1 | /*!\file: QmuStatisticsx routines
|
---|
2 | */
|
---|
3 | /*includes and prototypes:*/
|
---|
4 | #include <sys/stat.h>
|
---|
5 | #include "./QmuStatisticsx.h"
|
---|
6 | #include "../OutputResultsx/OutputResultsx.h"
|
---|
7 |
|
---|
8 | int readdata(IssmDouble** pdoublemat, int* pdoublematsize, IssmDouble* pdouble, FILE* fid,char* field,int step){ /*{{{*/
|
---|
9 |
|
---|
10 | int length;
|
---|
11 | char fieldname[1000];
|
---|
12 | int fieldname_size;
|
---|
13 | IssmDouble rtime;
|
---|
14 | int rstep;
|
---|
15 | int M,N;
|
---|
16 |
|
---|
17 | //fields that we retrive:
|
---|
18 | IssmDouble dfield;
|
---|
19 | char* sfield = NULL;
|
---|
20 | IssmDouble* dmatfield = NULL;
|
---|
21 | int* imatfield = NULL;
|
---|
22 |
|
---|
23 | //type of the returned field:
|
---|
24 | int type;
|
---|
25 | int found=0;
|
---|
26 |
|
---|
27 | while(1){
|
---|
28 |
|
---|
29 | size_t ret_code = fread(&fieldname_size, sizeof(int), 1, fid);
|
---|
30 | if(ret_code != 1) break; //we are done.
|
---|
31 |
|
---|
32 | fread(fieldname, sizeof(char), fieldname_size, fid);
|
---|
33 | //_printf0_("fieldname: " << fieldname << "\n");
|
---|
34 |
|
---|
35 | fread(&rtime, sizeof(IssmDouble), 1, fid);
|
---|
36 | fread(&rstep, sizeof(int), 1, fid);
|
---|
37 |
|
---|
38 | //check on field:
|
---|
39 | if ((step==rstep) && (strcmp(field,fieldname)==0)){
|
---|
40 |
|
---|
41 | //ok, go read the result really:
|
---|
42 | fread(&type,sizeof(int),1,fid);
|
---|
43 | fread(&M,sizeof(int),1,fid);
|
---|
44 | if (type==1){
|
---|
45 | fread(&dfield,sizeof(IssmDouble),1,fid);
|
---|
46 | }
|
---|
47 | else if (type==2){
|
---|
48 | fread(&M,sizeof(int),1,fid);
|
---|
49 | sfield=xNew<char>(M);
|
---|
50 | fread(sfield,sizeof(char),M,fid);
|
---|
51 | }
|
---|
52 | else if (type==3){
|
---|
53 | fread(&N,sizeof(int),1,fid);
|
---|
54 | dmatfield=xNew<IssmDouble>(M*N);
|
---|
55 | fread(dmatfield,sizeof(IssmDouble),M*N,fid);
|
---|
56 | }
|
---|
57 | else if (type==4){
|
---|
58 | fread(&N,sizeof(int),1,fid);
|
---|
59 | imatfield=xNew<int>(M*N);
|
---|
60 | fread(imatfield,sizeof(int),M*N,fid);
|
---|
61 | }
|
---|
62 | else _error_("cannot read data of type " << type << "\n");
|
---|
63 | found=1;
|
---|
64 | break;
|
---|
65 | }
|
---|
66 | else{
|
---|
67 | //just skim to next results.
|
---|
68 | fread(&type,sizeof(int),1,fid);
|
---|
69 | fread(&M,sizeof(int),1,fid);
|
---|
70 | if (type==1){
|
---|
71 | fseek(fid,sizeof(IssmDouble),SEEK_CUR);
|
---|
72 | }
|
---|
73 | else if(type==2){
|
---|
74 | fseek(fid,M*sizeof(char),SEEK_CUR);
|
---|
75 | }
|
---|
76 | else if(type==3){
|
---|
77 | fread(&N,sizeof(int),1,fid);
|
---|
78 | fseek(fid,M*N*sizeof(IssmDouble),SEEK_CUR);
|
---|
79 | }
|
---|
80 | else if(type==4){
|
---|
81 | fread(&N,sizeof(int),1,fid);
|
---|
82 | fseek(fid,M*N*sizeof(int),SEEK_CUR);
|
---|
83 | }
|
---|
84 | else _error_("cannot read data of type " << type << "\n");
|
---|
85 | }
|
---|
86 | }
|
---|
87 | if(found==0)_error_("cound not find " << field << " at step " << step << "\n");
|
---|
88 |
|
---|
89 | /*assign output pointers:*/
|
---|
90 | *pdoublemat=dmatfield;
|
---|
91 | *pdoublematsize=M*N;
|
---|
92 | *pdouble=dfield;
|
---|
93 |
|
---|
94 | /*return:*/
|
---|
95 | return type;
|
---|
96 |
|
---|
97 | }
|
---|
98 | /*}}}*/
|
---|
99 | int ComputeHistogram(Parameters* parameters,Results* results,int color, ISSM_MPI_Comm statcomm){ /*{{{*/
|
---|
100 |
|
---|
101 | int nsamples;
|
---|
102 | char* directory=NULL;
|
---|
103 | char* model=NULL;
|
---|
104 | char** fields=NULL;
|
---|
105 | int* steps=NULL;
|
---|
106 | int nsteps;
|
---|
107 | int nfields;
|
---|
108 | int nbins;
|
---|
109 | int range,lower_row,upper_row;
|
---|
110 | int nfilesperdirectory;
|
---|
111 |
|
---|
112 | /*intermediary:*/
|
---|
113 | IssmDouble* doublemat=NULL;
|
---|
114 | int doublematsize;
|
---|
115 | IssmDouble scalar;
|
---|
116 |
|
---|
117 | /*computation of average and variance itself:*/
|
---|
118 | IssmDouble** maxxs = NULL;
|
---|
119 | IssmDouble** minxs = NULL;
|
---|
120 | int* xtype=NULL;
|
---|
121 | int* xsize=NULL;
|
---|
122 |
|
---|
123 | IssmDouble** maxmeans=NULL;
|
---|
124 | IssmDouble** minmeans=NULL;
|
---|
125 | int* meanxtype=NULL;
|
---|
126 | int* meanxsize=NULL;
|
---|
127 |
|
---|
128 | /*only work on the statistical communicator: */
|
---|
129 | if (color==MPI_UNDEFINED)return 0;
|
---|
130 |
|
---|
131 | /*Retrieve parameters:*/
|
---|
132 | parameters->FindParam(&nfilesperdirectory,QmuNfilesPerDirectoryEnum);
|
---|
133 | parameters->FindParam(&nsamples,QmuNsampleEnum);
|
---|
134 | parameters->FindParam(&directory,DirectoryNameEnum);
|
---|
135 | parameters->FindParam(&model,InputFileNameEnum);
|
---|
136 | parameters->FindParam(&fields,&nfields,FieldsEnum);
|
---|
137 | parameters->FindParam(&steps,&nsteps,StepsEnum);
|
---|
138 | parameters->FindParam(&nbins,NbinsEnum);
|
---|
139 |
|
---|
140 | /*Get rank from the stat comm communicator:*/
|
---|
141 | IssmComm::SetComm(statcomm);
|
---|
142 | int my_rank=IssmComm::GetRank();
|
---|
143 |
|
---|
144 | /*Open files and read them complelety, in a distributed way:*/
|
---|
145 | range=DetermineLocalSize(nsamples,IssmComm::GetComm());
|
---|
146 | GetOwnershipBoundariesFromRange(&lower_row,&upper_row,range,IssmComm::GetComm());
|
---|
147 |
|
---|
148 | /*Initialize arrays:*/
|
---|
149 | maxmeans=xNew<IssmDouble*>(nfields);
|
---|
150 | minmeans=xNew<IssmDouble*>(nfields);
|
---|
151 | meanxtype=xNew<int>(nfields);
|
---|
152 | meanxsize=xNew<int>(nfields);
|
---|
153 |
|
---|
154 | maxxs=xNew<IssmDouble*>(nfields*nsteps);
|
---|
155 | minxs=xNew<IssmDouble*>(nfields*nsteps);
|
---|
156 | xtype=xNew<int>(nfields*nsteps);
|
---|
157 | xsize=xNew<int>(nfields*nsteps);
|
---|
158 |
|
---|
159 | /*Start opening files:*/
|
---|
160 | for(int i=(lower_row+1);i<=upper_row;i++){
|
---|
161 | _printf0_("reading file #: " << i << "\n");
|
---|
162 | char file[1000];
|
---|
163 | long int length;
|
---|
164 | char* buffer=NULL;
|
---|
165 |
|
---|
166 | /*string:*/
|
---|
167 | sprintf(file,"%s/%i/%s.outbin.%i",directory,my_rank+1,model,i);
|
---|
168 |
|
---|
169 | /*open file: */
|
---|
170 | _printf0_(" opening file: " << file << "\n");
|
---|
171 | FILE* fid=fopen(file,"rb");
|
---|
172 | if(fid==NULL)_error_("cound not open file: " << file << "\n");
|
---|
173 |
|
---|
174 | /*figure out size of file, and read the whole thing:*/
|
---|
175 | _printf0_(" reading file:\n");
|
---|
176 | fseek (fid, 0, SEEK_END);
|
---|
177 | length = ftell (fid);
|
---|
178 | fseek (fid, 0, SEEK_SET);
|
---|
179 | buffer = xNew<char>(length);
|
---|
180 | fread (buffer, sizeof(char), length, fid);
|
---|
181 |
|
---|
182 | /*close file:*/
|
---|
183 | fclose (fid);
|
---|
184 |
|
---|
185 | /*create a memory stream with this buffer:*/
|
---|
186 | _printf0_(" processing file:\n");
|
---|
187 | fid=fmemopen(buffer, length, "rb");
|
---|
188 |
|
---|
189 | /*start reading data from the buffer directly:*/
|
---|
190 | for (int f=0;f<nfields;f++){
|
---|
191 | char* field=fields[f];
|
---|
192 | fseek(fid,0,SEEK_SET);
|
---|
193 | for (int j=0;j<nsteps;j++){
|
---|
194 | int counter=f*nsteps+j;
|
---|
195 | xtype[counter]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
196 | if(i==(lower_row+1)){
|
---|
197 | if(xtype[counter]==1){
|
---|
198 | maxxs[counter]=xNew<IssmDouble>(1);
|
---|
199 | minxs[counter]=xNew<IssmDouble>(1);
|
---|
200 | *maxxs[counter]=scalar;
|
---|
201 | *minxs[counter]=scalar;
|
---|
202 | xsize[counter]=1;
|
---|
203 | }
|
---|
204 | else if (xtype[counter]==3){
|
---|
205 | maxxs[counter]=xNew<IssmDouble>(doublematsize);
|
---|
206 | xMemCpy<IssmDouble>(maxxs[counter],doublemat,doublematsize);
|
---|
207 | minxs[counter]=xNew<IssmDouble>(doublematsize);
|
---|
208 | xMemCpy<IssmDouble>(minxs[counter],doublemat,doublematsize);
|
---|
209 | xsize[counter]=doublematsize;
|
---|
210 | xDelete<IssmDouble>(doublemat);
|
---|
211 | }
|
---|
212 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
213 | }
|
---|
214 | else{
|
---|
215 | if(xtype[counter]==1){
|
---|
216 | *maxxs[counter]=max(*maxxs[counter],scalar);
|
---|
217 | *minxs[counter]=min(*minxs[counter],scalar);
|
---|
218 | }
|
---|
219 | else if (xtype[counter]==3){
|
---|
220 | IssmDouble* newmax=maxxs[counter];
|
---|
221 | IssmDouble* newmin=minxs[counter];
|
---|
222 | for(int k=0;k<doublematsize;k++){
|
---|
223 | if(doublemat[k]>newmax[k])newmax[k]=doublemat[k];
|
---|
224 | if(doublemat[k]<newmin[k])newmin[k]=doublemat[k];
|
---|
225 | }
|
---|
226 | xDelete<IssmDouble>(doublemat);
|
---|
227 | }
|
---|
228 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
229 | }
|
---|
230 | }
|
---|
231 | }
|
---|
232 | _printf0_(" average in time:\n");
|
---|
233 |
|
---|
234 | /*Deal with average in time: */
|
---|
235 | for (int f=0;f<nfields;f++){
|
---|
236 | fseek(fid,0,SEEK_SET);
|
---|
237 | char* field=fields[f];
|
---|
238 | meanxtype[f]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[0]);
|
---|
239 |
|
---|
240 | if(meanxtype[f]==1){
|
---|
241 | meanxsize[f]=1;
|
---|
242 | IssmDouble timemean=0;
|
---|
243 | fseek(fid,0,SEEK_SET);
|
---|
244 | for (int j=0;j<nsteps;j++){
|
---|
245 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
246 | timemean+=scalar/nsteps;
|
---|
247 | }
|
---|
248 |
|
---|
249 | /*Figure out max and min of time means: */
|
---|
250 | if(i==(lower_row+1)){
|
---|
251 | maxmeans[f]=xNewZeroInit<IssmDouble>(1);
|
---|
252 | minmeans[f]=xNewZeroInit<IssmDouble>(1);
|
---|
253 | *maxmeans[f]=timemean;
|
---|
254 | *minmeans[f]=timemean;
|
---|
255 | }
|
---|
256 | else{
|
---|
257 | *maxmeans[f]=max(*maxmeans[f],timemean);
|
---|
258 | *minmeans[f]=min(*minmeans[f],timemean);
|
---|
259 | }
|
---|
260 | }
|
---|
261 | else{
|
---|
262 | meanxsize[f]=doublematsize;
|
---|
263 | fseek(fid,0,SEEK_SET);
|
---|
264 | IssmDouble* timemean=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
265 | for (int j=0;j<nsteps;j++){
|
---|
266 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
267 | for (int k=0;k<doublematsize;k++){
|
---|
268 | timemean[k]+=doublemat[k]/nsteps;
|
---|
269 | }
|
---|
270 | xDelete<IssmDouble>(doublemat);
|
---|
271 | }
|
---|
272 |
|
---|
273 | if(i==(lower_row+1)){
|
---|
274 | maxmeans[f]=xNew<IssmDouble>(doublematsize);
|
---|
275 | xMemCpy<IssmDouble>(maxmeans[f],timemean,doublematsize);
|
---|
276 | minmeans[f]=xNew<IssmDouble>(doublematsize);
|
---|
277 | xMemCpy<IssmDouble>(minmeans[f],timemean,doublematsize);
|
---|
278 | }
|
---|
279 | else{
|
---|
280 | IssmDouble* maxx=maxmeans[f];
|
---|
281 | IssmDouble* minx=minmeans[f];
|
---|
282 |
|
---|
283 | for(int k=0;k<doublematsize;k++){
|
---|
284 | maxx[k]=max(maxx[k],timemean[k]);
|
---|
285 | minx[k]=min(minx[k],timemean[k]);
|
---|
286 | }
|
---|
287 | maxmeans[f]=maxx;
|
---|
288 | minmeans[f]=minx;
|
---|
289 | }
|
---|
290 | }
|
---|
291 | }
|
---|
292 | fclose(fid);
|
---|
293 |
|
---|
294 | /*delete buffer:*/
|
---|
295 | xDelete<char>(buffer);
|
---|
296 | }
|
---|
297 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
298 | _printf0_("Done reading files, now computing min and max.\n");
|
---|
299 |
|
---|
300 | /*We have agregated minx and max across the cluster, now gather across the cluster onto
|
---|
301 | *cpu0 and then compute statistics:*/
|
---|
302 | for (int f=0;f<nfields;f++){
|
---|
303 | int counter0=f*nsteps+0;
|
---|
304 | if (xtype[counter0]==1){ /*deal with scalars {{{*/
|
---|
305 | for (int j=0;j<nsteps;j++){
|
---|
306 | int counter=f*nsteps+j;
|
---|
307 |
|
---|
308 | /*we are broadcasting doubles:*/
|
---|
309 | IssmDouble maxscalar=*maxxs[counter];
|
---|
310 | IssmDouble minscalar=*minxs[counter];
|
---|
311 | IssmDouble allmaxscalar;
|
---|
312 | IssmDouble allminscalar;
|
---|
313 | IssmDouble sumscalar_alltimes=0;
|
---|
314 |
|
---|
315 | ISSM_MPI_Allreduce(&maxscalar,&allmaxscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
316 | ISSM_MPI_Allreduce(&minscalar,&allminscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_MIN,IssmComm::GetComm());
|
---|
317 |
|
---|
318 | /*Store broadcasted value for later computation of histograms:*/
|
---|
319 | *maxxs[counter]=allmaxscalar;
|
---|
320 | *minxs[counter]=allminscalar;
|
---|
321 |
|
---|
322 | }
|
---|
323 | } /*}}}*/
|
---|
324 | else{ /*deal with arrays:{{{*/
|
---|
325 |
|
---|
326 | int size=xsize[counter0];
|
---|
327 | for (int j=0;j<nsteps;j++){
|
---|
328 | int counter=f*nsteps+j;
|
---|
329 |
|
---|
330 | /*we are broadcasting double arrays:*/
|
---|
331 | IssmDouble* maxx=maxxs[counter];
|
---|
332 | IssmDouble* minx=minxs[counter];
|
---|
333 |
|
---|
334 | IssmDouble* allmax=xNew<IssmDouble>(size);
|
---|
335 | IssmDouble* allmin=xNew<IssmDouble>(size);
|
---|
336 |
|
---|
337 | ISSM_MPI_Allreduce(maxx,allmax,size,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
338 | ISSM_MPI_Allreduce(minx,allmin,size,ISSM_MPI_PDOUBLE,ISSM_MPI_MIN,IssmComm::GetComm());
|
---|
339 |
|
---|
340 | /*Store broadcasted value for later computation of histograms:*/
|
---|
341 | maxxs[counter]=allmax;
|
---|
342 | minxs[counter]=allmin;
|
---|
343 | }
|
---|
344 | } /*}}}*/
|
---|
345 | }
|
---|
346 |
|
---|
347 | /*Now do the same for the time mean fields:*/
|
---|
348 | for (int f=0;f<nfields;f++){
|
---|
349 | if (meanxtype[f]==1){ /*deal with scalars {{{*/
|
---|
350 |
|
---|
351 | /*we are broadcasting doubles:*/
|
---|
352 | IssmDouble maxscalar=*maxmeans[f];
|
---|
353 | IssmDouble minscalar=*minmeans[f];
|
---|
354 | IssmDouble allmaxscalar;
|
---|
355 | IssmDouble allminscalar;
|
---|
356 |
|
---|
357 | ISSM_MPI_Allreduce(&maxscalar,&allmaxscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
358 | ISSM_MPI_Allreduce(&minscalar,&allminscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_MIN,IssmComm::GetComm());
|
---|
359 |
|
---|
360 | /*Store for later use in histogram computation:*/
|
---|
361 | *maxmeans[f]=allmaxscalar;
|
---|
362 | *minmeans[f]=allminscalar;
|
---|
363 |
|
---|
364 | } /*}}}*/
|
---|
365 | else{ /*deal with arrays:{{{*/
|
---|
366 |
|
---|
367 | int size=meanxsize[f];
|
---|
368 |
|
---|
369 | /*we are broadcasting double arrays:*/
|
---|
370 | IssmDouble* maxx=maxmeans[f];
|
---|
371 | IssmDouble* minx=minmeans[f];
|
---|
372 |
|
---|
373 | IssmDouble* allmax=xNew<IssmDouble>(size);
|
---|
374 | IssmDouble* allmin=xNew<IssmDouble>(size);
|
---|
375 |
|
---|
376 | ISSM_MPI_Allreduce(maxx,allmax,size,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
377 | ISSM_MPI_Allreduce(minx,allmin,size,ISSM_MPI_PDOUBLE,ISSM_MPI_MIN,IssmComm::GetComm());
|
---|
378 |
|
---|
379 |
|
---|
380 | /*Store for later use in histogram computation:*/
|
---|
381 | maxmeans[f]=allmax;
|
---|
382 | minmeans[f]=allmin;
|
---|
383 |
|
---|
384 | } /*}}}*/
|
---|
385 | }
|
---|
386 |
|
---|
387 | /*Now that we have the min and max, we can start binning. First allocate
|
---|
388 | * histograms, then start filling them:*/
|
---|
389 | IssmDouble** histogram=xNew<IssmDouble*>(nfields*nsteps);
|
---|
390 | IssmDouble** timehistogram=xNew<IssmDouble*>(nfields);
|
---|
391 |
|
---|
392 | _printf0_("Start reading files again, this time binning values in the histogram:\n");
|
---|
393 | /*Start opening files:*/
|
---|
394 | for (int i=(lower_row+1);i<=upper_row;i++){
|
---|
395 | _printf0_("reading file #: " << i << "\n");
|
---|
396 | char file[1000];
|
---|
397 | long int length;
|
---|
398 | char* buffer=NULL;
|
---|
399 |
|
---|
400 | /*string:*/
|
---|
401 | sprintf(file,"%s/%i/%s.outbin.%i",directory,my_rank+1,model,i);
|
---|
402 |
|
---|
403 | /*open file: */
|
---|
404 | _printf0_(" opening file:\n");
|
---|
405 | FILE* fid=fopen(file,"rb");
|
---|
406 | if(fid==NULL)_error_("cound not open file: " << file << "\n");
|
---|
407 |
|
---|
408 | /*figure out size of file, and read the whole thing:*/
|
---|
409 | _printf0_(" reading file:\n");
|
---|
410 | fseek (fid, 0, SEEK_END);
|
---|
411 | length = ftell (fid);
|
---|
412 | fseek (fid, 0, SEEK_SET);
|
---|
413 | buffer = xNew<char>(length);
|
---|
414 | fread (buffer, sizeof(char), length, fid);
|
---|
415 |
|
---|
416 | /*close file:*/
|
---|
417 | fclose (fid);
|
---|
418 |
|
---|
419 | /*create a memory stream with this buffer:*/
|
---|
420 | _printf0_(" processing file:\n");
|
---|
421 | fid=fmemopen(buffer, length, "rb");
|
---|
422 |
|
---|
423 | /*start reading data from the buffer directly:*/
|
---|
424 | for (int f=0;f<nfields;f++){
|
---|
425 | char* field=fields[f];
|
---|
426 | fseek(fid,0,SEEK_SET);
|
---|
427 | for (int j=0;j<nsteps;j++){
|
---|
428 | int counter=f*nsteps+j;
|
---|
429 | xtype[counter]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
430 | if(i==(lower_row+1)){
|
---|
431 | if(xtype[counter]==1){
|
---|
432 | IssmDouble* localhistogram=xNewZeroInit<IssmDouble>(nbins);
|
---|
433 | IssmDouble ma=*maxxs[counter];
|
---|
434 | IssmDouble mi=*minxs[counter];
|
---|
435 | int index=(scalar-mi)/(ma-mi)*nbins; if (index==nbins)index--;
|
---|
436 | if(ma==mi)index=0;
|
---|
437 | //_printf_( index << "|" << scalar << "|" << mi << "|" << ma << "|" << nbins << "\n");
|
---|
438 | localhistogram[index]++;
|
---|
439 | histogram[counter]=localhistogram;
|
---|
440 | }
|
---|
441 | else if (xtype[counter]==3){
|
---|
442 | IssmDouble* localhistogram=xNewZeroInit<IssmDouble>(doublematsize*nbins);
|
---|
443 | IssmDouble* ma=maxxs[counter];
|
---|
444 | IssmDouble* mi=minxs[counter];
|
---|
445 | for (int k=0;k<doublematsize;k++){
|
---|
446 | IssmDouble scalar=doublemat[k];
|
---|
447 | int index=(scalar-mi[k])/(ma[k]-mi[k])*nbins; if (index==nbins)index--;
|
---|
448 | if (mi[k]==ma[k])index=0;
|
---|
449 | _assert_(scalar<=ma[k]); _assert_(scalar>=mi[k]); _assert_(index<nbins);
|
---|
450 | localhistogram[k*nbins+index]++;
|
---|
451 | }
|
---|
452 | histogram[counter]=localhistogram;
|
---|
453 | xDelete<IssmDouble>(doublemat);
|
---|
454 | }
|
---|
455 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
456 | }
|
---|
457 | else{
|
---|
458 | if(xtype[counter]==1){
|
---|
459 | IssmDouble* localhistogram=histogram[counter];
|
---|
460 | IssmDouble ma=*maxxs[counter];
|
---|
461 | IssmDouble mi=*minxs[counter];
|
---|
462 | int index=(scalar-mi)/(ma-mi)*nbins; if (index==nbins)index=nbins-1;
|
---|
463 | if(ma==mi)index=0;
|
---|
464 | localhistogram[index]++;
|
---|
465 | }
|
---|
466 | else if (xtype[counter]==3){
|
---|
467 | IssmDouble* localhistogram=histogram[counter];
|
---|
468 | IssmDouble* ma=maxxs[counter];
|
---|
469 | IssmDouble* mi=minxs[counter];
|
---|
470 | for (int k=0;k<doublematsize;k++){
|
---|
471 | IssmDouble scalar=doublemat[k];
|
---|
472 | int index=(scalar-mi[k])/(ma[k]-mi[k])*nbins; if (index==nbins)index=nbins-1;
|
---|
473 | if (mi[k]==ma[k])index=0;
|
---|
474 |
|
---|
475 | localhistogram[k*nbins+index]++;
|
---|
476 | }
|
---|
477 | xDelete<IssmDouble>(doublemat);
|
---|
478 | }
|
---|
479 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
480 | }
|
---|
481 | }
|
---|
482 | }
|
---|
483 | _printf0_(" average in time:\n");
|
---|
484 |
|
---|
485 | /*Deal with average in time: */
|
---|
486 | for (int f=0;f<nfields;f++){
|
---|
487 | fseek(fid,0,SEEK_SET);
|
---|
488 | char* field=fields[f];
|
---|
489 | meanxtype[f]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[0]);
|
---|
490 |
|
---|
491 | if(meanxtype[f]==1){
|
---|
492 | IssmDouble timemean=0;
|
---|
493 | fseek(fid,0,SEEK_SET);
|
---|
494 | for (int j=0;j<nsteps;j++){
|
---|
495 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
496 | timemean+=scalar/nsteps;
|
---|
497 | }
|
---|
498 |
|
---|
499 | /*Figure out max and min of time means: */
|
---|
500 | if(i==(lower_row+1)){
|
---|
501 | IssmDouble* localhistogram=xNewZeroInit<IssmDouble>(nbins);
|
---|
502 | IssmDouble ma=*maxmeans[f];
|
---|
503 | IssmDouble mi=*minmeans[f];
|
---|
504 | int index=(timemean-mi)/(ma-mi)*nbins; if (index==nbins)index=nbins-1;
|
---|
505 | if(ma==mi)index=0;
|
---|
506 | localhistogram[index]++;
|
---|
507 | timehistogram[f]=localhistogram;
|
---|
508 | }
|
---|
509 | else{
|
---|
510 | IssmDouble* localhistogram=timehistogram[f];
|
---|
511 | IssmDouble ma=*maxmeans[f];
|
---|
512 | IssmDouble mi=*minmeans[f];
|
---|
513 | int index=(timemean-mi)/(ma-mi)*nbins; if (index==nbins)index=nbins-1;
|
---|
514 | if(ma==mi)index=0;
|
---|
515 | localhistogram[index]++;
|
---|
516 | }
|
---|
517 | }
|
---|
518 | else{
|
---|
519 | fseek(fid,0,SEEK_SET);
|
---|
520 | IssmDouble* timemean=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
521 | for (int j=0;j<nsteps;j++){
|
---|
522 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
523 | for (int k=0;k<doublematsize;k++){
|
---|
524 | timemean[k]+=doublemat[k]/nsteps;
|
---|
525 | }
|
---|
526 | xDelete<IssmDouble>(doublemat);
|
---|
527 | }
|
---|
528 |
|
---|
529 | if(i==(lower_row+1)){
|
---|
530 | IssmDouble* localhistogram=xNewZeroInit<IssmDouble>(doublematsize*nbins);
|
---|
531 | IssmDouble* ma=maxmeans[f];
|
---|
532 | IssmDouble* mi=minmeans[f];
|
---|
533 |
|
---|
534 | for (int k=0;k<doublematsize;k++){
|
---|
535 | IssmDouble scalar=timemean[k];
|
---|
536 | int index=(scalar-mi[k])/(ma[k]-mi[k])*nbins; if (index==nbins)index=nbins-1;
|
---|
537 | if (mi[k]==ma[k])index=0;
|
---|
538 | localhistogram[k*nbins+index]++;
|
---|
539 | }
|
---|
540 | timehistogram[f]=localhistogram;
|
---|
541 | }
|
---|
542 | else{
|
---|
543 |
|
---|
544 | IssmDouble* localhistogram=timehistogram[f];
|
---|
545 | IssmDouble* ma=maxmeans[f];
|
---|
546 | IssmDouble* mi=minmeans[f];
|
---|
547 |
|
---|
548 | for (int k=0;k<doublematsize;k++){
|
---|
549 | IssmDouble scalar=timemean[k];
|
---|
550 | int index=(scalar-mi[k])/(ma[k]-mi[k])*nbins; if (index==nbins)index=nbins-1;
|
---|
551 | if (mi[k]==ma[k])index=0;
|
---|
552 |
|
---|
553 | localhistogram[k*nbins+index]++;
|
---|
554 | }
|
---|
555 | }
|
---|
556 | }
|
---|
557 | }
|
---|
558 | fclose(fid);
|
---|
559 |
|
---|
560 | /*delete buffer:*/
|
---|
561 | xDelete<char>(buffer);
|
---|
562 | }
|
---|
563 | _printf0_("Start aggregating histogram:\n");
|
---|
564 |
|
---|
565 | /*We have agregated histograms across the cluster, now gather them across the cluster onto
|
---|
566 | *cpu0: */
|
---|
567 | for (int f=0;f<nfields;f++){
|
---|
568 | int counter0=f*nsteps+0;
|
---|
569 | if (xtype[counter0]==1){ /*deal with scalars {{{*/
|
---|
570 | for (int j=0;j<nsteps;j++){
|
---|
571 | int counter=f*nsteps+j;
|
---|
572 |
|
---|
573 | /*we are broadcasting doubles:*/
|
---|
574 | IssmDouble* histo=histogram[counter]; //size nbins
|
---|
575 | IssmDouble* allhisto=xNewZeroInit<IssmDouble>(nbins);
|
---|
576 |
|
---|
577 | ISSM_MPI_Allreduce(histo,allhisto,nbins,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,IssmComm::GetComm());
|
---|
578 |
|
---|
579 | /*add to results:*/
|
---|
580 | if(my_rank==0){
|
---|
581 | char fieldname[1000];
|
---|
582 |
|
---|
583 | sprintf(fieldname,"%s%s",fields[f],"Histogram");
|
---|
584 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allhisto,1,nbins,steps[j],0));
|
---|
585 |
|
---|
586 | sprintf(fieldname,"%s%s",fields[f],"Max");
|
---|
587 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,*maxxs[counter],steps[j],0));
|
---|
588 | sprintf(fieldname,"%s%s",fields[f],"Min");
|
---|
589 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,*minxs[counter],steps[j],0));
|
---|
590 | }
|
---|
591 | }
|
---|
592 | } /*}}}*/
|
---|
593 | else{ /*deal with arrays:{{{*/
|
---|
594 |
|
---|
595 | int size=xsize[counter0];
|
---|
596 | for (int j=0;j<nsteps;j++){
|
---|
597 | int counter=f*nsteps+j;
|
---|
598 |
|
---|
599 | /*we are broadcasting double arrays:*/
|
---|
600 | IssmDouble* histo=histogram[counter];
|
---|
601 | IssmDouble* allhisto=xNew<IssmDouble>(size*nbins);
|
---|
602 |
|
---|
603 | ISSM_MPI_Allreduce(histo,allhisto,size*nbins,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,IssmComm::GetComm());
|
---|
604 | xDelete<IssmDouble>(histo);
|
---|
605 |
|
---|
606 | /*add to results:*/
|
---|
607 | if(my_rank==0){
|
---|
608 | char fieldname[1000];
|
---|
609 |
|
---|
610 | sprintf(fieldname,"%s%s",fields[f],"Histogram");
|
---|
611 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allhisto,size,nbins,steps[j],0));
|
---|
612 |
|
---|
613 | sprintf(fieldname,"%s%s",fields[f],"Max");
|
---|
614 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,maxxs[counter],size,1,steps[j],0));
|
---|
615 | sprintf(fieldname,"%s%s",fields[f],"Min");
|
---|
616 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,minxs[counter],size,1,steps[j],0));
|
---|
617 | }
|
---|
618 | }
|
---|
619 | } /*}}}*/
|
---|
620 | }
|
---|
621 | _printf0_("Start aggregating time mean histogram:\n");
|
---|
622 |
|
---|
623 | /*Now do the same for the time mean fields:*/
|
---|
624 | for (int f=0;f<nfields;f++){
|
---|
625 | if (meanxtype[f]==1){ /*deal with scalars {{{*/
|
---|
626 |
|
---|
627 | /*we are broadcasting doubles:*/
|
---|
628 | IssmDouble* histo=timehistogram[f];
|
---|
629 | IssmDouble* allhisto=xNewZeroInit<IssmDouble>(nbins);
|
---|
630 |
|
---|
631 | ISSM_MPI_Allreduce(histo,allhisto,nbins,ISSM_MPI_PDOUBLE,ISSM_MPI_MAX,IssmComm::GetComm());
|
---|
632 |
|
---|
633 | /*add to results at time step 1:*/
|
---|
634 | if(my_rank==0){
|
---|
635 | char fieldname[1000];
|
---|
636 |
|
---|
637 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanHistogram");
|
---|
638 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allhisto,1,nbins,steps[0],0));
|
---|
639 |
|
---|
640 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanMax");
|
---|
641 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,*maxmeans[f],steps[0],0));
|
---|
642 | sprintf(fieldname,"%s%s",fields[f],"TimeMeaMin");
|
---|
643 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,*minmeans[f],steps[0],0));
|
---|
644 | }
|
---|
645 | } /*}}}*/
|
---|
646 | else{ /*deal with arrays:{{{*/
|
---|
647 |
|
---|
648 | int size=meanxsize[f];
|
---|
649 |
|
---|
650 | /*we are broadcasting double arrays:*/
|
---|
651 | IssmDouble* histo=timehistogram[f];
|
---|
652 | IssmDouble* allhisto=xNewZeroInit<IssmDouble>(size*nbins);
|
---|
653 |
|
---|
654 | ISSM_MPI_Allreduce(histo,allhisto,size*nbins,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,IssmComm::GetComm());
|
---|
655 | xDelete<IssmDouble>(histo);
|
---|
656 | /*add to results at step 1:*/
|
---|
657 | if(my_rank==0){
|
---|
658 | char fieldname[1000];
|
---|
659 |
|
---|
660 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanHistogram");
|
---|
661 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allhisto,size,nbins,steps[0],0));
|
---|
662 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanMax");
|
---|
663 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,maxmeans[f],size,1,steps[0],0));
|
---|
664 | sprintf(fieldname,"%s%s",fields[f],"TimeMeanMin");
|
---|
665 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,minmeans[f],size,1,steps[0],0));
|
---|
666 | }
|
---|
667 | } /*}}}*/
|
---|
668 | }
|
---|
669 | _printf0_("Done aggregating time mean histogram:\n");
|
---|
670 | IssmComm::SetComm(ISSM_MPI_COMM_WORLD);
|
---|
671 | }
|
---|
672 | /*}}}*/
|
---|
673 | int ComputeMeanVariance(Parameters* parameters,Results* results,int color, ISSM_MPI_Comm statcomm){ /*{{{*/
|
---|
674 |
|
---|
675 | int nsamples;
|
---|
676 | char* directory=NULL;
|
---|
677 | char* model=NULL;
|
---|
678 | char** fields=NULL;
|
---|
679 | int* steps=NULL;
|
---|
680 | int nsteps;
|
---|
681 | int nfields;
|
---|
682 | int range,lower_row,upper_row;
|
---|
683 | int nfilesperdirectory;
|
---|
684 |
|
---|
685 | /*intermediary:*/
|
---|
686 | IssmDouble* doublemat=NULL;
|
---|
687 | int doublematsize;
|
---|
688 | IssmDouble scalar;
|
---|
689 |
|
---|
690 | /*computation of average and variance itself:*/
|
---|
691 | IssmDouble* x = NULL;
|
---|
692 | IssmDouble* x2 = NULL;
|
---|
693 | IssmDouble** xs = NULL;
|
---|
694 | IssmDouble** xs2 = NULL;
|
---|
695 | int* xtype=NULL;
|
---|
696 | int* xsize=NULL;
|
---|
697 |
|
---|
698 | IssmDouble** meanx=NULL;
|
---|
699 | IssmDouble** meanx2=NULL;
|
---|
700 | int* meantype=NULL;
|
---|
701 | int* meansize=NULL;
|
---|
702 |
|
---|
703 | /*only work on the statistical communicator: */
|
---|
704 | if (color==MPI_UNDEFINED)return 0;
|
---|
705 |
|
---|
706 | /*Retrieve parameters:*/
|
---|
707 | parameters->FindParam(&nfilesperdirectory,QmuNfilesPerDirectoryEnum);
|
---|
708 | parameters->FindParam(&nsamples,QmuNsampleEnum);
|
---|
709 | parameters->FindParam(&directory,DirectoryNameEnum);
|
---|
710 | parameters->FindParam(&model,InputFileNameEnum);
|
---|
711 | parameters->FindParam(&fields,&nfields,FieldsEnum);
|
---|
712 | parameters->FindParam(&steps,&nsteps,StepsEnum);
|
---|
713 |
|
---|
714 | /*Get rank from the stat comm communicator:*/
|
---|
715 | IssmComm::SetComm(statcomm);
|
---|
716 | int my_rank=IssmComm::GetRank();
|
---|
717 |
|
---|
718 | /*Open files and read them complelety, in a distributed way:*/
|
---|
719 | range=DetermineLocalSize(nsamples,IssmComm::GetComm());
|
---|
720 | GetOwnershipBoundariesFromRange(&lower_row,&upper_row,range,IssmComm::GetComm());
|
---|
721 |
|
---|
722 | /*Initialize arrays:*/
|
---|
723 | xs=xNew<IssmDouble*>(nfields*nsteps);
|
---|
724 | xs2=xNew<IssmDouble*>(nfields*nsteps);
|
---|
725 | xtype=xNew<int>(nfields*nsteps);
|
---|
726 | xsize=xNew<int>(nfields*nsteps);
|
---|
727 |
|
---|
728 | meantype=xNew<int>(nfields);
|
---|
729 | meansize=xNew<int>(nfields);
|
---|
730 | meanx=xNew<IssmDouble*>(nfields);
|
---|
731 | meanx2=xNew<IssmDouble*>(nfields);
|
---|
732 |
|
---|
733 | /*Start opening files:*/
|
---|
734 | for (int i=(lower_row+1);i<=upper_row;i++){
|
---|
735 | _printf0_("reading file #: " << i << "\n");
|
---|
736 | char file[1000];
|
---|
737 | long int length;
|
---|
738 | char* buffer=NULL;
|
---|
739 |
|
---|
740 | /*string:*/
|
---|
741 | sprintf(file,"%s/%i/%s.outbin.%i",directory,my_rank+1,model,i);
|
---|
742 |
|
---|
743 | /*open file: */
|
---|
744 | _printf0_(" opening file: " << file << "\n");
|
---|
745 | FILE* fid=fopen(file,"rb");
|
---|
746 | if(fid==NULL) _error_(" could not open file: " << file << "\n");
|
---|
747 |
|
---|
748 | /*figure out size of file, and read the whole thing:*/
|
---|
749 | _printf0_(" reading file:\n");
|
---|
750 | fseek (fid, 0, SEEK_END);
|
---|
751 | length = ftell (fid);
|
---|
752 | fseek (fid, 0, SEEK_SET);
|
---|
753 | buffer = xNew<char>(length);
|
---|
754 | fread (buffer, sizeof(char), length, fid);
|
---|
755 |
|
---|
756 | /*close file:*/
|
---|
757 | fclose (fid);
|
---|
758 |
|
---|
759 | /*create a memory stream with this buffer:*/
|
---|
760 | _printf0_(" processing file:\n");
|
---|
761 | fid=fmemopen(buffer, length, "rb");
|
---|
762 |
|
---|
763 | /*start reading data from the buffer directly:*/
|
---|
764 | for (int f=0;f<nfields;f++){
|
---|
765 | char* field=fields[f];
|
---|
766 | fseek(fid,0,SEEK_SET);
|
---|
767 | for (int j=0;j<nsteps;j++){
|
---|
768 | int counter=f*nsteps+j;
|
---|
769 | xtype[counter]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
770 | if(i==(lower_row+1)){
|
---|
771 | if(xtype[counter]==1){
|
---|
772 | xs[counter]=xNew<IssmDouble>(1);
|
---|
773 | xs2[counter]=xNew<IssmDouble>(1);
|
---|
774 | *xs[counter]=scalar;
|
---|
775 | *xs2[counter]=pow(scalar,2.0);
|
---|
776 | xsize[counter]=1;
|
---|
777 | }
|
---|
778 | else if (xtype[counter]==3){
|
---|
779 | IssmDouble* doublemat2=xNew<IssmDouble>(doublematsize);
|
---|
780 | for(int k=0;k<doublematsize;k++)doublemat2[k]=pow(doublemat[k],2.0);
|
---|
781 | xs[counter]=doublemat;
|
---|
782 | xs2[counter]=doublemat2;
|
---|
783 | xsize[counter]=doublematsize;
|
---|
784 | }
|
---|
785 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
786 | }
|
---|
787 | else{
|
---|
788 | if(xtype[counter]==1){
|
---|
789 | *xs[counter]+=scalar;
|
---|
790 | *xs2[counter]+=pow(scalar,2.0);
|
---|
791 | }
|
---|
792 | else if (xtype[counter]==3){
|
---|
793 | IssmDouble* newdoublemat=xs[counter];
|
---|
794 | IssmDouble* newdoublemat2=xs2[counter];
|
---|
795 | for(int k=0;k<doublematsize;k++){
|
---|
796 | newdoublemat[k]+=doublemat[k];
|
---|
797 | newdoublemat2[k]+=pow(doublemat[k],2.0);
|
---|
798 | }
|
---|
799 | xs[counter]=newdoublemat;
|
---|
800 | xs2[counter]=newdoublemat2;
|
---|
801 | }
|
---|
802 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
803 | }
|
---|
804 | }
|
---|
805 | }
|
---|
806 |
|
---|
807 | /*Deal with time mean: */
|
---|
808 | for (int f=0;f<nfields;f++){
|
---|
809 | char* field=fields[f];
|
---|
810 | fseek(fid,0,SEEK_SET);
|
---|
811 | meantype[f]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[0]);
|
---|
812 | if(i==(lower_row+1)){
|
---|
813 | if(meantype[f]==1){
|
---|
814 | meanx[f]=xNewZeroInit<IssmDouble>(1);
|
---|
815 | meanx2[f]=xNewZeroInit<IssmDouble>(1);
|
---|
816 | meansize[f]=1;
|
---|
817 | }
|
---|
818 | else{
|
---|
819 | meanx[f]=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
820 | meanx2[f]=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
821 | meansize[f]=doublematsize;
|
---|
822 | }
|
---|
823 | }
|
---|
824 | fseek(fid,0,SEEK_SET);
|
---|
825 | if(meantype[f]==1){
|
---|
826 | IssmDouble sc=0;
|
---|
827 | IssmDouble sc2=0;
|
---|
828 | for(int j=0;j<nsteps;j++){
|
---|
829 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
830 | sc+=scalar/nsteps;
|
---|
831 | }
|
---|
832 | sc2+=pow(sc,2.0);
|
---|
833 | *meanx[f]+=sc;
|
---|
834 | *meanx2[f]+=sc2;
|
---|
835 | }
|
---|
836 | else{
|
---|
837 | IssmDouble* sc=meanx[f];
|
---|
838 | IssmDouble* sc2=meanx2[f];
|
---|
839 | IssmDouble* timemean=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
840 | IssmDouble* timemean2=xNewZeroInit<IssmDouble>(doublematsize);
|
---|
841 |
|
---|
842 | for(int j=0;j<nsteps;j++){
|
---|
843 | readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
844 | for (int k=0;k<doublematsize;k++){
|
---|
845 | timemean[k]+=doublemat[k]/nsteps;
|
---|
846 | }
|
---|
847 | }
|
---|
848 | for (int k=0;k<doublematsize;k++){
|
---|
849 | timemean2[k]=pow(timemean[k],2.0);
|
---|
850 | }
|
---|
851 | for (int k=0;k<doublematsize;k++){
|
---|
852 | sc[k]+=timemean[k];
|
---|
853 | sc2[k]+=timemean2[k];
|
---|
854 | }
|
---|
855 |
|
---|
856 | }
|
---|
857 |
|
---|
858 | }
|
---|
859 | fclose(fid);
|
---|
860 |
|
---|
861 | /*delete buffer:*/
|
---|
862 | xDelete<char>(buffer);
|
---|
863 | }
|
---|
864 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
865 | _printf0_("Done reading files, now computing mean and variance.\n");
|
---|
866 |
|
---|
867 | /*We have agregated x and x^2 across the cluster, now gather across the cluster onto
|
---|
868 | *cpu0 and then compute statistics:*/
|
---|
869 | for (int f=0;f<nfields;f++){
|
---|
870 | int counter0=f*nsteps+0;
|
---|
871 | if (xtype[counter0]==1){ /*deal with scalars {{{*/
|
---|
872 | IssmDouble mean,stddev;
|
---|
873 | for (int j=0;j<nsteps;j++){
|
---|
874 | int counter=f*nsteps+j;
|
---|
875 |
|
---|
876 | /*we are broadcasting doubles:*/
|
---|
877 | IssmDouble scalar=*xs[counter];
|
---|
878 | IssmDouble scalar2=*xs2[counter];
|
---|
879 | IssmDouble sumscalar;
|
---|
880 | IssmDouble sumscalar2;
|
---|
881 |
|
---|
882 | ISSM_MPI_Reduce(&scalar,&sumscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
883 | ISSM_MPI_Reduce(&scalar2,&sumscalar2,1,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
884 | /*Build average and standard deviation. For standard deviation, use the
|
---|
885 | *following formula: sigma^2=E(x^2)-mu^2:*/
|
---|
886 | mean=sumscalar/nsamples;
|
---|
887 | stddev=sqrt(sumscalar2/nsamples-pow(mean,2.0));
|
---|
888 |
|
---|
889 | /*add to results:*/
|
---|
890 | if(my_rank==0){
|
---|
891 | char fieldname[1000];
|
---|
892 |
|
---|
893 | sprintf(fieldname,"%s%s",fields[f],"Mean");
|
---|
894 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,mean,steps[j],0));
|
---|
895 | sprintf(fieldname,"%s%s",fields[f],"Stddev");
|
---|
896 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,stddev,steps[j],0));
|
---|
897 | }
|
---|
898 |
|
---|
899 | }
|
---|
900 | } /*}}}*/
|
---|
901 | else{ /*deal with arrays:{{{*/
|
---|
902 |
|
---|
903 | int size=xsize[counter0];
|
---|
904 |
|
---|
905 | IssmDouble* mean=xNew<IssmDouble>(size);
|
---|
906 | IssmDouble* stddev=xNew<IssmDouble>(size);
|
---|
907 |
|
---|
908 | for (int j=0;j<nsteps;j++){
|
---|
909 | int counter=f*nsteps+j;
|
---|
910 |
|
---|
911 | /*we are broadcasting double arrays:*/
|
---|
912 | x=xs[counter];
|
---|
913 | x2=xs2[counter];
|
---|
914 |
|
---|
915 | IssmDouble* sumx=xNew<IssmDouble>(size);
|
---|
916 | IssmDouble* sumx2=xNew<IssmDouble>(size);
|
---|
917 |
|
---|
918 | ISSM_MPI_Reduce(x,sumx,size,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
919 | ISSM_MPI_Reduce(x2,sumx2,size,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
920 |
|
---|
921 | /*Build average and standard deviation. For standard deviation, use the
|
---|
922 | *following formula: sigma^2=E(x^2)-mu^2:*/
|
---|
923 | for (int k=0;k<size;k++){
|
---|
924 | mean[k]=sumx[k]/nsamples;
|
---|
925 | stddev[k]=sqrt(sumx2[k]/nsamples-pow(mean[k],2.0));
|
---|
926 | }
|
---|
927 |
|
---|
928 | /*add to results:*/
|
---|
929 | if(my_rank==0){
|
---|
930 | char fieldname[1000];
|
---|
931 |
|
---|
932 | sprintf(fieldname,"%s%s",fields[f],"Mean");
|
---|
933 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,mean,size,1,steps[j],0));
|
---|
934 | sprintf(fieldname,"%s%s",fields[f],"Stddev");
|
---|
935 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,stddev,size,1,steps[j],0));
|
---|
936 | }
|
---|
937 | }
|
---|
938 | } /*}}}*/
|
---|
939 | }
|
---|
940 | /*Do the same but for the time mean:*/
|
---|
941 | for (int f=0;f<nfields;f++){
|
---|
942 | if (meantype[f]==1){ /*deal with scalars {{{*/
|
---|
943 | IssmDouble mean,stddev;
|
---|
944 |
|
---|
945 | /*we are broadcasting doubles:*/
|
---|
946 | IssmDouble scalar=*meanx[f];
|
---|
947 | IssmDouble scalar2=*meanx2[f];
|
---|
948 | IssmDouble sumscalar;
|
---|
949 | IssmDouble sumscalar2;
|
---|
950 |
|
---|
951 | ISSM_MPI_Reduce(&scalar,&sumscalar,1,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
952 | ISSM_MPI_Reduce(&scalar2,&sumscalar2,1,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
953 | /*Build average and standard deviation. For standard deviation, use the
|
---|
954 | *following formula: sigma^2=E(x^2)-mu^2:*/
|
---|
955 | mean=sumscalar/nsamples;
|
---|
956 | stddev=sqrt(sumscalar2/nsamples-pow(mean,2.0));
|
---|
957 |
|
---|
958 | /*add to results:*/
|
---|
959 | if(my_rank==0){
|
---|
960 | char fieldname[1000];
|
---|
961 |
|
---|
962 | sprintf(fieldname,"%s%s",fields[f],"TimeMean");
|
---|
963 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,mean,steps[0],0));
|
---|
964 | sprintf(fieldname,"%s%s",fields[f],"TimeStddev");
|
---|
965 | results->AddResult(new GenericExternalResult<IssmDouble>(results->Size()+1,fieldname,stddev,steps[0],0));
|
---|
966 | }
|
---|
967 | } /*}}}*/
|
---|
968 | else{ /*deal with arrays:{{{*/
|
---|
969 |
|
---|
970 | int size=meansize[f];
|
---|
971 | IssmDouble* mean=xNew<IssmDouble>(size);
|
---|
972 | IssmDouble* stddev=xNew<IssmDouble>(size);
|
---|
973 |
|
---|
974 | /*we are broadcasting double arrays:*/
|
---|
975 | x=meanx[f];
|
---|
976 | x2=meanx2[f];
|
---|
977 |
|
---|
978 | IssmDouble* sumx=xNew<IssmDouble>(size);
|
---|
979 | IssmDouble* sumx2=xNew<IssmDouble>(size);
|
---|
980 |
|
---|
981 | ISSM_MPI_Reduce(x,sumx,size,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
982 | ISSM_MPI_Reduce(x2,sumx2,size,ISSM_MPI_PDOUBLE,ISSM_MPI_SUM,0,IssmComm::GetComm());
|
---|
983 |
|
---|
984 | /*Build average and standard deviation. For standard deviation, use the
|
---|
985 | *following formula: sigma^2=E(x^2)-mu^2:*/
|
---|
986 | for (int k=0;k<size;k++){
|
---|
987 | mean[k]=sumx[k]/nsamples;
|
---|
988 | stddev[k]=sqrt(sumx2[k]/nsamples-pow(mean[k],2.0));
|
---|
989 | }
|
---|
990 |
|
---|
991 | /*add to results:*/
|
---|
992 | if(my_rank==0){
|
---|
993 | char fieldname[1000];
|
---|
994 |
|
---|
995 | sprintf(fieldname,"%s%s",fields[f],"TimeMean");
|
---|
996 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,mean,size,1,steps[0],0));
|
---|
997 | sprintf(fieldname,"%s%s",fields[f],"TimeStddev");
|
---|
998 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,stddev,size,1,steps[0],0));
|
---|
999 | }
|
---|
1000 | } /*}}}*/
|
---|
1001 | }
|
---|
1002 |
|
---|
1003 | _printf0_("Done with MeanVariance :\n");
|
---|
1004 | IssmComm::SetComm(ISSM_MPI_COMM_WORLD);
|
---|
1005 |
|
---|
1006 | } /*}}}*/
|
---|
1007 | int ComputeSampleSeries(Parameters* parameters,Results* results,int color, ISSM_MPI_Comm statcomm){ /*{{{*/
|
---|
1008 |
|
---|
1009 | int nsamples;
|
---|
1010 | char* directory=NULL;
|
---|
1011 | char* model=NULL;
|
---|
1012 | char** fields=NULL;
|
---|
1013 | int* steps=NULL;
|
---|
1014 | int nsteps;
|
---|
1015 | int nfields;
|
---|
1016 | int range,lower_row,upper_row;
|
---|
1017 | int nfilesperdirectory;
|
---|
1018 | int* indices=NULL;
|
---|
1019 | int nindices;
|
---|
1020 |
|
---|
1021 | /*intermediary:*/
|
---|
1022 | IssmDouble* doublemat=NULL;
|
---|
1023 | int doublematsize;
|
---|
1024 | IssmDouble scalar;
|
---|
1025 |
|
---|
1026 | /*computation of average and variance itself:*/
|
---|
1027 | IssmDouble* x = NULL;
|
---|
1028 | IssmDouble* allx=NULL;
|
---|
1029 | IssmDouble** xs = NULL;
|
---|
1030 | int* xtype=NULL;
|
---|
1031 | int* xsize=NULL;
|
---|
1032 |
|
---|
1033 | /*only work on the statistical communicator: */
|
---|
1034 | if (color==MPI_UNDEFINED)return 0;
|
---|
1035 |
|
---|
1036 | /*Retrieve parameters:*/
|
---|
1037 | parameters->FindParam(&nsamples,QmuNsampleEnum);
|
---|
1038 | parameters->FindParam(&directory,DirectoryNameEnum);
|
---|
1039 | parameters->FindParam(&model,InputFileNameEnum);
|
---|
1040 | parameters->FindParam(&fields,&nfields,FieldsEnum);
|
---|
1041 | parameters->FindParam(&steps,&nsteps,StepsEnum);
|
---|
1042 | parameters->FindParam(&indices,&nindices,IndicesEnum);
|
---|
1043 |
|
---|
1044 | /*Get rank from the stat comm communicator:*/
|
---|
1045 | IssmComm::SetComm(statcomm);
|
---|
1046 | int my_rank=IssmComm::GetRank();
|
---|
1047 |
|
---|
1048 | /*Open files and read them complelety, in a distributed way:*/
|
---|
1049 | range=DetermineLocalSize(nsamples,IssmComm::GetComm());
|
---|
1050 | GetOwnershipBoundariesFromRange(&lower_row,&upper_row,range,IssmComm::GetComm());
|
---|
1051 |
|
---|
1052 | /*Initialize arrays:*/
|
---|
1053 | xs=xNew<IssmDouble*>(nfields*nsteps);
|
---|
1054 | xtype=xNew<int>(nfields*nsteps);
|
---|
1055 | xsize=xNew<int>(nfields*nsteps);
|
---|
1056 |
|
---|
1057 | /*Start opening files:*/
|
---|
1058 | for (int i=(lower_row+1);i<=upper_row;i++){
|
---|
1059 | _printf0_("reading file #: " << i << "\n");
|
---|
1060 | char file[1000];
|
---|
1061 | long int length;
|
---|
1062 | char* buffer=NULL;
|
---|
1063 |
|
---|
1064 | /*string:*/
|
---|
1065 | sprintf(file,"%s/%i/%s.outbin.%i",directory,my_rank+1,model,i);
|
---|
1066 |
|
---|
1067 | /*open file: */
|
---|
1068 | _printf0_(" opening file:\n");
|
---|
1069 | FILE* fid=fopen(file,"rb");
|
---|
1070 |
|
---|
1071 | /*figure out size of file, and read the whole thing:*/
|
---|
1072 | _printf0_(" reading file:\n");
|
---|
1073 | fseek (fid, 0, SEEK_END);
|
---|
1074 | length = ftell (fid);
|
---|
1075 | fseek (fid, 0, SEEK_SET);
|
---|
1076 | buffer = xNew<char>(length);
|
---|
1077 | fread (buffer, sizeof(char), length, fid);
|
---|
1078 |
|
---|
1079 | /*close file:*/
|
---|
1080 | fclose (fid);
|
---|
1081 |
|
---|
1082 | /*create a memory stream with this buffer:*/
|
---|
1083 | _printf0_(" processing file:\n");
|
---|
1084 | fid=fmemopen(buffer, length, "rb");
|
---|
1085 |
|
---|
1086 | /*start reading data from the buffer directly:*/
|
---|
1087 | for (int f=0;f<nfields;f++){
|
---|
1088 | fseek(fid,0,SEEK_SET);
|
---|
1089 | char* field=fields[f];
|
---|
1090 | for (int j=0;j<nsteps;j++){
|
---|
1091 | int counter=f*nsteps+j;
|
---|
1092 | xtype[counter]=readdata(&doublemat, &doublematsize, &scalar, fid,field,steps[j]);
|
---|
1093 | if(i==(lower_row+1)){
|
---|
1094 | if(xtype[counter]==1){
|
---|
1095 | x=xNew<IssmDouble>(range);
|
---|
1096 | x[0]=scalar;
|
---|
1097 | xs[counter]=x;
|
---|
1098 | xsize[counter]=range;
|
---|
1099 | }
|
---|
1100 | else if (xtype[counter]==3){
|
---|
1101 | x=xNew<IssmDouble>(nindices*range);
|
---|
1102 | for(int k=0;k<nindices;k++)x[(i-(lower_row+1))*nindices+k]=doublemat[indices[k]-1];
|
---|
1103 | xs[counter]=x;
|
---|
1104 | xsize[counter]=range*nindices;
|
---|
1105 | }
|
---|
1106 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
1107 | }
|
---|
1108 | else{
|
---|
1109 | if(xtype[counter]==1){
|
---|
1110 | x=xs[counter];
|
---|
1111 | x[i-(lower_row+1)]=scalar;
|
---|
1112 | xs[counter]=x;
|
---|
1113 | }
|
---|
1114 | else if (xtype[counter]==3){
|
---|
1115 | x=xs[counter];
|
---|
1116 | for(int k=0;k<nindices;k++)x[(i-(lower_row+1))*nindices+k]=doublemat[indices[k]-1];
|
---|
1117 | xs[counter]=x;
|
---|
1118 | }
|
---|
1119 | else _error_("cannot carry out statistics on type " << xtype[counter]);
|
---|
1120 | }
|
---|
1121 | }
|
---|
1122 | }
|
---|
1123 | fclose(fid);
|
---|
1124 |
|
---|
1125 | /*delete buffer:*/
|
---|
1126 | xDelete<char>(buffer);
|
---|
1127 | }
|
---|
1128 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
1129 | _printf0_("Done reading files, now assembling time series.\n");
|
---|
1130 |
|
---|
1131 | for (int f=0;f<nfields;f++){
|
---|
1132 | for (int j=0;j<nsteps;j++){
|
---|
1133 | int counter=f*nsteps+j;
|
---|
1134 | if (xtype[counter]==1){
|
---|
1135 | /*we are broadcasting range times doubles:*/
|
---|
1136 | x=xs[counter];
|
---|
1137 | allx=xNew<IssmDouble>(nsamples);
|
---|
1138 | MPI_Gather(x, range, ISSM_MPI_PDOUBLE,allx, range, ISSM_MPI_PDOUBLE, 0, IssmComm::GetComm());
|
---|
1139 | /*add to results:*/
|
---|
1140 | if(my_rank==0){
|
---|
1141 | char fieldname[1000];
|
---|
1142 |
|
---|
1143 | sprintf(fieldname,"%s%s",fields[f],"Samples");
|
---|
1144 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allx,nsamples,1,steps[j],0));
|
---|
1145 | }
|
---|
1146 | }
|
---|
1147 | else{
|
---|
1148 | /*we are broadcasting double arrays:*/
|
---|
1149 | x=xs[counter];
|
---|
1150 | allx=xNew<IssmDouble>(nsamples*nindices);
|
---|
1151 |
|
---|
1152 | MPI_Gather(x, range*nindices, ISSM_MPI_PDOUBLE,allx, range*nindices, ISSM_MPI_PDOUBLE, 0, IssmComm::GetComm());
|
---|
1153 |
|
---|
1154 | /*add to results:*/
|
---|
1155 | if(my_rank==0){
|
---|
1156 | char fieldname[1000];
|
---|
1157 | sprintf(fieldname,"%s%s",fields[f],"Samples");
|
---|
1158 | results->AddResult(new GenericExternalResult<IssmPDouble*>(results->Size()+1,fieldname,allx,nsamples,nindices,steps[j],0));
|
---|
1159 | }
|
---|
1160 | }
|
---|
1161 | }
|
---|
1162 | }
|
---|
1163 | _printf0_("Done with SampleSeries :\n");
|
---|
1164 | IssmComm::SetComm(ISSM_MPI_COMM_WORLD);
|
---|
1165 |
|
---|
1166 | } /*}}}*/
|
---|
1167 | int OutputStatistics(Parameters* parameters,Results* results,int color,ISSM_MPI_Comm statcomm){ /*{{{*/
|
---|
1168 |
|
---|
1169 | char outputfilename[1000];
|
---|
1170 | char* directory=NULL;
|
---|
1171 | char* model=NULL;
|
---|
1172 | char* method=NULL;
|
---|
1173 | int nsamples;
|
---|
1174 | int* steps=NULL;
|
---|
1175 | int nsteps;
|
---|
1176 |
|
---|
1177 | /*only work on the statistical communicator: */
|
---|
1178 | if (color==MPI_UNDEFINED)return 0;
|
---|
1179 |
|
---|
1180 | FemModel* femmodel=new FemModel();
|
---|
1181 |
|
---|
1182 | /*Some parameters that will allow us to use the OutputResultsx module:*/
|
---|
1183 | parameters->AddObject(new BoolParam(QmuIsdakotaEnum,false));
|
---|
1184 | parameters->AddObject(new BoolParam(SettingsIoGatherEnum,true));
|
---|
1185 |
|
---|
1186 | parameters->FindParam(&directory,DirectoryNameEnum);
|
---|
1187 | parameters->FindParam(&model,InputFileNameEnum);
|
---|
1188 | parameters->FindParam(&nsamples,QmuNsampleEnum);
|
---|
1189 | parameters->FindParam(&steps,&nsteps,StepsEnum);
|
---|
1190 |
|
---|
1191 | sprintf(outputfilename,"%s/%s.stats",directory,model);
|
---|
1192 | parameters->AddObject(new StrigParam(OutputFileNameEnum,outputfilename));
|
---|
1193 |
|
---|
1194 | /*Call OutputResults module:*/
|
---|
1195 | femmodel->parameters=parameters;
|
---|
1196 | femmodel->results=results;
|
---|
1197 |
|
---|
1198 | OutputResultsx(femmodel);
|
---|
1199 | } /*}}}*/
|
---|
1200 | bool DakotaDirStructure(int argc,char** argv){ /*{{{*/
|
---|
1201 |
|
---|
1202 | char* input_file;
|
---|
1203 | FILE* fid;
|
---|
1204 | IoModel* iomodel=NULL;
|
---|
1205 | int check;
|
---|
1206 |
|
---|
1207 | //qmu statistics
|
---|
1208 | bool statistics = false;
|
---|
1209 | int numdirectories = 0;
|
---|
1210 |
|
---|
1211 | /*First things first, set the communicator as a global variable: */
|
---|
1212 | IssmComm::SetComm(MPI_COMM_WORLD);
|
---|
1213 |
|
---|
1214 | /*Barrier:*/
|
---|
1215 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
1216 | _printf0_("Preparing directory structure for model outputs:" << "\n");
|
---|
1217 |
|
---|
1218 | //open model input file for reading
|
---|
1219 | input_file=xNew<char>((strlen(argv[2])+strlen(argv[3])+strlen(".bin")+2));
|
---|
1220 | sprintf(input_file,"%s/%s%s",argv[2],argv[3],".bin");
|
---|
1221 | fid=fopen(input_file,"rb");
|
---|
1222 | if (fid==NULL) Cerr << "dirstructure error message: could not open model " << input_file << " to retrieve qmu statistics parameters" << std::endl;
|
---|
1223 |
|
---|
1224 | //initialize IoModel, but light version, we just need it to fetch one constant:
|
---|
1225 | iomodel=new IoModel();
|
---|
1226 | iomodel->fid=fid;
|
---|
1227 | iomodel->FetchConstants();
|
---|
1228 |
|
---|
1229 | //early return if statistics not requested:
|
---|
1230 | iomodel->FindConstant(&statistics,"md.qmu.statistics");
|
---|
1231 | if(!statistics){
|
---|
1232 | delete iomodel;
|
---|
1233 | fclose(fid);
|
---|
1234 | return false; //important return value!
|
---|
1235 | }
|
---|
1236 |
|
---|
1237 | iomodel->FindConstant(&numdirectories,"md.qmu.statistics.ndirectories");
|
---|
1238 |
|
---|
1239 | /*Ok, we have everything we need to create the directory structure:*/
|
---|
1240 | if(IssmComm::GetRank()==0){
|
---|
1241 | for (int i=0;i<numdirectories;i++){
|
---|
1242 | char directory[1000];
|
---|
1243 | sprintf(directory,"./%i",i+1);
|
---|
1244 |
|
---|
1245 | check = mkdir(directory,ACCESSPERMS);
|
---|
1246 | if (check) _error_("dirstructure error message: could not create directory " << directory << "\n");
|
---|
1247 | }
|
---|
1248 | }
|
---|
1249 |
|
---|
1250 | //close model file:
|
---|
1251 | fclose(fid);
|
---|
1252 |
|
---|
1253 | //return value:
|
---|
1254 | return true; //statistics computation on!
|
---|
1255 | } /*}}}*/
|
---|
1256 | int DakotaStatistics(int argc,char** argv){ /*{{{*/
|
---|
1257 |
|
---|
1258 | char* input_file;
|
---|
1259 | FILE* fid;
|
---|
1260 | IoModel* iomodel=NULL;
|
---|
1261 | ISSM_MPI_Comm statcomm;
|
---|
1262 | int my_rank;
|
---|
1263 |
|
---|
1264 | //qmu statistics
|
---|
1265 | bool statistics = false;
|
---|
1266 | int numstatistics = 0;
|
---|
1267 | int numdirectories = 0;
|
---|
1268 | int nfilesperdirectory = 0;
|
---|
1269 | char string[1000];
|
---|
1270 | char* name = NULL;
|
---|
1271 | char** fields = NULL;
|
---|
1272 | int nfields;
|
---|
1273 | int* steps=NULL;
|
---|
1274 | int nsteps;
|
---|
1275 | int nbins;
|
---|
1276 | int* indices=NULL;
|
---|
1277 | int nindices;
|
---|
1278 | int nsamples;
|
---|
1279 | int dummy;
|
---|
1280 | char* directory=NULL;
|
---|
1281 | char* model=NULL;
|
---|
1282 | Results* results=NULL;
|
---|
1283 | Parameters* parameters=NULL;
|
---|
1284 | int color;
|
---|
1285 |
|
---|
1286 | /*First things first, set the communicator as a global variable: */
|
---|
1287 | IssmComm::SetComm(MPI_COMM_WORLD);
|
---|
1288 | my_rank=IssmComm::GetRank();
|
---|
1289 |
|
---|
1290 | /*Barrier:*/
|
---|
1291 | ISSM_MPI_Barrier(IssmComm::GetComm());
|
---|
1292 | _printf0_("Dakota Statistic Computation" << "\n");
|
---|
1293 |
|
---|
1294 | //open model input file for reading
|
---|
1295 | input_file=xNew<char>((strlen(argv[2])+strlen(argv[3])+strlen(".bin")+2));
|
---|
1296 | sprintf(input_file,"%s/%s%s",argv[2],argv[3],".bin");
|
---|
1297 | fid=fopen(input_file,"rb");
|
---|
1298 | if (fid==NULL) Cerr << "issm_dakota_statistics error message: could not open model " << input_file << " to retrieve qmu statistics parameters" << std::endl;
|
---|
1299 |
|
---|
1300 | //initialize IoModel, but light version, we'll need it to fetch constants:
|
---|
1301 | iomodel=new IoModel();
|
---|
1302 | iomodel->fid=fid;
|
---|
1303 | iomodel->FetchConstants();
|
---|
1304 |
|
---|
1305 | //early return if statistics not requested:
|
---|
1306 | iomodel->FindConstant(&statistics,"md.qmu.statistics");
|
---|
1307 | if(!statistics){
|
---|
1308 | delete iomodel;
|
---|
1309 | fclose(fid);
|
---|
1310 | return 0;
|
---|
1311 | }
|
---|
1312 |
|
---|
1313 | //create parameters datasets with al the qmu statistics settings we need:
|
---|
1314 | if(statistics){
|
---|
1315 |
|
---|
1316 | /*Initialize parameters and results:*/
|
---|
1317 | results = new Results();
|
---|
1318 | parameters=new Parameters();
|
---|
1319 |
|
---|
1320 | //solution type:
|
---|
1321 | parameters->AddObject(new IntParam(SolutionTypeEnum,StatisticsSolutionEnum));
|
---|
1322 |
|
---|
1323 | //root directory
|
---|
1324 | directory=xNew<char>(strlen(argv[2])+1);
|
---|
1325 | xMemCpy<char>(directory,argv[2],strlen(argv[2])+1);
|
---|
1326 | parameters->AddObject(new StringParam(DirectoryNameEnum,directory));
|
---|
1327 |
|
---|
1328 | //model name
|
---|
1329 | model=xNew<char>(strlen(argv[3])+1);
|
---|
1330 | xMemCpy<char>(model,argv[3],strlen(argv[3])+1);
|
---|
1331 | parameters->AddObject(new StringParam(InputFileNameEnum,model));
|
---|
1332 |
|
---|
1333 | //nsamples
|
---|
1334 | iomodel->FindConstant(&nsamples,"md.qmu.method.params.samples");
|
---|
1335 | parameters->AddObject(new IntParam(QmuNsampleEnum,nsamples));
|
---|
1336 |
|
---|
1337 | //ndirectories
|
---|
1338 | iomodel->FindConstant(&numdirectories,"md.qmu.statistics.ndirectories");
|
---|
1339 | parameters->AddObject(new IntParam(QmuNdirectoriesEnum,numdirectories));
|
---|
1340 |
|
---|
1341 | //nfiles per directory
|
---|
1342 | iomodel->FindConstant(&nfilesperdirectory,"md.qmu.statistics.nfiles_per_directory");
|
---|
1343 | parameters->AddObject(new IntParam(QmuNfilesPerDirectoryEnum,nfilesperdirectory));
|
---|
1344 |
|
---|
1345 | //At this point, we don't want to go forward any longer, we want to create an MPI
|
---|
1346 | //communicator on which to carry out the computations:
|
---|
1347 | if ((my_rank+1)*nfilesperdirectory>nsamples)color=MPI_UNDEFINED;
|
---|
1348 | else color=0;
|
---|
1349 | ISSM_MPI_Comm_split(ISSM_MPI_COMM_WORLD,color, my_rank, &statcomm);
|
---|
1350 |
|
---|
1351 |
|
---|
1352 | iomodel->FindConstant(&numstatistics,"md.qmu.statistics.numstatistics");
|
---|
1353 | for (int i=1;i<=numstatistics;i++){
|
---|
1354 |
|
---|
1355 | char* directory=NULL;
|
---|
1356 | char* model=NULL;
|
---|
1357 | int nsamples;
|
---|
1358 | _printf0_("Dealing with qmu statistical computation #" << i << "\n");
|
---|
1359 |
|
---|
1360 | sprintf(string,"md.qmu.statistics.method(%i).name",i);
|
---|
1361 | iomodel->FindConstant(&name,string);
|
---|
1362 |
|
---|
1363 | sprintf(string,"md.qmu.statistics.method(%i).fields",i);
|
---|
1364 | iomodel->FindConstant(&fields,&nfields,string);
|
---|
1365 | parameters->AddObject(new StringArrayParam(FieldsEnum,fields,nfields));
|
---|
1366 |
|
---|
1367 | sprintf(string,"md.qmu.statistics.method(%i).steps",i);
|
---|
1368 | iomodel->FetchData(&steps,&dummy,&nsteps,string);
|
---|
1369 | parameters->AddObject(new IntVecParam(StepsEnum,steps,nsteps));
|
---|
1370 |
|
---|
1371 | if (strcmp(name,"Histogram")==0){
|
---|
1372 | /*fetch nbins: */
|
---|
1373 | sprintf(string,"md.qmu.statistics.method(%i).nbins",i);
|
---|
1374 | iomodel->FindConstant(&nbins,string);
|
---|
1375 | parameters->AddObject(new IntParam(NbinsEnum,nbins));
|
---|
1376 | ComputeHistogram(parameters,results,color,statcomm);
|
---|
1377 | }
|
---|
1378 | else if (strcmp(name,"SampleSeries")==0){
|
---|
1379 | /*fetch indices: */
|
---|
1380 | sprintf(string,"md.qmu.statistics.method(%i).indices",i);
|
---|
1381 | iomodel->FetchData(&indices,&dummy,&nindices,string);
|
---|
1382 | parameters->AddObject(new IntVecParam(IndicesEnum,indices,nindices));
|
---|
1383 |
|
---|
1384 | ComputeSampleSeries(parameters,results,color,statcomm);
|
---|
1385 | }
|
---|
1386 | else if (strcmp(name,"MeanVariance")==0){
|
---|
1387 | ComputeMeanVariance(parameters,results,color,statcomm);
|
---|
1388 | }
|
---|
1389 | else _error_(" error creating qmu statistics methods parameters: unsupported method " << name);
|
---|
1390 | }
|
---|
1391 | }
|
---|
1392 | //close model file:
|
---|
1393 | fclose(fid);
|
---|
1394 |
|
---|
1395 | /*output results:*/
|
---|
1396 | OutputStatistics(parameters,results,color,statcomm);
|
---|
1397 |
|
---|
1398 | /*all meet here: */
|
---|
1399 | ISSM_MPI_Barrier(ISSM_MPI_COMM_WORLD); _printf0_("Output file.\n");
|
---|
1400 |
|
---|
1401 | /*Delete ressources:*/
|
---|
1402 | delete parameters;
|
---|
1403 | delete results;
|
---|
1404 |
|
---|
1405 |
|
---|
1406 |
|
---|
1407 | } /*}}}*/
|
---|