
A Sour
e-To-Sour
e Ar
hite
ture forUser-De�ned OptimizationsMarkus S
hordan1 and Dan Quinlan1Lawren
e Livermore National Laboratory, CA 94551, USA,s
hordan1�llnl.gov, dquinlan�llnl.govAbstra
t. We present an ar
hite
ture for the spe
i�
ation of sour
e-to-sour
e transformations. New sour
e
ode
an be spe
i�ed as sour
e-fragments. The translation of sour
e-fragments to the intermediate rep-resentation is a

omplished by invoking the frontend. For any insertedfragment we
an guarantee that it is typed
orre
tly. If no error is re-ported on inserted fragments, the whole program
an always be
ompiledwithout errors. Based on a given abstra
t attribute grammar the user
anspe
ify transformations as semanti
 a
tions and
an
ombine the
om-putation of attributes with restru
ture operations on the intermediaterepresentation.1 Introdu
tionThe development of spe
ial purpose (domain-spe
i�
) libraries to en
apsulatethe
omplexity of software is a signi�
ant step toward the simpli�
ation of soft-ware. But the abstra
tions presented by su
h libraries are user-de�ned and notoptimized by the vendor's language
ompiler. The e
onomi
s and maturationof new language and
ompiler designs make it parti
ularly diÆ
ult for highlyspe
ialized languages to appear and be a

epted by developers of large s
ale ap-pli
ations. Unfortunately, the generally poor level of optimization of user-de�nedabstra
tions within appli
ations thus negates their e�e
tive widespread use in�elds where high performan
e is a ne
essity.Though signi�
ant aspe
ts of our approa
h are language independent, our re-sear
h work has targeted the optimization of C++ appli
ations. The frameworkdeveloped to support this resear
h, ROSE, [1℄, allows us to express optimizationsbased on an abstra
t C++ grammar, eliminating the synta
ti
al idiosyn
hrasesof C++ in the spe
i�
ation of a transformation. Be
ause we target library de-velopers generally, our approa
h avoids the requirement that users learn a newspe
ial purpose language to express transformations. The semanti
 a
tions whi
hspe
ify a transformation are implemented in C++.Within previous resear
h we have demonstrated the use of ROSE [1, 2℄ andthat the performan
e penalty of user-de�ned abstra
tions
an be over
ome bysour
e-to-sour
e transformations. We presented how a speedup of up to four
anbe a
hieved for user-de�ned abstra
tions as they are used in pra
ti
e. The use ofthe semanti
s of the user-de�ned abstra
tions has been an essential part of this

2su

ess. In this paper we demonstrate the use of the abstra
t grammar in
ombi-nation with sour
e strings and restru
turing of the intermediate representation.As example we dis
uss the
ore of an OpenMP parallelization. The high-levelsemanti
s of the user-de�ned type utilized in the example is the thread-safety ofits methods.In se
tion 2 we des
ribe the ar
hite
ture and how we
an translate in
ompletesour
e-fragments to
orresponding fragments of the intermediate representation.In se
tion 3 we dis
uss how program transformations are spe
i�ed by the use ofthe abstra
t grammar and sour
e-strings. In the �nal se
tions we dis
uss relatedresear
h and our
on
lusions.2 Sour
e-To-Sour
e Ar
hite
tureIn a usual sour
e-to-sour
e translation the frontend is invoked on
e. Transfor-mations are either syntax dire
ted or de�ned as expli
it operations on an inter-mediate representation (IR). Eventually the ba
kend is
alled to generate the�nal sour
e program. In our ar
hite
ture, see �g. 1, the frontend and ba
kendare
omponents that
an be invoked at any point in an operation on the IR toobtain program fragments.The
apability of translating sour
e-fragments to IR-fragments and ba
k isessential to allow a
ompa
t spe
i�
ation of transformations as demonstratedin the example in se
tion 3. This allows the de�nition of a transformation by
ombining sequential strings although our intermediate representation has a treestru
ture. Although strings are used, by invoking the frontend ea
h fragment istype-
he
ked before it is inserted in the IR. This ensures that in ea
h step of atransformation, when a part of the intermediate representation is repla
ed by anew fragment, the program fragment is
he
ked for synta
ti
al and semanti
al
orre
tness.The
ombination of di�erent sour
e-fragments is spe
i�ed in semanti
 a
tionsasso
iated with rules of an abstra
t grammar. The
omputed attribute values
an be of arbitrary type, in
luding sour
e-fragments. Be
ause the
omputedattributes
an also be sour
e-fragments it is ne
essary to translate them to IR-fragments to insert them into the IR. Note, we do not re-parse sour
e-strings,a sour
e-string is only parsed on
e by the frontend. But the frontend
an beinvoked to translate
omputed sour
e-strings, ensuring that all semanti

he
ksare performed on the inserted IR-fragments as well. Note that our approa
h doesnot require any modi�
ations to an existing frontend.We use the EDG-frontend [3℄ for parsing C++ programs. This frontend per-forms template instantiation and a full type evaluation. In our abstra
t grammarall type information is made available to the user as annotations of nodes in theabstra
t syntax tree (AST) whi
h
an be a

essed in semanti
 a
tions of the ab-stra
t attribute grammar. The availability of semanti

ompile-time informationis an essential aspe
t of our ar
hite
ture. In the following se
tions we des
ribein detail how sour
e-fragments
an be translated to IR-fragments by utilizing anexisting frontend and how all semanti
 information
an be updated in the IR.

3
Fragment
Extractor

Fragment
Substitution

Intermediate

Representation

(AST)

Attribute

Evaluation Concatenator
Fragement

front−end

back−end

prefix

postfix

programfragment

in IRin IR

IR

IR

source

IR

prefix

fragment

postfix

unoptimized program

source

source

optimized program

IR

so
ur

ce
so

ur
ce

IR

completed program

Fig. 1. Sour
e-To-Sour
e ar
hite
ture with frontend/ba
kend invo
ation2.1 Fragment Con
atenator and Extra
torIn general, a sour
e-fragment
annot be parsed by the frontend be
ause it isan in
omplete program. Therefore it needs to be extended by a sour
e-pre�xand a sour
e-post�x to a
omplete program su
h that it
an be parsed by thefrontend. This
omputation of the pre�x and post�x is automated. The user onlyspe
i�es the fragment and the target lo
ation of the
orresponding IR-fragment.In our IR, the target lo
ation, Labs, is a node in the AST. The pre�x and post�xare automati
ally generated. The sour
e-pre�x
onsists of all de
larations andopening bra
es of s
opes before the target lo
ation, the sour
e-post�x
onsistsof all
losing bra
es of s
opes after the target position.The frontend returns a program in IR. From this the
orresponding IR-fragment needs to be extra
ted. A sour
e string shall be denoted as S and anintermediate representation as I . We shall denote any pre�x by �, any fragmentby 2, and any post�x by �.

4 A given sour
e-fragment, S2, is translated to an IR-fragment, I2, by invokingthe frontend.The fragment
on
atenator
on
atenates the sour
e-pre�x S�, the sour
e-fragment S2, and the sour
e-post�x S�. Information ne
essary to extra
t theIR-fragment, I2,
orresponding to the sour
e-fragment, S2, from the IR of the
ompleted program, shall be denoted Lsep. It represents separators that areinserted by the
on
atenator before invoking the frontend, and used by the ex-tra
tor to separate the fragment from the pre�x and post�x.(S;Lsep) =
on
atenator(S�; S2; S�)The
ompleted program S
an be parsed by the frontendI = frontend(S)to obtain the program in intermediate representation I . From this programI , the IR-fragment, I2, is extra
ted by the fragment extra
tor.I2 = extra
tor(I; Lsep)The fragment extra
tor strips o� the IR-pre�x, I�,
orresponding to S� andI�
orresponding to S�. Information on where these parts are separated, Lsep,whi
h is returned by the fragment
on
atenator, is used to �nd start and endpoints of I� and I�.We have shown how we
an obtain the
orresponding IR-fragment I2 for agiven sour
e-fragment S2 by invoking the frontend. The inverse operation, byinvoking the ba
kend, is S2 = ba
kend(I2):Sin
e both representations, I2 and S2,
an always be translated one to theother, both
an be used inter
hangeably in the de�nition of a transformation.
source
fragment

IR
fragment" ... " reinvoke

backend

frontendFig. 2. A sour
e-fragment
an always be translated into an IR-fragment by invokingthe frontend and an IR-fragment
an always be translated into a sour
e-fragment byinvoking the ba
kend.In �gure 2 this
orresponden
e is shown as a diagram. The de�nition of atransformation is simpli�ed be
ause sour
e-fragments, S2,
an be used to de-�ne sour
e
ode patterns as strings. On the other hand, sour
e-fragments
or-responding to subtrees of the IR
an always be used as values in an attribute

5evaluation be
ause we
an always obtain the
orresponding sour
e-fragment foran IR-fragment.This allows the de�nition of a transformation by
ombining sequential stringsalthough the intermediate representation has a tree stru
ture. All semanti
 in-formation, su
h as type information for ea
h expression, symbol tables, et
.,is updated by the underlying system. Note that the order in whi
h the IR ispro
essed is (mostly) sour
e sequen
e.2.2 Fragment SubstitutionAn IR-fragment, I2, whi
h is obtained from the fragment extra
tor, substitutesan IR-fragment in the IR as spe
i�ed by Labs.I i+1 = �(hI i2; I2; Labsi; I i)The substitution � repla
es the IR-fragment I i2 by the new IR-fragment I2(whi
h
orresponds to a S2) at the spe
i�ed lo
ation Labs. I i2 is an IR-fragmentin I i. After a substitution has been applied the restru
tured IR, I i+1, be
omesa

essible for the next transformation. This ensures that a substitution operatesas a side-e�e
t free fun
tion, with respe
t to the IR stru
ture, in a transforma-tion.On
e an attribute evaluation has been performed and a transformation is �n-ished, I i+1 be
omes a

essible and I i is no longer a

essible. Note that fragmentsI i2 and I2
an be empty,
orresponding to empty strings � (sour
e-fragments),whi
h allows to de�ne insertions and deletions.3 Program TransformationsProgram transformations are spe
i�ed as semanti
 a
tions of the abstra
t C++grammar. The abstra
t grammar
overs full C++. We use a su

essor of Co
o/R[4℄, the C/C++ version ported by Frankie Arzu. Co
o/R is a
ompiler generatorthat allows to spe
ify a s
anner and a parser in EBNF for
ontext free languages.The grammar has to be LL(1). We use this tool to operate on the token streamof AST nodes. Therefore we do not use the s
anner generator
apabilities ofCo
o/R and implemented a s
anner to operate on a token stream of AST nodes.A terminal in our default abstra
t grammar always dire
tly
orresponds toAST nodes of one type. The name of this type is the name of the terminal in thegrammar. The grammar
an be modi�ed but the user has to ensure that it stilla

epts all programs that are to be transformed. Our present version of the de-fault abstra
t grammar for full C++ has 165 rules. Non-terminals either dire
tlymat
h names of base types in the AST's obje
t-oriented
lass hierar
hy, or thenon-terminals were introdu
ed (with the post�x NT in our default grammar)for better readability. The user
an also a

ess all annotated AST informationgathered by the frontend at ea
h AST node through a variable astNode. Thevariable always holds the pointer to the
orresponding AST node of a parsedterminal.

6Before transformationfor(ValContainer::iterator i=l.begin(); i!=l.end(); i++) {a.update(*i);}After transformation#pragma omp parallel forfor(int i = 0; i < l.size(); i++) {a.update(l[i℄);}Fig. 3. An iteration on a user-de�ned
ontainer l that provides an iterator inter-fa
e. The obje
t a is an instan
e of the user-de�ned
lass Range. Obje
t l is of typeValContainer. In the optimization the iterator is repla
ed by
ode
onforming to therequired
anoni
al form of an OpenMP parallel for. The user-de�ned method updateis thread-safe. This semanti
 information is used in the transformation.In the example sour
e in �g. 3 we show an iteration on a user-de�ned
on-tainer with an iterator. This pattern is frequently used in appli
ations usingC++98 standard
ontainer
lasses. The obje
t a is an instan
e of the user-de�ned
lass Range. The transformation we present takes into a

ount the semanti
s ofthe type ValContainer and the semanti
s of
lass Range. The transformation istherefore spe
i�
 to these
lasses and its semanti
s.For the type ValContainer we know that the type iterator de�ned in the
lass follows the iterator pattern as used in the C++98 standard library. Forthe type Range we know that the method update is thread safe. We show the
ore of a transformation to transform the
ode into the
anoni
al form of afor-loop as required by the OpenMP standard. We also introdu
e the OpenMPpragma dire
tive. Note that the variable i in the transformed
ode is impli
itlyprivate a

ording to the OpenMP standard 2.0 . If the generated
ode is
ompiledwith an OpenMP
ompiler, di�erent threads are used for exe
uting the body ofthe for-loop. The test, isUserDefIteratorForStatement, to determine whetherthe transformation
an be applied, is
onservative. It might not always allow toperform the optimization although it would be
orre
t but it is never appliedwhen we
annot ensure that the transformed
ode would be
orre
t.In the example in �g. 4 the rule of SgS
opeStatement is shown. The terminalSgForStatement
orresponds to an AST node of type SgForStatement. Thevariable astNode is a pointer to the respe
tive AST node of the terminal andassigned by our supporting system when the s
anner a

esses the token stream.Note that every terminal in the grammar
orresponds to a node in the AST,ex
ept the parentheses.Methods of the obje
t subst allow to insert new sour
e
ode and delete sub-trees in the AST. The substitution obje
t subst bu�ers pairs of target lo
ationand string. The substitution is not performed before the semanti
 a
tions ofall subtrees of the target lo
ation node have been performed. This me
hanism

7allows to
he
k whether substitutions would operate on overlapping subtrees ofthe AST (in the same attribute evaluation). In
ase of overlapping subtrees anerror is reported.The obje
t query is of type AstQuery and provides frequently used methodsfor obtaining information stored in annotations of the AST. These methods arealso implemented as attribute evaluations.SgS
opeStatement<bool isOmpFor>= SgForStatement(.isOmpFor= ompTransUtil.isUserDefIteratorForStatement(astNode,isOmpFor);.)"(" SgForInitStatementNT<isOmpFor> SgExpressionRootNTSgExpressionRootNT SgBasi
Blo
kNT<isOmpFor>")"(.if(isOmpFor) {string ivarName = query.iteratorVariableName(astNode);string i
ontName = query.iteratorContainerName(astNode);string modifiedBodyString= ompTransUtil.derefToIndexBody(ivarName,i
ontName);string beforeForStmt= "#pragma omp parallel for\n";string newForStmt = "for(int "+ivarName+"=0;"+ ivarName+"<"+i
ontName+".size();"+ ivarName+"++) "+modifiedBodyString;subst.repla
e(astNode,beforeForStmt + newForStmt);}.)| ...Fig. 4. A part of the SgS
opeStatement rule of the abstra
t C++ grammar with thesemanti
 a
tion spe
ifying the transformation of a SgForStatement.The inherited attribute isOmpFor is used to handle the nesting of for-loops.It depends on how an OpenMP
ompiler supports nested parallelism whetherwe want to parallelize inner for statements or only the outer for statement. Infuture this de
ision will be made more spe
i�
 to OpenMP
ompilers on di�erentplatforms and the boolean attribute will be repla
ed by an obje
t to provide moreinformation about the
ontext of OpenMP for-loops.The obje
t query of type AstQuery o�ers methods to provide informationon subtrees that have been proven to be useful in di�erent transformations. Inthe example we use it to obtain the name of the iterator variable, and to obtainthe node of the de
laration of the iterator variable. Note that these fun
tions

8must return valid values be
ause it has been tested that the for-loop quali�esfor transformation before.The example shows how we
an de
ompose di�erent aspe
ts of a transfor-mation into separate attribute evaluations. The methods of the query obje
tare implemented by using the attribute evaluation. For this reason we allow to
all any method of the re
ursive des
ent parser generated by COCO to parsea sublanguage, and start an evaluation at a
ertain node in the AST. Multiplegrammar �les
an also be used for su
h
ases and ea
h �le
ontains a version ofthe abstra
t C++ grammar. In the example, isUserDefIteratorForStatementis a wrapper fun
tion of another attribute evaluation generated by COCO thatstarts at a SgForStatement node.In �g. 3 the generated
ode is shown. The a

ess uses the notation for randoma

ess iterators. Even if the a

ess is not of
omplexity O(1) the parallelization
an still provide speedup. The user who implements the transformation has totake su
h tradeo�s into a

ount in a test fun
tion to de
ide whether a trans-formation should be applied or not. Note that the generated sour
e
ode
anhave a slightly di�erent formatting be
ause the format of the sour
e
ode is abeauti�ed version of the sour
e
orresponding to the transformed AST.4 Related WorkWe use Sage III as intermediate representation, whi
h we have developed asa revision of the Sage II [5℄ AST restru
turing tool. Its prede
essor, Sage++,in
luded a Fortran frontend, while Sage II in
luded the EDG C++ frontend [3℄and represented a more robust handling of C++ as a dire
t result. Our workhas substantially modi�ed Sage II (e.g., adding template support and
hangesof the stru
ture and interfa
es of Sage II of about 25% of the node
lasses). SageII required modifying the AST by expli
itly rearranging pointers between ASTnodes and
reating new node obje
ts if new
ode needed to be added. In ourframework this
an be done by using sour
e strings and an abstra
t grammar.Related work on the optimization of libraries on teles
oping languages [?℄shares many of the same goals as our resear
h work and we expe
t to workmore
losely with these resear
hers in the near future. Our approa
h so far isless ambitious than the teles
oping languages resear
h, but is in some aspe
tsfurther along, though
urrently spe
i�
 to abstra
tions represented in C++.Further approa
hes are based on the de�nition of library-spe
i�
 annotationlanguages to guide optimizing sour
e
ode transformations [6℄ and on the spe
-i�
ation of both high-level languages and
orresponding sets of axioms de�ning
ode optimizations, see [7℄ for example. We address the need of annotationsfor guiding optimizations either by pragmas,
omments, or make optimizationsspe
i�
 to user-de�ned types as dis
ussed in the example transformation.Kimwitu [8℄ allows to asso
iate semanti
 a
tions with rules of a tree gram-mar. Con
eptually Kimwitu
ould be used instead of COCO as well. But thesubstitution me
hanism is more diÆ
ult to integrate into our system when us-ing the C++ version of Kimwitu from our experien
e be
ause it uses its own

9memory handling and puts restri
tions on some
ode fragments used in seman-ti
 a
tions. COCO was easier to integrate in our system be
ause it only
opeswith issues of parsing and not transformation, and does not put any restri
tionson the
ode used in semanti
 a
tions. However, our grammar
onforms to theessential properties of a tree grammar as required by Kimwitu. The other modeof Kimwitu, to express term rewriting expli
itly by using subterms des
ribingsubtrees on both sides of a rule, is an advantage of Kimwitu in parti
ular for the
ompa
t spe
i�
ation of algebrai
 optimizations.The Mi
rosoft .NET CodeDom Compiler Framework is used by various tools,in
luding ASP.NET and Visual Studio.NET. It o�ers an interfa
e for restru
tur-ing sour
e-
ode, designed to handle di�erent languages. Nigel Perry has de�nedan abstra
t grammar for the CodeDom Language [9℄. A program in the languageis represented by a tree of CodeDom obje
ts, whi
h
orresponds to a parse treein a
ompiler for a
onventional language. In our framework the abstra
t gram-mar
an a
tually be used to spe
ify transformations. In the abstra
t CodeDomEBNF grammar, type information is made expli
it as extension in the gram-mar. In our grammar type information is available as a

essible annotation ofthe AST nodes. Also we do not use tree extensions to identify grammar sym-bols that
orrespond to AST nodes. A terminal always dire
tly
orresponds to anAST node. We only added parentheses to the token stream. However, most of allinformation required for our approa
h is available for the CodeDom framework,whi
h makes it an interesting target in our future work.5 Con
lusions and Future WorkThe use of an abstra
t grammar greatly simpli�es the spe
i�
ation of a sour
e-to-sour
e transformation. Many aspe
ts of parsing sour
e
ode and type evaluationare not helpful for expressing
ode transformations. The spe
i�
ation of a sour
e-to-sour
e transformation should not interfere with spe
i�
 parsing issues of the
on
rete syntax of the language. On the other hand, the
on
rete syntax is whatdevelopers, who want to optimize their appli
ation
odes, are most familiar with.From this we
on
lude that o�ering the use of sour
e-strings for spe
ifying new
ode and using an abstra
t grammar to allow to spe
ify transformations is apra
ti
al solution to this problem. The availability of full type information isne
essary for the optimization of user-de�ned abstra
tions.Instead of requiring the user to learn a new language to express transforma-tions, all transformations are themselves de�ned in C++, the same language inwhi
h the appli
ation
ode is written and whi
h the user seeks to optimize. Thegrammar for
es the user to stru
ture the transformation a

ording to the stru
-ture of the language, the de
omposition in di�erent transformation obje
ts, asshown in the example, gives the ne
essary freedom in designing
omplex trans-formations.Future work is targeted at demonstrating the development of a wide range ofoptimizing sour
e-to-sour
e translators for spe
i�
 s
ienti�
 libraries and appli-
ations. Additional work is the analysis of
omplex data stru
tures to automate

10the generation of appli
ation spe
i�
 tools (
onne
tion to visualization libraries,dump/restart fun
tions, et
.).By permitting developers to add highly tailored
ompanion optimizations totheir user-de�ned types and appli
ations, we de�ne a hierar
hi
al (teles
oping)approa
h to language design whi
h builds in
rementally upon existing generalpurpose languages. We hope that a similar approa
h
ould in the future form asigni�
ant me
hanism within a general purpose language
ompiler to allow usersto extend the range of optimizations.Referen
es1. Daniel Quinlan, Brian Miller, Bobby Philip, and Markus S
hordan. Treating auser-de�ned parallel library as a domain-spe
i�
 language. In 16th InternationalParallel and Distributed Pro
essing Symposium (IPDPS, IPPS, SPDP), pages 105{114. IEEE, April 2002.2. Daniel Quinlan, Markus S
hordan, Brian Miller, and Markus Kowars
hik. Parallelobje
t-oriented framework optimization. Con
urren
y and Computation: Pra
ti
eand Experien
e, 2003, to appear.3. Edison Design Group. http://www.edg.
om.4. Hanspeter Moessenboe
k. Co
o/R - A generator for produ
tion quality
ompilers.In LNCS477, Springer, 1991.5. Fran
ois Bodin, Peter Be
kman, Dennis Gannon, Ja
ob Gotwals, Srinivas Narayana,Suresh Srinivas, and Beata Winni
ka. Sage++: An obje
t-oriented toolkit and
lasslibrary for building fortran and C++ restru
turing tools. In Pro
eedings. OONSKI'94, Oregon, 1994.6. Samuel Z. Guyer and Calvin Liri. An annotation language for optimizing softwarelibraries. In Pro
eedings of the 2nd Conferen
e on Domain-Spe
i�
 Languages, pages39{52, Berkeley, CA, O
tober 3{5 1999. USENIX Asso
iation.7. Vijay Menon and Keshav Pingali. High-level semanti
 optimization of numeri
al
odes. In Conferen
e Pro
eedings of the 1999 International Conferen
e on Super-
omputing, pages 434{443, Rhodes, Gree
e, June 20{25, 1999. ACM SIGARCH.8. P. van Eijk, A. Belinfante, H. Eertink, and H. Albas. The term pro
essor Kimwitu.In E. Brinksma, editor, Tools and Algorithms for the Constru
tion and Analysis ofSystems, pages 96{111, Ens
hede, The Netherlands, 1997. Springer Verlag, LNCS1217.9. Nigel Perry. A de�nition of the
odedom abstra
t language, http://www.mondrian-s
ript.org/
odedom/
odedom grammar.html, 2002.

