ROSE II: An Optimizing Code Transformer for C++4
Object-Oriented Array Class Libraries

Kei Davis
Scientific Computing Group, CIC-19,

Los Alamos National Laboratory,
Los Alamos, NM, USA,

Dan Quinlan
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA, USA

Abstract

High-performance scientific computing relies
increasingly on high-level large-scale object-
oriented software frameworks to manage both al-
gorithmic complexity and the complexities of par-
allelism: distributed data management, process
management, inter-process communication, and
load balancing. This encapsulation of data man-
agement, together with the prescribed semantic-
s of a typical fundamental component of such
object-oriented frameworks a parallel or serial
array-class library provides an opportunity for
increasingly sophisticated compile-time optimiza-
tion techniques. This paper describes ROSE,
a programmable source-to-source transformation
tool for the optimization of C++ object-oriented
frameworks. Because it is programmable, explic-
it knowledge of framework semantics may be ex-
ploited; in contrast the potential capability of
a general-purpose compiler is limited by com-
putable semantic inference. Since ROSE is pro-
grammable, additional specialized program anal-
ysis is possible using implicit knowledge of the
workings of the framework, for example, depen-
dence analysis at the level of the framework’s ab-
stractions. This enables far greater optimization
than is even theoretically possible by a general-
purpose compiler. ROSE specifically responds to

the realization that to achieve acceptable perfor-
mance, in general it is insufficient to optimize a
framework; its use must also be optimized.

1 Introduction

The development of object-oriented frameworks
represents the centralization of expertise and its
reuse by numerous people, research groups, in-
stitutions, and industries. The expertise embod-
ied by object-oriented frameworks ranges widely,
and of interest to us includes support for com-
plex geometries and grid generation, the encod-
ing of advanced numerical algorithms (such as
adaptive mesh refinement), and the encapsula-
tion of parallelism on advanced computer archi-
tectures. Lawrence Livermore National Labora-
tory’s (LLNL) Owerture [2] framework has been
applied within several disciplines including com-
putational biology at UC Davis, modeling and de-
sign of sails for the America’s Cup Yacht Racing
at Doyle, and the design of diesel engine simu-
lations at LLNL in collaboration with Caterpil-
lar Inc. Other frameworks have likely also re-
ceived broad use spanning multiple research and
industrial disciplines. The remarkable breadth of
different areas of expertise represented by indi-
vidual object-oriented frameworks has not been

entirely offset by the performance issues associ-
ated with high performance computing, partic-
ularly at national laboratories where high per-
formance within computational simulations is of
great concern (and the parallel computer archi-
tectures more specialized, complex, and obscure).

Because the rich semantics of object-oriented
scientific frameworks are implemented in the
relatively primitive and unconstrained language
C++, the problem of ‘deep’ program optimiza-
tions are intractable, uncomputable, or imprac-
tical (this lattermost in part because of the sep-
arate compilation problem). The use of expres-
sion templates [12] has demonstrated the use
of the C++ template mechanism to introduce
statement-level transformations, in particular for
array-class libraries. Such optimizations can be
useful but are fundamentally limited because they
cannot encode program analysis. The more clas-
sic use of binary operators for the separate pair-
wise evaluation of expressions has similar can en-
code run-time, but not compile-time, analysis of
a limited sort [9].

As a very simple example, without optimiza-
tion the expression A=B+C+D+E denoting the ad-
dition of four arrays and assignment of the result
entails the creation and destruction of three inter-
mediate arrays and copying to the fourth, and at
least four major loops. Not only is this inefficien-
t in itself, but for cache-based architectures the
effect on performance can be disastrous. In con-
trast, it has been demostrated that transforma-
tions to exploit cache can result in performance
3-4 times greater than straightforward implemen-
tation in FORTRAN 77 or C [1, 7, 6]. This ex-
ample also makes clear that it is not sufficient to
optimize the framework or library itself; its use
must also be optimized: while some cache op-
timization could conceivably be encoded in the
framework, it is the context of the objects that
must be analyzed ot make general cache-based
transformations possible and worthwhile.

ROSE was conceived as a general mechanis-
m for implementing program transformations to
remove such sources of inefficiency. Its strength
is its complete programmability. In practice the
conceptual tradeoff is to forego deep program
analysis in favor of more shallow analysis and
some encoding of the semantics of the target
framework.

Serial optimizations are only the first step for

parallel architectures. Parallel optimizations are
also possible (for example, scheduling of commu-
nication), but not by a compiler for an inherently
sequential language such as C++. ROSE pro-
vides a mechanism for performing parallel opti-
mizations in this context.

1.1 Scope

At its simplest ROSE is a tool for performing
arbitrary source-level transformations to C++
programs. In practice ROSE provides function-
ality to greatly simplify the implementation of
transformations within applications using object-
oriented abstractions implemented by an object-
oriented framework. Our primary work has been
on optimizations for A++/P++ array classes
within the Overture framework, but this has been
shown to be readily applicable to other array class
libraries. Current target optimizations include:

e loop fusion of (multiple) binary operators;

e loop fusion across statement (requiring de-
pendence analysis);

e cache-based optimizations;
e temporal locality optimizations;

e introduction of performance-gathering op-
tions and metrics.

More specifically, the targeted object-oriented
frameworks/libraries are

o A++/P++ (in OVERTURE, from LLNL)
[8];

e POOMA (from LANL) [4];

e Blitz (from University of Waterloo) [11];

e GNU SSL (from the Free Software Founda-
tion) [5];

e ValArray (from the C++ Standard Library)
[10];

e a ‘least common denominator’ array class li-
brary.

OVERTURE and POOMA comprise consider-
ably more than an array class library; it is the
array-class library subsets that are of interest; for
POOMA it is the temporal-locality and cache-
based optimizations that are relevant.

2 How ROSE Works

ROSE is a preprocessor, it does not introduce any
language features, it accepts C++ source code
and outputs C++ code. Its use is by design op-
tional so as not to allow critical dependence on
the optimization step.

ROSE is built on the Sage II source code re-
structuring tool from University of Indiana and
IST [3]. Sage II uses the Edison Design Group
(EDG) C++ front end, and provides a public in-
terface to the internal (private) EDG representa-
tion. Essentially, Sage II implements the C++
grammar as an object-oriented interface (each
nonterminal is an object), the user’s C++ appli-
cation is then internally represented as a program
tree (actually a graph).

By way of running example, in the following
we will consider only a single transformation of a
simple 1D array statement. The specification of
a transformation consists of two parts:

1. the specification of where it can be intro-
duced, and

2. the specification of the transformation itself.

2.1 Specification of where to intro-
duce optimizations

Recognition of syntax subject to transformation
is automatic, that is, program annotations (such
as pragmas) are not used. except as a mecha-
nism for disabling transformation in specific seg-
ments of code for evaluation purposes. Such syn-
tax is specified using a formal grammar using con-
ventional extended BNF notation, augmented by
type information. This is encoded in tabular form
to make extension and modification of the gram-
mar simple.

2.2 How the grammar is defined

In the example of a transformation of array as-
signment statements two grammars will be de-
fined. The first is a grammar defined for the array
class. Space does not permit the presentation of
this grammar it its entirety (it will be made avail-
able at the Overture WWW site)—Figure 1 shows
a subset of the grammar defining the A++/P++
array class library syntax (the array grammar).

Higher level grammars specific to each transfor-
mation can be defined in terms of the array gram-
mar. Figure 2 shows the array assignment gram-
mar. More complex transformations (for sten-
cil operations, for example) use yet higher level
grammars defined in terms of the array assign-
ment grammar.

Grammar: :NonTerminal ArrayExpression =
ArrayNumericExpression
| ArrayRelationalExpression
| ArrayLogicalExpression
| C_Expression
| ArrayOperand;

Figure 1: Example of product rule for nonterminals
of the array grammar using the mechanisms for defin-
ing grammars within ROSE.

2.3 How the grammar is used

Within ROSE the specification of the grammar
is sufficient to generate code that ROSE then us-
es internally to build the parser and the object-
based implementation of the grammar used to
represent a program tree using the associated
grammar. For large grammars this mechanism
obviates the need for hand coding many thou-
sands of lines of code that would be required
to represent the implementation of the grammar.
Such large grammars can be expected for sophis-
ticated object-oriented frameworks (though sub-
sets of a framework can be targeted to reduce
the size of the grammar). The user interface of
ROSE permits customization of the behavior of
these implementations of the grammar, allowing
user-defined code to be inserted into the imple-
mentations of the grammars. One goal of this
research is to automate as much as possible the
generation of the grammars.

The use of grammars provides a mechanism to
differentiate the application code. As a rule, if a
sub-tree of the program tree provided by Sage II
can be recognized using a grammar then the pro-
gram tree has a derivation from that grammar.
The array grammar is used to recognize array op-
erations (statements, expressions, types, etc.). It
is simpler to use a multi-stage approach: succes-
sively refining the recognition process by using a
sequence of grammars formally this amounts to

Grammar: :NonTerminal arrayOperator = arrayBinaryOperator;
Grammar: :NonTerminal assignmentOperator = arrayAssignmentOperator;
Grammar: :NonTerminal transformableExpression;
transformable_expression =

transformableExpression & operator & transformableExpression |

arrayOperand arrayOperator arrayOperand |

arrayOperand;
Grammar: :NonTerminal lhs_operand = arrayOperand;
Grammar: :NonTerminal rhs_operand = transformable_expression;
Grammar: :NonTerminal transform_statement =

lhs_operand & assignmentOperator & rhs_operand;

Figure 2: The array assignment grammar

successive intersection operations. The specifica-
tion of the second grammar is used to identify ar-
ray assignment statements, for example. The use
of yet another grammar can be used to further
refine (filter) the collection of array assignmen-
t statements, for example to identify stencil-like
operations targeted for cache-based transforma-
tions.

2.4 Specification of a Transforma-
tion

The specification of a transformation completes
the process of defining an optimization. The spec-
ification of the transformation must be represent-
ed in multiple parts and these parts must be as-
sembled according to the the context of the o-
riginal statement (in the case of an array assign-
ment optimization the context may include the
dimension, number of operands, etc., if this in-
formation is not represented in the grammar di-
rectly). The transformation of the program tree
occurs as a transformation of the program tree
associated with a later grammar into a program
tree associated with an earlier one. For example,
for an array-assignment statement the transfor-
mation consists of a transformation of the syntax
tree associated with the array-assighment gram-
mar into a tree associated with the array gram-
mar, then to a tree associated with the array
grammar.

For each element of the grammar a transform
function is defined (automatic generation of these
functions from the definition of the grammar di-
rectly from the specification of the transformation
rules is planned). This transformation is defined
by a map of the elements of the higher level gram-

mar into the lower level grammar.

There are two ways to specify the transforma-
tion of a terminal or non-terminal in a higher level
grammar into a lower level grammar.

1. Hard coded: The transformation is explicit-
ly defined by supplementing the definition of
that element of the grammar. Space limita-
tions precludes an example, but required el-
emets are assembled explicitly from the C++
grammar defined by the Sage II objects.

2. By pattern The transformation is separated
into pieces and how the pieces are fit together
is defined explicitly.

More mechanisms may be defined as automation
is improved.

Transform functions are mutually recursive in
a pattern parallel to that of the corresponding
grammar.

2.5 Transformation rules

The transformation of the representation of a
piece of syntax in one grammar to its representa-
tion in another (as a syntax tree) is defined by a
set of transformation rules. These rules depend
only on the definitions of the two grammars. Cur-
rently these rules are generated by hand; research
is underway to automate their generation.

Figure 3 shows the specification of the elements
of the transformation; space limitations preclude
the presentation of the code fragement that shows
how the elements representing the transformation
are assembled.

As a final example we present two tiny codes,
one using the array class directly, and the other

FUNCTION_DEFINITION UNIQUE_PART_OF_TRANSFORMATION () {

// This code is required once for all the operands in the same scope

int INDEX = 0;
3

FUNCTION_DEFINITION LHS_PART_OF_TRANSFORMATION () {

// This is code that is required once for the lhs operand
double* RESTRICT LHS_ARRAY_DATA_POINTER = LHS_ARRAY.getDataPointer();

}

FUNCTION_DEFINITION RHS_PART_OF_TRANSFORMATION(int numberOfRhsOperands) {

LOOP (number0fRhsOperands) {

// This is code that is required once for each rhs operand
double* RESTRICT RHS_ARRAY_DATA_POINTER = RHS_ARRAY.getDataPointer();

}
}

FUNCTION_DEFINITION LOOP_PART_OF_TRANSFORMATION () {

// This code is required only once for this transformation

const int base_1D_0
const int bound_1D_0O
const int stride_1D_0
for (INDEX = base_1D_0; INDEX <= bound_1D_0;
TRANSFORMED_STATEMENT () ;

}
}

LHS_ARRAY.getBase (0);
LHS_ARRAY.getBound (0);
LHS_ARRAY.getStride(0);
INDEX++) {

Figure 3: Array assignment transformation rules.

being the output of ROSE. These are shown in
Figures 4 and 5. Current work on the unparsing
of the C++ program tree (built by Sage II) pro-
vides various options to control the formatting of
ROSE output.

#include "A++.h"
int main() {
int size = 10;
double gamma = 2.0;
doubleArray A(size);
doubleArray B(size);
Range I(1, size-2);
Range J(1, size-2);
A(I) = (B(I+1) + B(I-1)) * 2.0;
printf ("Program Terminated Normally! \n");
return O;

Figure 4: Example A++ code before processing us-
ing ROSE.

2.6 Summary

Figure 6 shows a flowchart of the use of ROSE
and the pieces that build the ROSE preprocessor

itself. The use of the preprocessor is shown to be
optional with the application code being the only
input required if no optimization is performed. If
optimization is required then the optimizing pre-
processor specific to that framework is used. The
preprocessor specific to a given framework is build
from the specification of a hierarchy of grammars
and associated transformation definitions, togeth-
er with the ROSE infrastructure.

Target recognition is via an arbitrary sequence
of grammars; target transformation is via trans-
formation rules defined in terms of these gram-
mars. Use of such hierarchies is for practical rea-
sons: the total size of multiple grammars is much
less than would be single one, and the resulting
factoring leads to reuse. The example presented
in this paper shows parts of how an array gram-
mar may be specified and how a grammar specif-
ic to the optimization of array assignment state-
ments (the array assignment grammar) is defined
using that array grammar.

#include <A++.h>
#4 "test2.C"
int main() {

auto int size=10;

auto double gamma=2;

auto doubleArray A(size);
#9 "test2.C"

auto doubleArray B(size);
#10 "test2.C"

auto Range I(1,size - 2);
#11 "test2.C"

auto Range J(1,size - 2);
#13 "test2.C"

{

// Transformation for: A(I) = B(I-1) + B(I+1);

int rose_index=0;

double * restrict A_rose_pointer = (A . getDataPointer) ();
double * restrict B_rose_pointer = (B . getDataPointer) ();
const int base_1D_0 = (I . getBase) ();

const int bound_1D_0 = (I . getBound) ();

const int rose_stride = (A . getStride) (0);

const int rose_base = (B . getBase) (0);

for (rose_index=base_1D_0; rose_index<=bound_1D_0;

A_rose_pointer[rose_index] =
(B_rose_pointer[(rose_index + 1)] +

B_rose_pointer[(rose_index - 1)]) * 2;

}
}
#249 "/usr/include/stdio.h"

rose_index++) {

printf (((const char *)"Program Terminated Normally! \n"));

#49 "test2.C"
return 0;}

Figure 5: Example of output from processing of A++ code using ROSE.

3 Conclusion

ROSE is a fully programmable tool that provides
the capability of arbitrary transformation of C++
code. The intention is that such transformations
be semantics-preserving so that its use is always
optional, and our goal is aggressive program opti-
mization and the introduction of parallelism with
the abstractions introduced by high-level scien-
tific frameworks as the targets. ROSE specifical-
ly addresses the realization that to achieve ac-
ceptable performance from C++ object-oriented
frameworks their use, not just the frameworks
themselves, must be optimized.

The interface to ROSE is particularly simple
and takes advantage of standard compiler tech-
nology. ROSE acts like a preprocessor, since it
takes as input and produces as output standard

C++1'. Its use is always optional since it is not in-
tended to change the denotational semantics (as
opposed to the operational or resource-usage se-
mantics). It cannot be used to introduce any new
language features or syntax. Importantly, since
ROSE generates C++ code, its use does not pre-
clude the use of other tools or mechanisms that
would work with an application source code (in-
cluding class template mechanisms).

A driving goal in the development of ROSE
is to provide a simple coherent mechanism that
makes the task of implementing a particular op-
timization just a few hours’ work. Since different
frameworks focus on different features and opti-
mizations, often greatly complicating their imple-

ISO/IEC 14882:1998 C++ standard as implemented
by the Edison Design Group

Framework
Grammar

Object-Oriented
Framework

Transformation
Grammar 1

Transformation
Grammar n

Transformation
Grammar 2

4

A

A

BNF notation
for Framework
Grammar

Application

|

BNF Notation for
Transformation
Grammar 1

BNF Notation for
Transformation
Grammar n

Transformation
Grammar 2

|

BNF Notation for J

I

Code Using

|

|

Framework
(C++ Code)

Generated
Code

{

Generated
Code

Generated
Code

I

Generated
Code

Framework
Optimizing
Preprocessor

C++ Compiler
Compile to Build
Preprocessor

ROSE
Optimizing
Preprocessor
Infrastructure

4

Optimized
Preprocessor
Output (C++ Code)

C++ Compiler

Executable
Application

|

Transformation
Description 1

Description 2

[

Transformation

Transformation
Description n

Figure 6: Flowchart showing how the design and use of ROSE preprocessor infrastructure.

mentation; this work will essentially make opti-
mizations available more universally independen-
t of the peculuarities of the framework. By re-
moving much of the optimization from being im-
plemented within the framework, through com-
plex runtime mechanisms, object-oriented frame-
works can be greatly simplified and focused upon
the important abstractions (e.g. grid generation,
moving grids, particles, adaptive mesh refinemen-
t (AMR), equation solvers, parallel distribution
mechanisms, load balancing, etc.). Additionally,
ROSE will permit simplified communication with
talented researchers from compiler optimization
fields to address highly specialized optimization-
s. It is hoped that ROSE will effectively level
the playing field between different object-oriented
frameworks and allow them to focus upon the
needs of their specific users more readily.

References

[1] Federico Bassetti, Kei Davis, and Dan Quin-
lan. Toward fortran 77 performance from
object-oriented scientific frameworks. In
Proceedings of the High Performance Com-
puting Conference (HPC’98), 1998.

David Brown, Geoff Chesshire, William Hen-
shaw, and Dan Quinlan. Overture: An
object-oriented software system for solving
partial differential equations in serial and
parallel environments. In Proceedings of the
SIAM Parallel Conference, Minneapolis, M-
N, March 1997.

B. Francois et. al. Sage++: An object-
oriented toolkit and class library for build-
ing fortran and c++ restructuring tools. In

Proceedings of the Second Annual Object-
Oriented Numerics Conference, 1994.

J.V.W. Reynders et. al. POOMA: A Frame-
work for Scientific Simulations on Parallel
Architectures, volume Parallel Programming
using C++ by Gregory V. Wilson and Paul
Lu, chapter 16, pages 553-594. MIT Press,
1996.

Gnu scientific software library. http://
KachinaTech.com.

Naraig Manjikian and Tarek Abdelrahman.
Array data layout for the reduction of cache
conflicts. In 922% 1997.

Steven S. Muchnick. Advanced Compiler De-
sign and Implementation. Morgan Kaufman-
n, 1997.

Rebecca Parsons and Dan Quinlan.
A++/p++ array classes for architecture
independent finite difference computation-
s. In Proceedings of the Second Annual
Object-Oriented ~ Numerics Conference

(OONSKT’9/), April 1994.

Dan Quinlan and Rebecca Parsons. Run-
time recognition of task parallelism within
the p++ parallel array class library. In Pro-
ceedings of the Conference on Parallel Scal-

able Libraries, 1993.

Bjarne Stroustrup. The C++ Programming
Language. Addison Wesley, third edition edi-
tion, 1997.

Todd Veldhuizen. Blitz+4 users manual.
http:// monet.uwaterloo.ca/ blitz/ manual/
arrays.html.

Todd Veldhuizen. Expression templates.
In S.B. Lippmann, editor, C++ Gems.
Prentice-Hall, 1996.

