[14106] | 1 | import numpy
|
---|
[16170] | 2 | from SetMarineIceSheetBC import SetMarineIceSheetBC
|
---|
[14106] | 3 |
|
---|
| 4 | print " creating thickness"
|
---|
| 5 | hmin=0.01
|
---|
| 6 | hmax=2756.7
|
---|
[21759] | 7 | radius=numpy.sqrt((md.mesh.x)**2+(md.mesh.y)**2)
|
---|
[14106] | 8 | radiusmax=numpy.max(radius)
|
---|
[14156] | 9 | radius[numpy.nonzero(radius>(1.-10**-9)*radiusmax)]=radiusmax #eliminate roundoff issues in next statement
|
---|
[21759] | 10 | md.geometry.thickness=hmin*numpy.ones((numpy.size(md.mesh.x)))+hmax*(4.*((1./2.)**(4./3.)*numpy.ones((numpy.size(md.mesh.x)))-((radius)/(2.*radiusmax))**(4./3.)))**(3./8.)
|
---|
[17590] | 11 | md.geometry.base=0.*md.geometry.thickness
|
---|
| 12 | md.geometry.surface=md.geometry.base+md.geometry.thickness
|
---|
[14106] | 13 |
|
---|
| 14 | print " creating drag"
|
---|
[21759] | 15 | md.friction.coefficient=20.*numpy.ones((md.mesh.numberofvertices))
|
---|
[15988] | 16 | md.friction.coefficient[numpy.nonzero(md.mask.groundedice_levelset<0.)[0]]=0.
|
---|
[21759] | 17 | md.friction.p=numpy.ones((md.mesh.numberofelements))
|
---|
| 18 | md.friction.q=numpy.ones((md.mesh.numberofelements))
|
---|
[14106] | 19 |
|
---|
| 20 | print " creating temperatures"
|
---|
| 21 | tmin=238.15 #K
|
---|
| 22 | st=1.67*10**-2/1000. #k/m
|
---|
| 23 | md.initialization.temperature=tmin+st*radius
|
---|
[21759] | 24 | md.basalforcings.geothermalflux=4.2*10**-2*numpy.ones((md.mesh.numberofvertices))
|
---|
[14106] | 25 |
|
---|
| 26 | print " creating flow law parameter"
|
---|
[21759] | 27 | md.materials.rheology_B=6.81*10**7*numpy.ones((md.mesh.numberofvertices)) #to have the same B as the analytical solution
|
---|
| 28 | md.materials.rheology_n=3.*numpy.ones((md.mesh.numberofelements))
|
---|
[14106] | 29 |
|
---|
| 30 | print " creating surface mass balance"
|
---|
| 31 | smb_max=0.5 #m/yr
|
---|
| 32 | sb=10**-2/1000. #m/yr/m
|
---|
| 33 | rel=450.*1000. #m
|
---|
[19527] | 34 | md.smb.mass_balance=numpy.minimum(smb_max*numpy.ones_like(radius),sb*(rel-radius))
|
---|
[14106] | 35 |
|
---|
| 36 | print " creating velocities"
|
---|
| 37 | constant=0.3
|
---|
[21759] | 38 | md.inversion.vx_obs=constant/2.*md.mesh.x*(md.geometry.thickness)**-1
|
---|
| 39 | md.inversion.vy_obs=constant/2.*md.mesh.y*(md.geometry.thickness)**-1
|
---|
[14106] | 40 | md.inversion.vel_obs=numpy.sqrt((md.inversion.vx_obs)**2+(md.inversion.vy_obs)**2)
|
---|
[21759] | 41 | md.initialization.vx=numpy.zeros((md.mesh.numberofvertices))
|
---|
| 42 | md.initialization.vy=numpy.zeros((md.mesh.numberofvertices))
|
---|
| 43 | md.initialization.vz=numpy.zeros((md.mesh.numberofvertices))
|
---|
| 44 | md.initialization.pressure=numpy.zeros((md.mesh.numberofvertices))
|
---|
[14106] | 45 |
|
---|
| 46 | #Deal with boundary conditions:
|
---|
[15771] | 47 | print " boundary conditions for stressbalance model:"
|
---|
[14106] | 48 | md=SetMarineIceSheetBC(md,'../Exp/RoundFrontEISMINT.exp')
|
---|
| 49 |
|
---|
| 50 | radius=numpy.sqrt((md.mesh.x)**2+(md.mesh.y)**2)
|
---|
| 51 | pos=numpy.nonzero(radius==numpy.min(radius))[0]
|
---|
| 52 | md.mesh.x[pos]=0.
|
---|
| 53 | md.mesh.y[pos]=0. #the closest node to the center is changed to be exactly at the center
|
---|
| 54 |
|
---|
[15771] | 55 | md.stressbalance.spcvx[pos]=0.
|
---|
| 56 | md.stressbalance.spcvy[pos]=0.
|
---|
| 57 | md.stressbalance.spcvz[pos]=0.
|
---|