Changes between Version 36 and Version 37 of coding_rules
- Timestamp:
- 08/21/20 17:09:00 (5 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
coding_rules
v36 v37 139 139 ||= '''MATLAB''' =||= '''!NumPy''' =||= '''Notes''' =|| 140 140 || `<<cell_array>>{:}` || `<<np.ndarray>>.flatten()` || Flatten a MATLAB cell array or !NumPy `ndarray`. || 141 || `find(a>0.5)` || `np.where(a>0.5)[0]` || Find the indices where (a > 0.5).[[BR]][[BR]]When only the {{{condition}}} parameter is provided, this function is a shorthand for `np.asarray(condition).nonzero()`.[[BR]][[BR]]See also: [https://numpy.org/doc/stable/reference/generated/numpy.where.html | numpy.where - NumPy][[BR]][[BR]]NOTE:[[BR]]-`a` must be of type `np.array` (or one of its subclasses): a {{{list}}} will not automatically be cast.[[BR]]-Returns a tuple of arrays of indices, one for each dimension of the input array. Thus, when the input array is 1D, the indices can be retrieved simply by addressing the first element of the result (as in the example). ||141 || `find(a>0.5)` || `np.where(a>0.5)[0]` || Find the indices where (a > 0.5).[[BR]][[BR]]When only the {{{condition}}} parameter is provided, this function is a shorthand for `np.asarray(condition).nonzero()`.[[BR]][[BR]]See also: [https://numpy.org/doc/stable/reference/generated/numpy.where.html numpy.where - NumPy][[BR]][[BR]]NOTE:[[BR]]- `a` must be of type `np.array` (or one of its subclasses): a {{{list}}} will not automatically be cast.[[BR]]- Returns a tuple of arrays of indices, one for each dimension of the input array. Thus, when the input array is 1D, the indices can be retrieved simply by addressing the first element of the result (as in the example). || 142 142 || `find('cond1'&'cond2')` || `np.where(np.logical_and.reduce(('cond1','cond2'))[0]` || Find the indices where `'cond1'` and `'cond2'` are met.[[BR]][[BR]]The same protocol can be followed for MATLAB's `|` by instead using `logical_or`.[[BR]][[BR]]More than two conditions may be compounded. || 143 143 || `v=nonzeros(A)` || `v=A[np.nonzero(A)]` || Find the values of the nonzero elements ||