| 89 | |
| 90 | |
| 91 | == stereographic conversion part 1 == |
| 92 | |
| 93 | {{{ |
| 94 | #!m |
| 95 | function [x,y] = map2ll(lat,lon,sgn) |
| 96 | % |
| 97 | % NAME: map2ll |
| 98 | %=============================================================================== |
| 99 | % |
| 100 | % USAGE: [x,y] = map2ll(lat,lon,sgn) |
| 101 | % |
| 102 | % DESCRIPTION: |
| 103 | % Converts from geodetic latitude and longitude to Polar |
| 104 | % Stereographic (X,Y) coordinates for the polar regions. |
| 105 | % |
| 106 | % INPUT: |
| 107 | % Lat = Geodetic Latitude (degrees, +90 to -90) |
| 108 | % Lon = Geodetic Longitude (degrees, 0 to 360) |
| 109 | % SGN = Sign of latitude |
| 110 | % +1 : north latitude |
| 111 | % -1 : south latitude |
| 112 | % |
| 113 | % |
| 114 | % OUTPUT: X = Polar Stereographic X Coordinate (km) |
| 115 | % Y = Polar Stereographic Y Coordinate (km) |
| 116 | % |
| 117 | % |
| 118 | % AUTHOR: The original equations are from Snyder, J. P., |
| 119 | % 1982, Map Projections Used by the U.S. Geological Survey, |
| 120 | % Geological Survey Bulletin 1532, U.S. Government Printing |
| 121 | % Office. See JPL Technical Memorandum 3349-85-101 for |
| 122 | % further details. |
| 123 | % |
| 124 | % Original FORTRAN program written by C. S. Morris, |
| 125 | % April 1985, Jet Propulsion Laboratory, California |
| 126 | % Institute of Technology |
| 127 | % |
| 128 | % IDL conversion by Helmut Schottmueller, September 1995, |
| 129 | % Institute for environmental physics, University of Bremen |
| 130 | % |
| 131 | % Matlab conversion by Michael P. Schodlok, December 2003, |
| 132 | % Alfred Wegener Institute for Polar and Marine Research, Bremerhaven |
| 133 | % |
| 134 | % Error correction for RHO: 1997-11-03 by LML |
| 135 | %==================================================================================== |
| 136 | |
| 137 | %------------- |
| 138 | % CHECK INPUTS |
| 139 | %------------- |
| 140 | if nargin ~= 3 |
| 141 | error('map2ll.m: must pass 3 parameters lat, lon, hemisphere') |
| 142 | end %if |
| 143 | |
| 144 | % CHECK lat,lon,hems dimensions and verify consistent |
| 145 | [ma,na] = size(lat); |
| 146 | [mb,nb] = size(lon); |
| 147 | [mc,nc] = size(sgn); |
| 148 | |
| 149 | % CHECK THAT lat & lon HAVE SAME SHAPE |
| 150 | if (ma~=mb) | (na~=nb) |
| 151 | error('check dims: lat & lon must have same dimensions') |
| 152 | end %if |
| 153 | |
| 154 | % CHECK THAT sgn IS A SCALAR |
| 155 | if (mc~=1 & np~=1 ) |
| 156 | error('check sgn: sgn is either 1 or -1') |
| 157 | end %if |
| 158 | |
| 159 | |
| 160 | %====== |
| 161 | % BEGIN |
| 162 | %====== |
| 163 | |
| 164 | |
| 165 | % Conversion constant from degrees to radians |
| 166 | cde = 57.29577951; |
| 167 | % Standard latitude for the SSM/I grid with no distorsion |
| 168 | slat = 70.; |
| 169 | % Radius of the earth in kilometers |
| 170 | re = 6378.273; |
| 171 | % Eccentricity of the Hughes ellipsoid squared |
| 172 | ex2 = .006693883; |
| 173 | % Eccentricity of the Hughes ellipsoid |
| 174 | ex = sqrt(ex2); |
| 175 | |
| 176 | if sgn == 1 |
| 177 | delta = 45.; |
| 178 | else |
| 179 | delta = 0.0; |
| 180 | end %if |
| 181 | |
| 182 | latitude = abs(lat) * pi/180.; |
| 183 | longitude = (lon + delta) * pi/180.; |
| 184 | |
| 185 | % compute X and Y in grid coordinates. |
| 186 | T = tan(pi/4-latitude/2) ./ ((1-ex*sin(latitude))./(1+ex*sin(latitude))).^(ex/2); |
| 187 | |
| 188 | if (90 - slat) < 1.e-5 |
| 189 | rho = 2.*re*T/sqrt((1.+ex)^(1.+ex)*(1.-ex)^(1.-ex)); |
| 190 | else |
| 191 | sl = slat*pi/180.; |
| 192 | tc = tan(pi/4.-sl/2.)/((1.-ex*sin(sl))/(1.+ex*sin(sl)))^(ex/2.); |
| 193 | mc = cos(sl)/sqrt(1.0-ex2*(sin(sl)^2)); |
| 194 | rho = re*mc*T/tc; |
| 195 | end % if |
| 196 | |
| 197 | |
| 198 | y = -rho .* sgn .* cos(sgn.*longitude); |
| 199 | x = rho .* sgn .* sin(sgn.*longitude); |
| 200 | |
| 201 | [cnt1,cnt2] = find(latitude >= pi / 2.); |
| 202 | |
| 203 | if cnt1 |
| 204 | x(cnt1,1) = 0.0 |
| 205 | y(cnt1,1) = 0.0 |
| 206 | end %if |
| 207 | |
| 208 | return |
| 209 | %========================================================================= |
| 210 | |
| 211 | }}} |
| 212 | |
| 213 | == stereographic conversion part 2 == |
| 214 | |
| 215 | function [lat,lon] = map2xy(x,y,sgn) |
| 216 | % |
| 217 | % NAME: map2xy |
| 218 | %=============================================================================== |
| 219 | % |
| 220 | % USAGE: [lat,lon] = map2xy(x,y,sgn) |
| 221 | % |
| 222 | % DESCRIPTION: |
| 223 | % Converts from geodetic latitude and longitude to Polar |
| 224 | % Stereographic (X,Y) coordinates for the polar regions. |
| 225 | % |
| 226 | % INPUT: |
| 227 | % X = Polar Stereographic X Coordinate (km) |
| 228 | % Y = Polar Stereographic Y Coordinate (km) |
| 229 | % SGN = Sign of latitude |
| 230 | % +1 : north latitude |
| 231 | % -1 : south latitude |
| 232 | % |
| 233 | % |
| 234 | % OUTPUT: |
| 235 | % Lat = Geodetic Latitude (degrees, +90 to -90) |
| 236 | % Lon = Geodetic Longitude (degrees, 0 to 360) |
| 237 | % |
| 238 | % |
| 239 | % AUTHOR: The original equations are from Snyder, J. P., |
| 240 | % 1982, Map Projections Used by the U.S. Geological Survey, |
| 241 | % Geological Survey Bulletin 1532, U.S. Government Printing |
| 242 | % Office. See JPL Technical Memorandum 3349-85-101 for |
| 243 | % further details. |
| 244 | % |
| 245 | % Original FORTRAN program written by C. S. Morris, |
| 246 | % April 1985, Jet Propulsion Laboratory, California |
| 247 | % Institute of Technology |
| 248 | % |
| 249 | % IDL conversion by Helmut Schottmueller, September 1995, |
| 250 | % Institute for environmental physics, University of Bremen |
| 251 | % |
| 252 | % Matlab conversion by Michael P. Schodlok, December 2003, |
| 253 | % Alfred Wegener Institute for Polar and Marine Research, Bremerhaven |
| 254 | % |
| 255 | % Error correction for RHO: 1997-11-03 by LML |
| 256 | %==================================================================================== |
| 257 | |
| 258 | %------------- |
| 259 | % CHECK INPUTS |
| 260 | %------------- |
| 261 | if nargin ~= 3 |
| 262 | error('map2ll.m: must pass 3 parameters lat, lon, hemisphere') |
| 263 | end %if |
| 264 | |
| 265 | % CHECK lat,lon,hems dimensions and verify consistent |
| 266 | [ma,na] = size(x); |
| 267 | [mb,nb] = size(y); |
| 268 | [mc,nc] = size(sgn); |
| 269 | |
| 270 | % CHECK THAT lat & lon HAVE SAME SHAPE |
| 271 | if (ma~=mb) | (na~=nb) |
| 272 | error('check dims: lat & lon must have same dimensions') |
| 273 | end %if |
| 274 | |
| 275 | % CHECK THAT sgn IS A SCALAR |
| 276 | if (mc~=1 & np~=1 ) |
| 277 | error('check sgn: sgn is either 1 or -1') |
| 278 | end %if |
| 279 | |
| 280 | |
| 281 | %====== |
| 282 | % BEGIN |
| 283 | %====== |
| 284 | |
| 285 | |
| 286 | % Conversion constant from degrees to radians |
| 287 | cde = 57.29577951; |
| 288 | % Standard latitude for the SSM/I grid with no distorsion |
| 289 | slat = 70.; |
| 290 | % Radius of the earth in kilometers |
| 291 | re = 6378.273; |
| 292 | % Eccentricity of the Hughes ellipsoid squared |
| 293 | ex2 = .006693883; |
| 294 | % Eccentricity of the Hughes ellipsoid |
| 295 | ex = sqrt(ex2); |
| 296 | |
| 297 | if sgn == 1 |
| 298 | delta = 45.; |
| 299 | else |
| 300 | delta = 0.0; |
| 301 | end %if |
| 302 | |
| 303 | |
| 304 | sl = slat*pi/180.; |
| 305 | rho = sqrt(x.^2 + y.^2); |
| 306 | cm = cos(sl) / sqrt(1.0 - ex2 * (sin(sl)^2)); |
| 307 | T = tan((pi / 4.0) - (sl / 2.0)) / ((1.0 - ex * sin(sl)) / (1.0 + ex * sin(sl)))^(ex / 2.0); |
| 308 | |
| 309 | if abs(slat-90.) < 1.e-5 |
| 310 | T = rho * sqrt((1. + ex)^(1. + ex) * (1. - ex)^(1. - ex)) / 2. / re; |
| 311 | else |
| 312 | T = rho * T / (re * cm); |
| 313 | end %if |
| 314 | |
| 315 | chi = (pi / 2.0) - 2.0 * atan(T); |
| 316 | lat = chi + ((ex2 / 2.0) + (5.0 * ex2^2.0 / 24.0) + (ex2^3.0 / 12.0)) * ... |
| 317 | sin(2 * chi) + ((7.0 * ex2^2.0 / 48.0) + (29.0 * ex2^3 / 240.0)) * ... |
| 318 | sin(4.0 * chi) + (7.0 * ex2^3.0 / 120.0) * sin(6.0 * chi) ; |
| 319 | |
| 320 | lat = sgn * lat; |
| 321 | lon = atan2(sgn * x,-sgn * y); |
| 322 | lon = sgn * lon; |
| 323 | |
| 324 | [res1,res2] = find(rho <= 0.1); |
| 325 | if res1 |
| 326 | lat(res1,1) = 90. * sgn; |
| 327 | lon(res1,1) = 0.0; |
| 328 | end %if |
| 329 | |
| 330 | lon = lon * 180. / pi; |
| 331 | lat = lat * 180. / pi; |
| 332 | lon = lon - delta; |
| 333 | |
| 334 | return |
| 335 | %========================================================================= |
| 336 | |
| 337 | }}} |
| 338 | |
| 339 | |