[22805] | 1 |
|
---|
| 2 | clear all;
|
---|
| 3 | steps=[2]; %
|
---|
| 4 |
|
---|
| 5 | if any(steps==1) % Global mesh creation {{{
|
---|
| 6 | disp(' Step 1: Global mesh creation');
|
---|
| 7 |
|
---|
| 8 | numrefine=1;
|
---|
| 9 | resolution=150*1e3; % inital resolution [m]. It determines, e.g., whether we capture small islands.
|
---|
| 10 | radius = 6.371012*10^6; % mean radius of Earth, m
|
---|
| 11 | mindistance_coast=150*1e3; % coastal resolution [m]
|
---|
| 12 | mindistance_land=300*1e3; % resolution on the continents [m]
|
---|
| 13 | maxdistance=600*1e3; % max element size (on mid-oceans) [m]
|
---|
| 14 |
|
---|
| 15 | %mesh earth:
|
---|
| 16 | md=model;
|
---|
| 17 | md.mask=maskpsl(); % use maskpsl class (instead of mask) to store the ocean function as a ocean_levelset
|
---|
| 18 | md.mesh=gmshplanet('radius',radius*1e-3,'resolution',resolution*1e-3); % attributes should be in km.
|
---|
| 19 |
|
---|
| 20 | for i=1:numrefine,
|
---|
| 21 |
|
---|
| 22 | %figure out mask:
|
---|
| 23 | md.mask.ocean_levelset=gmtmask(md.mesh.lat,md.mesh.long);
|
---|
| 24 |
|
---|
| 25 | %figure out distance to the coastline, in lat,long (not x,y,z):
|
---|
| 26 | distance=zeros(md.mesh.numberofvertices,1);
|
---|
| 27 |
|
---|
| 28 | pos=find(~md.mask.ocean_levelset); coaste.lat=md.mesh.lat(pos); coaste.long=md.mesh.long(pos);
|
---|
| 29 | pos=find(md.mask.ocean_levelset); coasto.lat=md.mesh.lat(pos); coasto.long=md.mesh.long(pos);
|
---|
| 30 |
|
---|
| 31 | for j=1:md.mesh.numberofvertices
|
---|
| 32 | %figure out nearest coastline (using the great circle distance)
|
---|
| 33 | phi1=md.mesh.lat(j)/180*pi; lambda1=md.mesh.long(j)/180*pi;
|
---|
| 34 | if md.mask.ocean_levelset(j),
|
---|
| 35 | phi2=coaste.lat/180*pi; lambda2=coaste.long/180*pi;
|
---|
| 36 | deltaphi=abs(phi2-phi1); deltalambda=abs(lambda2-lambda1);
|
---|
| 37 | d=radius*2*asin(sqrt(sin(deltaphi/2).^2+cos(phi1).*cos(phi2).*sin(deltalambda/2).^2));
|
---|
| 38 | else
|
---|
| 39 | phi2=coasto.lat/180*pi; lambda2=coasto.long/180*pi;
|
---|
| 40 | deltaphi=abs(phi2-phi1); deltalambda=abs(lambda2-lambda1);
|
---|
| 41 | d=radius*2*asin(sqrt(sin(deltaphi/2).^2+cos(phi1).*cos(phi2).*sin(deltalambda/2).^2));
|
---|
| 42 | end
|
---|
| 43 | distance(j)=min(d);
|
---|
| 44 | end
|
---|
| 45 | pos=find(distance<mindistance_coast); distance(pos)=mindistance_coast;
|
---|
| 46 |
|
---|
| 47 | % refine on the continents
|
---|
| 48 | pos2=find(md.mask.ocean_levelset~=1 & distance>mindistance_land);
|
---|
| 49 | distance(pos2)=mindistance_land;
|
---|
| 50 |
|
---|
| 51 | dist=min(maxdistance,distance); % max size 1000 km
|
---|
| 52 | %use distance to the coastline to refine mesh:
|
---|
| 53 | md.mesh=gmshplanet('radius',radius*1e-3,'resolution',resolution*1e-3,'refine',md.mesh,'refinemetric',dist);
|
---|
| 54 | end
|
---|
| 55 |
|
---|
| 56 | %figure out mask:
|
---|
| 57 | md.mask.ocean_levelset=gmtmask(md.mesh.lat,md.mesh.long);
|
---|
| 58 |
|
---|
| 59 | save ./Models/SlrFarrell.Mesh md;
|
---|
| 60 |
|
---|
| 61 | plotmodel (md,'data',md.mask.ocean_levelset,'edgecolor','k');
|
---|
| 62 | %export_fig('Fig1.pdf');
|
---|
| 63 |
|
---|
| 64 | end % }}}
|
---|
| 65 |
|
---|
| 66 | if any(steps==2) % Define source {{{
|
---|
| 67 | disp(' Step 2: Define source as in Farrell, 1972, Figure 1');
|
---|
| 68 | md = loadmodel('./Models/SlrFarrell.Mesh');
|
---|
| 69 |
|
---|
| 70 | % initial sea-level: 1 m RSL everywhere.
|
---|
| 71 | md.slr.sealevel=md.mask.ocean_levelset;
|
---|
| 72 |
|
---|
| 73 | save ./Models/SlrFarrell.Loads md;
|
---|
| 74 |
|
---|
| 75 | plotmodel (md,'data',md.slr.sealevel,'view',[90 90],...
|
---|
| 76 | 'title#all','Initial sea-level [m]');
|
---|
| 77 | %export_fig('Fig2.pdf');
|
---|
| 78 |
|
---|
| 79 | end % }}}
|
---|
| 80 |
|
---|
| 81 | if any(steps==3) % Parameterization {{{
|
---|
| 82 | disp(' Step 3: Parameterization');
|
---|
| 83 | md = loadmodel('./Models/SlrFarrell.Loads');
|
---|
| 84 |
|
---|
| 85 | % Love numbers and reference frame: CF or CM (choose one!)
|
---|
| 86 | nlove=10001; % up to 10,000 degree
|
---|
| 87 | md.slr.love_h = love_numbers('h','CM'); md.slr.love_h(nlov+1:end)=[];
|
---|
| 88 | md.slr.love_k = love_numbers('k','CM'); md.slr.love_k(nlov+1:end)=[];
|
---|
| 89 | md.slr.love_l = love_numbers('l','CM'); md.slr.love_l(nlov+1:end)=[];
|
---|
| 90 |
|
---|
| 91 | % Mask: for computational efficiency only those elements that have loads are convolved!
|
---|
| 92 | md.mask.groundedice_levelset = ones(md.mesh.numberofvertices,1); % 1 = ice is grounnded
|
---|
| 93 | md.mask.ice_levelset = ones(md.mesh.numberofvertices,1);
|
---|
| 94 | pos=find(md.slr.deltathickness~=0);
|
---|
| 95 | md.mask.ice_levelset(md.mesh.elements(pos,:))=-1; % -1 = ice loads
|
---|
| 96 | md.mask.land_levelset = 1-md.mask.ocean_levelset;
|
---|
| 97 |
|
---|
| 98 | %% IGNORE BUT DO NOT DELETE %% {{{
|
---|
| 99 | % Geometry: Important only when you want to couple with Ice Flow Model
|
---|
| 100 | di=md.materials.rho_ice/md.materials.rho_water;
|
---|
| 101 | md.geometry.thickness=ones(md.mesh.numberofvertices,1);
|
---|
| 102 | md.geometry.surface=(1-di)*zeros(md.mesh.numberofvertices,1);
|
---|
| 103 | md.geometry.base=md.geometry.surface-md.geometry.thickness;
|
---|
| 104 | md.geometry.bed=md.geometry.base;
|
---|
| 105 | % Materials:
|
---|
| 106 | md.initialization.temperature=273.25*ones(md.mesh.numberofvertices,1);
|
---|
| 107 | md.materials.rheology_B=paterson(md.initialization.temperature);
|
---|
| 108 | md.materials.rheology_n=3*ones(md.mesh.numberofelements,1);
|
---|
| 109 | % Miscellaneous:
|
---|
| 110 | md.miscellaneous.name='SlrFarrell';
|
---|
| 111 | %% IGNORE BUT DO NOT DELETE %% }}}
|
---|
| 112 |
|
---|
| 113 | save ./Models/SlrFarrell.Parameterization md;
|
---|
| 114 |
|
---|
| 115 | end % }}}
|
---|
| 116 |
|
---|
| 117 | if any(steps==4) % Solve {{{
|
---|
| 118 | disp(' Step 4: Solve Slr solver');
|
---|
| 119 | md = loadmodel('./Models/SlrFarrell.Parameterization');
|
---|
| 120 |
|
---|
| 121 | % Request outputs
|
---|
| 122 | md.slr.requested_outputs = {'SlrUmotion','SlrNmotion','SlrEmotion'};
|
---|
| 123 |
|
---|
| 124 | % Cluster info
|
---|
| 125 | md.cluster=generic('name',oshostname(),'np',3);
|
---|
| 126 | md.verbose=verbose('111111111');
|
---|
| 127 |
|
---|
| 128 | % Solve
|
---|
| 129 | md=solve(md,'Slr');
|
---|
| 130 |
|
---|
| 131 | save ./Models/SlrFarrell.Solution md;
|
---|
| 132 |
|
---|
| 133 | end % }}}
|
---|
| 134 |
|
---|
| 135 | if any(steps==5) % Plot solutions {{{
|
---|
| 136 | disp(' Step 5: Plot solutions');
|
---|
| 137 | md = loadmodel('./Models/SlrFarrell.Solution');
|
---|
| 138 |
|
---|
| 139 | % loads and solutions.
|
---|
| 140 | sol1 = md.slr.deltathickness*100; % WEH cm
|
---|
| 141 | sol2 = md.results.SlrSolution.SlrUmotion*1000; % [mm]
|
---|
| 142 | sol3 = md.results.SlrSolution.SlrNmotion*1000; % [mm]
|
---|
| 143 | sol4 = md.results.SlrSolution.SlrEmotion*1000; % [mm]
|
---|
| 144 | sol_name={'Change in water equivalent height [cm]', 'Vertical displacement [mm]',...
|
---|
| 145 | 'Horizontal (NS) displacement [mm]', 'Horizontal (EW) displacement [mm]'};
|
---|
| 146 |
|
---|
| 147 | res = 1.0; % degree
|
---|
| 148 |
|
---|
| 149 | % Make a grid of lats and lons, based on the min and max of the original vectors
|
---|
| 150 | [lat_grid, lon_grid] = meshgrid(linspace(-90,90,180/res), linspace(-180,180,360/res));
|
---|
| 151 | sol_grid = zeros(size(lat_grid));
|
---|
| 152 |
|
---|
| 153 | for kk=1:4
|
---|
| 154 | sol=eval(sprintf('sol%d',kk));
|
---|
| 155 |
|
---|
| 156 | % if data are on elements, map those on to the vertices {{{
|
---|
| 157 | if length(sol)==md.mesh.numberofelements
|
---|
| 158 | % map on to the vertices
|
---|
| 159 | for jj=1:md.mesh.numberofelements
|
---|
| 160 | ii=(jj-1)*3;
|
---|
| 161 | pp(ii+1:ii+3)=md.mesh.elements(jj,:);
|
---|
| 162 | end
|
---|
| 163 | for jj=1:md.mesh.numberofvertices
|
---|
| 164 | pos=ceil(find(pp==jj)/3);
|
---|
| 165 | temp(jj)=mean(sol(pos));
|
---|
| 166 | end
|
---|
| 167 | sol=temp';
|
---|
| 168 | end % }}}
|
---|
| 169 |
|
---|
| 170 | % Make a interpolation object
|
---|
| 171 | F = scatteredInterpolant(md.mesh.lat,md.mesh.long,sol);
|
---|
| 172 | F.Method = 'linear';
|
---|
| 173 | F.ExtrapolationMethod = 'linear';
|
---|
| 174 |
|
---|
| 175 | % Do the interpolation to get gridded solutions...
|
---|
| 176 | sol_grid = F(lat_grid, lon_grid);
|
---|
| 177 | sol_grid(isnan(sol_grid))=0;
|
---|
| 178 | sol_grid(lat_grid>85 & sol_grid==0) =NaN; % set polar unphysical 0s to Nan
|
---|
| 179 |
|
---|
| 180 | set(0,'DefaultAxesFontSize',18,'DefaultAxesLineWidth',1,'DefaultTextFontSize',18,'DefaultLineMarkerSize',8)
|
---|
| 181 | figure1=figure('Position', [100, 100, 1000, 500]);
|
---|
| 182 | gcf;
|
---|
| 183 | load coast;
|
---|
| 184 | cla;
|
---|
| 185 | pcolor(lon_grid,lat_grid,sol_grid); shading flat; hold on;
|
---|
| 186 | plot(long,lat,'k'); hold off;
|
---|
| 187 | c1=colorbar;
|
---|
| 188 | colormap(jet);
|
---|
| 189 | xlim([-180 180]);
|
---|
| 190 | ylim([-90 90]);
|
---|
| 191 | grid on;
|
---|
| 192 | title(sol_name(kk));
|
---|
| 193 | set(gcf,'color','w');
|
---|
| 194 |
|
---|
| 195 | %export_fig('Fig5.pdf');
|
---|
| 196 | end
|
---|
| 197 |
|
---|
| 198 | end % }}}
|
---|
| 199 |
|
---|
| 200 |
|
---|