| 1 | import numpy
 | 
|---|
| 2 | from SetMarineIceSheetBC import SetMarineIceSheetBC
 | 
|---|
| 3 | 
 | 
|---|
| 4 | print "      creating thickness"
 | 
|---|
| 5 | hmin=0.01
 | 
|---|
| 6 | hmax=2756.7
 | 
|---|
| 7 | radius=numpy.sqrt((md.mesh.x)**2+(md.mesh.y)**2).reshape(-1,1)
 | 
|---|
| 8 | radiusmax=numpy.max(radius)
 | 
|---|
| 9 | radius[numpy.nonzero(radius>(1.-10**-9)*radiusmax)]=radiusmax    #eliminate roundoff issues in next statement
 | 
|---|
| 10 | md.geometry.thickness=hmin*numpy.ones((numpy.size(md.mesh.x),1))+hmax*(4.*((1./2.)**(4./3.)*numpy.ones((numpy.size(md.mesh.x),1))-((radius)/(2.*radiusmax))**(4./3.)))**(3./8.)
 | 
|---|
| 11 | md.geometry.base=0.*md.geometry.thickness
 | 
|---|
| 12 | md.geometry.surface=md.geometry.base+md.geometry.thickness
 | 
|---|
| 13 | 
 | 
|---|
| 14 | print "      creating drag"
 | 
|---|
| 15 | md.friction.coefficient=20.*numpy.ones((md.mesh.numberofvertices,1))
 | 
|---|
| 16 | md.friction.coefficient[numpy.nonzero(md.mask.groundedice_levelset<0.)[0]]=0.
 | 
|---|
| 17 | md.friction.p=numpy.ones((md.mesh.numberofelements,1))
 | 
|---|
| 18 | md.friction.q=numpy.ones((md.mesh.numberofelements,1))
 | 
|---|
| 19 | 
 | 
|---|
| 20 | print "      creating temperatures"
 | 
|---|
| 21 | tmin=238.15    #K
 | 
|---|
| 22 | st=1.67*10**-2/1000.    #k/m
 | 
|---|
| 23 | md.initialization.temperature=tmin+st*radius
 | 
|---|
| 24 | md.basalforcings.geothermalflux=4.2*10**-2*numpy.ones((md.mesh.numberofvertices,1))
 | 
|---|
| 25 | 
 | 
|---|
| 26 | print "      creating flow law parameter"
 | 
|---|
| 27 | md.materials.rheology_B=6.81*10**7*numpy.ones((md.mesh.numberofvertices,1))    #to have the same B as the analytical solution 
 | 
|---|
| 28 | md.materials.rheology_n=3.*numpy.ones((md.mesh.numberofelements,1))
 | 
|---|
| 29 | 
 | 
|---|
| 30 | print "      creating surface mass balance"
 | 
|---|
| 31 | smb_max=0.5    #m/yr
 | 
|---|
| 32 | sb=10**-2/1000.    #m/yr/m
 | 
|---|
| 33 | rel=450.*1000.    #m
 | 
|---|
| 34 | md.smb.mass_balance=numpy.minimum(smb_max*numpy.ones_like(radius),sb*(rel-radius))
 | 
|---|
| 35 | 
 | 
|---|
| 36 | print "      creating velocities"
 | 
|---|
| 37 | constant=0.3
 | 
|---|
| 38 | md.inversion.vx_obs=constant/2.*md.mesh.x.reshape(-1,1)*(md.geometry.thickness)**-1
 | 
|---|
| 39 | md.inversion.vy_obs=constant/2.*md.mesh.y.reshape(-1,1)*(md.geometry.thickness)**-1
 | 
|---|
| 40 | md.inversion.vel_obs=numpy.sqrt((md.inversion.vx_obs)**2+(md.inversion.vy_obs)**2)
 | 
|---|
| 41 | md.initialization.vx=numpy.zeros((md.mesh.numberofvertices,1))
 | 
|---|
| 42 | md.initialization.vy=numpy.zeros((md.mesh.numberofvertices,1))
 | 
|---|
| 43 | md.initialization.vz=numpy.zeros((md.mesh.numberofvertices,1))
 | 
|---|
| 44 | md.initialization.pressure=numpy.zeros((md.mesh.numberofvertices,1))
 | 
|---|
| 45 | 
 | 
|---|
| 46 | #Deal with boundary conditions:
 | 
|---|
| 47 | print "      boundary conditions for stressbalance model:"
 | 
|---|
| 48 | md=SetMarineIceSheetBC(md,'../Exp/RoundFrontEISMINT.exp')
 | 
|---|
| 49 | 
 | 
|---|
| 50 | radius=numpy.sqrt((md.mesh.x)**2+(md.mesh.y)**2)
 | 
|---|
| 51 | pos=numpy.nonzero(radius==numpy.min(radius))[0]
 | 
|---|
| 52 | md.mesh.x[pos]=0.
 | 
|---|
| 53 | md.mesh.y[pos]=0.    #the closest node to the center is changed to be exactly at the center
 | 
|---|
| 54 | 
 | 
|---|
| 55 | md.stressbalance.spcvx[pos]=0.
 | 
|---|
| 56 | md.stressbalance.spcvy[pos]=0.
 | 
|---|
| 57 | md.stressbalance.spcvz[pos]=0.
 | 
|---|