
ROSETTA: The Compile-Time Recognition Of
Object-Oriented Library Abstractions And Their Use Within

Applications �
Dan Quinlan and Bobby Philip

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

dquinlan,bobbyp@llnl.gov

ABSTRACTObje
t-oriented libraries arise naturally from the in
reas-ing
omplexity of developing related s
ienti�
 appli
ations.The optimization of the use of libraries within s
ienti�
 ap-pli
ations is one of many high-performan
e optimizations,and is the subje
t of this paper. This type of optimization
an have signi�
ant potential be
ause it
an either redu
ethe overhead of
alls to a library, spe
ialize the library
allsgiven the
ontext of their use within the appli
ation, or usethe semanti
s of the library
alls to lo
ally rewrite se
tionsof the appli
ation. This type of optimization is only nowbe
oming an a
tive area of resear
h. The optimization ofthe use of libraries within s
ienti�
 appli
ations is parti
u-larly attra
tive be
ause it maps to the extensive use of li-braries within numerous large existing s
ienti�
 appli
ationssharing
ommon problem domains. This paper presents anobje
t-oriented library, ROSETTA, as a me
hanism to de-termine where within an appli
ation a sour
e-to-sour
e pre-pro
essor
an introdu
e performan
e optimizations.ROSE[1℄ is a tool for building sour
e-to-sour
e prepro
es-sors, ROSETTA is a tool for de�ning the grammars usedwithin ROSE. The de�nition of the grammars dire
tly de-termines what
an be re
ognized at
ompile time. ROSETTApermits grammars to be automati
ally generated whi
h arespe
i�
 to the identi�
ation of abstra
tions introdu
ed withinobje
t-oriented libraries. Thus the semanti
s of
omplexabstra
tions de�ned outside of the C++ language
an beleveraged at
ompile time to introdu
e library spe
i�
 opti-mizations. The details of the optimizations performed arenot a part of this paper and are up to the library developerto de�ne using ROSETTA and ROSE to build su
h an opti-mizing prepro
essor. Within performan
e optimizations, if�This work was performed under the auspi
es of the U.S.Department of Energy by University of California Lawren
eLivermore National Laboratory under
ontra
t No. W-7405-Eng-48.

they are to be automated, the problems of automati
ally lo-
ating where su
h optimizations
an be done are signi�
antand most often overlooked. Note that a novel part of thiswork is the degree of automation. Thus library developers
an be expe
ted to be able to build their own spe
ialized
ompilers with a minimal
ompiler ba
kground. The result-ing
ompilers don't extend the C++ language, but only ex-tend the
ompiler's ability to re
ognize and leverage the useof user-de�ned library abstra
tions within an appli
ation toperform optimizations.For
ompleteness, an example optimizing prepro
essor for anarray
lass library is in
luded to demonstrate the
ompleteuse of ROSETTA and ROSE to build an optimizing pre-pro
essor. To demonstrate the overall te
hnique we in
ludesome performan
e results showing the e�e
tive optimizationof an appli
ation using a prepro
essor built from the outputof ROSETTA and using a transformation spe
i�
 to anarray
lass library. These results
ombine the use of there
ognition te
hniques presented in this paper with those ofa prepro
essor-based transformation approa
h. The spe
i�-
ation of transformations and the details of the
onstru
tionof full prepro
essors is outside the s
ope of this short paper,however the details of the
ompiler infrastru
ture we areusing
an be found in ROSE [1℄.
1. INTRODUCTIONTo appli
ation programmers the use of a library to providenew abstra
tions might appear to provide a language ex-tension spe
i�
 to the appli
ation domain targeted by thelibrary's designer. With an obje
t-oriented language the ab-stra
tions provided within the library
an be endowed withsigni�
ant synta
ti
 sugar (fun
tion overloading) so as tomake them largely indistinguishable from an additional lan-guage feature (su
h as a new type). Su
h obje
t-orientedlibraries are however not extensions of the language for oneessential reason; the C++
ompiler does not re
ognize oroptimize the library's abstra
tions. The reason for this isthat there is no me
hanism to
ommuni
ate the library'sabstra
tions to the typi
al C++
ompiler. Thus no me
h-anism exists to introdu
e optimizations that are spe
i�
 toa library's abstra
tion. A C++ language
ompilation ap-proa
h that would permit library writers to
ommuni
atethe optimizations asso
iated with the abstra
tions withintheir libraries would
omplete the essential step in permit-ting obje
t-oriented libraries to be
onsidered as equivalent

to language extensions (or would at least muddy the wa-ter). This paper presents an essential pie
e of this work toopen up the development of C++
ompilers so as to per-mit obje
t-oriented library/framework developers (insteadof only
ompiler writers) to build portable and easily main-tained
ompilers that are
apable of optimizing the abstra
-tions represented by their libraries. We believe that thiswork is a
riti
al part of future performan
e optimizationfor obje
t-oriented libraries.We de�ne a me
hanism to build prepro
essors to automatethe optimization of appli
ations
ontaining user-de�ned ab-stra
tions via sour
e-to-sour
e transformations. Clearly notall optimizations are appropriate for introdu
tion via sour
e-to-sour
e transformation, but su
h an approa
h is intendedto be
omplementary to a vendor's C++
ompiler, whi
h isrelied upon for all lower level optimizations. This paper willpresent a powerful me
hanism to represent a
riti
al phaseof that work; automati
ally re
ognizing the use of
omplexobje
t-oriented abstra
tions at
ompile-time. Our approa
hextends well beyond the tedious limits of pattern mat
h-ing and automates the
onstru
tion of whole grammars andparsers to re-represent the program's abstra
t syntax tree(AST) within the
ompiler. The resulting ASTs using thegenerated grammars are dramati
ally simpli�ed sin
e theyexpli
itly identify language elements (expressions and state-ments) spe
i�
 to the user de�ned obje
t-oriented abstra
-tions. Typi
ally su
h obje
t-oriented abstra
tions are madeavailable in obje
t-oriented libraries or frameworks, so inthis way our approa
h is well suited to the optimization ofappli
ations using su
h libraries.The following se
tions in the paper detail ROSETTA, itsimplementation and how it leverages existing proje
ts par-ti
ularly the EDG C++ front-end and a modi�ed versionof the SAGE II sour
e
ode restru
turing tool. In furtherse
tions we des
ribe some of the important features. Wepresent some performan
e results from the use of this re
og-nition approa
h within ROSE and �nish with
on
lusionsabout its use.
2. A MOTIVATING EXAMPLETo make the dis
ussion within the paper as
on
rete andeasily understood as possible, we will use a motivating ex-ample from the A++/P++ array
lass library[13℄ and de�neour grammars to optimize this example. ROSETTA, andROSE, are not at all spe
i�
 to this or any other spe
i�
 ex-ample. However, both ROSETTA, and ROSE, are beingused to optimize the performan
e of the A++/P++ array
lass libraries.Within our motivating example we
onsider the followingtrivial �ve-point sten
il array operation:floatArray A(100,100);floatArray B(100,100);Range I(1,98),J(1,98);A(I,J) = B(I-1,J)+B(I+1,J)+B(I,J)+B(I,J+1)+B(I,J+1);In this
ode fragment, A and B are multidimensional arrayobje
ts, floatArray. A++ is a serial array
lass library,P++ is a parallel array
lass; data in the arrays are dis-

tributed a
ross multiple pro
essors if P++ is used. The twolibraries share an identi
al interfa
e. In this example, I andJ are Range obje
ts that together spe
ify an two dimensionalindex spa
e of the arrays A and B.
3. ROSETTAROSETTA is a tool developed for the manipulation and
onstru
tion of grammars. It permits a C++ Meta-programto be de�ned whi
h, when exe
uted, builds tools like SageII [8℄ from the user's manipulation of the C++ grammar(using the ROSETTA obje
t-oriented library). Spe
i�
ally,elements of SAGE II sour
e
ode form the de�nition ofthe C++ grammar's implementation within ROSETTA.ROSETTA is not spe
i�
 to C++ in any way, but is used
urrently for the development of the C++ grammar andhigher level grammars that in
lude user de�ned types, state-ments, expressions, et
. It is not a novel part of this workto have de�ned a me
hanism to generate SAGE II, modi�edor not. The novel aspe
t of this resear
h is that higher-level grammars
an be automati
ally generated in additionto the modi�ed SAGE II. This paper presents ROSETTAas the me
hanism by whi
h
riti
al parts of a �nal prepro-
essor are
ustomized for a framework's abstra
tions; andautomati
ally generated. Aspe
ts of the infrastru
ture forbuilding the a
tual prepro
essor are presented in ROSE [1℄.
3.1 Building GrammarsFor our purposes, a spe
i�
ation of a grammar is a setof produ
t rules expressed in terms of terminals and non-terminals to de�ne a language's
onstituent elements. BNFnotation is a
ommon form for the expression of su
h rules.ROSETTA represents a
lass library of terminals and non-terminals used to de�ne a grammar. To ea
h grammati
alelement (terminal or nonterminal obje
t) in theROSETTAappli
ation we asso
iate sour
e
ode. When the Meta-levelappli
ation using the ROSETTA library is exe
uted it pro-du
es sour
e
ode whi
h
an be used to build an AST.ROSETTA's automati
ally generated parsers permit the
re-ation of higher-level ASTs automati
ally from the lower levelC++ grammar's AST (parsing from EDG's AST is providedas part of ROSE and Sage II). The hierar
hy of
lasses rep-resented by this sour
e
ode is what we
onsider to be theimplementation of the grammar. The default behavior is tobuild the SAGE II library (in a modi�ed form) representingan implementation of
lasses de�ning the C++ grammar.
3.1.1 Building the C++ GrammarIt is relatively trivial (but lengthy) to de�ne the C++ gram-mar in terms of terminals and nonterminals and asso
iatewith the terminals and nonterminals sour
e
ode that im-plements those obje
ts. The default grammar is the C++grammar and the sour
e
ode asso
iated with it is essen-tially a modi�ed form of the SAGE II sour
e
ode (thoughautomati
ally generated). We
onsider an implementationof the grammar to be a library of
lasses representing thedi�erent language elements de�ned by a grammar (all possi-ble statements, expressions, types, symbols, et
.). We use amodi�ed form of the Sage II library as the implementationof the C++ grammar, but other libraries that implementgrammars and form the basis of di�erent sorts of
ompilertools exist[6, 5℄.

// Examples of grammati
al elements for "C++" GrammarGrammar Cxx("C++");// Constru
tion of Terminal obje
ts for "C++" grammarGrammar::Terminal AssignOp ("AssignOp","C++");Grammar::Terminal AddOp ("AddOp","C++");Grammar::Terminal Subtra
tOp ("Subtra
tOp","C++");Grammar::Terminal MultiplyOp ("MultiplyOp","C++");Grammar::Terminal DivideOp ("DivideOp","C++");...// Constru
tion of NonTerminal obje
ts for "C++" grammarGrammar::NonTerminal BinaryOp ("C++");BinaryOp = AssignOp | AddOp | Subtra
tOp |MultiplyOp | DivideOp | AndOp | OrOp;Figure 1: Example Meta-Program spe
i�
ationof Terminal and NonTerminal obje
ts for "C++"grammar. The Grammar obje
t's default
onstru
-tor alternatively
an be used to build the C++grammar eliminating expli
it de
laration of termi-nals and non-terminals for the C++ grammar's def-inition.Figure 1 shows examples of the de
laration of terminals andnon-terminals asso
iated with an example "C++" grammar.To the spe
i�
ations of these terminals and non-terminalswe
an add sour
e
ode (not shown) to represent the im-plementation of the grammar (
ode that will be generatedupon exe
ution of the C++ Meta-program). In the
aseof the C++ grammar, all terminals and non-terminals arespe
i�ed as part of the default grammar. A modi�ed formof the SAGE II sour
e is asso
iated with the terminals andnon-terminals as appropriate to for
e the modi�ed versionof SAGE II to be generated automati
ally upon exe
utionof the C++ Meta-program.The C++ grammar is not modi�ed in any way to be spe-
i�
 to our motivating array example, but the higher levelgrammar will be made spe
i�
 to the array obje
t abstra
-tions within the A++/P++ array
lass library. A high-level abstra
tion spe
i�
 grammar is one whi
h will identifyand
lassify the use of a user de�ned abstra
tion (de�nedmost often by the library writer), it's member fun
tions,within expressions and statements; its implementation per-mits the de�nition of a new AST where the obje
t-orientedabstra
tions are spe
i�
ally identi�ed. In the
ase of an ar-ray grammar, the implementation would in
lude terminalsand non-terminals organized to be either related to expres-sions and statements that are spe
i�
 to array obje
ts (andasso
iated with an array
lass library) or unrelated and rep-resenting general C++ expressions and statements. Spe
i�
elements of the grammar would exist for the re
ognition ofarray de
larations, array assignment statements, array ad-dition operators, et
.Figure 2 shows a simpli�ed representation of the
lass hi-erar
hy asso
iated with the C++ grammar as de�ned us-ing ROSETTA. The a
tual hierar
hy of
lasses within theC++ grammar would in
lude several hundred or more ad-ditional
lasses to represent all the spe
i�
 operators et
.(terminals and non-terminals within the de�nition of thegrammar). It is not pra
ti
al within these �gures to repre-sent the full
omplexity of the C++ grammar or the higher

Root of
Grammar

statements

scope statement

return statement

function type table

Expression statement

other statements

Declaration statement

expressions

Binary operator

value expression

Unary operator

new expression

other expressions

function call expression

conditional expression

delete expression

initializer expression

types

function type

named type

other types

pointer type

Figure 2: A simpli�ed representation of the
lasshierar
hy of
lasses representing the C++ grammar.level grammars whi
h we additionally build.
3.1.2 Building Higher Level GrammarsFigure 4 shows examples of the de
laration of terminals andnon-terminals asso
iated with an example "Array" gram-mar. To simplify the �gures we will asso
iate the letter Xwith the array obje
t and build an X grammar. Clearly X
ould stand for any library abstra
tion. Figure 3 shows themodi�
ation of the
orresponding simpli�ed C++ grammarto build a higher-level grammar spe
i�
 to a user-de�nedabstra
tion, X, note that the grammar in
ludes X types,X statements, and X expressions. An AST built with thisgrammar
learly identi�es language elements based on theX abstra
tion. As in the C++ grammar previously, in thea
tual X grammar a few hundred additional terminals andnon-terminals must be added to address the full
omplex-ity of the C++ language (the full hierar
hy of the
lassesde�ning the grammars would make the �gures overly
om-plex). Within the AST de�ned by the higher level gram-mars, sear
hing for X statements for an arbitrary user de-�ned abstra
tion, X, is simple be
ause of the natural
las-si�
ation that results from the reorganization of the C++AST into an AST.Sin
e higher-level grammars use the same sour
e
ode basefor their generated
ode, the expli
it re-spe
i�
ation is notrequired ex
ept to add additional terminals and non-terminalsto de�ne the higher level grammar. In our motivating array
lass example we de�ne the array grammar with respe
t tothe C++ grammar and using a system of
onstraints. Forexample, the array user-de�ned type is represented in thearray grammar by a C++ grammar's
lass type
ombinedwith a
onstraint that the name of the user-de�ned type was"Array". Additionally, within the array grammar we add asnew terminals and non-terminals the publi
 member fun
-tions of the array obje
ts so that they
ould be identi�edas formal elements of the array grammar within expressions

Root of
Grammar

statements
expressions

X statements

X scope statement

X return statement

X function type table

X expression statement

other X statements

X declaration statement

X expressions

X binary operators

X value expression

X unary operators

X new expression

other X expressions

X function call expression

X conditional expression

X delete expression

X initializer expression

X types

X function type

X named type

other X types

X pointer type

Non X statements

scope statement

return statement

function type table

expression statement

other statements

declaration statement

Non X expressions

binary operators

value expression

unary operators

new expression

other expressions

function call expression

conditional expression

delete expression

initializer expression

Non X types

function type

named type

other types

pointer type

types

Figure 3: A simpli�ed representation of the
lass hierar
hy of
lasses representing the higher-level grammarasso
iated with a user-de�ned X abstra
tion.// Examples of grammati
al elements for "Array" GrammarGrammar Array("Array");// Constru
tion of Terminal obje
ts for "Array" grammarGrammar::Terminal ArrayAssignOp ("ArrayAssignOp","Array");Grammar::Terminal ArrayAddOp ("ArrayAddOp","Array");Grammar::Terminal ArraySubtra
tOp ("ArraySubtra
tOp","Array");Grammar::Terminal ArrayMultiplyOp ("ArrayMultiplyOp","Array");Grammar::Terminal ArrayDivideOp ("ArrayDivideOp","Array");...// Constru
tion of NonTerminal obje
ts for "Array" grammarGrammar::NonTerminal ArrayBinaryOp ("Array");ArrayBinaryOp = ArrayAssignOp | ArrayAddOp |ArraySubtra
tOp | ArrayMultiplyOp |ArrayDivideOp | ArrayAndOp | ArrayOrOp;Figure 4: Example Meta-Program spe
i�
ation ofTerminal and NonTerminal obje
ts for "Array"grammar. Alternatively, higher level me
hanismsin ROSETTA
an automati
ally generate equivalent
ode from a
lass de�nition for the "Array" obje
t.and statements and be
learly represented within the ASTasso
iated with the array grammar. Su
h spe
i�
ation ofadditional terminals and non-terminals
an be automatedfrom the
lass de�nition (the header �le) whi
h is parsedand known at runtime of the C++ Meta-program. The pro-
ess means that grammars
an be automati
ally generatedfrom
lass de�nitions. This greatly simpli�es the
onstru
-tion of library spe
i�
 grammars.

Thus far we have shown how to build an X grammar forthe array obje
t, but a separate one should be
onsidered tobe built for the Range obje
t so that it too, as an the array
lass abstra
tion,
an be re
ognized at
ompile-time.
3.2 Connections between GrammarsFigure 5 shows how the individual grammars are
onne
tedin a sequen
e of steps; automati
ally generated parsers parselower level grammars into higher level grammars. The initialAST using the C++ grammar is built by the EDG front-endfrom a C++ appli
ation
ode. The following des
ribes thesteps:1. The �rst step generates the EDG AST, this programtree has a proprietary interfa
e and is parsed in these
ond step to form the C++ Grammar's AST.2. The C++ Grammar is generated by ROSETTA and isessentially
omformant with the SAGE II implementa-tion. This se
ond step is representative of what SAGEII provides and presents the AST in a form where it
an be modi�ed with a non- proprietary publi
 inter-fa
e. At this se
ond step the original EDG AST isdeleted and afterwards is unavailable.3. The third step is the most interesting sin
e at thisstep the C++ Grammar's AST is parsed into higherlevel grammars. Ea
h parent grammar (lower levelgrammar) parses itself into all of its
hild grammars sothat the hierar
hy of grammars is represented by
orre-sponding ASTs (one for ea
h grammar). Transforma-tions
an be applied at any stage of this third step and

ROSE C++ Code Generator (Unparser)

X
Grammar

X0 Grammar X1 Grammar

X00 Grammar X01 Grammar X11 GrammarX10 Grammar

Transformation

Transformation

TransformationTransformationTransformationTransformation

Transformation

ROSETTA High
Level Grammars

ROSETTA High Level
Abstract Syntax Trees

EDG Abstract
Syntax Tree

EDG C++
Front EndStep 1

Step 2

Step 3

Step 4

SAGE II
(ROSETTA C++ Grammar)

C++ Abstract
Syntax Tree

Figure 5: The
onne
tion of grammars (and parsers) representing the EDG front-end, SAGE and higher-levelabstra
tion spe
i�
 grammars built by ROSETTA.modify the parent AST re
ursively until the AST as-so
iated with the original C++ grammar is modi�ed.At this point, an AST has been built using the Arrayand Range grammars (X Grammars), whi
h is spe
i�
to the Array and Range obje
ts
ontained within theA++/P++ array
lass library. The X Grammar ASTnot only identi�es all Array and Range obje
ts, butmore importantly identi�es all Array and Range ex-pressions and Array and Range statements. For state-ment by statement optimizations Array and Range state-ments
an now be easily re
ognized by traversing theAST. At the end of this third step all transformationsasso
iated with Array statements have been applied.4. The fourth step is simply to unparse the AST asso
i-ated with the C++ AST to generate optimized C++sour
e
ode. This
ompletes the sour
e-to-sour
e pre-pro
essing.An obvious next and �nal �nal step is to
ompile the result-ing optimized C++ sour
e
ode using the vendor's C++
ompiler.
3.3 Connection to ROSEROSE provides for the spe
i�
ation of transformations andthe automated introdu
tion of su
h transformations into ap-pli
ation sour
e
ode. More information spe
i�
 to ROSE
an be found in [1℄. The
oupling of ROSETTA withROSE provides the more
omplete sour
e-to-sour
e opti-mization me
hanism with whi
h to introdu
e library/frameworkor ar
hite
ture dependent optimizations.

3.4 The Meta-program LevelA Meta-program level is used to build the sour
e
ode thatwill be
ompiled to be the prepro
essor; the Meta-programis a simple C++ program. The Meta-program spe
i�
allyde�nes the
onstru
tion and manipulation of grammars us-ing the ROSETTA library and the Ba
kus Naur Form(BNF) like abstra
tions within ROSETTA. The output ofthe Meta-program, when it is exe
uted, is itself sour
e
ode(written to two �les). This resulting sour
e
ode is
om-piled, with the ROSE infrastru
ture, to form a prepro
essorspe
i�
 to a given framework. The Meta-program
an au-tomati
ally generate a lot of sour
e
ode, typi
ally 200,000lines, but it
an be
ompiled in under a minute and on
ebuilt into a prepro
essor, by the library developer, need notbe re
ompiled by appli
ation developers.
4. IMPLEMENTATIONThe implementation of ROSETTA builds upon SAGE II [8℄,whi
h is built upon the Edison Design Group (EDG) C++front-end. Our work has been greatly simpli�ed by a

essto these two tools. ROSETTA uses a modi�ed form of theSAGE II whi
h we have developed. The purpose was to� Permit the automate generation of what is essentiallya modi�ed version of SAGE II� Maintain the SAGE II sour
e
ode (so that we
an�x minor bugs and make additions (templates, andsupport for new C++ features as supported by EDG))� Introdu
e the use of STL (as an outside library) intothe design of SAGE II

� Remove as many asymmetries from the implementa-tion of SAGE II so that the generation of the
ode
ould be simpli�ed.� Modify the SAGE II sour
e to permit it to be used asa basis for all higher level grammars. This requirednaming the
lasses so that multiple grammars
ould
oexist (to build hierar
hies of grammars) in the samesour
e-to-sour
e
ompiler.While using SAGE II as a basis for the grammars thatROSETTA generates, ROSETTA adds the signi�
ant
apa-bility to de�ne grammars at the level of BNF notation. C++
lasses are used to represent terminals and non-terminalsand whole grammars.
5. RESULTSWe have built high level grammars and used them to re
-ognize and
lassify the use of user de�ned abstra
tions withnumerous appli
ations. The approa
h is parti
ularly simplesin
e the grammars
an be built automati
ally from the li-brary header �les where the abstra
tions (C++
lasses) arede�ned. Some additional information is required if numer-ous default de�nitions are to be overridden. It is not possiblewithin this paper to present the ASTs for the higher levelgrammars sin
e graphs as
omplex as these are diÆ
ult tovisualize and we
urrently la
k me
hanisms for their presen-tation ex
ept for debugging purposes. At present we havepro
essed approximately 1.5 Million lines of
ode throughthe tools built by ROSETTA. Current work has been toexpand the
omplexity and quantity of sour
e
ode beingused as tests within this resear
h work.The most important use of this work has been in
ombina-tion with other me
hanisms within ROSE. Using grammarsbuilt by ROSETTA, and in
onjun
tion with ROSE, fulloptimizing prepro
essors have been built to optimize theperforman
e of the A++/P++ array
lass library. Signi�-
ant speedups were obtained depending on the array sizes;�nal performan
e mat
hed that of C and FORTRAN per-forman
e.Figure 6 shows the range of performan
e asso
iated with dif-ferent size arrays for the simple �ve point sten
il operator(our motivating example) on the Sun Ultra ma
hines. TheSun Ultra was sele
ted be
ause it is a
ommonly available
omputer, not be
ause it represents an ar
hite
ture withspe
i�
 pe
uliarities. The results are in no way spe
i�
 tothis array statement, moderate and large size appli
ationshave been pro
essed using prepro
essors built with ROSE.The results
ompare the ratios of A++ performan
e withand without the use of the ROSE prepro
essor to that of op-timized C
ode. The optimized C
ode takes full advantageof the bases of the arrays being identi
al and the unit strides,the A++ implementation does not, these very general sub-s
ript
omputations within the array
lass implementationare
ompared to very spe
i�
 and highly optimized sub-s
ript
omputations within the C
ode. Additionally, thenon-optimized A++ performan
e is en
umbered by fun
tion
alls asso
iated with the evaluation of the overloaded oper-ators (operator+() and operator=() for the array obje
ts Aand B and operator+() and operator-() for the Range I andJ obje
ts). Our results show the relative di�eren
e that it

Grid Size (each axis)
10 100 1000

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
c

e
 t

o
 O

p
ti

m
iz

e
d

 C

0.8
0.9

2

3

4
5
6
7
8
9

20

30

40
50
60
70
80
90

200

1

10

100 A++ without ROSE/C
A++ with ROSE/C

A++ Performance with and without ROSE
(Sun Ultra)

Figure 6: The use of a prepro
essor (built usingROSE)
an over
ome the performan
e degradationasso
iated with binary evaluation of array operands.These results show the use of ROSE with A++ andhow the performan
e mat
hes that of optimized C
ode using the restri
t keyword (ratio = 1). It hasbeen shown previously that this is equal to Fortran77 performan
e. More sophisti
ated
a
he-basedtransformations are also possible.makes to
ompare the optimized vs. non-optimized exe
u-tion of array statements. The performan
e using ROSE isnearly identi
al to that of the optimized C
ode (ratio = 1),this is not surprising sin
e the prepro
essoor transformationrepla
es the array statement with the mostly equivalent C
ode (highly optimized, and using restri
t pointers wherethey are supported to yield the same performan
e as FOR-TRAN 77).
6. RELATED WORKA distinguishing feature of our work is that we automati-
ally generate domain-spe
i�
 grammars for obje
t-orientedframeworks or appli
ations. Su
h grammars in
lude abstra
-tions from obje
t-oriented frameworks whi
h are not a partof the C++ grammar. These grammars are built on top ofthe C++ grammar, using similar modi�ed SAGE II sour
e
ode as for the C++ grammar. In
ontrast, other workde�nes a single grammar representing the grammar of thebase language itself (nothing higher level or user-de�ned ab-stra
tion spe
i�
) MPC++[6℄, NESTOR[5℄,SAGE[8℄. As aresult ROSETTA not only builds the sour
e
ode restru
-turing tools spe
i�
 to the C++ language (the base lan-guage) but also sour
e
ode restru
turing tools spe
i�
 tothe targeted domain-spe
i�
 library/framework. This es-sentially provides a
ustomized library/framework spe
i�
sour
e
ode restru
turing tool for the library/framework.
7. CONCLUSIONSThe use of obje
t-oriented frameworks
an often require orbene�t from
ompile-time optimization if the abstra
tionsare not suÆ
iently
oarse grain and the
ontext of the ab-stra
tion's use is important to the optimization. Examplesin
lude array
lass libraries (A++/P++, POOMA, Blitz,et
.), matrix
lass libraries (MTL, TNT, et
.), and
omplexgrid geometry oriented frameworks like Overture[2℄. Thisis the
ase for numerous sorts of abstra
tions for whi
h thestatements that use them
onsist of multiple expressions.

Alternatively, blo
ks of statements may bene�t from opti-mizations where their
ontext relative to one another
anonly be seen at
ompile time. Our approa
h is parti
ularlye�e
tive for array
lass libraries or higher level
urvilineargrid libraries that in
lude more sophisti
ated mathemati
aloperators (e.g. div, grad,
url, lapla
ian, et
.). Examples
ould be array
lass, matrix
lasses, parti
le
lasses, �nite-element
lasses, et
.One of the limitations of this approa
h is that the
onstru
-tion of grammars through the
onstraining of the base levellanguage grammar (the C++ grammar) does not permit theaddition of new keywords to the C++ language. But thisis pre
isely a strength of our approa
h. We don'twant to add new features to the base language or providea me
hanism to simplify this. To do so would be to openthe
ompiler in a fashion that would permit appli
ationsto be built that would rely upon spe
i�
 language exten-sions, this would be
ounter produ
tive to the developmentof portable standardized obje
t-oriented libraries. Our goalis restri
ted to the optimization of existing obje
t-orientedlibraries/frameworks. Providing su
h a more sophisti
atedme
hanism to extend C++ would simplify the addition ofnew keywords and language features but would be in
onsis-tent with the use of the existing EDG front-end and parserfrom EDG to SAGE II. Su
h work would in
rease the
om-plexity of ROSETTA well beyond pra
ti
al limits.Sin
e a library
an not readily see the
ontext of how itselements are juxtaposed, only a
ompile-time tool
an beexpe
ted to dis
ern the use of obje
t-oriented abstra
tionsrelative to one another within a user's appli
ation. Withthe abstra
t syntax tree (AST) exposed,
learly a relativelysimple pattern mat
hing approa
h
ould be used to identifythe obje
ts within an appli
ations, but this is not enoughto be useful. To re
ognize where transformations
an beautomati
ally introdu
ed it is required that the use of theobje
t-oriented abstra
tions be identi�ed and
lassi�ed intospe
i�
 language/grammati
al elements (expressions, state-ments, types, symbols, et
.). With this level of detail theAST is greatly simpli�ed and
an be traversed with the in-tent of abstra
tion dependent optimization, syntax
he
king,et
.
8. SPECIAL THANKSWe would like to thank the developers of the EDG front-endand SAGE II upon whose work we have based our own workfor the last several years. Despite signi�
ant work to extendSage II for our own purposes, it has been a signi�
ant assetto us.
9. REFERENCES[1℄ D. Quinlan, ROSE: Compiler Support forObje
t-Oriented Frameworks, Pro
eedings ofConferen
e on Parallel Compilers (CPC2000), Aussois,Fran
e, January 2000. Also published in spe
ial issueof Parallel Pro
essing Letters (available soon).[2℄ Brown, D., Henshaw, W., Quinlan, D. "OVERTURE:A Framework for
omplex geometries" Pro
eedings ofthe ISCOPE'99 Conferen
e, San Fransis
o, CA, De
7-10 1999

[3℄ J.Siek, A. Lumsdaine "The Matrix Template Library:Generi
 Programming Approa
h to High Performan
eNumeri
al Linear Algebra" Pro
eedings of theISCOPE'98 Conferen
e, Santa Fe, NW, De
 8-11 1999[4℄ S. Mu
hni
k, "Advan
ed Compiler Design andImplementation" Morgan Kaufmann Publishers, July1997[5℄ Georges-Andre Silber,http://www.ens-lyon.fr/�gsilber/nestor/index.html.[6℄ Ishkawa et. al. Design and Implementation ofMetalevel Ar
hite
ture in C++ - MPC++ Approa
h -.In Pro
eeding of Re
e
tion'96 Conferen
e, April 1996more info available at:http://pdswww.rw
p.or.jp/mp
++/mp
++.html[7℄ Shigeru Chiba Ma
ro Pro
essing in Obje
t-OrientedLanguages In Pro
. of Te
hnology of Obje
t-OrientedLanguages and Systems (TOOLS Pa
i�
 '98),Australia, November, IEEE Press, 1998. more infoavailable at:http://www.hlla.is.tsukuba.a
.jp/�
hiba/open
++.html[8℄ F. Bodin et. al. Sage++: An obje
t-oriented toolkitand
lass library for building fortran and
++restru
turing tools. In Pro
eedings of the Se
ondAnnual Obje
t-Oriented Numeri
s Conferen
e, 1994.[9℄ Edison Design Group http://www.edg.
om[10℄ Todd Veldhuizen Arrays in Blitz++ In Pro
eeding ofthe Se
ond International Symposium, ISCOPE 98,Santa Fe, NM De
ember 1998[11℄ Karmesin, et al. Array Design and ExpressionEvaluation in POOMA II. In Pro
eeding of the Se
ondInternational Symposium, ISCOPE 98, Santa Fe, NMDe
ember 1998[12℄ Bassetti, F., Davis, K., Quinlan, D. OptimizingTransformations of Sten
il Operations for ParallelObje
t-Oriented S
ienti�
 Frameworks onCa
he-Based Ar
hite
tures In Pro
eedings of theISCOPE'98 Conferen
e, Santa Fe, New Mexi
o, De
13-16 1998[13℄ Lemke, M., Quinlan, D., P++, a C++ Virtual SharedGrids Based Programming Environment forAr
hite
ture-Independent Development of Stru
turedGrid Appli
ations In Pro
eedings of theCONPAR/VAPP V, September 1992, Lyon, Fran
e;published in Le
ture Notes in Computer S
ien
e,Springer Verlag, September 1992.[14℄ Bassetti, F., Davis, K., Quinlan, D. TowardFORTRAN 77 Performan
e From Obje
t-OrientedC++ S
ienti�
 Frameworks In Pro
eedings of theHPC'98 Conferen
e, Boston, Mass. April 5-9, 1998[15℄ Bassetti, F., Davis, K., Quinlan, D. A Comparison ofPerforman
e-enhan
ing Strategies for ParallelNumeri
al Obje
t-Oriented Frameworks In Pro
eedingsof the �rst International S
ienti�
 Computing inObje
t-Oriented Parallel Environments (ISCOPE)Conferen
e, Marina del Rey, California, De
, 1997

