1 | import numpy
|
---|
2 | from SetMarineIceSheetBC import SetMarineIceSheetBC
|
---|
3 |
|
---|
4 | print " creating thickness"
|
---|
5 | hmin=0.01
|
---|
6 | hmax=2756.7
|
---|
7 | radius=numpy.sqrt((md.mesh.x)**2+(md.mesh.y)**2)
|
---|
8 | radiusmax=numpy.max(radius)
|
---|
9 | radius[numpy.nonzero(radius>(1.-10**-9)*radiusmax)]=radiusmax #eliminate roundoff issues in next statement
|
---|
10 | md.geometry.thickness=hmin*numpy.ones((numpy.size(md.mesh.x)))+hmax*(4.*((1./2.)**(4./3.)*numpy.ones((numpy.size(md.mesh.x)))-((radius)/(2.*radiusmax))**(4./3.)))**(3./8.)
|
---|
11 | md.geometry.base=0.*md.geometry.thickness
|
---|
12 | md.geometry.surface=md.geometry.base+md.geometry.thickness
|
---|
13 |
|
---|
14 | print " creating drag"
|
---|
15 | md.friction.coefficient=20.*numpy.ones((md.mesh.numberofvertices))
|
---|
16 | md.friction.coefficient[numpy.nonzero(md.mask.groundedice_levelset<0.)[0]]=0.
|
---|
17 | md.friction.p=numpy.ones((md.mesh.numberofelements))
|
---|
18 | md.friction.q=numpy.ones((md.mesh.numberofelements))
|
---|
19 |
|
---|
20 | print " creating temperatures"
|
---|
21 | tmin=238.15 #K
|
---|
22 | st=1.67*10**-2/1000. #k/m
|
---|
23 | md.initialization.temperature=tmin+st*radius
|
---|
24 | md.basalforcings.geothermalflux=4.2*10**-2*numpy.ones((md.mesh.numberofvertices))
|
---|
25 |
|
---|
26 | print " creating flow law parameter"
|
---|
27 | md.materials.rheology_B=6.81*10**7*numpy.ones((md.mesh.numberofvertices)) #to have the same B as the analytical solution
|
---|
28 | md.materials.rheology_n=3.*numpy.ones((md.mesh.numberofelements))
|
---|
29 |
|
---|
30 | print " creating surface mass balance"
|
---|
31 | smb_max=0.5 #m/yr
|
---|
32 | sb=10**-2/1000. #m/yr/m
|
---|
33 | rel=450.*1000. #m
|
---|
34 | md.smb.mass_balance=numpy.minimum(smb_max*numpy.ones_like(radius),sb*(rel-radius))
|
---|
35 |
|
---|
36 | print " creating velocities"
|
---|
37 | constant=0.3
|
---|
38 | md.inversion.vx_obs=constant/2.*md.mesh.x*(md.geometry.thickness)**-1
|
---|
39 | md.inversion.vy_obs=constant/2.*md.mesh.y*(md.geometry.thickness)**-1
|
---|
40 | md.inversion.vel_obs=numpy.sqrt((md.inversion.vx_obs)**2+(md.inversion.vy_obs)**2)
|
---|
41 | md.initialization.vx=numpy.zeros((md.mesh.numberofvertices))
|
---|
42 | md.initialization.vy=numpy.zeros((md.mesh.numberofvertices))
|
---|
43 | md.initialization.vz=numpy.zeros((md.mesh.numberofvertices))
|
---|
44 | md.initialization.pressure=numpy.zeros((md.mesh.numberofvertices))
|
---|
45 |
|
---|
46 | #Deal with boundary conditions:
|
---|
47 | print " boundary conditions for stressbalance model:"
|
---|
48 | md=SetMarineIceSheetBC(md,'../Exp/RoundFrontEISMINT.exp')
|
---|
49 |
|
---|
50 | radius=numpy.sqrt((md.mesh.x)**2+(md.mesh.y)**2)
|
---|
51 | pos=numpy.nonzero(radius==numpy.min(radius))[0]
|
---|
52 | md.mesh.x[pos]=0.
|
---|
53 | md.mesh.y[pos]=0. #the closest node to the center is changed to be exactly at the center
|
---|
54 |
|
---|
55 | md.stressbalance.spcvx[pos]=0.
|
---|
56 | md.stressbalance.spcvy[pos]=0.
|
---|
57 | md.stressbalance.spcvz[pos]=0.
|
---|