| | 89 | |
| | 90 | |
| | 91 | == stereographic conversion part 1 == |
| | 92 | |
| | 93 | {{{ |
| | 94 | #!m |
| | 95 | function [x,y] = map2ll(lat,lon,sgn) |
| | 96 | % |
| | 97 | % NAME: map2ll |
| | 98 | %=============================================================================== |
| | 99 | % |
| | 100 | % USAGE: [x,y] = map2ll(lat,lon,sgn) |
| | 101 | % |
| | 102 | % DESCRIPTION: |
| | 103 | % Converts from geodetic latitude and longitude to Polar |
| | 104 | % Stereographic (X,Y) coordinates for the polar regions. |
| | 105 | % |
| | 106 | % INPUT: |
| | 107 | % Lat = Geodetic Latitude (degrees, +90 to -90) |
| | 108 | % Lon = Geodetic Longitude (degrees, 0 to 360) |
| | 109 | % SGN = Sign of latitude |
| | 110 | % +1 : north latitude |
| | 111 | % -1 : south latitude |
| | 112 | % |
| | 113 | % |
| | 114 | % OUTPUT: X = Polar Stereographic X Coordinate (km) |
| | 115 | % Y = Polar Stereographic Y Coordinate (km) |
| | 116 | % |
| | 117 | % |
| | 118 | % AUTHOR: The original equations are from Snyder, J. P., |
| | 119 | % 1982, Map Projections Used by the U.S. Geological Survey, |
| | 120 | % Geological Survey Bulletin 1532, U.S. Government Printing |
| | 121 | % Office. See JPL Technical Memorandum 3349-85-101 for |
| | 122 | % further details. |
| | 123 | % |
| | 124 | % Original FORTRAN program written by C. S. Morris, |
| | 125 | % April 1985, Jet Propulsion Laboratory, California |
| | 126 | % Institute of Technology |
| | 127 | % |
| | 128 | % IDL conversion by Helmut Schottmueller, September 1995, |
| | 129 | % Institute for environmental physics, University of Bremen |
| | 130 | % |
| | 131 | % Matlab conversion by Michael P. Schodlok, December 2003, |
| | 132 | % Alfred Wegener Institute for Polar and Marine Research, Bremerhaven |
| | 133 | % |
| | 134 | % Error correction for RHO: 1997-11-03 by LML |
| | 135 | %==================================================================================== |
| | 136 | |
| | 137 | %------------- |
| | 138 | % CHECK INPUTS |
| | 139 | %------------- |
| | 140 | if nargin ~= 3 |
| | 141 | error('map2ll.m: must pass 3 parameters lat, lon, hemisphere') |
| | 142 | end %if |
| | 143 | |
| | 144 | % CHECK lat,lon,hems dimensions and verify consistent |
| | 145 | [ma,na] = size(lat); |
| | 146 | [mb,nb] = size(lon); |
| | 147 | [mc,nc] = size(sgn); |
| | 148 | |
| | 149 | % CHECK THAT lat & lon HAVE SAME SHAPE |
| | 150 | if (ma~=mb) | (na~=nb) |
| | 151 | error('check dims: lat & lon must have same dimensions') |
| | 152 | end %if |
| | 153 | |
| | 154 | % CHECK THAT sgn IS A SCALAR |
| | 155 | if (mc~=1 & np~=1 ) |
| | 156 | error('check sgn: sgn is either 1 or -1') |
| | 157 | end %if |
| | 158 | |
| | 159 | |
| | 160 | %====== |
| | 161 | % BEGIN |
| | 162 | %====== |
| | 163 | |
| | 164 | |
| | 165 | % Conversion constant from degrees to radians |
| | 166 | cde = 57.29577951; |
| | 167 | % Standard latitude for the SSM/I grid with no distorsion |
| | 168 | slat = 70.; |
| | 169 | % Radius of the earth in kilometers |
| | 170 | re = 6378.273; |
| | 171 | % Eccentricity of the Hughes ellipsoid squared |
| | 172 | ex2 = .006693883; |
| | 173 | % Eccentricity of the Hughes ellipsoid |
| | 174 | ex = sqrt(ex2); |
| | 175 | |
| | 176 | if sgn == 1 |
| | 177 | delta = 45.; |
| | 178 | else |
| | 179 | delta = 0.0; |
| | 180 | end %if |
| | 181 | |
| | 182 | latitude = abs(lat) * pi/180.; |
| | 183 | longitude = (lon + delta) * pi/180.; |
| | 184 | |
| | 185 | % compute X and Y in grid coordinates. |
| | 186 | T = tan(pi/4-latitude/2) ./ ((1-ex*sin(latitude))./(1+ex*sin(latitude))).^(ex/2); |
| | 187 | |
| | 188 | if (90 - slat) < 1.e-5 |
| | 189 | rho = 2.*re*T/sqrt((1.+ex)^(1.+ex)*(1.-ex)^(1.-ex)); |
| | 190 | else |
| | 191 | sl = slat*pi/180.; |
| | 192 | tc = tan(pi/4.-sl/2.)/((1.-ex*sin(sl))/(1.+ex*sin(sl)))^(ex/2.); |
| | 193 | mc = cos(sl)/sqrt(1.0-ex2*(sin(sl)^2)); |
| | 194 | rho = re*mc*T/tc; |
| | 195 | end % if |
| | 196 | |
| | 197 | |
| | 198 | y = -rho .* sgn .* cos(sgn.*longitude); |
| | 199 | x = rho .* sgn .* sin(sgn.*longitude); |
| | 200 | |
| | 201 | [cnt1,cnt2] = find(latitude >= pi / 2.); |
| | 202 | |
| | 203 | if cnt1 |
| | 204 | x(cnt1,1) = 0.0 |
| | 205 | y(cnt1,1) = 0.0 |
| | 206 | end %if |
| | 207 | |
| | 208 | return |
| | 209 | %========================================================================= |
| | 210 | |
| | 211 | }}} |
| | 212 | |
| | 213 | == stereographic conversion part 2 == |
| | 214 | |
| | 215 | function [lat,lon] = map2xy(x,y,sgn) |
| | 216 | % |
| | 217 | % NAME: map2xy |
| | 218 | %=============================================================================== |
| | 219 | % |
| | 220 | % USAGE: [lat,lon] = map2xy(x,y,sgn) |
| | 221 | % |
| | 222 | % DESCRIPTION: |
| | 223 | % Converts from geodetic latitude and longitude to Polar |
| | 224 | % Stereographic (X,Y) coordinates for the polar regions. |
| | 225 | % |
| | 226 | % INPUT: |
| | 227 | % X = Polar Stereographic X Coordinate (km) |
| | 228 | % Y = Polar Stereographic Y Coordinate (km) |
| | 229 | % SGN = Sign of latitude |
| | 230 | % +1 : north latitude |
| | 231 | % -1 : south latitude |
| | 232 | % |
| | 233 | % |
| | 234 | % OUTPUT: |
| | 235 | % Lat = Geodetic Latitude (degrees, +90 to -90) |
| | 236 | % Lon = Geodetic Longitude (degrees, 0 to 360) |
| | 237 | % |
| | 238 | % |
| | 239 | % AUTHOR: The original equations are from Snyder, J. P., |
| | 240 | % 1982, Map Projections Used by the U.S. Geological Survey, |
| | 241 | % Geological Survey Bulletin 1532, U.S. Government Printing |
| | 242 | % Office. See JPL Technical Memorandum 3349-85-101 for |
| | 243 | % further details. |
| | 244 | % |
| | 245 | % Original FORTRAN program written by C. S. Morris, |
| | 246 | % April 1985, Jet Propulsion Laboratory, California |
| | 247 | % Institute of Technology |
| | 248 | % |
| | 249 | % IDL conversion by Helmut Schottmueller, September 1995, |
| | 250 | % Institute for environmental physics, University of Bremen |
| | 251 | % |
| | 252 | % Matlab conversion by Michael P. Schodlok, December 2003, |
| | 253 | % Alfred Wegener Institute for Polar and Marine Research, Bremerhaven |
| | 254 | % |
| | 255 | % Error correction for RHO: 1997-11-03 by LML |
| | 256 | %==================================================================================== |
| | 257 | |
| | 258 | %------------- |
| | 259 | % CHECK INPUTS |
| | 260 | %------------- |
| | 261 | if nargin ~= 3 |
| | 262 | error('map2ll.m: must pass 3 parameters lat, lon, hemisphere') |
| | 263 | end %if |
| | 264 | |
| | 265 | % CHECK lat,lon,hems dimensions and verify consistent |
| | 266 | [ma,na] = size(x); |
| | 267 | [mb,nb] = size(y); |
| | 268 | [mc,nc] = size(sgn); |
| | 269 | |
| | 270 | % CHECK THAT lat & lon HAVE SAME SHAPE |
| | 271 | if (ma~=mb) | (na~=nb) |
| | 272 | error('check dims: lat & lon must have same dimensions') |
| | 273 | end %if |
| | 274 | |
| | 275 | % CHECK THAT sgn IS A SCALAR |
| | 276 | if (mc~=1 & np~=1 ) |
| | 277 | error('check sgn: sgn is either 1 or -1') |
| | 278 | end %if |
| | 279 | |
| | 280 | |
| | 281 | %====== |
| | 282 | % BEGIN |
| | 283 | %====== |
| | 284 | |
| | 285 | |
| | 286 | % Conversion constant from degrees to radians |
| | 287 | cde = 57.29577951; |
| | 288 | % Standard latitude for the SSM/I grid with no distorsion |
| | 289 | slat = 70.; |
| | 290 | % Radius of the earth in kilometers |
| | 291 | re = 6378.273; |
| | 292 | % Eccentricity of the Hughes ellipsoid squared |
| | 293 | ex2 = .006693883; |
| | 294 | % Eccentricity of the Hughes ellipsoid |
| | 295 | ex = sqrt(ex2); |
| | 296 | |
| | 297 | if sgn == 1 |
| | 298 | delta = 45.; |
| | 299 | else |
| | 300 | delta = 0.0; |
| | 301 | end %if |
| | 302 | |
| | 303 | |
| | 304 | sl = slat*pi/180.; |
| | 305 | rho = sqrt(x.^2 + y.^2); |
| | 306 | cm = cos(sl) / sqrt(1.0 - ex2 * (sin(sl)^2)); |
| | 307 | T = tan((pi / 4.0) - (sl / 2.0)) / ((1.0 - ex * sin(sl)) / (1.0 + ex * sin(sl)))^(ex / 2.0); |
| | 308 | |
| | 309 | if abs(slat-90.) < 1.e-5 |
| | 310 | T = rho * sqrt((1. + ex)^(1. + ex) * (1. - ex)^(1. - ex)) / 2. / re; |
| | 311 | else |
| | 312 | T = rho * T / (re * cm); |
| | 313 | end %if |
| | 314 | |
| | 315 | chi = (pi / 2.0) - 2.0 * atan(T); |
| | 316 | lat = chi + ((ex2 / 2.0) + (5.0 * ex2^2.0 / 24.0) + (ex2^3.0 / 12.0)) * ... |
| | 317 | sin(2 * chi) + ((7.0 * ex2^2.0 / 48.0) + (29.0 * ex2^3 / 240.0)) * ... |
| | 318 | sin(4.0 * chi) + (7.0 * ex2^3.0 / 120.0) * sin(6.0 * chi) ; |
| | 319 | |
| | 320 | lat = sgn * lat; |
| | 321 | lon = atan2(sgn * x,-sgn * y); |
| | 322 | lon = sgn * lon; |
| | 323 | |
| | 324 | [res1,res2] = find(rho <= 0.1); |
| | 325 | if res1 |
| | 326 | lat(res1,1) = 90. * sgn; |
| | 327 | lon(res1,1) = 0.0; |
| | 328 | end %if |
| | 329 | |
| | 330 | lon = lon * 180. / pi; |
| | 331 | lat = lat * 180. / pi; |
| | 332 | lon = lon - delta; |
| | 333 | |
| | 334 | return |
| | 335 | %========================================================================= |
| | 336 | |
| | 337 | }}} |
| | 338 | |
| | 339 | |