[25596] | 1 | /*!\file: QmuStatisticsx routines
|
---|
| 2 | */
|
---|
| 3 | /*includes and prototypes:*/
|
---|
[25615] | 4 | #include <sys/stat.h>
|
---|
[25596] | 5 | #include "./QmuStatisticsx.h"
|
---|
| 6 | #include "../OutputResultsx/OutputResultsx.h"
|
---|
| 7 |
|
---|
| 8 | int readdata(IssmDouble** pdoublemat, int* pdoublematsize, IssmDouble* pdouble, FILE* fid,char* field,int step){ /*{{{*/
|
---|
| 9 |
|
---|
| 10 | int length;
|
---|
| 11 | char fieldname[1000];
|
---|
| 12 | int fieldname_size;
|
---|
| 13 | IssmDouble rtime;
|
---|
| 14 | int rstep;
|
---|
| 15 | int M,N;
|
---|
| 16 |
|
---|
| 17 | //fields that we retrive:
|
---|
| 18 | IssmDouble dfield;
|
---|
| 19 | char* sfield = NULL;
|
---|
| 20 | IssmDouble* dmatfield = NULL;
|
---|
| 21 | int* imatfield = NULL;
|
---|
| 22 |
|
---|
| 23 | //type of the returned field:
|
---|
| 24 | int type;
|
---|
| 25 | int found=0;
|
---|
| 26 |
|
---|
| 27 | while(1){
|
---|
| 28 |
|
---|
| 29 | size_t ret_code = fread(&fieldname_size, sizeof(int), 1, fid);
|
---|
| 30 | if(ret_code != 1) break; //we are done.
|
---|
| 31 |
|
---|
| 32 | fread(fieldname, sizeof(char), fieldname_size, fid);
|
---|
| 33 | //_printf0_("fieldname: " << fieldname << "\n");
|
---|
| 34 |
|
---|
| 35 | fread(&rtime, sizeof(IssmDouble), 1, fid);
|
---|
| 36 | fread(&rstep, sizeof(int), 1, fid);
|
---|
| 37 |
|
---|
| 38 | //check on field:
|
---|
| 39 | if ((step==rstep) && (strcmp(field,fieldname)==0)){
|
---|
| 40 |
|
---|
| 41 | //ok, go read the result really:
|
---|
| 42 | fread(&type,sizeof(int),1,fid);
|
---|
| 43 | fread(&M,sizeof(int),1,fid);
|
---|
| 44 | if (type==1){
|
---|
| 45 | fread(&dfield,sizeof(IssmDouble),1,fid);
|
---|
| 46 | }
|
---|
| 47 | else if (type==2){
|
---|
| 48 | fread(&M,sizeof(int),1,fid);
|
---|
| 49 | sfield=xNew<char>(M);
|
---|
| 50 | fread(sfield,sizeof(char),M,fid);
|
---|
| 51 | }
|
---|
| 52 | else if (type==3){
|
---|
| 53 | fread(&N,sizeof(int),1,fid);
|
---|
| 54 | dmatfield=xNew<IssmDouble>(M*N);
|
---|
| 55 | fread(dmatfield,sizeof(IssmDouble),M*N,fid);
|
---|
| 56 | }
|
---|
| 57 | else if (type==4){
|
---|
| 58 | fread(&N,sizeof(int),1,fid);
|
---|
| 59 | imatfield=xNew<int>(M*N);
|
---|
| 60 | fread(imatfield,sizeof(int),M*N,fid);
|
---|
| 61 | }
|
---|
| 62 | else _error_("cannot read data of type " << type << "\n");
|
---|
| 63 | found=1;
|
---|
| 64 | break;
|
---|
| 65 | }
|
---|
| 66 | else{
|
---|
| 67 | //just skim to next results.
|
---|
| 68 | fread(&type,sizeof(int),1,fid);
|
---|
| 69 | fread(&M,sizeof(int),1,fid);
|
---|
| 70 | if (type==1){
|
---|
| 71 | fseek(fid,sizeof(IssmDouble),SEEK_CUR);
|
---|
| 72 | }
|
---|
| 73 | else if(type==2){
|
---|
| 74 | fseek(fid,M*sizeof(char),SEEK_CUR);
|
---|
| 75 | }
|
---|
| 76 | else if(type==3){
|
---|
| 77 | fread(&N,sizeof(int),1,fid);
|
---|
| 78 | fseek(fid,M*N*sizeof(IssmDouble),SEEK_CUR);
|
---|
| 79 | }
|
---|
| 80 | else if(type==4){
|
---|
| 81 | fread(&N,sizeof(int),1,fid);
|
---|
| 82 | fseek(fid,M*N*sizeof(int),SEEK_CUR);
|
---|
| 83 | }
|
---|
| 84 | else _error_("cannot read data of type " << type << "\n");
|
---|
| 85 | }
|
---|
| 86 | }
|
---|
| 87 | if(found==0)_error_("cound not find " << field << " at step " << step << "\n");
|
---|
| 88 |
|
---|
| 89 | /*assign output pointers:*/
|
---|
| 90 | *pdoublemat=dmatfield;
|
---|
| 91 | *pdoublematsize=M*N;
|
---|
| 92 | *pdouble=dfield;
|
---|
| 93 |
|
---|
| 94 | /*return:*/
|
---|
| 95 | return type;
|
---|
| 96 |
|
---|
| 97 | }
|
---|
| 98 | /*}}}*/
|
---|
| 99 | int ComputeHistogram(Parameters* parameters,Results* results,int color, ISSM_MPI_Comm statcomm){ /*{{{*/
|
---|
| 100 |
|
---|
| 101 | int nsamples;
|
---|
| 102 | char* directory=NULL;
|
---|
| 103 | char* model=NULL;
|
---|
| 104 | char** fields=NULL;
|
---|
| 105 | int* steps=NULL;
|
---|
| 106 | int nsteps;
|
---|
| 107 | int nfields;
|
---|
| 108 | int nbins;
|
---|
| 109 | int range,lower_row,upper_row;
|
---|
| 110 | int nfilesperdirectory;
|
---|
| 111 |
|
---|
| 112 | /*intermediary:*/
|
---|
| 113 | IssmDouble* doublemat=NULL;
|
---|
| 114 | int doublematsize;
|
---|
| 115 | IssmDouble scalar;
|
---|
| 116 |
|
---|
| 117 | /*computation of average and variance itself:*/
|
---|
| 118 | IssmDouble** maxxs = NULL;
|
---|
| 119 | IssmDouble** minxs = NULL;
|
---|
| 120 | int* xtype=NULL;
|
---|
| 121 | int* xsize=NULL;
|
---|
| 122 |
|
---|
| 123 | IssmDouble** maxmeans=NULL;
|
---|
| 124 | IssmDouble** minmeans=NULL;
|
---|
| 125 | int* meanxtype=NULL;
|
---|
| 126 | int* meanxsize=NULL;
|
---|
| 127 |
|
---|
| 128 | /*only work on the statistical communicator: */
|
---|
| 129 | if (color==MPI_UNDEFINED)return 0;
|
---|
| 130 |
|
---|
| 131 | /*Retrieve parameters:*/
|
---|
| 132 | parameters->FindParam(&nfilesperdirectory,QmuNfilesPerDirectoryEnum);
|
---|
| 133 | parameters->FindParam(&nsamples,QmuNsampleEnum);
|
---|
| 134 | parameters->FindParam(&directory,DirectoryNameEnum);
|
---|
| 135 | parameters->FindParam(&model,InputFileNameEnum);
|
---|
| 136 | parameters->FindParam(&fields,&nfields,FieldsEnum);
|
---|
| 137 | parameters->FindParam(&steps,&nsteps,StepsEnum);
|
---|
| 138 | parameters->FindParam(&nbins,NbinsEnum);
|
---|
| 139 |
|
---|
| 140 | /*Get rank from the stat comm communicator:*/
|
---|
| 141 | IssmComm::SetComm(statcomm);
|
---|
| 142 | int my_rank=IssmComm::GetRank();
|
---|
| 143 |
|
---|
| 144 | /*Open files and read them complelety, in a distributed way:*/
|
---|
| 145 | range=DetermineLocalSize(nsamples,IssmComm::GetComm());
|
---|
| 146 | GetOwnershipBoundariesFromRange(&lower_row,&upper_row,range,IssmComm::GetComm());
|
---|
| 147 |
|
---|
| 148 | /*Initialize arrays:*/
|
---|
| 149 | maxmeans=xNew<IssmDouble*>(nfields);
|
---|
| 150 | minmeans=xNew<IssmDouble*>(nfields);
|
---|
| 151 | meanxtype=xNew<int>(nfields);
|
---|
| 152 | meanxsize=xNew<int>(nfields);
|
---|
| 153 |
|
---|
| 154 | maxxs=xNew<IssmDouble*>(nfields*nsteps);
|
---|
| 155 | minxs=xNew<IssmDouble*>(nfields*nsteps);
|
---|
| 156 | xtype=xNew<int>(nfields*nsteps);
|
---|
| 157 | xsize=xNew<int>(nfields*nsteps);
|
---|
| 158 |
|
---|
| 159 | /*Start opening files:*/
|
---|
| 160 | for(int i=(lower_row+1);i<=upper_row;i++){
|
---|
| 161 | _printf0_("reading file #: " << i << "\n");
|
---|
| 162 | char file[1000];
|
---|
| 163 | long int length;
|
---|
| 164 | char* buffer=NULL;
|
---|
| 165 |
|
---|
| 166 | /*string:*/
|
---|
| 167 | sprintf(file,"%s/%i/%s.outbin.%i",directory,my_rank+1,model,i);
|
---|
| 168 |
|
---|
| 169 | /*open file: */
|
---|
| 170 | _printf0_(" opening file: " << file << "\n");
|
---|
| 171 | FILE* fid=fopen(file,"rb");
|
---|
| 172 | if(fid==NULL)_error_("cound not open file: " << file << "\n");
|
---|
| 173 |
|
---|
| 174 | /*figure out size of file, and read the whole thing:*/
|
---|
| 175 | _printf0_(" reading file:\n");
|
---|
| 176 | fseek (fid, 0, SEEK_END);
|
---|
| 177 | length = ftell (fid);
|
---|
| 178 | fseek (fid, 0, SEEK_SET);
|
---|
| 179 | buffer = xNew<char>(length);
|
---|
| 180 | fread (buffer, sizeof(char), length, fid);
|
---|
| 181 |
|
---|
| 182 | /*close file:*/
|
---|
| 183 | fclose (fid);
|
---|
| 184 |
|
---|
| 185 | /*create a memory stream with this buffer:*/
|
---|
| 186 | _printf0_(" processing file:\n");
|
---|
| 187 | fid=fmemopen(buffer, length, "rb");
|
---|
| 188 |
|
---|
| 189 | /*start reading data from the buffer directly:*/
|
---|
| 190 | for (int f=0;f<nfields;f++){
|
---|
| 191 | char* field=fields[f];
|
---|
| 192 | fseek(fid,0,SEEK_SET);
|
---|
| 193 | for (int j=0;j<nsteps;j++){
|
---|
| 194 | int counter=f*nsteps+j;
|
---|
| 195 | xtype[counter]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 196 | if(i==(lower_row+1)){
|
---|
| 197 | if(xtype[counter]==1){
|
---|
| 198 | maxxs[counter]=xNew<IssmDouble>(1);
|
---|
| 199 | minxs[counter]=xNew<IssmDouble>(1);
|
---|
| 200 | *maxxs[counter]=scalar;
|
---|
| 201 | *minxs[counter]=scalar;
|
---|
| 202 | xsize[counter]=1;
|
---|
| 203 | }
|
---|
| 204 | else if (xtype[counter]==3){
|
---|
| 205 | maxxs[counter]=xNew<IssmDouble>(doublematsize);
|
---|
| 206 | xMemCpy<IssmDouble>(maxxs[counter],doublemat,doublematsize);
|
---|
| 207 | minxs[counter]=xNew<IssmDouble>(doublematsize);
|
---|
| 208 | xMemCpy<IssmDouble>(minxs[counter],doublemat,doublematsize);
|
---|
| 209 | xsize[counter]=doublematsize;
|
---|
| 210 | xDelete<IssmDouble>(doublemat);
|
---|
| 211 | }
|
---|
| 212 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
| 213 | }
|
---|
| 214 | else{
|
---|
| 215 | if(xtype[counter]==1){
|
---|
| 216 | *maxxs[counter]=max(*maxxs[counter],scalar);
|
---|
| 217 | *minxs[counter]=min(*minxs[counter],scalar);
|
---|
| 218 | }
|
---|
| 219 | else if (xtype[counter]==3){
|
---|
| 220 | IssmDouble* newmax=maxxs[counter];
|
---|
| 221 | IssmDouble* newmin=minxs[counter];
|
---|
| 222 | for(int k=0;k<doublematsize;k++){
|
---|
| 223 | if(doublemat[k]>newmax[k])newmax[k]=doublemat[k];
|
---|
| 224 | if(doublemat[k]<newmin[k])newmin[k]=doublemat[k];
|
---|
| 225 | }
|
---|
| 226 | xDelete<IssmDouble>(doublemat);
|
---|
| 227 | }
|
---|
| 228 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
| 229 | }
|
---|
| 230 | }
|
---|
| 231 | }
|
---|
| 232 | _printf0_(" average in time:\n");
|
---|
| 233 |
|
---|
| 234 | /*Deal with average in time: */
|
---|
| 235 | for (int f=0;f<nfields;f++){
|
---|
| 236 | fseek(fid,0,SEEK_SET);
|
---|
| 237 | char* field=fields[f];
|
---|
| 238 | meanxtype[f]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[0]);
|
---|
| 239 |
|
---|
| 240 | if(meanxtype[f]==1){
|
---|
| 241 | meanxsize[f]=1;
|
---|
| 242 | IssmDouble timemean=0;
|
---|
| 243 | fseek(fid,0,SEEK_SET);
|
---|
| 244 | for (int j=0;j<nsteps;j++){
|
---|
| 245 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 246 | timemean+=scalar/nsteps;
|
---|
| 247 | }
|
---|
| 248 |
|
---|
| 249 | /*Figure out max and min of time means: */
|
---|
| 250 | if(i==(lower_row+1)){
|
---|
| 251 | maxmeans[f]=xNewZeroInit<IssmDouble>(1);
|
---|
| 252 | minmeans[f]=xNewZeroInit<IssmDouble>(1);
|
---|
| 253 | *maxmeans[f]=timemean;
|
---|
| 254 | *minmeans[f]=timemean;
|
---|
| 255 | }
|
---|
| 256 | else{
|
---|
| 257 | *maxmeans[f]=max(*maxmeans[f],timemean);
|
---|
| 258 | *minmeans[f]=min(*minmeans[f],timemean);
|
---|
| 259 | }
|
---|
| 260 | }
|
---|
| 261 | else{
|
---|
| 262 | meanxsize[f]=doublematsize;
|
---|
| 263 | fseek(fid,0,SEEK_SET);
|
---|
| 264 | IssmDouble* timemean=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
| 265 | for (int j=0;j<nsteps;j++){
|
---|
| 266 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 267 | for (int k=0;k<doublematsize;k++){
|
---|
| 268 | timemean[k]+=doublemat[k]/nsteps;
|
---|
| 269 | }
|
---|
| 270 | xDelete<IssmDouble>(doublemat);
|
---|
| 271 | }
|
---|
| 272 |
|
---|
| 273 | if(i==(lower_row+1)){
|
---|
| 274 | maxmeans[f]=xNew<IssmDouble>(doublematsize);
|
---|
| 275 | xMemCpy<IssmDouble>(maxmeans[f],timemean,doublematsize);
|
---|
| 276 | minmeans[f]=xNew<IssmDouble>(doublematsize);
|
---|
| 277 | xMemCpy<IssmDouble>(minmeans[f],timemean,doublematsize);
|
---|
| 278 | }
|
---|
| 279 | else{
|
---|
| 280 | IssmDouble* maxx=maxmeans[f];
|
---|
| 281 | IssmDouble* minx=minmeans[f];
|
---|
| 282 |
|
---|
| 283 | for(int k=0;k<doublematsize;k++){
|
---|
| 284 | maxx[k]=max(maxx[k],timemean[k]);
|
---|
| 285 | minx[k]=min(minx[k],timemean[k]);
|
---|
| 286 | }
|
---|
| 287 | maxmeans[f]=maxx;
|
---|
| 288 | minmeans[f]=minx;
|
---|
| 289 | }
|
---|
| 290 | }
|
---|
| 291 | }
|
---|
| 292 | fclose(fid);
|
---|
| 293 |
|
---|
| 294 | /*delete buffer:*/
|
---|
| 295 | xDelete<char>(buffer);
|
---|
| 296 | }
|
---|
| 297 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
| 298 | _printf0_("Done reading files, now computing min and max.\n");
|
---|
| 299 |
|
---|
| 300 | /*We have agregated minx and max across the cluster, now gather across the cluster onto
|
---|
| 301 | *cpu0 and then compute statistics:*/
|
---|
| 302 | for (int f=0;f<nfields;f++){
|
---|
| 303 | int counter0=f*nsteps+0;
|
---|
| 304 | if (xtype[counter0]==1){ /*deal with scalars {{{*/
|
---|
| 305 | for (int j=0;j<nsteps;j++){
|
---|
| 306 | int counter=f*nsteps+j;
|
---|
| 307 |
|
---|
| 308 | /*we are broadcasting doubles:*/
|
---|
| 309 | IssmDouble maxscalar=*maxxs[counter];
|
---|
| 310 | IssmDouble minscalar=*minxs[counter];
|
---|
| 311 | IssmDouble allmaxscalar;
|
---|
| 312 | IssmDouble allminscalar;
|
---|
| 313 | IssmDouble sumscalar_alltimes=0;
|
---|
| 314 |
|
---|
| 315 | ISSM_MPI_Allreduce(&maxscalar,&allmaxscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
| 316 | ISSM_MPI_Allreduce(&minscalar,&allminscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_MIN,IssmComm::GetComm());
|
---|
| 317 |
|
---|
| 318 | /*Store broadcasted value for later computation of histograms:*/
|
---|
| 319 | *maxxs[counter]=allmaxscalar;
|
---|
| 320 | *minxs[counter]=allminscalar;
|
---|
| 321 |
|
---|
| 322 | }
|
---|
| 323 | } /*}}}*/
|
---|
| 324 | else{ /*deal with arrays:{{{*/
|
---|
| 325 |
|
---|
| 326 | int size=xsize[counter0];
|
---|
| 327 | for (int j=0;j<nsteps;j++){
|
---|
| 328 | int counter=f*nsteps+j;
|
---|
| 329 |
|
---|
| 330 | /*we are broadcasting double arrays:*/
|
---|
| 331 | IssmDouble* maxx=maxxs[counter];
|
---|
| 332 | IssmDouble* minx=minxs[counter];
|
---|
| 333 |
|
---|
| 334 | IssmDouble* allmax=xNew<IssmDouble>(size);
|
---|
| 335 | IssmDouble* allmin=xNew<IssmDouble>(size);
|
---|
| 336 |
|
---|
| 337 | ISSM_MPI_Allreduce(maxx,allmax,size,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
| 338 | ISSM_MPI_Allreduce(minx,allmin,size,ISSM_MPI_PDOUBLE,ISSM_MPI_MIN,IssmComm::GetComm());
|
---|
| 339 |
|
---|
| 340 | /*Store broadcasted value for later computation of histograms:*/
|
---|
| 341 | maxxs[counter]=allmax;
|
---|
| 342 | minxs[counter]=allmin;
|
---|
| 343 | }
|
---|
| 344 | } /*}}}*/
|
---|
| 345 | }
|
---|
| 346 |
|
---|
| 347 | /*Now do the same for the time mean fields:*/
|
---|
| 348 | for (int f=0;f<nfields;f++){
|
---|
| 349 | if (meanxtype[f]==1){ /*deal with scalars {{{*/
|
---|
| 350 |
|
---|
| 351 | /*we are broadcasting doubles:*/
|
---|
| 352 | IssmDouble maxscalar=*maxmeans[f];
|
---|
| 353 | IssmDouble minscalar=*minmeans[f];
|
---|
| 354 | IssmDouble allmaxscalar;
|
---|
| 355 | IssmDouble allminscalar;
|
---|
| 356 |
|
---|
| 357 | ISSM_MPI_Allreduce(&maxscalar,&allmaxscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
| 358 | ISSM_MPI_Allreduce(&minscalar,&allminscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_MIN,IssmComm::GetComm());
|
---|
| 359 |
|
---|
| 360 | /*Store for later use in histogram computation:*/
|
---|
| 361 | *maxmeans[f]=allmaxscalar;
|
---|
| 362 | *minmeans[f]=allminscalar;
|
---|
| 363 |
|
---|
| 364 | } /*}}}*/
|
---|
| 365 | else{ /*deal with arrays:{{{*/
|
---|
| 366 |
|
---|
| 367 | int size=meanxsize[f];
|
---|
| 368 |
|
---|
| 369 | /*we are broadcasting double arrays:*/
|
---|
| 370 | IssmDouble* maxx=maxmeans[f];
|
---|
| 371 | IssmDouble* minx=minmeans[f];
|
---|
| 372 |
|
---|
| 373 | IssmDouble* allmax=xNew<IssmDouble>(size);
|
---|
| 374 | IssmDouble* allmin=xNew<IssmDouble>(size);
|
---|
| 375 |
|
---|
| 376 | ISSM_MPI_Allreduce(maxx,allmax,size,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
| 377 | ISSM_MPI_Allreduce(minx,allmin,size,ISSM_MPI_PDOUBLE,ISSM_MPI_MIN,IssmComm::GetComm());
|
---|
| 378 |
|
---|
| 379 |
|
---|
| 380 | /*Store for later use in histogram computation:*/
|
---|
| 381 | maxmeans[f]=allmax;
|
---|
| 382 | minmeans[f]=allmin;
|
---|
| 383 |
|
---|
| 384 | } /*}}}*/
|
---|
| 385 | }
|
---|
| 386 |
|
---|
| 387 | /*Now that we have the min and max, we can start binning. First allocate
|
---|
| 388 | * histograms, then start filling them:*/
|
---|
| 389 | IssmDouble** histogram=xNew<IssmDouble*>(nfields*nsteps);
|
---|
| 390 | IssmDouble** timehistogram=xNew<IssmDouble*>(nfields);
|
---|
| 391 |
|
---|
| 392 | _printf0_("Start reading files again, this time binning values in the histogram:\n");
|
---|
| 393 | /*Start opening files:*/
|
---|
| 394 | for (int i=(lower_row+1);i<=upper_row;i++){
|
---|
| 395 | _printf0_("reading file #: " << i << "\n");
|
---|
| 396 | char file[1000];
|
---|
| 397 | long int length;
|
---|
| 398 | char* buffer=NULL;
|
---|
| 399 |
|
---|
| 400 | /*string:*/
|
---|
| 401 | sprintf(file,"%s/%i/%s.outbin.%i",directory,my_rank+1,model,i);
|
---|
| 402 |
|
---|
| 403 | /*open file: */
|
---|
| 404 | _printf0_(" opening file:\n");
|
---|
| 405 | FILE* fid=fopen(file,"rb");
|
---|
| 406 | if(fid==NULL)_error_("cound not open file: " << file << "\n");
|
---|
| 407 |
|
---|
| 408 | /*figure out size of file, and read the whole thing:*/
|
---|
| 409 | _printf0_(" reading file:\n");
|
---|
| 410 | fseek (fid, 0, SEEK_END);
|
---|
| 411 | length = ftell (fid);
|
---|
| 412 | fseek (fid, 0, SEEK_SET);
|
---|
| 413 | buffer = xNew<char>(length);
|
---|
| 414 | fread (buffer, sizeof(char), length, fid);
|
---|
| 415 |
|
---|
| 416 | /*close file:*/
|
---|
| 417 | fclose (fid);
|
---|
| 418 |
|
---|
| 419 | /*create a memory stream with this buffer:*/
|
---|
| 420 | _printf0_(" processing file:\n");
|
---|
| 421 | fid=fmemopen(buffer, length, "rb");
|
---|
| 422 |
|
---|
| 423 | /*start reading data from the buffer directly:*/
|
---|
| 424 | for (int f=0;f<nfields;f++){
|
---|
| 425 | char* field=fields[f];
|
---|
| 426 | fseek(fid,0,SEEK_SET);
|
---|
| 427 | for (int j=0;j<nsteps;j++){
|
---|
| 428 | int counter=f*nsteps+j;
|
---|
| 429 | xtype[counter]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 430 | if(i==(lower_row+1)){
|
---|
| 431 | if(xtype[counter]==1){
|
---|
| 432 | IssmDouble* localhistogram=xNewZeroInit<IssmDouble>(nbins);
|
---|
| 433 | IssmDouble ma=*maxxs[counter];
|
---|
| 434 | IssmDouble mi=*minxs[counter];
|
---|
| 435 | int index=(scalar-mi)/(ma-mi)*nbins; if (index==nbins)index--;
|
---|
[25615] | 436 | if(ma==mi)index=0;
|
---|
| 437 | //_printf_( index << "|" << scalar << "|" << mi << "|" << ma << "|" << nbins << "\n");
|
---|
[25596] | 438 | localhistogram[index]++;
|
---|
| 439 | histogram[counter]=localhistogram;
|
---|
| 440 | }
|
---|
| 441 | else if (xtype[counter]==3){
|
---|
| 442 | IssmDouble* localhistogram=xNewZeroInit<IssmDouble>(doublematsize*nbins);
|
---|
| 443 | IssmDouble* ma=maxxs[counter];
|
---|
| 444 | IssmDouble* mi=minxs[counter];
|
---|
| 445 | for (int k=0;k<doublematsize;k++){
|
---|
| 446 | IssmDouble scalar=doublemat[k];
|
---|
| 447 | int index=(scalar-mi[k])/(ma[k]-mi[k])*nbins; if (index==nbins)index--;
|
---|
[25615] | 448 | if (mi[k]==ma[k])index=0;
|
---|
[25596] | 449 | _assert_(scalar<=ma[k]); _assert_(scalar>=mi[k]); _assert_(index<nbins);
|
---|
| 450 | localhistogram[k*nbins+index]++;
|
---|
| 451 | }
|
---|
| 452 | histogram[counter]=localhistogram;
|
---|
| 453 | xDelete<IssmDouble>(doublemat);
|
---|
| 454 | }
|
---|
| 455 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
| 456 | }
|
---|
| 457 | else{
|
---|
| 458 | if(xtype[counter]==1){
|
---|
| 459 | IssmDouble* localhistogram=histogram[counter];
|
---|
| 460 | IssmDouble ma=*maxxs[counter];
|
---|
| 461 | IssmDouble mi=*minxs[counter];
|
---|
| 462 | int index=(scalar-mi)/(ma-mi)*nbins; if (index==nbins)index=nbins-1;
|
---|
[25615] | 463 | if(ma==mi)index=0;
|
---|
[25596] | 464 | localhistogram[index]++;
|
---|
| 465 | }
|
---|
| 466 | else if (xtype[counter]==3){
|
---|
| 467 | IssmDouble* localhistogram=histogram[counter];
|
---|
| 468 | IssmDouble* ma=maxxs[counter];
|
---|
| 469 | IssmDouble* mi=minxs[counter];
|
---|
| 470 | for (int k=0;k<doublematsize;k++){
|
---|
| 471 | IssmDouble scalar=doublemat[k];
|
---|
| 472 | int index=(scalar-mi[k])/(ma[k]-mi[k])*nbins; if (index==nbins)index=nbins-1;
|
---|
[25615] | 473 | if (mi[k]==ma[k])index=0;
|
---|
| 474 |
|
---|
[25596] | 475 | localhistogram[k*nbins+index]++;
|
---|
| 476 | }
|
---|
| 477 | xDelete<IssmDouble>(doublemat);
|
---|
| 478 | }
|
---|
| 479 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
| 480 | }
|
---|
| 481 | }
|
---|
| 482 | }
|
---|
| 483 | _printf0_(" average in time:\n");
|
---|
| 484 |
|
---|
| 485 | /*Deal with average in time: */
|
---|
| 486 | for (int f=0;f<nfields;f++){
|
---|
| 487 | fseek(fid,0,SEEK_SET);
|
---|
| 488 | char* field=fields[f];
|
---|
| 489 | meanxtype[f]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[0]);
|
---|
| 490 |
|
---|
| 491 | if(meanxtype[f]==1){
|
---|
| 492 | IssmDouble timemean=0;
|
---|
| 493 | fseek(fid,0,SEEK_SET);
|
---|
| 494 | for (int j=0;j<nsteps;j++){
|
---|
| 495 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 496 | timemean+=scalar/nsteps;
|
---|
| 497 | }
|
---|
| 498 |
|
---|
| 499 | /*Figure out max and min of time means: */
|
---|
| 500 | if(i==(lower_row+1)){
|
---|
| 501 | IssmDouble* localhistogram=xNewZeroInit<IssmDouble>(nbins);
|
---|
| 502 | IssmDouble ma=*maxmeans[f];
|
---|
| 503 | IssmDouble mi=*minmeans[f];
|
---|
| 504 | int index=(timemean-mi)/(ma-mi)*nbins; if (index==nbins)index=nbins-1;
|
---|
[25615] | 505 | if(ma==mi)index=0;
|
---|
[25596] | 506 | localhistogram[index]++;
|
---|
| 507 | timehistogram[f]=localhistogram;
|
---|
| 508 | }
|
---|
| 509 | else{
|
---|
| 510 | IssmDouble* localhistogram=timehistogram[f];
|
---|
| 511 | IssmDouble ma=*maxmeans[f];
|
---|
| 512 | IssmDouble mi=*minmeans[f];
|
---|
| 513 | int index=(timemean-mi)/(ma-mi)*nbins; if (index==nbins)index=nbins-1;
|
---|
[25615] | 514 | if(ma==mi)index=0;
|
---|
[25596] | 515 | localhistogram[index]++;
|
---|
| 516 | }
|
---|
| 517 | }
|
---|
| 518 | else{
|
---|
| 519 | fseek(fid,0,SEEK_SET);
|
---|
| 520 | IssmDouble* timemean=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
| 521 | for (int j=0;j<nsteps;j++){
|
---|
| 522 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 523 | for (int k=0;k<doublematsize;k++){
|
---|
| 524 | timemean[k]+=doublemat[k]/nsteps;
|
---|
| 525 | }
|
---|
| 526 | xDelete<IssmDouble>(doublemat);
|
---|
| 527 | }
|
---|
| 528 |
|
---|
| 529 | if(i==(lower_row+1)){
|
---|
| 530 | IssmDouble* localhistogram=xNewZeroInit<IssmDouble>(doublematsize*nbins);
|
---|
| 531 | IssmDouble* ma=maxmeans[f];
|
---|
| 532 | IssmDouble* mi=minmeans[f];
|
---|
| 533 |
|
---|
| 534 | for (int k=0;k<doublematsize;k++){
|
---|
| 535 | IssmDouble scalar=timemean[k];
|
---|
| 536 | int index=(scalar-mi[k])/(ma[k]-mi[k])*nbins; if (index==nbins)index=nbins-1;
|
---|
[25615] | 537 | if (mi[k]==ma[k])index=0;
|
---|
[25596] | 538 | localhistogram[k*nbins+index]++;
|
---|
| 539 | }
|
---|
| 540 | timehistogram[f]=localhistogram;
|
---|
| 541 | }
|
---|
| 542 | else{
|
---|
| 543 |
|
---|
| 544 | IssmDouble* localhistogram=timehistogram[f];
|
---|
| 545 | IssmDouble* ma=maxmeans[f];
|
---|
| 546 | IssmDouble* mi=minmeans[f];
|
---|
| 547 |
|
---|
| 548 | for (int k=0;k<doublematsize;k++){
|
---|
| 549 | IssmDouble scalar=timemean[k];
|
---|
| 550 | int index=(scalar-mi[k])/(ma[k]-mi[k])*nbins; if (index==nbins)index=nbins-1;
|
---|
[25615] | 551 | if (mi[k]==ma[k])index=0;
|
---|
| 552 |
|
---|
[25596] | 553 | localhistogram[k*nbins+index]++;
|
---|
| 554 | }
|
---|
| 555 | }
|
---|
| 556 | }
|
---|
| 557 | }
|
---|
| 558 | fclose(fid);
|
---|
| 559 |
|
---|
| 560 | /*delete buffer:*/
|
---|
| 561 | xDelete<char>(buffer);
|
---|
| 562 | }
|
---|
| 563 | _printf0_("Start aggregating histogram:\n");
|
---|
| 564 |
|
---|
| 565 | /*We have agregated histograms across the cluster, now gather them across the cluster onto
|
---|
| 566 | *cpu0: */
|
---|
| 567 | for (int f=0;f<nfields;f++){
|
---|
| 568 | int counter0=f*nsteps+0;
|
---|
| 569 | if (xtype[counter0]==1){ /*deal with scalars {{{*/
|
---|
| 570 | for (int j=0;j<nsteps;j++){
|
---|
| 571 | int counter=f*nsteps+j;
|
---|
| 572 |
|
---|
| 573 | /*we are broadcasting doubles:*/
|
---|
| 574 | IssmDouble* histo=histogram[counter]; //size nbins
|
---|
| 575 | IssmDouble* allhisto=xNewZeroInit<IssmDouble>(nbins);
|
---|
| 576 |
|
---|
| 577 | ISSM_MPI_Allreduce(histo,allhisto,nbins,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,IssmComm::GetComm());
|
---|
| 578 |
|
---|
| 579 | /*add to results:*/
|
---|
| 580 | if(my_rank==0){
|
---|
| 581 | char fieldname[1000];
|
---|
| 582 |
|
---|
| 583 | sprintf(fieldname,"%s%s",fields[f],"Histogram");
|
---|
[25830] | 584 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allhisto,1,nbins,steps[j],0));
|
---|
[25596] | 585 |
|
---|
| 586 | sprintf(fieldname,"%s%s",fields[f],"Max");
|
---|
[25830] | 587 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,*maxxs[counter],steps[j],0));
|
---|
[25596] | 588 | sprintf(fieldname,"%s%s",fields[f],"Min");
|
---|
[25830] | 589 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,*minxs[counter],steps[j],0));
|
---|
[25596] | 590 | }
|
---|
| 591 | }
|
---|
| 592 | } /*}}}*/
|
---|
| 593 | else{ /*deal with arrays:{{{*/
|
---|
| 594 |
|
---|
| 595 | int size=xsize[counter0];
|
---|
| 596 | for (int j=0;j<nsteps;j++){
|
---|
| 597 | int counter=f*nsteps+j;
|
---|
| 598 |
|
---|
| 599 | /*we are broadcasting double arrays:*/
|
---|
| 600 | IssmDouble* histo=histogram[counter];
|
---|
| 601 | IssmDouble* allhisto=xNew<IssmDouble>(size*nbins);
|
---|
| 602 |
|
---|
| 603 | ISSM_MPI_Allreduce(histo,allhisto,size*nbins,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,IssmComm::GetComm());
|
---|
| 604 | xDelete<IssmDouble>(histo);
|
---|
| 605 |
|
---|
| 606 | /*add to results:*/
|
---|
| 607 | if(my_rank==0){
|
---|
| 608 | char fieldname[1000];
|
---|
| 609 |
|
---|
| 610 | sprintf(fieldname,"%s%s",fields[f],"Histogram");
|
---|
[25830] | 611 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allhisto,size,nbins,steps[j],0));
|
---|
[25596] | 612 |
|
---|
| 613 | sprintf(fieldname,"%s%s",fields[f],"Max");
|
---|
[25830] | 614 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,maxxs[counter],size,1,steps[j],0));
|
---|
[25596] | 615 | sprintf(fieldname,"%s%s",fields[f],"Min");
|
---|
[25830] | 616 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,minxs[counter],size,1,steps[j],0));
|
---|
[25596] | 617 | }
|
---|
| 618 | }
|
---|
| 619 | } /*}}}*/
|
---|
| 620 | }
|
---|
| 621 | _printf0_("Start aggregating time mean histogram:\n");
|
---|
| 622 |
|
---|
| 623 | /*Now do the same for the time mean fields:*/
|
---|
| 624 | for (int f=0;f<nfields;f++){
|
---|
| 625 | if (meanxtype[f]==1){ /*deal with scalars {{{*/
|
---|
| 626 |
|
---|
| 627 | /*we are broadcasting doubles:*/
|
---|
| 628 | IssmDouble* histo=timehistogram[f];
|
---|
| 629 | IssmDouble* allhisto=xNewZeroInit<IssmDouble>(nbins);
|
---|
| 630 |
|
---|
| 631 | ISSM_MPI_Allreduce(histo,allhisto,nbins,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
| 632 |
|
---|
| 633 | /*add to results at time step 1:*/
|
---|
| 634 | if(my_rank==0){
|
---|
| 635 | char fieldname[1000];
|
---|
| 636 |
|
---|
| 637 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanHistogram");
|
---|
[25830] | 638 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allhisto,1,nbins,steps[0],0));
|
---|
[25596] | 639 |
|
---|
| 640 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanMax");
|
---|
[25830] | 641 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,*maxmeans[f],steps[0],0));
|
---|
[25596] | 642 | sprintf(fieldname,"%s%s",fields[f],"TimeMeaMin");
|
---|
[25830] | 643 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,*minmeans[f],steps[0],0));
|
---|
[25596] | 644 | }
|
---|
| 645 | } /*}}}*/
|
---|
| 646 | else{ /*deal with arrays:{{{*/
|
---|
| 647 |
|
---|
| 648 | int size=meanxsize[f];
|
---|
| 649 |
|
---|
| 650 | /*we are broadcasting double arrays:*/
|
---|
| 651 | IssmDouble* histo=timehistogram[f];
|
---|
| 652 | IssmDouble* allhisto=xNewZeroInit<IssmDouble>(size*nbins);
|
---|
| 653 |
|
---|
| 654 | ISSM_MPI_Allreduce(histo,allhisto,size*nbins,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,IssmComm::GetComm());
|
---|
| 655 | xDelete<IssmDouble>(histo);
|
---|
| 656 | /*add to results at step 1:*/
|
---|
| 657 | if(my_rank==0){
|
---|
| 658 | char fieldname[1000];
|
---|
| 659 |
|
---|
| 660 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanHistogram");
|
---|
[25830] | 661 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allhisto,size,nbins,steps[0],0));
|
---|
[25596] | 662 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanMax");
|
---|
[25830] | 663 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,maxmeans[f],size,1,steps[0],0));
|
---|
[25596] | 664 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanMin");
|
---|
[25830] | 665 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,minmeans[f],size,1,steps[0],0));
|
---|
[25596] | 666 | }
|
---|
| 667 | } /*}}}*/
|
---|
| 668 | }
|
---|
| 669 | _printf0_("Done aggregating time mean histogram:\n");
|
---|
| 670 | IssmComm::SetComm(ISSM_MPI_COMM_WORLD);
|
---|
| 671 | }
|
---|
| 672 | /*}}}*/
|
---|
| 673 | int ComputeMeanVariance(Parameters* parameters,Results* results,int color, ISSM_MPI_Comm statcomm){ /*{{{*/
|
---|
| 674 |
|
---|
| 675 | int nsamples;
|
---|
| 676 | char* directory=NULL;
|
---|
| 677 | char* model=NULL;
|
---|
| 678 | char** fields=NULL;
|
---|
| 679 | int* steps=NULL;
|
---|
| 680 | int nsteps;
|
---|
| 681 | int nfields;
|
---|
| 682 | int range,lower_row,upper_row;
|
---|
[25599] | 683 | int nfilesperdirectory;
|
---|
[25596] | 684 |
|
---|
| 685 | /*intermediary:*/
|
---|
| 686 | IssmDouble* doublemat=NULL;
|
---|
| 687 | int doublematsize;
|
---|
| 688 | IssmDouble scalar;
|
---|
| 689 |
|
---|
| 690 | /*computation of average and variance itself:*/
|
---|
| 691 | IssmDouble* x = NULL;
|
---|
| 692 | IssmDouble* x2 = NULL;
|
---|
| 693 | IssmDouble** xs = NULL;
|
---|
| 694 | IssmDouble** xs2 = NULL;
|
---|
| 695 | int* xtype=NULL;
|
---|
| 696 | int* xsize=NULL;
|
---|
| 697 |
|
---|
| 698 | IssmDouble** meanx=NULL;
|
---|
| 699 | IssmDouble** meanx2=NULL;
|
---|
| 700 | int* meantype=NULL;
|
---|
| 701 | int* meansize=NULL;
|
---|
| 702 |
|
---|
[25599] | 703 | /*only work on the statistical communicator: */
|
---|
| 704 | if (color==MPI_UNDEFINED)return 0;
|
---|
| 705 |
|
---|
[25596] | 706 | /*Retrieve parameters:*/
|
---|
[25599] | 707 | parameters->FindParam(&nfilesperdirectory,QmuNfilesPerDirectoryEnum);
|
---|
[25596] | 708 | parameters->FindParam(&nsamples,QmuNsampleEnum);
|
---|
| 709 | parameters->FindParam(&directory,DirectoryNameEnum);
|
---|
| 710 | parameters->FindParam(&model,InputFileNameEnum);
|
---|
| 711 | parameters->FindParam(&fields,&nfields,FieldsEnum);
|
---|
| 712 | parameters->FindParam(&steps,&nsteps,StepsEnum);
|
---|
| 713 |
|
---|
[25599] | 714 | /*Get rank from the stat comm communicator:*/
|
---|
| 715 | IssmComm::SetComm(statcomm);
|
---|
[25596] | 716 | int my_rank=IssmComm::GetRank();
|
---|
| 717 |
|
---|
| 718 | /*Open files and read them complelety, in a distributed way:*/
|
---|
| 719 | range=DetermineLocalSize(nsamples,IssmComm::GetComm());
|
---|
| 720 | GetOwnershipBoundariesFromRange(&lower_row,&upper_row,range,IssmComm::GetComm());
|
---|
| 721 |
|
---|
| 722 | /*Initialize arrays:*/
|
---|
| 723 | xs=xNew<IssmDouble*>(nfields*nsteps);
|
---|
| 724 | xs2=xNew<IssmDouble*>(nfields*nsteps);
|
---|
| 725 | xtype=xNew<int>(nfields*nsteps);
|
---|
| 726 | xsize=xNew<int>(nfields*nsteps);
|
---|
| 727 |
|
---|
| 728 | meantype=xNew<int>(nfields);
|
---|
| 729 | meansize=xNew<int>(nfields);
|
---|
| 730 | meanx=xNew<IssmDouble*>(nfields);
|
---|
| 731 | meanx2=xNew<IssmDouble*>(nfields);
|
---|
| 732 |
|
---|
| 733 | /*Start opening files:*/
|
---|
| 734 | for (int i=(lower_row+1);i<=upper_row;i++){
|
---|
| 735 | _printf0_("reading file #: " << i << "\n");
|
---|
| 736 | char file[1000];
|
---|
| 737 | long int length;
|
---|
| 738 | char* buffer=NULL;
|
---|
| 739 |
|
---|
| 740 | /*string:*/
|
---|
| 741 | sprintf(file,"%s/%i/%s.outbin.%i",directory,my_rank+1,model,i);
|
---|
| 742 |
|
---|
| 743 | /*open file: */
|
---|
| 744 | _printf0_(" opening file: " << file << "\n");
|
---|
| 745 | FILE* fid=fopen(file,"rb");
|
---|
| 746 | if(fid==NULL) _error_(" could not open file: " << file << "\n");
|
---|
| 747 |
|
---|
| 748 | /*figure out size of file, and read the whole thing:*/
|
---|
| 749 | _printf0_(" reading file:\n");
|
---|
| 750 | fseek (fid, 0, SEEK_END);
|
---|
| 751 | length = ftell (fid);
|
---|
| 752 | fseek (fid, 0, SEEK_SET);
|
---|
| 753 | buffer = xNew<char>(length);
|
---|
| 754 | fread (buffer, sizeof(char), length, fid);
|
---|
| 755 |
|
---|
| 756 | /*close file:*/
|
---|
| 757 | fclose (fid);
|
---|
| 758 |
|
---|
| 759 | /*create a memory stream with this buffer:*/
|
---|
| 760 | _printf0_(" processing file:\n");
|
---|
| 761 | fid=fmemopen(buffer, length, "rb");
|
---|
| 762 |
|
---|
| 763 | /*start reading data from the buffer directly:*/
|
---|
| 764 | for (int f=0;f<nfields;f++){
|
---|
| 765 | char* field=fields[f];
|
---|
| 766 | fseek(fid,0,SEEK_SET);
|
---|
| 767 | for (int j=0;j<nsteps;j++){
|
---|
| 768 | int counter=f*nsteps+j;
|
---|
| 769 | xtype[counter]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 770 | if(i==(lower_row+1)){
|
---|
| 771 | if(xtype[counter]==1){
|
---|
| 772 | xs[counter]=xNew<IssmDouble>(1);
|
---|
| 773 | xs2[counter]=xNew<IssmDouble>(1);
|
---|
| 774 | *xs[counter]=scalar;
|
---|
| 775 | *xs2[counter]=pow(scalar,2.0);
|
---|
| 776 | xsize[counter]=1;
|
---|
| 777 | }
|
---|
| 778 | else if (xtype[counter]==3){
|
---|
| 779 | IssmDouble* doublemat2=xNew<IssmDouble>(doublematsize);
|
---|
| 780 | for(int k=0;k<doublematsize;k++)doublemat2[k]=pow(doublemat[k],2.0);
|
---|
| 781 | xs[counter]=doublemat;
|
---|
| 782 | xs2[counter]=doublemat2;
|
---|
| 783 | xsize[counter]=doublematsize;
|
---|
| 784 | }
|
---|
| 785 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
| 786 | }
|
---|
| 787 | else{
|
---|
| 788 | if(xtype[counter]==1){
|
---|
| 789 | *xs[counter]+=scalar;
|
---|
| 790 | *xs2[counter]+=pow(scalar,2.0);
|
---|
| 791 | }
|
---|
| 792 | else if (xtype[counter]==3){
|
---|
| 793 | IssmDouble* newdoublemat=xs[counter];
|
---|
| 794 | IssmDouble* newdoublemat2=xs2[counter];
|
---|
| 795 | for(int k=0;k<doublematsize;k++){
|
---|
| 796 | newdoublemat[k]+=doublemat[k];
|
---|
| 797 | newdoublemat2[k]+=pow(doublemat[k],2.0);
|
---|
| 798 | }
|
---|
| 799 | xs[counter]=newdoublemat;
|
---|
| 800 | xs2[counter]=newdoublemat2;
|
---|
| 801 | }
|
---|
| 802 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
| 803 | }
|
---|
| 804 | }
|
---|
| 805 | }
|
---|
| 806 |
|
---|
| 807 | /*Deal with time mean: */
|
---|
| 808 | for (int f=0;f<nfields;f++){
|
---|
| 809 | char* field=fields[f];
|
---|
| 810 | fseek(fid,0,SEEK_SET);
|
---|
| 811 | meantype[f]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[0]);
|
---|
| 812 | if(i==(lower_row+1)){
|
---|
| 813 | if(meantype[f]==1){
|
---|
| 814 | meanx[f]=xNewZeroInit<IssmDouble>(1);
|
---|
| 815 | meanx2[f]=xNewZeroInit<IssmDouble>(1);
|
---|
| 816 | meansize[f]=1;
|
---|
| 817 | }
|
---|
| 818 | else{
|
---|
| 819 | meanx[f]=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
| 820 | meanx2[f]=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
| 821 | meansize[f]=doublematsize;
|
---|
| 822 | }
|
---|
| 823 | }
|
---|
| 824 | fseek(fid,0,SEEK_SET);
|
---|
| 825 | if(meantype[f]==1){
|
---|
| 826 | IssmDouble sc=0;
|
---|
| 827 | IssmDouble sc2=0;
|
---|
| 828 | for(int j=0;j<nsteps;j++){
|
---|
| 829 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 830 | sc+=scalar/nsteps;
|
---|
| 831 | }
|
---|
| 832 | sc2+=pow(sc,2.0);
|
---|
| 833 | *meanx[f]+=sc;
|
---|
| 834 | *meanx2[f]+=sc2;
|
---|
| 835 | }
|
---|
| 836 | else{
|
---|
| 837 | IssmDouble* sc=meanx[f];
|
---|
| 838 | IssmDouble* sc2=meanx2[f];
|
---|
| 839 | IssmDouble* timemean=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
| 840 | IssmDouble* timemean2=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
| 841 |
|
---|
| 842 | for(int j=0;j<nsteps;j++){
|
---|
| 843 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 844 | for (int k=0;k<doublematsize;k++){
|
---|
| 845 | timemean[k]+=doublemat[k]/nsteps;
|
---|
| 846 | }
|
---|
| 847 | }
|
---|
| 848 | for (int k=0;k<doublematsize;k++){
|
---|
| 849 | timemean2[k]=pow(timemean[k],2.0);
|
---|
| 850 | }
|
---|
| 851 | for (int k=0;k<doublematsize;k++){
|
---|
| 852 | sc[k]+=timemean[k];
|
---|
| 853 | sc2[k]+=timemean2[k];
|
---|
| 854 | }
|
---|
| 855 |
|
---|
| 856 | }
|
---|
| 857 |
|
---|
| 858 | }
|
---|
| 859 | fclose(fid);
|
---|
| 860 |
|
---|
| 861 | /*delete buffer:*/
|
---|
| 862 | xDelete<char>(buffer);
|
---|
| 863 | }
|
---|
| 864 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
| 865 | _printf0_("Done reading files, now computing mean and variance.\n");
|
---|
| 866 |
|
---|
| 867 | /*We have agregated x and x^2 across the cluster, now gather across the cluster onto
|
---|
| 868 | *cpu0 and then compute statistics:*/
|
---|
| 869 | for (int f=0;f<nfields;f++){
|
---|
| 870 | int counter0=f*nsteps+0;
|
---|
| 871 | if (xtype[counter0]==1){ /*deal with scalars {{{*/
|
---|
| 872 | IssmDouble mean,stddev;
|
---|
| 873 | for (int j=0;j<nsteps;j++){
|
---|
| 874 | int counter=f*nsteps+j;
|
---|
| 875 |
|
---|
| 876 | /*we are broadcasting doubles:*/
|
---|
| 877 | IssmDouble scalar=*xs[counter];
|
---|
| 878 | IssmDouble scalar2=*xs2[counter];
|
---|
| 879 | IssmDouble sumscalar;
|
---|
| 880 | IssmDouble sumscalar2;
|
---|
| 881 |
|
---|
| 882 | ISSM_MPI_Reduce(&scalar,&sumscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
| 883 | ISSM_MPI_Reduce(&scalar2,&sumscalar2,1,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
| 884 | /*Build average and standard deviation. For standard deviation, use the
|
---|
| 885 | *following formula: sigma^2=E(x^2)-mu^2:*/
|
---|
| 886 | mean=sumscalar/nsamples;
|
---|
| 887 | stddev=sqrt(sumscalar2/nsamples-pow(mean,2.0));
|
---|
| 888 |
|
---|
| 889 | /*add to results:*/
|
---|
| 890 | if(my_rank==0){
|
---|
| 891 | char fieldname[1000];
|
---|
| 892 |
|
---|
| 893 | sprintf(fieldname,"%s%s",fields[f],"Mean");
|
---|
[25830] | 894 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,mean,steps[j],0));
|
---|
[25596] | 895 | sprintf(fieldname,"%s%s",fields[f],"Stddev");
|
---|
[25830] | 896 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,stddev,steps[j],0));
|
---|
[25596] | 897 | }
|
---|
| 898 |
|
---|
| 899 | }
|
---|
| 900 | } /*}}}*/
|
---|
| 901 | else{ /*deal with arrays:{{{*/
|
---|
| 902 |
|
---|
| 903 | int size=xsize[counter0];
|
---|
| 904 |
|
---|
| 905 | IssmDouble* mean=xNew<IssmDouble>(size);
|
---|
| 906 | IssmDouble* stddev=xNew<IssmDouble>(size);
|
---|
| 907 |
|
---|
| 908 | for (int j=0;j<nsteps;j++){
|
---|
| 909 | int counter=f*nsteps+j;
|
---|
| 910 |
|
---|
| 911 | /*we are broadcasting double arrays:*/
|
---|
| 912 | x=xs[counter];
|
---|
| 913 | x2=xs2[counter];
|
---|
| 914 |
|
---|
| 915 | IssmDouble* sumx=xNew<IssmDouble>(size);
|
---|
| 916 | IssmDouble* sumx2=xNew<IssmDouble>(size);
|
---|
| 917 |
|
---|
| 918 | ISSM_MPI_Reduce(x,sumx,size,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
| 919 | ISSM_MPI_Reduce(x2,sumx2,size,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
| 920 |
|
---|
| 921 | /*Build average and standard deviation. For standard deviation, use the
|
---|
| 922 | *following formula: sigma^2=E(x^2)-mu^2:*/
|
---|
| 923 | for (int k=0;k<size;k++){
|
---|
| 924 | mean[k]=sumx[k]/nsamples;
|
---|
| 925 | stddev[k]=sqrt(sumx2[k]/nsamples-pow(mean[k],2.0));
|
---|
| 926 | }
|
---|
| 927 |
|
---|
| 928 | /*add to results:*/
|
---|
| 929 | if(my_rank==0){
|
---|
| 930 | char fieldname[1000];
|
---|
| 931 |
|
---|
| 932 | sprintf(fieldname,"%s%s",fields[f],"Mean");
|
---|
[25830] | 933 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,mean,size,1,steps[j],0));
|
---|
[25596] | 934 | sprintf(fieldname,"%s%s",fields[f],"Stddev");
|
---|
[25830] | 935 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,stddev,size,1,steps[j],0));
|
---|
[25596] | 936 | }
|
---|
| 937 | }
|
---|
| 938 | } /*}}}*/
|
---|
| 939 | }
|
---|
| 940 | /*Do the same but for the time mean:*/
|
---|
| 941 | for (int f=0;f<nfields;f++){
|
---|
| 942 | if (meantype[f]==1){ /*deal with scalars {{{*/
|
---|
| 943 | IssmDouble mean,stddev;
|
---|
| 944 |
|
---|
| 945 | /*we are broadcasting doubles:*/
|
---|
| 946 | IssmDouble scalar=*meanx[f];
|
---|
| 947 | IssmDouble scalar2=*meanx2[f];
|
---|
| 948 | IssmDouble sumscalar;
|
---|
| 949 | IssmDouble sumscalar2;
|
---|
| 950 |
|
---|
| 951 | ISSM_MPI_Reduce(&scalar,&sumscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
| 952 | ISSM_MPI_Reduce(&scalar2,&sumscalar2,1,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
| 953 | /*Build average and standard deviation. For standard deviation, use the
|
---|
| 954 | *following formula: sigma^2=E(x^2)-mu^2:*/
|
---|
| 955 | mean=sumscalar/nsamples;
|
---|
| 956 | stddev=sqrt(sumscalar2/nsamples-pow(mean,2.0));
|
---|
| 957 |
|
---|
| 958 | /*add to results:*/
|
---|
| 959 | if(my_rank==0){
|
---|
| 960 | char fieldname[1000];
|
---|
| 961 |
|
---|
| 962 | sprintf(fieldname,"%s%s",fields[f],"TimeMean");
|
---|
[25830] | 963 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,mean,steps[0],0));
|
---|
[25596] | 964 | sprintf(fieldname,"%s%s",fields[f],"TimeStddev");
|
---|
[25830] | 965 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,stddev,steps[0],0));
|
---|
[25596] | 966 | }
|
---|
| 967 | } /*}}}*/
|
---|
| 968 | else{ /*deal with arrays:{{{*/
|
---|
| 969 |
|
---|
| 970 | int size=meansize[f];
|
---|
| 971 | IssmDouble* mean=xNew<IssmDouble>(size);
|
---|
| 972 | IssmDouble* stddev=xNew<IssmDouble>(size);
|
---|
| 973 |
|
---|
| 974 | /*we are broadcasting double arrays:*/
|
---|
| 975 | x=meanx[f];
|
---|
| 976 | x2=meanx2[f];
|
---|
| 977 |
|
---|
| 978 | IssmDouble* sumx=xNew<IssmDouble>(size);
|
---|
| 979 | IssmDouble* sumx2=xNew<IssmDouble>(size);
|
---|
| 980 |
|
---|
| 981 | ISSM_MPI_Reduce(x,sumx,size,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
| 982 | ISSM_MPI_Reduce(x2,sumx2,size,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
| 983 |
|
---|
| 984 | /*Build average and standard deviation. For standard deviation, use the
|
---|
| 985 | *following formula: sigma^2=E(x^2)-mu^2:*/
|
---|
| 986 | for (int k=0;k<size;k++){
|
---|
| 987 | mean[k]=sumx[k]/nsamples;
|
---|
| 988 | stddev[k]=sqrt(sumx2[k]/nsamples-pow(mean[k],2.0));
|
---|
| 989 | }
|
---|
| 990 |
|
---|
| 991 | /*add to results:*/
|
---|
| 992 | if(my_rank==0){
|
---|
| 993 | char fieldname[1000];
|
---|
| 994 |
|
---|
| 995 | sprintf(fieldname,"%s%s",fields[f],"TimeMean");
|
---|
[25830] | 996 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,mean,size,1,steps[0],0));
|
---|
[25596] | 997 | sprintf(fieldname,"%s%s",fields[f],"TimeStddev");
|
---|
[25830] | 998 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,stddev,size,1,steps[0],0));
|
---|
[25596] | 999 | }
|
---|
| 1000 | } /*}}}*/
|
---|
| 1001 | }
|
---|
| 1002 |
|
---|
[25599] | 1003 | _printf0_("Done with MeanVariance :\n");
|
---|
| 1004 | IssmComm::SetComm(ISSM_MPI_COMM_WORLD);
|
---|
[25596] | 1005 |
|
---|
| 1006 | } /*}}}*/
|
---|
| 1007 | int ComputeSampleSeries(Parameters* parameters,Results* results,int color, ISSM_MPI_Comm statcomm){ /*{{{*/
|
---|
| 1008 |
|
---|
| 1009 | int nsamples;
|
---|
| 1010 | char* directory=NULL;
|
---|
| 1011 | char* model=NULL;
|
---|
| 1012 | char** fields=NULL;
|
---|
| 1013 | int* steps=NULL;
|
---|
| 1014 | int nsteps;
|
---|
| 1015 | int nfields;
|
---|
| 1016 | int range,lower_row,upper_row;
|
---|
[25605] | 1017 | int nfilesperdirectory;
|
---|
[25596] | 1018 | int* indices=NULL;
|
---|
| 1019 | int nindices;
|
---|
| 1020 |
|
---|
| 1021 | /*intermediary:*/
|
---|
| 1022 | IssmDouble* doublemat=NULL;
|
---|
| 1023 | int doublematsize;
|
---|
| 1024 | IssmDouble scalar;
|
---|
| 1025 |
|
---|
| 1026 | /*computation of average and variance itself:*/
|
---|
| 1027 | IssmDouble* x = NULL;
|
---|
| 1028 | IssmDouble* allx=NULL;
|
---|
| 1029 | IssmDouble** xs = NULL;
|
---|
| 1030 | int* xtype=NULL;
|
---|
| 1031 | int* xsize=NULL;
|
---|
| 1032 |
|
---|
[25605] | 1033 | /*only work on the statistical communicator: */
|
---|
| 1034 | if (color==MPI_UNDEFINED)return 0;
|
---|
| 1035 |
|
---|
[25596] | 1036 | /*Retrieve parameters:*/
|
---|
| 1037 | parameters->FindParam(&nsamples,QmuNsampleEnum);
|
---|
| 1038 | parameters->FindParam(&directory,DirectoryNameEnum);
|
---|
| 1039 | parameters->FindParam(&model,InputFileNameEnum);
|
---|
| 1040 | parameters->FindParam(&fields,&nfields,FieldsEnum);
|
---|
| 1041 | parameters->FindParam(&steps,&nsteps,StepsEnum);
|
---|
| 1042 | parameters->FindParam(&indices,&nindices,IndicesEnum);
|
---|
| 1043 |
|
---|
[25605] | 1044 | /*Get rank from the stat comm communicator:*/
|
---|
| 1045 | IssmComm::SetComm(statcomm);
|
---|
[25596] | 1046 | int my_rank=IssmComm::GetRank();
|
---|
| 1047 |
|
---|
| 1048 | /*Open files and read them complelety, in a distributed way:*/
|
---|
| 1049 | range=DetermineLocalSize(nsamples,IssmComm::GetComm());
|
---|
| 1050 | GetOwnershipBoundariesFromRange(&lower_row,&upper_row,range,IssmComm::GetComm());
|
---|
| 1051 |
|
---|
| 1052 | /*Initialize arrays:*/
|
---|
| 1053 | xs=xNew<IssmDouble*>(nfields*nsteps);
|
---|
| 1054 | xtype=xNew<int>(nfields*nsteps);
|
---|
| 1055 | xsize=xNew<int>(nfields*nsteps);
|
---|
| 1056 |
|
---|
| 1057 | /*Start opening files:*/
|
---|
| 1058 | for (int i=(lower_row+1);i<=upper_row;i++){
|
---|
| 1059 | _printf0_("reading file #: " << i << "\n");
|
---|
| 1060 | char file[1000];
|
---|
| 1061 | long int length;
|
---|
| 1062 | char* buffer=NULL;
|
---|
| 1063 |
|
---|
| 1064 | /*string:*/
|
---|
| 1065 | sprintf(file,"%s/%i/%s.outbin.%i",directory,my_rank+1,model,i);
|
---|
| 1066 |
|
---|
| 1067 | /*open file: */
|
---|
| 1068 | _printf0_(" opening file:\n");
|
---|
| 1069 | FILE* fid=fopen(file,"rb");
|
---|
| 1070 |
|
---|
| 1071 | /*figure out size of file, and read the whole thing:*/
|
---|
| 1072 | _printf0_(" reading file:\n");
|
---|
| 1073 | fseek (fid, 0, SEEK_END);
|
---|
| 1074 | length = ftell (fid);
|
---|
| 1075 | fseek (fid, 0, SEEK_SET);
|
---|
| 1076 | buffer = xNew<char>(length);
|
---|
| 1077 | fread (buffer, sizeof(char), length, fid);
|
---|
| 1078 |
|
---|
| 1079 | /*close file:*/
|
---|
| 1080 | fclose (fid);
|
---|
| 1081 |
|
---|
| 1082 | /*create a memory stream with this buffer:*/
|
---|
| 1083 | _printf0_(" processing file:\n");
|
---|
| 1084 | fid=fmemopen(buffer, length, "rb");
|
---|
| 1085 |
|
---|
| 1086 | /*start reading data from the buffer directly:*/
|
---|
| 1087 | for (int f=0;f<nfields;f++){
|
---|
| 1088 | fseek(fid,0,SEEK_SET);
|
---|
| 1089 | char* field=fields[f];
|
---|
| 1090 | for (int j=0;j<nsteps;j++){
|
---|
| 1091 | int counter=f*nsteps+j;
|
---|
| 1092 | xtype[counter]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
| 1093 | if(i==(lower_row+1)){
|
---|
| 1094 | if(xtype[counter]==1){
|
---|
| 1095 | x=xNew<IssmDouble>(range);
|
---|
| 1096 | x[0]=scalar;
|
---|
| 1097 | xs[counter]=x;
|
---|
| 1098 | xsize[counter]=range;
|
---|
| 1099 | }
|
---|
| 1100 | else if (xtype[counter]==3){
|
---|
| 1101 | x=xNew<IssmDouble>(nindices*range);
|
---|
| 1102 | for(int k=0;k<nindices;k++)x[(i-(lower_row+1))*nindices+k]=doublemat[indices[k]-1];
|
---|
| 1103 | xs[counter]=x;
|
---|
| 1104 | xsize[counter]=range*nindices;
|
---|
| 1105 | }
|
---|
| 1106 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
| 1107 | }
|
---|
| 1108 | else{
|
---|
| 1109 | if(xtype[counter]==1){
|
---|
| 1110 | x=xs[counter];
|
---|
| 1111 | x[i-(lower_row+1)]=scalar;
|
---|
| 1112 | xs[counter]=x;
|
---|
| 1113 | }
|
---|
| 1114 | else if (xtype[counter]==3){
|
---|
| 1115 | x=xs[counter];
|
---|
| 1116 | for(int k=0;k<nindices;k++)x[(i-(lower_row+1))*nindices+k]=doublemat[indices[k]-1];
|
---|
| 1117 | xs[counter]=x;
|
---|
| 1118 | }
|
---|
| 1119 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
| 1120 | }
|
---|
| 1121 | }
|
---|
| 1122 | }
|
---|
| 1123 | fclose(fid);
|
---|
| 1124 |
|
---|
| 1125 | /*delete buffer:*/
|
---|
| 1126 | xDelete<char>(buffer);
|
---|
| 1127 | }
|
---|
| 1128 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
| 1129 | _printf0_("Done reading files, now assembling time series.\n");
|
---|
| 1130 |
|
---|
| 1131 | for (int f=0;f<nfields;f++){
|
---|
| 1132 | for (int j=0;j<nsteps;j++){
|
---|
| 1133 | int counter=f*nsteps+j;
|
---|
| 1134 | if (xtype[counter]==1){
|
---|
| 1135 | /*we are broadcasting range times doubles:*/
|
---|
| 1136 | x=xs[counter];
|
---|
| 1137 | allx=xNew<IssmDouble>(nsamples);
|
---|
| 1138 | MPI_Gather(x, range, ISSM_MPI_PDOUBLE,allx, range, ISSM_MPI_PDOUBLE, 0, IssmComm::GetComm());
|
---|
| 1139 | /*add to results:*/
|
---|
| 1140 | if(my_rank==0){
|
---|
| 1141 | char fieldname[1000];
|
---|
| 1142 |
|
---|
| 1143 | sprintf(fieldname,"%s%s",fields[f],"Samples");
|
---|
[25830] | 1144 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allx,nsamples,1,steps[j],0));
|
---|
[25596] | 1145 | }
|
---|
| 1146 | }
|
---|
| 1147 | else{
|
---|
| 1148 | /*we are broadcasting double arrays:*/
|
---|
| 1149 | x=xs[counter];
|
---|
| 1150 | allx=xNew<IssmDouble>(nsamples*nindices);
|
---|
| 1151 |
|
---|
| 1152 | MPI_Gather(x, range*nindices, ISSM_MPI_PDOUBLE,allx, range*nindices, ISSM_MPI_PDOUBLE, 0, IssmComm::GetComm());
|
---|
| 1153 |
|
---|
| 1154 | /*add to results:*/
|
---|
| 1155 | if(my_rank==0){
|
---|
| 1156 | char fieldname[1000];
|
---|
| 1157 | sprintf(fieldname,"%s%s",fields[f],"Samples");
|
---|
[25830] | 1158 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allx,nsamples,nindices,steps[j],0));
|
---|
[25596] | 1159 | }
|
---|
| 1160 | }
|
---|
| 1161 | }
|
---|
| 1162 | }
|
---|
[25605] | 1163 | _printf0_("Done with SampleSeries :\n");
|
---|
| 1164 | IssmComm::SetComm(ISSM_MPI_COMM_WORLD);
|
---|
[25596] | 1165 |
|
---|
| 1166 | } /*}}}*/
|
---|
[25599] | 1167 | int OutputStatistics(Parameters* parameters,Results* results,int color,ISSM_MPI_Comm statcomm){ /*{{{*/
|
---|
| 1168 |
|
---|
[25596] | 1169 | char outputfilename[1000];
|
---|
| 1170 | char* directory=NULL;
|
---|
| 1171 | char* model=NULL;
|
---|
| 1172 | char* method=NULL;
|
---|
| 1173 | int nsamples;
|
---|
| 1174 | int* steps=NULL;
|
---|
| 1175 | int nsteps;
|
---|
| 1176 |
|
---|
[25599] | 1177 | /*only work on the statistical communicator: */
|
---|
| 1178 | if (color==MPI_UNDEFINED)return 0;
|
---|
| 1179 |
|
---|
[25596] | 1180 | FemModel* femmodel=new FemModel();
|
---|
| 1181 |
|
---|
| 1182 | /*Some parameters that will allow us to use the OutputResultsx module:*/
|
---|
| 1183 | parameters->AddObject(new BoolParam(QmuIsdakotaEnum,false));
|
---|
| 1184 | parameters->AddObject(new BoolParam(SettingsIoGatherEnum,true));
|
---|
| 1185 |
|
---|
| 1186 | parameters->FindParam(&directory,DirectoryNameEnum);
|
---|
| 1187 | parameters->FindParam(&model,InputFileNameEnum);
|
---|
| 1188 | parameters->FindParam(&nsamples,QmuNsampleEnum);
|
---|
| 1189 | parameters->FindParam(&steps,&nsteps,StepsEnum);
|
---|
| 1190 |
|
---|
| 1191 | sprintf(outputfilename,"%s/%s.stats",directory,model);
|
---|
[25831] | 1192 | parameters->AddObject(new StringParam(OutputFileNameEnum,outputfilename));
|
---|
[25596] | 1193 |
|
---|
| 1194 | /*Call OutputResults module:*/
|
---|
| 1195 | femmodel->parameters=parameters;
|
---|
| 1196 | femmodel->results=results;
|
---|
| 1197 |
|
---|
| 1198 | OutputResultsx(femmodel);
|
---|
| 1199 | } /*}}}*/
|
---|
[25615] | 1200 | bool DakotaDirStructure(int argc,char** argv){ /*{{{*/
|
---|
| 1201 |
|
---|
| 1202 | char* input_file;
|
---|
| 1203 | FILE* fid;
|
---|
| 1204 | IoModel* iomodel=NULL;
|
---|
| 1205 | int check;
|
---|
| 1206 |
|
---|
| 1207 | //qmu statistics
|
---|
| 1208 | bool statistics = false;
|
---|
| 1209 | int numdirectories = 0;
|
---|
| 1210 |
|
---|
| 1211 | /*First things first, set the communicator as a global variable: */
|
---|
| 1212 | IssmComm::SetComm(MPI_COMM_WORLD);
|
---|
| 1213 |
|
---|
| 1214 | /*Barrier:*/
|
---|
| 1215 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
| 1216 | _printf0_("Preparing directory structure for model outputs:" << "\n");
|
---|
| 1217 |
|
---|
| 1218 | //open model input file for reading
|
---|
| 1219 | input_file=xNew<char>((strlen(argv[2])+strlen(argv[3])+strlen(".bin")+2));
|
---|
| 1220 | sprintf(input_file,"%s/%s%s",argv[2],argv[3],".bin");
|
---|
| 1221 | fid=fopen(input_file,"rb");
|
---|
| 1222 | if (fid==NULL) Cerr << "dirstructure error message: could not open model " << input_file << " to retrieve qmu statistics parameters" << std::endl;
|
---|
| 1223 |
|
---|
| 1224 | //initialize IoModel, but light version, we just need it to fetch one constant:
|
---|
| 1225 | iomodel=new IoModel();
|
---|
| 1226 | iomodel->fid=fid;
|
---|
| 1227 | iomodel->FetchConstants();
|
---|
| 1228 |
|
---|
| 1229 | //early return if statistics not requested:
|
---|
| 1230 | iomodel->FindConstant(&statistics,"md.qmu.statistics");
|
---|
| 1231 | if(!statistics){
|
---|
| 1232 | delete iomodel;
|
---|
| 1233 | fclose(fid);
|
---|
| 1234 | return false; //important return value!
|
---|
| 1235 | }
|
---|
| 1236 |
|
---|
| 1237 | iomodel->FindConstant(&numdirectories,"md.qmu.statistics.ndirectories");
|
---|
| 1238 |
|
---|
| 1239 | /*Ok, we have everything we need to create the directory structure:*/
|
---|
| 1240 | if(IssmComm::GetRank()==0){
|
---|
| 1241 | for (int i=0;i<numdirectories;i++){
|
---|
| 1242 | char directory[1000];
|
---|
| 1243 | sprintf(directory,"./%i",i+1);
|
---|
| 1244 |
|
---|
| 1245 | check = mkdir(directory,ACCESSPERMS);
|
---|
| 1246 | if (check) _error_("dirstructure error message: could not create directory " << directory << "\n");
|
---|
| 1247 | }
|
---|
| 1248 | }
|
---|
| 1249 |
|
---|
| 1250 | //close model file:
|
---|
| 1251 | fclose(fid);
|
---|
| 1252 |
|
---|
| 1253 | //return value:
|
---|
| 1254 | return true; //statistics computation on!
|
---|
| 1255 | } /*}}}*/
|
---|
| 1256 | int DakotaStatistics(int argc,char** argv){ /*{{{*/
|
---|
| 1257 |
|
---|
| 1258 | char* input_file;
|
---|
| 1259 | FILE* fid;
|
---|
| 1260 | IoModel* iomodel=NULL;
|
---|
| 1261 | ISSM_MPI_Comm statcomm;
|
---|
| 1262 | int my_rank;
|
---|
| 1263 |
|
---|
| 1264 | //qmu statistics
|
---|
| 1265 | bool statistics = false;
|
---|
| 1266 | int numstatistics = 0;
|
---|
| 1267 | int numdirectories = 0;
|
---|
| 1268 | int nfilesperdirectory = 0;
|
---|
| 1269 | char string[1000];
|
---|
| 1270 | char* name = NULL;
|
---|
| 1271 | char** fields = NULL;
|
---|
| 1272 | int nfields;
|
---|
| 1273 | int* steps=NULL;
|
---|
| 1274 | int nsteps;
|
---|
| 1275 | int nbins;
|
---|
| 1276 | int* indices=NULL;
|
---|
| 1277 | int nindices;
|
---|
| 1278 | int nsamples;
|
---|
| 1279 | int dummy;
|
---|
| 1280 | char* directory=NULL;
|
---|
| 1281 | char* model=NULL;
|
---|
| 1282 | Results* results=NULL;
|
---|
| 1283 | Parameters* parameters=NULL;
|
---|
| 1284 | int color;
|
---|
| 1285 |
|
---|
| 1286 | /*First things first, set the communicator as a global variable: */
|
---|
| 1287 | IssmComm::SetComm(MPI_COMM_WORLD);
|
---|
| 1288 | my_rank=IssmComm::GetRank();
|
---|
| 1289 |
|
---|
| 1290 | /*Barrier:*/
|
---|
| 1291 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
| 1292 | _printf0_("Dakota Statistic Computation" << "\n");
|
---|
| 1293 |
|
---|
| 1294 | //open model input file for reading
|
---|
| 1295 | input_file=xNew<char>((strlen(argv[2])+strlen(argv[3])+strlen(".bin")+2));
|
---|
| 1296 | sprintf(input_file,"%s/%s%s",argv[2],argv[3],".bin");
|
---|
| 1297 | fid=fopen(input_file,"rb");
|
---|
| 1298 | if (fid==NULL) Cerr << "issm_dakota_statistics error message: could not open model " << input_file << " to retrieve qmu statistics parameters" << std::endl;
|
---|
| 1299 |
|
---|
| 1300 | //initialize IoModel, but light version, we'll need it to fetch constants:
|
---|
| 1301 | iomodel=new IoModel();
|
---|
| 1302 | iomodel->fid=fid;
|
---|
| 1303 | iomodel->FetchConstants();
|
---|
| 1304 |
|
---|
| 1305 | //early return if statistics not requested:
|
---|
| 1306 | iomodel->FindConstant(&statistics,"md.qmu.statistics");
|
---|
| 1307 | if(!statistics){
|
---|
| 1308 | delete iomodel;
|
---|
| 1309 | fclose(fid);
|
---|
| 1310 | return 0;
|
---|
| 1311 | }
|
---|
| 1312 |
|
---|
| 1313 | //create parameters datasets with al the qmu statistics settings we need:
|
---|
| 1314 | if(statistics){
|
---|
| 1315 |
|
---|
| 1316 | /*Initialize parameters and results:*/
|
---|
| 1317 | results = new Results();
|
---|
| 1318 | parameters=new Parameters();
|
---|
| 1319 |
|
---|
| 1320 | //solution type:
|
---|
| 1321 | parameters->AddObject(new IntParam(SolutionTypeEnum,StatisticsSolutionEnum));
|
---|
| 1322 |
|
---|
| 1323 | //root directory
|
---|
| 1324 | directory=xNew<char>(strlen(argv[2])+1);
|
---|
| 1325 | xMemCpy<char>(directory,argv[2],strlen(argv[2])+1);
|
---|
| 1326 | parameters->AddObject(new StringParam(DirectoryNameEnum,directory));
|
---|
| 1327 |
|
---|
| 1328 | //model name
|
---|
| 1329 | model=xNew<char>(strlen(argv[3])+1);
|
---|
| 1330 | xMemCpy<char>(model,argv[3],strlen(argv[3])+1);
|
---|
| 1331 | parameters->AddObject(new StringParam(InputFileNameEnum,model));
|
---|
| 1332 |
|
---|
| 1333 | //nsamples
|
---|
| 1334 | iomodel->FindConstant(&nsamples,"md.qmu.method.params.samples");
|
---|
| 1335 | parameters->AddObject(new IntParam(QmuNsampleEnum,nsamples));
|
---|
| 1336 |
|
---|
| 1337 | //ndirectories
|
---|
| 1338 | iomodel->FindConstant(&numdirectories,"md.qmu.statistics.ndirectories");
|
---|
| 1339 | parameters->AddObject(new IntParam(QmuNdirectoriesEnum,numdirectories));
|
---|
| 1340 |
|
---|
| 1341 | //nfiles per directory
|
---|
| 1342 | iomodel->FindConstant(&nfilesperdirectory,"md.qmu.statistics.nfiles_per_directory");
|
---|
| 1343 | parameters->AddObject(new IntParam(QmuNfilesPerDirectoryEnum,nfilesperdirectory));
|
---|
| 1344 |
|
---|
| 1345 | //At this point, we don't want to go forward any longer, we want to create an MPI
|
---|
| 1346 | //communicator on which to carry out the computations:
|
---|
| 1347 | if ((my_rank+1)*nfilesperdirectory>nsamples)color=MPI_UNDEFINED;
|
---|
| 1348 | else color=0;
|
---|
| 1349 | ISSM_MPI_Comm_split(ISSM_MPI_COMM_WORLD,color, my_rank, &statcomm);
|
---|
| 1350 |
|
---|
| 1351 |
|
---|
| 1352 | iomodel->FindConstant(&numstatistics,"md.qmu.statistics.numstatistics");
|
---|
| 1353 | for (int i=1;i<=numstatistics;i++){
|
---|
| 1354 |
|
---|
| 1355 | char* directory=NULL;
|
---|
| 1356 | char* model=NULL;
|
---|
| 1357 | int nsamples;
|
---|
| 1358 | _printf0_("Dealing with qmu statistical computation #" << i << "\n");
|
---|
| 1359 |
|
---|
| 1360 | sprintf(string,"md.qmu.statistics.method(%i).name",i);
|
---|
| 1361 | iomodel->FindConstant(&name,string);
|
---|
| 1362 |
|
---|
| 1363 | sprintf(string,"md.qmu.statistics.method(%i).fields",i);
|
---|
| 1364 | iomodel->FindConstant(&fields,&nfields,string);
|
---|
| 1365 | parameters->AddObject(new StringArrayParam(FieldsEnum,fields,nfields));
|
---|
| 1366 |
|
---|
| 1367 | sprintf(string,"md.qmu.statistics.method(%i).steps",i);
|
---|
| 1368 | iomodel->FetchData(&steps,&dummy,&nsteps,string);
|
---|
| 1369 | parameters->AddObject(new IntVecParam(StepsEnum,steps,nsteps));
|
---|
| 1370 |
|
---|
| 1371 | if (strcmp(name,"Histogram")==0){
|
---|
| 1372 | /*fetch nbins: */
|
---|
| 1373 | sprintf(string,"md.qmu.statistics.method(%i).nbins",i);
|
---|
| 1374 | iomodel->FindConstant(&nbins,string);
|
---|
| 1375 | parameters->AddObject(new IntParam(NbinsEnum,nbins));
|
---|
| 1376 | ComputeHistogram(parameters,results,color,statcomm);
|
---|
| 1377 | }
|
---|
| 1378 | else if (strcmp(name,"SampleSeries")==0){
|
---|
| 1379 | /*fetch indices: */
|
---|
| 1380 | sprintf(string,"md.qmu.statistics.method(%i).indices",i);
|
---|
| 1381 | iomodel->FetchData(&indices,&dummy,&nindices,string);
|
---|
| 1382 | parameters->AddObject(new IntVecParam(IndicesEnum,indices,nindices));
|
---|
| 1383 |
|
---|
| 1384 | ComputeSampleSeries(parameters,results,color,statcomm);
|
---|
| 1385 | }
|
---|
| 1386 | else if (strcmp(name,"MeanVariance")==0){
|
---|
| 1387 | ComputeMeanVariance(parameters,results,color,statcomm);
|
---|
| 1388 | }
|
---|
| 1389 | else _error_(" error creating qmu statistics methods parameters: unsupported method " << name);
|
---|
| 1390 | }
|
---|
| 1391 | }
|
---|
| 1392 | //close model file:
|
---|
| 1393 | fclose(fid);
|
---|
| 1394 |
|
---|
| 1395 | /*output results:*/
|
---|
| 1396 | OutputStatistics(parameters,results,color,statcomm);
|
---|
| 1397 |
|
---|
| 1398 | /*all meet here: */
|
---|
| 1399 | ISSM_MPI_Barrier(ISSM_MPI_COMM_WORLD); _printf0_("Output file.\n");
|
---|
| 1400 |
|
---|
| 1401 | /*Delete ressources:*/
|
---|
| 1402 | delete parameters;
|
---|
| 1403 | delete results;
|
---|
| 1404 |
|
---|
| 1405 |
|
---|
| 1406 |
|
---|
| 1407 | } /*}}}*/
|
---|