conditions are activated */
1165 element->FindParam(&isdynamicbasalspc,ThermalIsdynamicbasalspcEnum);
1166 if(!isdynamicbasalspc) return;
1167
1168 /*Fetch indices of basal & surface nodes for this finite element*/
1169 Penta *penta = (Penta *) element; // TODO: add Basal-/SurfaceNodeIndices to element.h, and change this to Element*
1170 penta->BasalNodeIndices(&numindices,&indices,element->GetElementType());
1171 penta->SurfaceNodeIndices(&numindicesup,&indicesup,element->GetElementType());
1172 _assert_(numindices==numindicesup);
1173
1174 /*Get parameters and inputs: */
1175 Input* pressure_input=element->GetInput(PressureEnum); _assert_(pressure_input);
1176 Input* enthalpy_input=element->GetInput(EnthalpyEnum); _assert_(enthalpy_input);
1177 Input* watercolumn_input=element->GetInput(WatercolumnEnum); _assert_(watercolumn_input);
1178
1179 /*if there is a temperate layer of zero thickness, set spc enthalpy=h_pmp at that node*/
1180 GaussPenta* gauss=new GaussPenta();
1181 GaussPenta* gaussup=new GaussPenta();
1182 for(int i=0;i<numindices;i++){
1183 gauss->GaussNode(element->GetElementType(),indices[i]);
1184 gaussup->GaussNode(element->GetElementType(),indicesup[i]);
1185
1186 /*Check wether there is a temperate layer at the base or not */
1187 /*check if node is temperate, else continue*/
1188 enthalpy_input->GetInputValue(&enthalpy, gauss);
1189 pressure_input->GetInputValue(&pressure, gauss);
1190 watercolumn_input->GetInputValue(&watercolumn,gauss);
1191 h_pmp=PureIceEnthalpy(element,pressure);
1192 if (enthalpy>=h_pmp){
1193 /*check if upper node is temperate, too.
1194 if yes, then we have a temperate layer of positive thickness and reset the spc.
1195 if not, apply dirichlet BC.*/
1196 enthalpy_input->GetInputValue(&enthalpyup, gaussup);
1197 pressure_input->GetInputValue(&pressureup, gaussup);
1198 setspc=((enthalpyup<PureIceEnthalpy(element,pressureup)) && (watercolumn>=0.))?true:false;
1199 }
1200 else
1201 setspc = false;
1202
1203 node=element->GetNode(indices[i]);
1204 if(setspc)
1205 node->ApplyConstraint(0,h_pmp); /*apply spc*/
1206 else
1207 node->DofInFSet(0); /*remove spc*/
1208 }
1209
1210 /*Free ressources:*/
1211 xDelete<int>(indices);
1212 xDelete<int>(indicesup);
1213 delete gauss;
1214 delete gaussup;
1215}/*}}}*/
1216
1217/*Intermediaries*/
1218IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameter(Element* element,IssmDouble enthalpy,IssmDouble pressure){/*{{{*/
1219
1220 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1221 IssmDouble temperateiceconductivity = element->GetMaterialParameter(MaterialsTemperateiceconductivityEnum);
1222 IssmDouble thermalconductivity = element->GetMaterialParameter(MaterialsThermalconductivityEnum);
1223
1224 if(enthalpy < PureIceEnthalpy(element,pressure)){
1225 return thermalconductivity/heatcapacity;
1226 }
1227 else{
1228 return temperateiceconductivity/heatcapacity;
1229 }
1230}/*}}}*/
1231IssmDouble EnthalpyAnalysis::EnthalpyDiffusionParameterVolume(Element* element,int enthalpy_enum){/*{{{*/
1232
1233 int iv;
1234 IssmDouble lambda; /* fraction of cold ice */
1235 IssmDouble kappa,kappa_c,kappa_t; /* enthalpy conductivities */
1236 IssmDouble Hc,Ht;
1237
1238 /*Get pressures and enthalpies on vertices*/
1239 int numvertices = element->GetNumberOfVertices();
1240 IssmDouble* pressures = xNew<IssmDouble>(numvertices);
1241 IssmDouble* enthalpies = xNew<IssmDouble>(numvertices);
1242 IssmDouble* PIE = xNew<IssmDouble>(numvertices);
1243 IssmDouble* dHpmp = xNew<IssmDouble>(numvertices);
1244 element->GetInputListOnVertices(pressures,PressureEnum);
1245 element->GetInputListOnVertices(enthalpies,enthalpy_enum);
1246 for(iv=0;iv<numvertices;iv++){
1247 PIE[iv] = PureIceEnthalpy(element,pressures[iv]);
1248 dHpmp[iv] = enthalpies[iv]-PIE[iv];
1249 }
1250
1251 bool allequalsign = true;
1252 if(dHpmp[0]<0.){
1253 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]<0.));
1254 }
1255 else{
1256 for(iv=1; iv<numvertices;iv++) allequalsign=(allequalsign && (dHpmp[iv]>=0.));
1257 }
1258
1259 if(allequalsign){
1260 kappa = EnthalpyDiffusionParameter(element,enthalpies[0],pressures[0]);
1261 }
1262 else{
1263 /* return harmonic mean of thermal conductivities, weighted by fraction of cold/temperate ice,
1264 cf Patankar 1980, pp44 */
1265 kappa_c = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)-1.,0.);
1266 kappa_t = EnthalpyDiffusionParameter(element,PureIceEnthalpy(element,0.)+1.,0.);
1267 Hc=0.; Ht=0.;
1268 for(iv=0; iv<numvertices;iv++){
1269 if(enthalpies[iv]<PIE[iv])
1270 Hc+=(PIE[iv]-enthalpies[iv]);
1271 else
1272 Ht+=(enthalpies[iv]-PIE[iv]);
1273 }
1274 _assert_((Hc+Ht)>0.);
1275 lambda = Hc/(Hc+Ht);
1276 kappa = kappa_c*kappa_t/(lambda*kappa_t+(1.-lambda)*kappa_c); // ==(lambda/kappa_c + (1.-lambda)/kappa_t)^-1
1277 }
1278
1279 /*Clean up and return*/
1280 xDelete<IssmDouble>(PIE);
1281 xDelete<IssmDouble>(dHpmp);
1282 xDelete<IssmDouble>(pressures);
1283 xDelete<IssmDouble>(enthalpies);
1284 return kappa;
1285}/*}}}*/
1286IssmDouble EnthalpyAnalysis::PureIceEnthalpy(Element* element,IssmDouble pressure){/*{{{*/
1287
1288 IssmDouble heatcapacity = element->GetMaterialParameter(MaterialsHeatcapacityEnum);
1289 IssmDouble referencetemperature = element->GetMaterialParameter(ConstantsReferencetemperatureEnum);
1290
1291 return heatcapacity*(TMeltingPoint(element,pressure)-referencetemperature);
1292}/*}}}*/
1293IssmDouble EnthalpyAnalysis::TMeltingPoint(Element* element,IssmDouble pressure){/*{{{*/
1294
1295 IssmDouble meltingpoint = element->GetMaterialParameter(MaterialsMeltingpointEnum);
1296 IssmDouble beta = element->GetMaterialParameter(MaterialsBetaEnum);
1297
1298 return meltingpoint-beta*pressure;
1299}/*}}}*/
Note: See TracBrowser for help on using the repository browser.