
Techniques for Software Quality Analysis of Binaries:
Applied to Windows and Linux

Thomas Panas
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory
Livermore, CA, USA
panas@llnl.gov

Daniel Quinlan
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory
Livermore, CA, USA
dquinlan@llnl.gov

ABSTRACT
In this paper we present our efforts to measure different quality
aspects of large-scale, binary software. We apply four well estab-
lished metrics to binary versions of Windows and Debian Linux,
analyze our results and discuss our observations. It is surprising
to see that our metrics, which search for well known bad coding
habits, result with so many violations. It appears that although bad
and insecure software development practices are well understood
and documented, in practice, recommended coding styles are not
followed. Our work evaluates binary versions of software, allow-
ing us to inspect software quality without the need of source code.
We believe that this approach, if successful, could lead in the future
to better priced software. This is because the quality of software
bought today is not transparent to its users.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Program analysis

General Terms
Security, Measurement

Keywords
Static Analysis, Binary Analysis, Software Quality

1. INTRODUCTION
Bad software coding practices often lead to vulnerable software,

which then is either exploited by adversaries or more prone to fail at
runtime. For this reason, bad coding habits (styles) are documented
in the literature, c.f. [2, 6]. These documents elaborate not only
on bad practices and possible vulnerabilities, but also on the sever-
ity of using such practices. Preferably, bad coding styles should be
avoided so that software with high quality can be developed and
deployed. The evaluation of software quality is an attempt to char-
acterize and measure the prevalence of such flaws. Because soft-
ware developers are used to looking at code, the source code is fre-
quently considered the most relevant medium in which to measure
software quality. Far more time and significantly greater expertise

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEFECTS’09,July 19, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-654-0/09/07 ...$5.00.

Figure 1: ROSE, a customizable compiler infrastructure

is required to identify the same bad coding styles in software bi-
naries. The short availability of binary expertise and the difficultly
associated with it have led many to believe that the measurement
of software quality directly in the binary is intractable. Our work
shows that automated tests can be developed that measure the same
software flaws in either the source code or the binary using substan-
tially similar techniques. Our work uses the ROSE [10] framework
which substantially unifies the analysis of both source code and bi-
naries providing an approach to test this idea.

A specific goal is to remove the asymmetry of information as-
sociated with the measurement of quality of source code owned
by the developer and COTS software more commonly available to
users. Properly measured this would reward developers and permit
price to match quality; resulting in better software.

We developedBinQ, which is based on theROSEcompiler in-
frastructure [10], to analyze software binaries. Within BinQ we
implemented literature based program analyses that search for pos-
sible security flaws and bad coding styles. In Section2 we intro-
duce our software analysis tools: ROSE and BinQ. We selected and
implemented four analysis metrics, c.f. Section3. Analysis results
are reported in Section4. Verification is discussed in Section5. Re-
lated work and conclusions are found in Section6 and Section7,
respectively.

2. TOOLS
ROSE is a source-to-source compiler infrastructure that is open

source, BSD licensed and freely available. ROSE supports research
work on compiler transformations, especially optimizations, and
general analysis of source code and binary executables. ROSE
was developed for experts and non-experts to build their own cus-
tomized software analysis and optimization tools.

Figure1 illustrates the general approach of ROSE. ROSE pro-
vides interfaces for the user to perform compiler specific tasks, such
as the parsing of C/C++ or Fortran source code and the construction
of an internal intermediate representation (IR). The parsing itself is
performed by utilizing well-established frontends, such as the Edi-
son Design Group (EDG) C++ front-end [4] for C and C++ and the
Open Fortran Parser (OFP) [8] for Fortran. To support optimiza-
tion of scientific codes in DOE, ROSE handles C (C89,C99), C++,
Fortran 2003 (including F66, F77, F90/95), OpenMP, and UPC. To
support general binary analysis ROSE supports the x86, PowerPC,
and ARM instruction sets using a number of specific binary file
formats: ELF, PE, LE, NE, and MS-DOS.

All information about the source code and the binary is repre-
sented in an easily traversedabstract syntax tree(AST). The gener-
ated ROSE IR includes an AST, symbol tables holding types, com-
ments, pre-processor information, etc. The IR is rich enough so that
the original program can be faithfully represented and reproduced.
Once user defined analyses and transformations have been imple-
mented and applied, the ROSE Unparser, cf. Figure1, outputs the
new (optimized) program back to source code in the original source
language with all original source level details (including comments
and C preprocessor control structures) preserved. Optionally, ven-
dor compilers can be used to compile the transformed source code
into executables for different platforms.

For binary handling, ROSE may be utilized using one of two
frontends, cf. Figure1: IDA-Pro [3] the industry standard for inter-
active disassembly or the in-house developed recursive disassem-
bler (part of ROSE). IDA-Pro supports many different processors
under Linux and Windows, our own disassembler currently sup-
ports the x86, Power-PC, and ARM architectures. A distinguishing
point is that our parsing of the binary includes the whole binary
file format (all sections, including dwarf) and all details required
to reconstruct the original binary executable; making the full rep-
resentation available for analysis. The disassembled binaries are
represented in the ROSE IR in the same way as source code when
parsed. This has the advantage that mechanisms for source code
analysis can be re-used for binaries, such as AST traversals, in-
tegrity checks, documentation generation, IR node generation, etc.

3. ANALYSES
In order to evaluate bad coding styles on binaries using our bi-

nary analysis capability within ROSE, we chose four well estab-
lished metrics from the literature [2, 5, 6] that detect bad coding
styles in source code. We implemented these four well defined
coding violation specifications as “checkers” (analyses) to detect
bad coding styles in binaries. Initially, we chose simpler metrics
that do not require data-flow analysis, in order to properly evaluate
our ongoing work with binaries. Again, for this experiment, we
merely re-implemented well defined bad coding styles. It is not up
to us to judge about the appropriateness of the metrics. Our goal
is to establish a tool that allows us to write arbitrary analyses on
binaries - including data-flow analyses in the future. Our selection
and implementation of analyses is described next.

3.1 # Unsafe Functions
Definition: Our first analysis detects calls to possibly unsafe func-
tions. We define unsafe functions as functions with possible side
effects. According to CERT [2] such functions should be replaced
by their “safe” counterparts.
Implementation: We define, in accordance to literature [2], the
following functions and hence calls to them as unsafe:

• vfork: Do not use this function in POSIX program.
• sprintf, scanf, sscanf, gets, strcpy, _mbscpy, lstrcat, memcpy,

strcat:May cause buffer overflow.
• rand:Does not produce high-quality random numbers.
• rewind: Implement fseek over rewind.
• atoi, atol, atoll, atof:Use strtol, strtoll, strtod for converting

strings to numbers.
Using ROSE, the implementation of the analyses is merely a

traversal of the programs’ AST. Whenever a AST node is traversed
that represents a call to a function (for both source code and bi-
nary), the name of the function is resolved and checked against the
list above. ROSE offers the ability to resolve function names by
using a files input table. However, in our experiment all symbols
are provided by IDA-Pro.

3.2 # Complex Functions
Definition: Cyclomatic Complexitycomputes the number of con-
trol branches within a function [5]. Branches are defined through
if-conditions, switch statements, goto statements, while loops, etc.
Implementation: This analysis counts the number of uncondi-
tional and conditional control transfer instructions within each func-
tion. This includes instructions such asx86_jmp, x86_loop, x86_ja,
x86_je, etc. The threshold that we assigned for this analysis is 45,
i.e. if the number of conditions is 45 or more, we flag the function
to be complex.

Our threshold is arbitrarily chosen. In practice 20 is a com-
mon value used in industry for source code (McCabe’s Complex-
ity Metric) whereas 45 should merely reflect the fact that there
are more control transfer instructions within a binary than within
source code. Within our experiment we have found that 45 is a
good binary correlation value to 20 used in source code. How-
ever, this value can be individually adjusted just as it is adjusted for
source code purposes.

3.3 # Malloc without Free
Definition: According to CERT [2] it is recommended that mem-
ory be allocated and freed at the same level of abstraction, and ide-
ally in the same code module.
Implementation: Initially, our algorithm traverses the AST and
looks for AST nodes representing acall instruction. When a call
instruction is found, its symbols are resolved and hereby also the
name of the function that is called. If the function to be called
is malloc or calloc , then we have found a candidate. As an
example look at the following source code and its assembly form.
1 int main(int argc, char* argv) {
2 int* arr = malloc(sizeof(int)*10);
3 free(arr);
4 }

0x4004f8: push rbp
0x4004f9: mov rbp, rsp
0x4004fc: sub rsp, 0x20
0x400500: mov DWORD PTR ds:[rbp + 0xffffffec], edi
0x400503: mov QWORD PTR ds:[rbp + 0xffffffe0], rsi
0x400507: mov edi, 0x28
0x40050c: call 0x400420 %% call to malloc
0x400511: mov QWORD PTR ds:[rbp + 0xfffffff8], rax
0x400515: mov rdi, QWORD PTR ds:[rbp + 0xfffffff8]
0x400519: call 0x400430 %% call to free

In the assembly representation, the function header for main is
represented at addresses0x4004f8 , 0x4004f9 and0x4004fc .
At address0x40050c is the call tomalloc . The size of the al-
location is encoded at address0x400507 , namely0x28 heximal
(hex) or 40 decimal (dec). Thereafter, at address0x400511 the re-
sult from registerrax is stored in memory at locationds:[rbp +
0xfffffff8] . This is the location of our pointer variablearr
in line 2. Finally,free is called at address0x400519 where the
argument is stored in rdi, namely memory addressds:[rbp +

Figure 2: BinQ - Our binary analysis tool showing an unsafe function call to memcpy in /sbin/udevtrigger (Linux). Lower left using
our disassembly and lower right disassembly from IDA-Pro.

0xfffffff8] . This address represents our variablearr and so
we know thatfree was called witharr as an argument.

Therefore, to come back to our algorithm, once amalloc call is
found, we need to go forward in the programs control flow and de-
tect amov instruction that moves the registerrax (representing the
result of malloc) into memory. We remember the memory location
and traverse the function further according to its control flow. If we
find a call tofree , we need to traverse the control flow backwards
to determine the last movement of memory to a register (parameter
to free). Thereafter, we compare the memory location against the
one we remembered and if they match, we have found a matching
malloc andfree . Otherwise, we report a coding style violation.

3.4 # Dangling Pointers (after Free)
Definition: Pointers that are not set to NULL after the function
free is called. Dangling pointers can lead to exploitable double-
free and access-freed-memory vulnerabilities [2]. A simple yet ef-
fective way to eliminate dangling pointers and avoid many memory
related vulnerabilities is to set pointers to NULL after they have
been freed.
Implementation: The binary analysis traverses the ROSE AST
and checks everycall instruction for a call tofree . If found,
we follow the control flow backwards (from that node) to find the
memory location that corresponds to the variable that is being freed.
Thereafter, we follow the control flow forward (from the samecall
node) to findmovoperations. We are looking for amov mem,val
instruction that copies a value, in our case NULL (or 0) to the mem-
ory location of our predetermined variable (argument tofree). If
no correspondingmov mem,0 is found, then we have detected a
violation of this metric.

4. RESULTS & DISCUSSION
We applied BinQ on Windows XP and Debian Minimal (Linux).

In both cases we used IDA-Pro as the disassembly front-end. IDA-
Pro is a highly effective tool that can deal even with some com-
plexities often found in malware. In addition, IDA-Pro can resolve
many symbols needed for our analyses. The analyses are exactly
the same for Windows and Linux (implemented in BinQ), c.f. Ta-
ble1.

Metric Linux Windows
Files 970 410

Unsafe Function Calls 9,424 1,964
Complex Functions 3,583 3,195
Malloc without Free 1,912 797
Dangling Pointers 6,506 1,732

Sum of detected flaws 21,425 7,688
Ratio of flaws/files 22.1 18.6

Table 1: Binary Analysis Results.

We analyzed 970 binary files in the Debian Minimal distribution
and noticed that many bad coding practices, according to our few
metrics, are present. This may be an indication that Linux develop-
ers pay less attention to exactly these coding styles that we chose.
Figure3 illustrates our results for Linux. The x-axis represents the
different files and the y-axis represents the number of flaws (bad
coding practices according to our metrics) that we identified. Ex-
amples of files that have a distinctive amount of flaws (y-axis) in
that image are:

• for Unsafe Function Calls:/bin/bash(437), /usr/bin/gpg(324),
/usr/bin/ex (302), /bin/busybox (263), /usr/lib/libdb-4.4.so
(210), /bin/netstat(183), /usr/lib/libdb-4.3.so(181), /usr/bin/
tack(163), and /usr/lib/libdb-4.2.so(162).

• for High Complexity:/usr/bin/aptitude(200), /usr/bin/ex(160),
/usr/lin/libdb-4.4.so(137), /usr/bin/perl(137), /usr/lib/libdb-4.
3.so(106), and /usr/bin/gpg(105).

• for Dangling Pointers:/usr/lib/libkrb5.so.3(485), /lib/libse-
pol.so.1(243), /usr/bin/dpkg (214), /usr/bin/info (165), /bin/
bash(151), and /bin/nano(144).

• for Malloc without Free:/usr/lib/libkrb5.so.3(193), /lib/libse-
pol.so.1(87), and /usr/bin/dpkg(83).

For Windows, we analyzed 410 binary files in the system32 di-
rectory. Figure4 illustrates our results. Examples of files that have
a distinctive amount of bad coding practices (y-axis) are:

• for Unsafe Function Calls:URTTemp/mscorwks.dll(538),
infosoft.dll (188), URTTemp/msvcr71.dll (144), mfc42.dll
(139), mfc42u.dll(139), and drmv2clt.dll(117).

• for High Complexity:URTTemp/mscorwks.dll(208), d3d9.
dll(114), shell32.dll(91), and lsasrv.dell(76).

• for Dangling Pointers:URTTemp/mscorwks.dll(395), ntback-
up.exe (217), URTTemp/msvcr71.dll (203), msvcrt.dll (182),
hypertrm.dll(123), and infosoft.dll(97).

• for Malloc without Free:ntbackup.exe(151), URTTemp/ms-
vcr71.dll(112), msvcrt(105), hypertrm.dll(81), and infosoft.
dll(40).

It appears that the software quality, based on our few metrics, of
Linux and Windows is poor. Both systems reveal a high number of
bad software coding practices that are known to cause problems [2,
6]. However, it is possible that we chose metrics that are not part of
good coding practices of neither Microsoft Windows or the Linux
development community.

5. VERIFICATION
We have manually inspected random files in both Linux and

Windows and judged from the disassembly whether our results are
correct. In the case of Linux, we were sometimes able to find cor-
responding source code and verify that the problem was also inher-
ent in the source. For instance, the following code snippet is part
of /sbin/getty. OurMalloc without Freeanalysis reports one mal-
loc without free. The corresponding source code contains only one
malloc allocation in the following code:
1 ...
2 for (i=0; i < MAXDEF; i++) {
3 if ((dp = defread(fp)) == (DEF *) NULL)
4 break;
5 if ((next =(DEF*) malloc((unsigned) sizeof(DEF))) ==

(DEF *) NULL) {
6 logerr(‘‘malloc() failed:defaults list truncated’’);
7 break;
8 }
9 next->name = dp->name;
10 next->value = dp->value;
11 deflist[i] = next;
12 debug(D_DEF, ‘‘deflist[%d]: name=(%s), value=(%s)’’,
13 i, deflist[i]->name, deflist[i]->value);
14 }
15 deflist[i] = (DEF *) NULL; /* terminate list */
16 (void) defclose(fp);
17 debug(D_DEF, ‘‘defbuild() successful’’);
18 return(deflist);
18 }

We can see that free() is not called (after the call to malloc) - at
least not as part of this function, which is the requirement as defined
by CERT [2]. In the following is an example assembly code snippet
from tasklist.exe (Windows).
1005b4d je ...
1005b4f push DWORD PTR ss:[0xfffffffc + ebp]

1005b52 call PTR ds:[0x1001248] <free>
1005b58 pop ecx
1005b59 jmp 0x1005b64
1005b5b mov ...
1005b64 xor eax, eax
1005b66 inc eax
1005b67 pop ebx
1005b68 pop ed
1005b69 pop esi
1005b6a leave
1005b6b ret

Our analysis correctly detected aDangling Pointerflaw in the
code above: the variable0xfffffffc + ebpis never set to 0 after free()
is called. We expect that the false positive rate for theUnsafe Func-
tion analysis is zero, which is the same for theComplex Function
analysis The other two analyses may have some false positives be-
cause these analyses use control flow information but no data-flow
information or symbol evaluation. Such information would possi-
bly increase the precision of these two metrics and is part of our
future work.

6. RELATED WORK
GrammaTech [9] has demonstrated particularly broad capabili-

ties and developed both source code and binary analysis tools. The
source code analysis version is a high quality commercial static
analysis tool and the binary analysis is specific to Windows x86
and is not openly available. These tools automate the detection of
violations to numerous predefined rules and are useful for detailed
analysis for software code for quality inspections, subtle bugs, and
security violations. The BitBlaze [1] project at Berkeley is focused
on binary analysis infrastructure and provides an openly available
analysis capability for Linux x86 binaries. Other tools tools for
binary analysis can be found at [7].

7. CONCLUSION AND FUTURE WORK
Currently, if it is possible to measure the quality of software it is

most likely accessible via only source code analysis. This is not a
problem for open source code, but a majority of software is closed
source. This denies users any mechanism to obtain an indepen-
dent analysis of software quality and forms the fundamental asym-
metry that limits the ability of software quality to be priced (and
rewarded). In this paper, we attempted to measure simple quality
features of binary software, namely Linux and Windows. Interest-
ingly, our quality measurements do not show off either Windows or
Linux favorably - but this may be even typical of OS implementa-
tions. The point is however that these metrics (and we expect many
more metrics in the future) can be evaluated directly on binaries and
therefore indirectly reflect properties of source code. Future work
will focus on the improvement of our binary analysis capabilities.

8. REFERENCES
[1] BitBlaze.http://bitblaze.cs.berkeley.edu ,

2009.
[2] CERT. Secure Coding Standards, 2007.https:

//www.securecoding.cert.org/confluence/ .
[3] DATARESCUE. IDA - Interactive Disassembler, 2007.

http://www.datarescue.com/ .
[4] Edison Design Group. EDG front-end.

http://www.edg.com .
[5] W. Li and S. Henry. Maintenance Metrics for the Object

Oriented Paradigm. InIEEE Proc. of the 1st Int. Software
Metrics Symposium, pages 52–60, May 1993.

[6] MITRE Corporation. Common Weakness Enumeration,
2007.http://cwe.mitre.org/ .

[7] NIST. Binary Code Scanners.https://samate.nist.
gov/index.php/Binary_Code_Scanners , 2009.

http://bitblaze.cs.berkeley.edu
https://www.securecoding.cert.org/confluence/
https://www.securecoding.cert.org/confluence/
http://www.datarescue.com/
http://www.edg.com
http://cwe.mitre.org/
https://samate.nist.gov/index.php/Binary_Code_Scanners
https://samate.nist.gov/index.php/Binary_Code_Scanners

600

500

300

400

200

100

0

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951

Forbidden Function Call Complexity Null After Free Malloc Needs Free

Figure 3: Debian Linux, parsed using IDA-Pro. X-Axis: Files - Y-Axis: # Flaws.

500

600

400

500

300

400

200

100

0

1 51 101 151 201 251 301 351 401

Forbidden Function Call Complexity Null After Free Malloc Needs Free

Figure 4: Windows, parsed using IDA-Pro. X-Axis: Files - Y-Axis: # Flaws.

[8] C. Rasmussen et al. Open Fortran Parser.
http://fortran-parser.sourceforge.net/ .

[9] Reps, T. and Balakrishnan, G. and Lim, J. and Teitelbaum, T.
. A next-generation platform for analyzing executables.
Programming Languages and Systems, 3780/2005:212–229,
2005.

[10] ROSE. Rose compiler, 2008.
http://www.rosecompiler.org/ .

http://fortran-parser.sourceforge.net/
http://www.rosecompiler.org/

	1 Introduction
	2 Tools
	3 Analyses
	3.1 # Unsafe Functions
	3.2 # Complex Functions
	3.3 # Malloc without Free
	3.4 # Dangling Pointers (after Free)

	4 Results & Discussion
	5 Verification
	6 Related Work
	7 Conclusion and Future Work
	8 References

