ROSETTA: The Compile-Time Recognition Of
Object-Oriented Library Abstractions And Their Use Within
Applications -

Dan Quinlan and Bobby Philip
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

dquinlan,bobbyp@Iinl.gov

ABSTRACT

Object-oriented libraries arise naturally from the increas-
ing complexity of developing related scientific applications.
The optimization of the use of libraries within scientific ap-
plications is one of many high-performance optimizations,
and is the subject of this paper. This type of optimization
can have significant potential because it can either reduce
the overhead of calls to a library, specialize the library calls
given the context of their use within the application, or use
the semantics of the library calls to locally rewrite sections
of the application. This type of optimization is only now
becoming an active area of research. The optimization of
the use of libraries within scientific applications is particu-
larly attractive because it maps to the extensive use of li-
braries within numerous large existing scientific applications
sharing common problem domains. This paper presents an
object-oriented library, ROSETTA, as a mechanism to de-
termine where within an application a source-to-source pre-
processor can introduce performance optimizations.

ROSE][1] is a tool for building source-to-source preproces-
sors, ROSETTA is a tool for defining the grammars used
within ROSE. The definition of the grammars directly de-

termines what can be recognized at compile time. ROSETTA

permits grammars to be automatically generated which are
specific to the identification of abstractions introduced within
object-oriented libraries. Thus the semantics of complex
abstractions defined outside of the C++ language can be
leveraged at compile time to introduce library specific opti-
mizations. The details of the optimizations performed are
not a part of this paper and are up to the library developer
to define using ROSETTA and ROSE to build such an opti-

mizing preprocessor. Within performance optimizations, if

*This work was performed under the auspices of the U.S.
Department of Energy by University of California Lawrence
Livermore National Laboratory under contract No. W-7405-
Eng-48.

they are to be automated, the problems of automatically lo-
cating where such optimizations can be done are significant
and most often overlooked. Note that a novel part of this
work is the degree of automation. Thus library developers
can be expected to be able to build their own specialized
compilers with a minimal compiler background. The result-
ing compilers don’t extend the C++ language, but only ex-
tend the compiler’s ability to recognize and leverage the use
of user-defined library abstractions within an application to
perform optimizations.

For completeness, an example optimizing preprocessor for an
array class library is included to demonstrate the complete
use of ROSETTA and ROSE to build an optimizing pre-
processor. To demonstrate the overall technique we include
some performance results showing the effective optimization
of an application using a preprocessor built from the output
of ROSETTA and using a transformation specific to an
array class library. These results combine the use of the
recognition techniques presented in this paper with those of
a preprocessor-based transformation approach. The specifi-
cation of transformations and the details of the construction
of full preprocessors is outside the scope of this short paper,
however the details of the compiler infrastructure we are
using can be found in ROSE [1].

1. INTRODUCTION

To application programmers the use of a library to provide
new abstractions might appear to provide a language ex-
tension specific to the application domain targeted by the
library’s designer. With an object-oriented language the ab-
stractions provided within the library can be endowed with
significant syntactic sugar (function overloading) so as to
make them largely indistinguishable from an additional lan-
guage feature (such as a new type). Such object-oriented
libraries are however not extensions of the language for one
essential reason; the C++ compiler does not recognize or
optimize the library’s abstractions. The reason for this is
that there is no mechanism to communicate the library’s
abstractions to the typical C4++ compiler. Thus no mech-
anism exists to introduce optimizations that are specific to
a library’s abstraction. A C++ language compilation ap-
proach that would permit library writers to communicate
the optimizations associated with the abstractions within
their libraries would complete the essential step in permit-
ting object-oriented libraries to be considered as equivalent

to language extensions (or would at least muddy the wa-
ter). This paper presents an essential piece of this work to
open up the development of C++ compilers so as to per-
mit object-oriented library/framework developers (instead
of only compiler writers) to build portable and easily main-
tained compilers that are capable of optimizing the abstrac-
tions represented by their libraries. We believe that this
work is a critical part of future performance optimization
for object-oriented libraries.

We define a mechanism to build preprocessors to automate
the optimization of applications containing user-defined ab-
stractions via source-to-source transformations. Clearly not
all optimizations are appropriate for introduction via source-
to-source transformation, but such an approach is intended
to be complementary to a vendor’s C++ compiler, which is
relied upon for all lower level optimizations. This paper will
present a powerful mechanism to represent a critical phase
of that work; automatically recognizing the use of complex
object-oriented abstractions at compile-time. Our approach
extends well beyond the tedious limits of pattern match-
ing and automates the construction of whole grammars and
parsers to re-represent the program’s abstract syntax tree
(AST) within the compiler. The resulting ASTs using the
generated grammars are dramatically simplified since they
explicitly identify language elements (expressions and state-
ments) specific to the user defined object-oriented abstrac-
tions. Typically such object-oriented abstractions are made
available in object-oriented libraries or frameworks, so in
this way our approach is well suited to the optimization of
applications using such libraries.

The following sections in the paper detail ROSETTA, its
implementation and how it leverages existing projects par-
ticularly the EDG C++ front-end and a modified version
of the SAGE II source code restructuring tool. In further
sections we describe some of the important features. We
present some performance results from the use of this recog-
nition approach within ROSE and finish with conclusions
about its use.

2. AMOTIVATING EXAMPLE

To make the discussion within the paper as concrete and
easily understood as possible, we will use a motivating ex-
ample from the A++/P++ array class library[13] and define
our grammars to optimize this example. ROSETTA, and
ROSE, are not at all specific to this or any other specific ex-
ample. However, both ROSETTA, and ROSE, are being
used to optimize the performance of the A++/P++ array
class libraries.

Within our motivating example we consider the following
trivial five-point stencil array operation:

floatArray A(100,100);
floatArray B(100,100);
Range I(1,98),J(1,98);
A(I,J) = B(I-1,J)+B(I+1,J)+B(I,J)+B(I,J+1)+B(I,J+1);

In this code fragment, A and B are multidimensional array
objects, floatArray. A4+ is a serial array class library,
P++ is a parallel array class; data in the arrays are dis-

tributed across multiple processors if P4+ is used. The two
libraries share an identical interface. In this example, I and
J are Range objects that together specify an two dimensional
index space of the arrays A and B.

3. ROSETTA

ROSETTA is a tool developed for the manipulation and
construction of grammars. It permits a C++4 Meta-program
to be defined which, when executed, builds tools like Sage
II [8] from the user’s manipulation of the C++4 grammar
(using the ROSETTA object-oriented library). Specifically,
elements of SAGE II source code form the definition of
the C++ grammar’s implementation within ROSETTA.
ROSETTA is not specific to C++ in any way, but is used
currently for the development of the C++4 grammar and
higher level grammars that include user defined types, state-
ments, expressions, etc. It is not a novel part of this work
to have defined a mechanism to generate SAGE II, modified
or not. The novel aspect of this research is that higher-
level grammars can be automatically generated in addition
to the modified SAGE II. This paper presents ROSETTA
as the mechanism by which critical parts of a final prepro-
cessor are customized for a framework’s abstractions; and
automatically generated. Aspects of the infrastructure for
building the actual preprocessor are presented in ROSE [1].

3.1 Building Grammars

For our purposes, a specification of a grammar is a set
of product rules expressed in terms of terminals and non-
terminals to define a language’s constituent elements. BNF
notation is a common form for the expression of such rules.
ROSETTA represents a class library of terminals and non-
terminals used to define a grammar. To each grammatical
element (terminal or nonterminal object) in the ROSETTA
application we associate source code. When the Meta-level
application using the ROSETTA library is executed it pro-
duces source code which can be used to build an AST.
ROSETTA’s automatically generated parsers permit the cre-
ation of higher-level ASTs automatically from the lower level
C++ grammar’s AST (parsing from EDG’s AST is provided
as part of ROSE and Sage II). The hierarchy of classes rep-
resented by this source code is what we consider to be the
implementation of the grammar. The default behavior is to
build the SAGE II library (in a modified form) representing
an implementation of classes defining the C++ grammar.

3.1.1 Building the C++ Grammar

It is relatively trivial (but lengthy) to define the C++ gram-
mar in terms of terminals and nonterminals and associate
with the terminals and nonterminals source code that im-
plements those objects. The default grammar is the C++
grammar and the source code associated with it is essen-
tially a modified form of the SAGE II source code (though
automatically generated). We consider an implementation
of the grammar to be a library of classes representing the
different language elements defined by a grammar (all possi-
ble statements, expressions, types, symbols, etc.). We use a
modified form of the Sage II library as the implementation
of the C++ grammar, but other libraries that implement
grammars and form the basis of different sorts of compiler
tools exist[6, 5].

// Examples of grammatical elements for "C++" Grammar
Grammar Cxx("C++");

// Construction of Terminal objects for "C++" grammar
Grammar: :Terminal AssignOp ("AssignOp","C++");
Grammar: :Terminal AddOp ("AddOp","C++");

Grammar: :Terminal SubtractOp ("SubtractOp","C++");
Grammar: : Terminal MultiplyOp ("MultiplyOp","C++");
Grammar: : Terminal DivideOp ("DivideOp","C++");

// Construction of NonTerminal objects for "C++" grammar
Grammar: :NonTerminal BinaryOp ("C++");
BinaryOp = AssignOp | AddOp | SubtractOp |
MultiplyOp | DivideOp | AndOp | OrOp;

Figure 1: Example Meta-Program specification
of Terminal and NonTerminal objects for ”"C++4”
grammar. The Grammar object’s default construc-
tor alternatively can be used to build the C++
grammar eliminating explicit declaration of termi-
nals and non-terminals for the C4++4 grammar’s def-
inition.

Figure 1 shows examples of the declaration of terminals and
non-terminals associated with an example ” C++” grammar.
To the specifications of these terminals and non-terminals
we can add source code (not shown) to represent the im-
plementation of the grammar (code that will be generated
upon execution of the C++ Meta-program). In the case
of the C++ grammar, all terminals and non-terminals are
specified as part of the default grammar. A modified form
of the SAGE II source is associated with the terminals and
non-terminals as appropriate to force the modified version
of SAGE II to be generated automatically upon execution
of the C++ Meta-program.

The C++ grammar is not modified in any way to be spe-
cific to our motivating array example, but the higher level
grammar will be made specific to the array object abstrac-
tions within the A++/P++ array class library. A high-
level abstraction specific grammar is one which will identify
and classify the use of a user defined abstraction (defined
most often by the library writer), it’s member functions,
within expressions and statements; its implementation per-
mits the definition of a new AST where the object-oriented
abstractions are specifically identified. In the case of an ar-
ray grammar, the implementation would include terminals
and non-terminals organized to be either related to expres-
sions and statements that are specific to array objects (and
associated with an array class library) or unrelated and rep-
resenting general C++ expressions and statements. Specific
elements of the grammar would exist for the recognition of
array declarations, array assignment statements, array ad-
dition operators, etc.

Figure 2 shows a simplified representation of the class hi-
erarchy associated with the C++ grammar as defined us-
ing ROSETTA. The actual hierarchy of classes within the
C++ grammar would include several hundred or more ad-
ditional classes to represent all the specific operators etc.
(terminals and non-terminals within the definition of the
grammar). It is not practical within these figures to repre-
sent the full complexity of the C++ grammar or the higher

Roonf
Grammar

pointetype

i

expressions

valuexpression @

Binar;apera(or scopstatement
Unargperator
functiotypéable
‘
- - Expressiostatement
Tiionabpression——>
— - Declaratiostatement
onditionaxpression
returstatement
deletexpression othestatements

Figure 2: A simplified representation of the class
hierarchy of classes representing the C+4++4 grammar.

level grammars which we additionally build.

3.1.2 Building Higher Level Grammars

Figure 4 shows examples of the declaration of terminals and
non-terminals associated with an example ”Array” gram-
mar. To simplify the figures we will associate the letter X
with the array object and build an X grammar. Clearly X
could stand for any library abstraction. Figure 3 shows the
modification of the corresponding simplified C++ grammar
to build a higher-level grammar specific to a user-defined
abstraction, X, note that the grammar includes X types,
X statements, and X expressions. An AST built with this
grammar clearly identifies language elements based on the
X abstraction. As in the C++ grammar previously, in the
actual X grammar a few hundred additional terminals and
non-terminals must be added to address the full complex-
ity of the C++ language (the full hierarchy of the classes
defining the grammars would make the figures overly com-
plex). Within the AST defined by the higher level gram-
mars, searching for X statements for an arbitrary user de-
fined abstraction, X, is simple because of the natural clas-
sification that results from the reorganization of the C++
AST into an AST.

Since higher-level grammars use the same source code base
for their generated code, the explicit re-specification is not
required except to add additional terminals and non-terminals
to define the higher level grammar. In our motivating array
class example we define the array grammar with respect to
the C++ grammar and using a system of constraints. For
example, the array user-defined type is represented in the
array grammar by a C++ grammar’s class type combined
with a constraint that the name of the user-defined type was
7 Array”. Additionally, within the array grammar we add as
new terminals and non-terminals the public member func-
tions of the array objects so that they could be identified
as formal elements of the array grammar within expressions

Rooof
Grammar

\ pointetype
"

Noéxpressions xxpressions
valuexpression Xaluexpression

binargperators

initializer expression

expressions

>
8
X
k=
=
@
[%2]
@.
<]
=]
——

deletexpression

Novstatements
Xinargperators

N> e >

Xtatements
scopstatement < copstatement
:‘t‘ functiotypeable Xunctiotypeable

ionabresior
Xonditiona#xpression N AGeclaratiostatement declaratiostatement

L
L

< ewxpression returstatement Xeturstatement
Xeletexpression

= othestatements otheXtatements
othe¥xpressions

Figure 3: A simplified representation of the class hierarchy of classes representing the higher-level grammar

associated with a user-defined X abstraction.

// Examples of grammatical elements for "Array" Grammar
Grammar Array("Array");

// Construction of Terminal objects for "Array" grammar
Grammar: :Terminal ArrayAssignOp ("ArrayAssignOp","Array");
Grammar: :Terminal ArrayAddOp ("ArrayAddOp","Array");
Grammar: :Terminal ArraySubtractOp ("ArraySubtractOp","Array");
Grammar: :Terminal ArrayMultiplyOp ("ArrayMultiplyOp","Array");

Grammar: :Terminal ArrayDivideOp ("ArrayDivideOp","Array");

// Construction of NonTerminal objects for "Array" grammar
Grammar: :NonTerminal ArrayBinaryOp ("Array");
ArrayBinaryOp = ArrayAssignOp | ArrayAddOp |

ArraySubtractOp | ArrayMultiplyOp
ArrayDivideOp | ArrayAndOp | ArrayOrOp;

Figure 4: Example Meta-Program specification of
Terminal and NonTerminal objects for ”Array”
grammar. Alternatively, higher level mechanisms
in ROSETTA can automatically generate equivalent
code from a class definition for the ” Array” object.

and statements and be clearly represented within the AST
associated with the array grammar. Such specification of
additional terminals and non-terminals can be automated
from the class definition (the header file) which is parsed
and known at runtime of the C++ Meta-program. The pro-
cess means that grammars can be automatically generated
from class definitions. This greatly simplifies the construc-
tion of library specific grammars.

Thus far we have shown how to build an X grammar for
the array object, but a separate one should be considered to
be built for the Range object so that it too, as an the array
class abstraction, can be recognized at compile-time.

3.2 Connections between Grammars

Figure 5 shows how the individual grammars are connected
in a sequence of steps; automatically generated parsers parse
lower level grammars into higher level grammars. The initial
AST using the C++ grammar is built by the EDG front-end
from a C++ application code. The following describes the
steps:

1. The first step generates the EDG AST, this program
tree has a proprietary interface and is parsed in the
second step to form the C++ Grammar’s AST.

The C++ Grammar is generated by ROSETTA and is
essentially comformant with the SAGE IT implementa-
tion. This second step is representative of what SAGE
IT provides and presents the AST in a form where it
can be modified with a non- proprietary public inter-
face. At this second step the original EDG AST is
deleted and afterwards is unavailable.

[\

w

The third step is the most interesting since at this
step the C++ Grammar’s AST is parsed into higher
level grammars. Each parent grammar (lower level
grammar) parses itself into all of its child grammars so
that the hierarchy of grammars is represented by corre-
sponding ASTs (one for each grammar). Transforma-
tions can be applied at any stage of this third step and

=

v

EDE&++
FrorEnd

ED@\bstract

Step SyntaXree

—

SteB | | Tk oymion
Ee)
— _/
v
ROSETTAigh ROSETTAlighevel
LeveBrammars AbstrackyntaXrees

Sted

F‘SHIR\

ﬁhﬁﬁ

J

y

Steg

ROSE C+€od&eneratofUnparser)

Figure 5: The connection of grammars (and parsers) representing the EDG front-end, SAGE and higher-level

abstraction specific grammars built by ROSETTA.

modify the parent AST recursively until the AST as-
sociated with the original C++ grammar is modified.
At this point, an AST has been built using the Array
and Range grammars (X Grammars), which is specific
to the Array and Range objects contained within the
A++/P++ array class library. The X Grammar AST
not only identifies all Array and Range objects, but
more importantly identifies all Array and Range ex-
pressions and Array and Range statements. For state-
ment by statement optimizations Array and Range state-
ments can now be easily recognized by traversing the
AST. At the end of this third step all transformations
associated with Array statements have been applied.

4. The fourth step is simply to unparse the AST associ-
ated with the C++ AST to generate optimized C++
source code. This completes the source-to-source pre-
processing.

An obvious next and final final step is to compile the result-
ing optimized C++ source code using the vendor’s C++
compiler.

3.3 Connection to ROSE

ROSE provides for the specification of transformations and
the automated introduction of such transformations into ap-
plication source code. More information specific to ROSE
can be found in [1]. The coupling of ROSETTA with
ROSE provides the more complete source-to-source opti-

mization mechanism with which to introduce library /framework

or architecture dependent optimizations.

3.4 The Meta-program Leve

A Meta-program level is used to build the source code that
will be compiled to be the preprocessor; the Meta-program
is a simple C++ program. The Meta-program specifically
defines the construction and manipulation of grammars us-
ing the ROSETTA library and the Backus Naur Form
(BNF) like abstractions within ROSETTA. The output of
the Meta-program, when it is executed, is itself source code
(written to two files). This resulting source code is com-
piled, with the ROSE infrastructure, to form a preprocessor
specific to a given framework. The Meta-program can au-
tomatically generate a lot of source code, typically 200,000
lines, but it can be compiled in under a minute and once
built into a preprocessor, by the library developer, need not
be recompiled by application developers.

4. IMPLEMENTATION

The implementation of ROSETTA builds upon SAGE II [8],
which is built upon the Edison Design Group (EDG) C++
front-end. Our work has been greatly simplified by access
to these two tools. ROSETTA uses a modified form of the
SAGE II which we have developed. The purpose was to

e Permit the automate generation of what is essentially
a modified version of SAGE II

e Maintain the SAGE II source code (so that we can
fix minor bugs and make additions (templates, and
support for new C++ features as supported by EDG))

e Introduce the use of STL (as an outside library) into
the design of SAGE II

e Remove as many asymmetries from the implementa-
tion of SAGE II so that the generation of the code
could be simplified.

e Modify the SAGE II source to permit it to be used as
a basis for all higher level grammars. This required
naming the classes so that multiple grammars could
coexist (to build hierarchies of grammars) in the same
source-to-source compiler.

While using SAGE II as a basis for the grammars that
ROSETTA generates, ROSETTA adds the significant capa-
bility to define grammars at the level of BNF notation. C++
classes are used to represent terminals and non-terminals
and whole grammars.

5. RESULTS

We have built high level grammars and used them to rec-
ognize and classify the use of user defined abstractions with
numerous applications. The approach is particularly simple
since the grammars can be built automatically from the li-
brary header files where the abstractions (C++ classes) are
defined. Some additional information is required if numer-
ous default definitions are to be overridden. It is not possible
within this paper to present the ASTs for the higher level
grammars since graphs as complex as these are difficult to
visualize and we currently lack mechanisms for their presen-
tation except for debugging purposes. At present we have
processed approximately 1.5 Million lines of code through
the tools built by ROSETTA. Current work has been to
expand the complexity and quantity of source code being
used as tests within this research work.

The most important use of this work has been in combina-
tion with other mechanisms within ROSE. Using grammars
built by ROSETTA, and in conjunction with ROSE, full
optimizing preprocessors have been built to optimize the
performance of the A++/P++ array class library. Signifi-
cant speedups were obtained depending on the array sizes;
final performance matched that of C and FORTRAN per-
formance.

Figure 6 shows the range of performance associated with dif-
ferent size arrays for the simple five point stencil operator
(our motivating example) on the Sun Ultra machines. The
Sun Ultra was selected because it is a commonly available
computer, not because it represents an architecture with
specific peculiarities. The results are in no way specific to
this array statement, moderate and large size applications
have been processed using preprocessors built with ROSE.
The results compare the ratios of A4++ performance with
and without the use of the ROSE preprocessor to that of op-
timized C code. The optimized C code takes full advantage
of the bases of the arrays being identical and the unit strides,
the A4++ implementation does not, these very general sub-
script computations within the array class implementation
are compared to very specific and highly optimized sub-
script computations within the C code. Additionally, the
non-optimized A++ performance is encumbered by function
calls associated with the evaluation of the overloaded oper-
ators (operator+() and operator=() for the array objects A
and B and operator+() and operator-() for the Range I and
J objects). Our results show the relative difference that it

A++ Performance with and without ROSE
(Sun Ultra)

| A++ without ROSE/C |
| A++with ROSE/C |

%25%’:

N

-

4
¥

—

(VA%

Relative Performance to Optimized C

100 1000
Grid Size (each axis)

Figure 6: The use of a preprocessor (built using
ROSE) can overcome the performance degradation
associated with binary evaluation of array operands.
These results show the use of ROSE with A++4 and
how the performance matches that of optimized C
code using the restrict keyword (ratio = 1). It has
been shown previously that this is equal to Fortran
77 performance. More sophisticated cache-based
transformations are also possible.

makes to compare the optimized vs. non-optimized execu-
tion of array statements. The performance using ROSE is
nearly identical to that of the optimized C code (ratio = 1),
this is not surprising since the preprocessoor transformation
replaces the array statement with the mostly equivalent C
code (highly optimized, and using restrict pointers where
they are supported to yield the same performance as FOR-
TRAN 77).

6. RELATED WORK

A distinguishing feature of our work is that we automati-
cally generate domain-specific grammars for object-oriented
frameworks or applications. Such grammars include abstrac-
tions from object-oriented frameworks which are not a part
of the C++ grammar. These grammars are built on top of
the C++ grammar, using similar modified SAGE II source
code as for the C++ grammar. In contrast, other work
defines a single grammar representing the grammar of the
base language itself (nothing higher level or user-defined ab-
straction specific) MPC++[6], NESTOR/[5],SAGE[8]. As a
result ROSETTA not only builds the source code restruc-
turing tools specific to the C++ language (the base lan-
guage) but also source code restructuring tools specific to
the targeted domain-specific library/framework. This es-
sentially provides a customized library/framework specific
source code restructuring tool for the library/framework.

7. CONCLUSIONS

The use of object-oriented frameworks can often require or
benefit from compile-time optimization if the abstractions
are not sufficiently coarse grain and the context of the ab-
straction’s use is important to the optimization. Examples
include array class libraries (A++/P++, POOMA, Blitz,
etc.), matrix class libraries (MTL, TNT, etc.), and complex
grid geometry oriented frameworks like Overture[2]. This
is the case for numerous sorts of abstractions for which the
statements that use them consist of multiple expressions.

Alternatively, blocks of statements may benefit from opti-
mizations where their context relative to one another can
only be seen at compile time. Our approach is particularly
effective for array class libraries or higher level curvilinear
grid libraries that include more sophisticated mathematical
operators (e.g. div, grad, curl, laplacian, etc.). Examples
could be array class, matrix classes, particle classes, finite-
element classes, etc.

One of the limitations of this approach is that the construc-
tion of grammars through the constraining of the base level
language grammar (the C++ grammar) does not permit the
addition of new keywords to the C++ language. But this
is precisely a strength of our approach. We don’t
want to add new features to the base language or provide
a mechanism to simplify this. To do so would be to open
the compiler in a fashion that would permit applications
to be built that would rely upon specific language exten-
sions, this would be counter productive to the development
of portable standardized object-oriented libraries. Our goal
is restricted to the optimization of existing object-oriented
libraries/frameworks. Providing such a more sophisticated
mechanism to extend C++ would simplify the addition of
new keywords and language features but would be inconsis-
tent with the use of the existing EDG front-end and parser
from EDG to SAGE II. Such work would increase the com-
plexity of ROSETTA well beyond practical limits.

Since a library can not readily see the context of how its
elements are juxtaposed, only a compile-time tool can be
expected to discern the use of object-oriented abstractions
relative to one another within a user’s application. With
the abstract syntax tree (AST) exposed, clearly a relatively
simple pattern matching approach could be used to identify
the objects within an applications, but this is not enough
to be useful. To recognize where transformations can be
automatically introduced it is required that the use of the
object-oriented abstractions be identified and classified into
specific language/grammatical elements (expressions, state-
ments, types, symbols, etc.). With this level of detail the
AST is greatly simplified and can be traversed with the in-
tent of abstraction dependent optimization, syntax checking,
etc.

8. SPECIAL THANKS

We would like to thank the developers of the EDG front-end
and SAGE II upon whose work we have based our own work
for the last several years. Despite significant work to extend
Sage II for our own purposes, it has been a significant asset
to us.

9. REFERENCES
[1] D. Quinlan, ROSE: Compiler Support for
Object-Oriented Frameworks, Proceedings of
Conference on Parallel Compilers (CPC2000), Aussois,
France, January 2000. Also published in special issue
of Parallel Processing Letters (available soon).

[2] Brown, D., Henshaw, W., Quinlan, D. "OVERTURE:
A Framework for complex geometries” Proceedings of
the ISCOPE’99 Conference, San Fransisco, CA, Dec
7-10 1999

3]

[4]

[5]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

J.Siek, A. Lumsdaine ”The Matriz Template Library:
Generic Programming Approach to High Performance
Numerical Linear Algebra” Proceedings of the

ISCOPE’98 Conference, Santa Fe, NW, Dec 8-11 1999

S. Muchnick, ”Advanced Compiler Design and
Implementation” Morgan Kaufmann Publishers, July
1997

Georges-Andre Silber,
http://www.ens-lyon.fr/~gsilber/nestor/index.html.

Ishkawa et. al. Design and Implementation of
Metalevel Architecture in C++ - MPC++ Approach -.
In Proceeding of Reflection’96 Conference, April 1996
more info available at:
http://pdswww.rwep.or.jp/mpc++/mpc++.html

Shigeru Chiba Macro Processing in Object-Oriented
Languages In Proc. of Technology of Object-Oriented
Languages and Systems (TOOLS Pacific '98),

Australia, November, IEEE Press, 1998. more info
available at:
http://www.hlla.is.tsukuba.ac.jp/~chiba/openc++.html

F. Bodin et. al. Sage++: An object-oriented toolkit
and class library for building fortran and c++
restructuring tools. In Proceedings of the Second
Annual Object-Oriented Numerics Conference, 1994.

Edison Design Group http://www.edg.com

Todd Veldhuizen Arrays in Blitz++ In Proceeding of
the Second International Symposium, ISCOPE 98,
Santa Fe, NM December 1998

Karmesin, et al. Array Design and Ezpression
Evaluation in POOMA II. In Proceeding of the Second
International Symposium, ISCOPE 98, Santa Fe, NM
December 1998

Bassetti, F., Davis, K., Quinlan, D. Optimizing
Transformations of Stencil Operations for Parallel
Object-Oriented Scientific Frameworks on
Cache-Based Architectures In Proceedings of the
ISCOPE’98 Conference, Santa Fe, New Mexico, Dec
13-16 1998

Lemke, M., Quinlan, D., P++, a C++ Virtual Shared
Grids Based Programming Environment for
Architecture-Independent Development of Structured
Grid Applications In Proceedings of the
CONPAR/VAPP V, September 1992, Lyon, France;
published in Lecture Notes in Computer Science,
Springer Verlag, September 1992.

Bassetti, F., Davis, K., Quinlan, D. Toward
FORTRAN 77 Performance From Object-Oriented
C++ Scientific Frameworks In Proceedings of the
HPC’98 Conference, Boston, Mass. April 5-9, 1998

Bassetti, F., Davis, K., Quinlan, D. A Comparison of
Performance-enhancing Strategies for Parallel
Numerical Object-Oriented Frameworks In Proceedings
of the first International Scientific Computing in
Object-Oriented Parallel Environments (ISCOPE)
Conference, Marina del Rey, California, Dec, 1997

