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Abstract. Traditional compilers are limited in their ability to optimize
applications for different architectures because statically modeling the
effect of specific optimizations on different hardware implementations
is difficult. Recent research has been addressing this issue through the
use of empirical tuning, which uses trial executions to determine the
optimization parameters that are most effective on a particular hard-
ware platform. In this paper, we investigate empirical tuning of loop
fusion, an important transformation for optimizing a significant class of
real-world applications. In spite of its usefulness, fusion has attracted lit-
tle attention from previous empirical tuning research, partially because
it is much harder to configure than transformations like loop blocking
and unrolling. This paper presents novel compiler techniques that ex-
tend conventional fusion algorithms to parameterize their output when
optimizing a computation, thus allowing the compiler to formulate the
entire configuration space for loop fusion using a sequence of integer pa-
rameters. The compiler can then employ an external empirical search
engine to find the optimal operating point within the space of legal fu-
sion configurations and generate the final optimized code using a simple
code transformation system. We have implemented our approach within
our compiler infrastructure and conducted preliminary experiments us-
ing a simple empirical search strategy. Our results convey new insights
on the interaction of loop fusion with limited hardware resources, such
as available registers, while confirming conventional wisdom about the
effectiveness of loop fusion in improving application performance.

1 Introduction

The evolving technology has driven computer architectures into increasingly
complex designs, manifested by a wide range of advanced processors and deep
memory hierarchies. Such complex machine architectures pose significant chal-
lenge to compilers in estimating the runtime behavior of applications. Mispre-
dictions by compilers often lead to poor application performance and a low
percentage utilization of peak computational power.

As an alternative to static modeling of machine behavior, empirical tuning
of applications has recently become popular in the research community when
applying compiler optimizations. The success of empirical tuning relies on the



availability of an optimization search space. Specifically, compilers must be able
to provide a clear mapping between the performance of applications and the
configuration of optimizations.

Among the many compiler transformations, loop fusion has been established
as critical in optimizing a significant class of real-world applications [16, 11, 15].
However, previous empirical tuning research has mostly focused on loop block-
ing and unrolling. Little effort has been devoted to tuning loop fusion, partially
because the transformation is much more difficult to configure and explicitly
parameterize. To illustrate the complexity of this problem, we consider the pseu-
docode in Figure 1(a).

do i=L,U
f1

enddo
do i=L,U
f2

enddo
do i=L,U
f3

enddo
......
do i=L,U
fn

enddo

do i=L,U
f1

enddo
# fuse
do i=L,U
f2

enddo
do i=L,U
f3

enddo
......
do i=L,U
fn

enddo

set-configuration-space(m,A1,A2,...An)
set-constraints( ...)
configure-parameters(m,A1,A2,...An)
do j = 1, m
do i=L,U

if (A1 == j) f1

if (A2 == j) f2

if (A3 == j) f3

......
if (An == j) fn

enddo
enddo

(a) original code (b) instrumentation (c) parameterization

Fig. 1. Pseudo code to illustrate parameterize of loop fusion

Suppose all the loops in Figure 1(a) can be fused into a single loop without
changing the meaning of the original program. But due to register pressure and
other factors such as cache conflict misses, it might not be beneficial to fuse
all the loops together. As we may not be able to precisely model the runtime
environment, we would like to empirically determine the best transformation.

To experiment with different transformations, we must be able to automat-
ically accept different configurations and perform loop fusion accordingly. One
straightforward approach is to implement a simple translator that automatically
instruments the original program with different annotations. The compiler can
then extend conventional loop fusion algorithms to understand the annotations
(e.g. LoopTool [22]). Figure 1(b) illustrates this approach, where “#fuse” is an
annotation inserted by the instrumentation translator to instruct the compiler
that f1 and f2 should be fused into a single loop. The instrumentation approach
could work to some extent but has the following limitations.
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– Although the instrumentation translator can recognize loops in the original
program and insert annotations between loops, it cannot use information
from the compiler, such as the safety and profitability of performing various
transformations, to guide the empirical search process.

– Although the instrumentation translator can instruct the compiler to fuse
loops that are next to each other in the original code, it cannot exploit
fusion transformations that reorder the loops. For example, suppose the best
transformation for Figure 1(a) is to fuse loops f1,f3 and f4, but leave f2 out
of the fusion group. Without help from the compiler, the instrumentation
translator cannot recognize it is safe to do so and therefore cannot perform
the reordering transformation to enable the best annotation.

To overcome the above limitations, we believe that the compiler must be
able to pass information to the empirical tuning system. Instead of having the
empirical tuning system blindly instructing a compiler what to do, we make the
compiler generate all the possible transformations. The tuning system can then
choose which versions to use based on profiling information and predictions from
the compiler. As it is overly expensive and impractical to explicitly generate all
equivalent versions of a program, we must devise a compact way to represent
different fusion transformations.

This paper presents a new code generation technique explicitly for this pur-
pose. Our goal is to allow loop fusion to be parameterized just as loop blocking is
parameterized with blocking factors. Specifically, we have formulated the config-
uration space of loop fusion with a sequence of integer parameters. As different
values are assigned to each parameter, a parameterized code template can be
instantiated to generate the corresponding transformation. Given an arbitrary
input code, the parameterized code template, combined with the configuration
space of the parameters, can potentially represent the results of applying all
possible loop fusion transformations.

Given Figure 1(a) as input, our parameterization of loop fusion transforma-
tions is shown in Figure 1(c). Specifically, we separate the sequence of original
loops into a collection of groups, where each group is fused into a single loop after
applying fusion. The first statement in (c) specifies the parameters of the con-
figuration space, which include the number of fusion groups (m in Figure 1(c)),
and a group id (A1, A2, ..., An in (c)) for each original loop, indicating which
fusion group the original loop belongs to. The set-constraints statement in (c)
specifies a collection of constraints that must be satisfied by the parameters in
order to produce a valid transformation. The constraints are passed to an empir-
ical search engine (implemented separately from the compiler). We then invoke
the configure-parameters function in (c), which asks the search engine to deter-
mine the values of configuration parameters. Finally, we use the code template in
(c) to generate the result of the corresponding loop fusion transformation. The
parameterized code in Figure 1(c) can be used to represent all possible fusion
transformations of the original code. Section 2 describes this formulation in more
detail.
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Fig. 2. Empirical tuning of loop fusion

We have implemented our parameterization of loop fusion through modifi-
cations of the loop transformation algorithms by Yi and Kennedy [30] in the
ROSE compiler infrastructure [23]. To exploit the search space of loop fusion,
we also implemented a simple empirical search engine that exhaustively search a
significant subspace of the entire fusion configuration space. In addition to using
our parameterized code as a template for generating output of different fusion
configurations, we also treated our parameterized code as a dynamically adapt-
able executable by compiling it directly and linking it with the search engine, in
which case we dynamically applies different fusion transformations at runtime.

Section 3 presents our preliminary results of exploiting the empirical search
space of loop fusion both at installation time and at runtime. Our experimental
results are based on applying loop fusion to a kernel computation, Riemann,
extracted from a real-world scientific application. Our results have provided new
insight as well as confirming previous conclusions in applying loop fusion to
improve performance of applications.

2 Empirical Tuning of Loop Fusion

This section presents our techniques for empirically applying loop fusion to op-
timize scientific kernels. Figure 2 shows our overall framework, which includes
the following three components.

– The optimizer. A source-to-source compiler that reads in an application,
performs dependence analysis to determine opportunities of applying loop
fusion, then generates two outputs: a parameterized version of the trans-
formed code, and the configuration space of the transformation. A template
of the parameterized code is shown in Figure 1. The configuration space in-
cludes a sequence of integer variables used in the parameterization, and a
collection of constraints on their values.

– The search engine. An empirical configuration generator that chooses integer
values for the loop fusion parameters based on two inputs: the configuration
space generated by the optimizer and the collected performance measure-
ments of applications.

– The code generator. A simple configuration applicator that takes the param-
eterized code generated by the optimizer and the configuration of parameter
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l1:for (i1 = l; i1 ≤ u; ++i1)
S1(i1);

l2:for (i2 = l; i2 ≤ u; ++i2)
S2(i2);
......

ln:for (in = l; in ≤ u; ++in)
Sn(in);

g1: for (j1 = l; j1 ≤ u; ++j1)
G1(j1);

g2: for (j2 = l; j2 ≤ u; ++j2)
G2(j2);
......

gm:for (jm = l; jm ≤ u; ++jm)
Gm(jm);

lj : for (j = 1; j ≤ m; ++j)
li: for (i = l; i ≤ u; ++i)

if (A1 == j)
S1(i);

if (A2 == j)
S2(i);

......
if (An == j)
Sn(i);

(a) original loops (b) code after fusion (c) parameterized code

Fig. 3. Parameterization of Loop Fusion

values by the search engine, instantiates the parameters with their corre-
sponding values, and invokes the vendor compiler to produce an executable
of the transformed code. The performance of the executable is measured on
the target machine and the results of measurements are recorded and used
by the search engine to generate the next configuration, until a satisfactory
configuration is found.

In our framework, we apply the optimizer only once to generate the param-
eterized code and the configuration space. The result of entire compiler analysis
is encoded within the parameterization. Consequently, the search engine and the
the code generator do not need to perform any additional dependence analysis.
Our iterative empirical tuning process thus avoids recompiling the application
every time a new version is generated. In the following we describe each compo-
nent of our framework in more detail.

2.1 Parameterization of Loop Fusion

Given as input a sequence of loops, as shown in Figure 3(a), our parameterization
of loop fusion transformations is shown in Figure 3(c). The parameterization is
based on the observation that each loop fusion transformation partitions the
input loops l1,l2,...,ln into a sequence of groups, G1, G2, ..., Gm, where 1 ≤ m ≤
n, so that all the statements in each group are fused into a single loop. Figure 3(b)
shows a template of the transformed code after applying a conventional loop
fusion, whereGi (i = 1, ...,m) represents the bodies of all the loops that belong to
the fusion group. Each clustering of the original loops thus uniquely determines
a single loop fusion transformation.

In order to parameterize the results of applying arbitrary loop fusion trans-
formations, we need to explicitly model the relation between the clustered groups
of a fusion transformation (G1,...,Gm in Figure 3(b)) and the collection of state-
ments in the original code (S1,...,Sn in Figure 3(a)). In Figure 3(c), we use a
sequence of integer variables, A1,A2,...,An, to model this relation. Specifically,
∀i = 1, ..., n, if Ai = j, then the original statement Si in Figure 3(a) belongs to
the clustered group Gj in (b). All possible values of A1,...,An therefore comprise
the configuration space of different fusion transformations.
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As shown in Figure 3(c), our parameterized code has an outermost loop lj ,
which enumerates the clustered groups of an arbitrary loop fusion transforma-
tions. Each iteration of loop lj enumerates the code of the clustered group Gj
in Figure 3(b). Specifically, the fused loop of group Gj is loop li in Figure 3(c),
and the body of the fused loop includes every statement Sk (k = 1, ..., n) such
that Ak == j; that is, statement Sk is assigned to the fusion group Gj by the
current fusion configuration.

The code in Figure 3(c) contains n+1 parameters: m, the number of clustered
groups by loop fusion, and Ak (k = 1, 2, ..., n), the index of the fusion group that
statement Sk belongs. When these parameters are instantiated with different
integer values, the code in (c) is equivalent to the conventional output of different
loop fusion transformations. For instance, if m = A1 = A2 = ... = An = 1, the
code in Figure 3(c) is equivalent to fusing all the loops in Figure 3(a) together.
If m = n, and Ak = k ∀k = 1, ..., n, the code in (c) is equivalent to the code in
(a), where none of the loops are fused. If m = n/3, and Ak = k/3 ∀k = 1, ..., n,
the code in (c) is equivalent to fusing every three loops in the original code in
(a).

Because different instantiations of the fusion parameters can represent the
entire configuration space of partitioning individual loops into different groups,
the parameterized code in Figure 3(c) can be used to represent outputs of arbi-
trary fusion transformations on the loops in (a). Instead of applying heuristics
to determine how to optimize application performance through loop fusion, we
have implemented our loop fusion transformation to generate the parameterized
output in (c) instead. To guarantee that only valid transformations are applied,
our compiler additionally outputs a collection of constraints on the values that
can be assigned to the parameters.

2.2 Configuration Space

As shown in Figure 2, after our optimizer generates the parameterized code and
the configuration space of applying loop fusion transformations, a search engine
tries to find a configuration that both satisfies the parameter constraints and
provides the best performance.

If the loops in Figure 3(a) can be fused in arbitrary order, then the number
of configurations that fuse n statements into m loops can be modeled using the
following recursive formula: F (n,m) = F (n−1,m−1)+m×F (n−1,m), where
F (i, i) = F (i, 1) = 1.1 The total number of fusion configurations is therefore
Σn
m=1F (n,m), and the lower and upper bounds are F (n, 2) = 2n−1 − 1 and n!

respectively. The entire configuration space of loop fusion for n loops is therefore
at least exponential.

In real applications, however, the number of valid configurations is much
smaller because of the dependences between statements. Suppose that the de-
pendence constraints between statements in a sequence of n loops require that
all the loops be fused in exactly the order they appear in the original code; that
1 This is the number of ways to partition n objects into m nonempty subsets
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is, if Si and Sj (i ≤ j) in Figure 3(a) are fused together, then all statements in
{Sk|i < k < j} are also fused with Si and Sj . In this case, the number of con-
figurations that fuse n loops into m loops is

(
n−1
m−1

)
. Figure 4 lists the number of

different configurations for both reordering fusion transformations (statements
can be arbitrarily reordered) and order-preserving fusion transformations (no
reordering is allowed between statements).

n 1 2 3 4 5 6 7 8 9 10

Reordering 1 2 5 15 52 203 877 4140 21147 115975
Order-preserving 1 2 4 8 16 32 64 128 256 512

Fig. 4. Number of configurations

2.3 Code Generation

As shown in Figure 2, after the search engine selects a configuration, the code
generator translates the parameterized code into the equivalent output of a con-
ventional loop fusion, shown in Figure 3(b). We refer to this output as the
conventional output of loop fusion. The translated code is then compiled into
executable by invoking the vendor compiler on the target machine.

Our code generator is a simple source-to-source translator that requires no
dependence analysis. Specifically, given the parameterized code in Figure 3(c),
it unrolls the outer loop lj , substitutes all parameters with their corresponding
values, then removes all conditional branches inside li that evaluates to false
after parameter substitution. The translated code is identical to the result that
would be generated by a conventional loop fusion transformation.

2.4 Directly Executing Parameterized Code

Our parameterized code in Figure 3(c) can be compiled into executable even
without the translation step described in Section 2.3. This feature allows us
to measure dynamically the performance of different fusion configurations at
runtime. Specifically, we can invoke the vendor compiler to generate a single
executable from the parameterized code in Figure 3(c), and then use the search
engine to set the values of the parameters in (c) at runtime. Directly executing
the parameterized code avoids generating and compiling a different code for each
fusion configuration.

We have built our framework so that loop fusion configurations can be tuned
both at runtime, where the parameterized code are directly compiled and mea-
sured, and at installation time, where the parameterized code is first translated
into conventional output before being measured. Section 3 presents our experi-
mental results of applying both tuning processes.
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3 Experimental Results and Discussion

We have implemented the techniques described in Section 2 and have applied the
techniques to a computational kernel, Riemann, extracted from a computational
fluid dynamics application. We collected data both from tuning the conventional
loop fusion output (shown in Figure 3(b) and discussed in Section 2.3) and from
directly tuning the parameterized output (shown in Figure 3(c) and discussed
in Section 2.4). We organize our discussion around two key aspects of automatic
empirical tuning of loop fusion.

– Code generation: In considering the use of parameterized output, we illus-
trate the trade-off between the accuracy of directly tuning the parameterized
code and the overhead of re-compiling each version of conventional loop fu-
sion output.

– Search: We provide a preliminary characterization of the configuration space
of loop fusion and suggest heuristics to prune the search space based on, for
instance, estimated register pressure. Our results suggest the utility of static
models augmented by local search.

These results are preliminary since we consider only a single kernel and two plat-
forms. Nevertheless, since we analyze data collected from an exhaustive search,
these data serve as a useful and suggestive guide for future studies.

3.1 Experimental Setup

We have implemented the framework illustrated in Figure 2 using the fusion
implementation developed by Yi and Kennedy [30], available both in D System
(for Fortran) at Rice and in ROSE (C/C++) at LLNL. We use a simple imple-
mentation of the search engine that exhaustively enumerates all configurations.

We applied loop fusion to Riemann, a kernel which is a part of a piecewise
parabolic method (PPM) code [9]. PPM is an algorithm for solving hyperbolic
equations, typically from simulations of computational fluid dynamics and hy-
personic flows, and is part of the benchmark suite used in procurement evalua-
tions for the Advanced Simulation and Computing (ASC) Program within the
U.S. Department of Energy. PPM is moderate in size (the 1D kernel consists
of about 50 loops when unfused), compute-bound, can be completely fused (at
the cost of excessive register pressure), and has been optimized by others using
manual and semi-automated techniques that include fusing all loops [29].

We considered fusing just the core relaxation component that dominates the
overall running time of Riemann. This subcomputation has 8 loops which can be
completely fused, and these loops are iterated 5 times. (The kernel also contains
an additional 10 pre-processing loops before relaxation, and 27 post-processing
loops.) Focusing on just the 8 loops permits an exhaustive study of the search
space which consists of 28−1 = 128 order-preserving fusion configurations. Be-
cause there are many data dependences among these 8 loops, we believe the
order-preserving configurations represent a good subspace of all possible config-
urations. To make our presentation intuitive, we describe the configuration space
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using bit strings of length 7, b1b2· · ·b7, where bi = 1 if and only if loops i and
i+ 1 are fused. The bit strings are translated into corresponding integer values
of the configuration parameters (shown in Figure 3(c)) in our implementation.

Since we use bit strings of length 7 to represent configurations of applying
loop fusion to Riemann, the configuration space is a 7-dimensional space. To
ease the presentation of raw data we linearize this space (e.g., see Figure 5)
using a Gray code ordering, where neighboring points in the linearization differ
by only 1 bit, i.e., differ in only 1 pair of loops being fused or not fused. The
specific Gray ordering we use is a binary-reflected Gray code [5]; we take the
first point to be linear index 0 and configuration 0000000 (all unfused), and the
last point to be linear index 127 and configuration 1000000. The all-fused case,
1111111, is linear index 85.

We performed experiments on two architectures: a 2.4 GHz Intel Xeon with
8 floating point registers, 8KB L1 cache, 512KB L2 cache; and a 650 MHz Sun
UltraSPARC IIe with 32 registers, 16KB L1 cache, 512KB L2 cache. We use the
Intel C/C++ compiler 9.0 with “-O3” on the Xeon, and the Sun Workshop 9.0
C/C++ compiler with option “-O5” on the UltraSPARC.

For each configuration we observed hardware counters using PAPI [6], record-
ing process-specific cycles, instructions, cache and TLB misses, and branch mis-
predictions. To reduce the sensitivity of our reported counts to system noise,
we measure each metric for each fusion configuration 9 times and report the
minimum. The time to run the kernel is roughly a few tenths of a second on the
Xeon and a few seconds on the UltraSPARC.

3.2 Parameterized vs. Conventional Output

There is a potential time and accuracy trade-off in choosing to use either pa-
rameterized or conventional output. Empirical tuning using the parameterized
output is more flexible in that we need to produce only a single executable which
is then dynamically adapted for each configuration at runtime, whereas using
conventional output needs to repeatedly invoke both the code generator in Fig-
ure 2 and the vendor compiler to generate executable for each configuration.
However, the parameterized code has a much more complex control structure
due to the configuration logic. If we choose to use the parameterized form to
search for best configuration, we must ask how accurate this search will be.

We compare the accuracy of using parameterized and conventional output
in Figure 5, which shows the running time (in cycles) of parameterized output
and conventional output for the 128 fusion configurations on the Xeon platform.
Observe that the two types of implementations qualitatively track one another.
However, the parameterized codes take up to 25% more time to execute due to
their complex control structure. We can further quantify the similarity of the
two curves using statistical correlation, where a correlation close to 1 indicates
a strong increasing linear relationship, -1 indicates a strong decreasing linear
relationship, and 0 indicates no linear relationship. On the Xeon, this correlation
is 0.85, while on the UltraSPARC it is 0.75, both indicating moderate-to-strong
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linear relationships. However, these relationships are not perfect and so there
may be performance estimation inaccuracy when using parameterized output.

Figure 6 shows the extent to which the parameterized codes reproduce other
features of the execution behavior (like cache misses) of the conventional codes on
the Xeon. Specifically, we show the ratio of measurements for the parameterized
codes to those of the conventional codes. Cycles, store instructions, and L2 and
TLB misses—expected to be the most expensive misses—are well-reproduced,
showing errors of 25% or less. However, there are uniformly many more load
instructions, and in several cases, many more L1 misses. The excess loads can be
explained by two characteristics of the parameterized output: (1) the need for
additional integer variables to describe the configuration, and (2) an inability of
the vendor compiler to apply scalar replacement to reduce memory accesses. The
spikes in L1 misses tend to occur in configurations that introduce a considerable
degree of fusion. Nevertheless, we expect L1 misses to be relatively cheaper than
L2 and TLB misses, so L1 miss behavior may be less necessary to reproduce
accurately. Results on the UltraSPARC (not shown) are qualitatively similar
except that the largest ratios are smaller (less than 1.7).

We also report on the turnaround time to evaluate each point in the search
space. On the Xeon, we observed an average time of 1.89 seconds to generate and
compile a conventional output, and 0.18 seconds to execute it, compared to an
average of 0.67 seconds just to execute the parameterized version. The overhead
of the parameterized output is due to extra control logic, the function call to
the runtime configuration generator, and the missed optimization opportunities
from the vendor compiler. On the UltraSPARC, it takes 3.0 seconds to generate
and compile the conventional output, and 1.3 seconds to execute, while it takes
3.5 seconds for the parameterized version to execute. Thus, the relative costs
will depend on the application itself and the underlying architecture.

3.3 Properties of the fusion configuration space

We present a preliminary characterization of the fusion configuration space,
based on our exhaustive search data, focusing exclusively on the conventional
output. We describe several properties of the search space, each implying a pos-
sible search space pruning technique.

The distribution of performance in the configuration space can be summa-
rized as follows. On Xeon, the speedup over the completely unfused case is
between 0.88 and 1.06, with a standard deviation (σ) equal to .039. There are
90 configurations within 5% of the best speedup and 112 points within 10%.
On Sun Sparc, the speedup is between 0.97 and 1.11, with σ = .026. There are
19 points within 5% of the best speedup and 94 points within 10%. Although
these data indicate there are many implementations with reasonably good per-
formance, we note that the penalty for making a mistake can be significant: on
the Xeon, choosing a poor configuration leads to a “speedup” as low as .88.

The Gray ordering reveals relationships among fusion configurations that
could be exploited by a guided search. Figure 5 gives the running time in cycles,
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Fig. 7. Speedup vs. register pressure on Xeon (left) and UltraSPARC (right)

with all configurations linearized along the x-axis by a binary-reflected left-to-
right Gray code (see Section 3.1). There is a qualitative mirror-symmetry in
several places, indicating which fused pairs do not affect performance too much.
For example, comparing configurations 0–63 to 127–64 indicates that fusing loops
1 and 2 (bit b1) has little effect on the running time. However, segments 0–15
and 31–16, which differ only in bit 3, are not mirror symmetric, suggesting that
fusing loops 3 and 4 has a non-trivial effect on performance. In much larger search
spaces, it should be possible to detect these interactions quickly by sampling.

Though the curves are not smooth in Figure 5, many of the “peaks” and “val-
leys” are localized (e.g., see the grouped peaks at 20–23, 40–43, 80–87, 104–107).
This observation suggests gradient-descent type methods with random pertur-
bations may be an effective search technique.

We consider pruning the search space using a purely static estimation of
register pressure. We estimate the number of registers needed to keep every ar-
ray reference in a register for the purpose of data reuse as described by Carr
and Kennedy for unroll-and-jam [7]. We assign to each configuration the maxi-
mum estimated register pressure among all loops after fusion. Of course, many
configurations may have the same register pressure estimate.

We show the distributions of speedup as a function of this estimated regis-
ter pressure using box-plots, as shown in Figure 7 for the Xeon (left) and the
UltraSPARC (right). At each register pressure value, we show the minimum,
maximum, median by short horizontal lines, and the 25th and 75th percentiles
of points by trapezoids. On the Xeon, which has only 8 scalar floating point
registers, the best speedup is achieved when the register pressure is 8; when
the register pressure exceeds 11, the performance drops. By contrast, the Ultra-
SPARC, which has 32 registers, achieves a maximum speedup when there is a
high-degree of fusion (in this case, all loops fused). This confirms our intuition
that fusing too much can cause performance degradation due to the limited
resources such as registers. However, observe also that the register pressure esti-
mate is not enough to identify the optimal configuration since there is generally
a wide spread in performance at each register pressure value. In the absence of
other possible static properties of the code, this observation suggests that the
register pressure estimate could be combined with some form of local search.
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4 Related Work

Loop fusion is one of the many compiler transformation techniques (e.g., block-
ing, distribution, interchange, skewing, and index-set splitting [1, 2]) that can
significantly improve the memory hierarchy performance of scientific applica-
tions. However, optimal fusion is NP-complete in general [11] and heuristics
must be applied. For example, Kennedy and McKinley [16] proposed a typed fu-
sion heuristic, which can achieve maximal fusion for loops of a particular type in
linear time. This paper extends previous loop fusion transformation algorithms
to parameterize their output so that an external empirical search engine can
take advantage of a compiler’s knowledge.

Previous work in empirical tuning of applications can be roughly divided
into two categories: domain-specific approaches which use specialized kernel-
specific code generators and search engines that exploit problem-specific knowl-
edge and representations, and compiler-based approaches which extend tradi-
tional compiler infrastructures with parameterized transformations and search
engines. These approaches are complimentary since the domain-specific methods
frequently output high-level source and rely on a compiler to perform the final
machine-code generation, as noted in a recent survey [28, Sec. 5].

The domain-specific approach has been applied to a broad variety of prob-
lem areas, including linear algebra [12] and signal processing [13, 20], among
others [28, Sec. 5]. These systems all feature special parameterized code gen-
erators which take as input a desired kernel and specific parameter values, and
output a kernel implementation (typically in Fortran or C). Some generators per-
mit users to specify the desired kernel operation in a high-level domain-specific
notation [20, 3, 4]. The parameters express algorithmic or implementation details
thought to be machine- or program input-specific, as determined by the expe-
rience and domain-knowledge of the generator writer. A separate search phase,
occurring at build-time or at run-time (or both), selects the parameter values.

The Tensor Contraction Engine (TCE) synthesizes and tunes entire parallel
quantum chemistry programs from a specification based on tensor notation [3].
TCE performs fusion among other transformations, but does so to reduce mem-
ory usage rather than to enhance locality or parallelism.

Compiler-based tuning approaches belong broadly to the area of feedback-
directed optimization [24], which includes superoptimizers, profile-guided and it-
erative compilation, dynamic optimization, and empirical tuning of the compiler
itself. Earlier work on iterative compilation, of which this work is an instance,
has studied the tuning of tile sizes and unrolling factors [17, 19, 22, 25, 14], and
more recently, the search space pruning of loop fusion [21]. Previous work as
listed above did not focus on finding a suitable parameterization of the transfor-
mations. Other approaches consider augmenting the internal static models and
decision-making processes within a compiler through collection of empirical data
when the compiler is installed for a target architecture [18, 26, 27, 10].

Though this paper does not focus on search itself, fusion tuning should ben-
efit from prior tuning work that uses combinatorial search methods [28, Sec. 5].
These techniques include simple exhaustive search, random search, simulated an-
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nealing, statistical methods, evolutionary algorithms, and hybrid empirical and
analytical modeling combined with local search techniques [31, 8]. Hybrid mod-
els should be effective for fusion tuning, as argued by Qasem and Kennedy [21]
and further supported by this paper’s experimental results.

5 Conclusions and Future Work

Our proposed parameterization technique provides traditional compiler infras-
tructures with a compact interface for communicating the space of loop fusion
transformations to an external search engine, thereby enabling empirically tuned
fusion for general programs. We are pursuing the development of parameteriza-
tions for several other individual loop and data layout transformations, and for
combinations of these transformations.

References

1. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan
Kaufmann, San Francisco, October 2001.

2. D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for high-
performance computing. ACM Computing Surveys, 26(4):345–420, 1994.

3. G. Baumgartner, A. Auer, D. E. Bernholdt, A. Bibireata, V. Choppella, D. Co-
ciorva, X. Gao, R. J. Harrison, S. Hirata, S. Krishnamoorthy, S. Krishnan, C.-
C. Lam, Q. Lu, M. Nooijen, R. M. Pitzer, J. Ramanujam, P. Sadayappan, and
A. Sibiryakov. Synthesis of high-performance parallel programs for a class of ab
initio quantum chemistry models. Proc. IEEE, 93(2), 2005.

4. P. Bientinesi, J. A. Gunnels, M. E. Myers, E. Quintana-Orti, and R. van de Geijn.
The science of deriving dense linear algebra algorithms. ACM TOMS, 31(1):1–26,
Mar. 2005.

5. P. E. Black. Gray code. www.nist.gov/dads/HTML/graycode.html.
6. S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable cross-

platform infrastructure for application performance tuning using hardware coun-
ters. In SC, Nov. 2000.

7. S. Carr and K. Kennedy. Improving the ratio of memory operations to floating-
point operations in loops. ACM TOPLAS, 16(6):1768–1810, 1994.

8. C. Chen, J. Chame, and M. Hall. Combining models and guided empirical search
to optimize for multiple levels of the memory hierarchy. In CGO, Mar. 2005.

9. P. Colella and P. Woodward. The piecewise parabolic method for gas-dynamical
simulations. J. Comp. Phys., 54(174), 1984.

10. K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive optimizing compilers
for the 21st century. Journal of Supercomputing, 23(1):7–22, 2002.

11. A. Darte. On the complexity of loop fusion. Parallel Computing, 26(9):1175–1193,
2000.

12. J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, C. Whaley,
and K. Yelick. Self adapting linear algebra algorithms and software. Proc. IEEE,
93(2), 2005.

13. M. Frigo and S. G. Johnson. The design and implementation of FFTW3.
Proc. IEEE, 93(2), 2005.

14



14. G. Fursin, A. Cohen, M. O’Boyle, and O. Temam. A pratical method for quickly
evaluating program optimizations. In Proceedings of the International Conference
on High Performance Embedded Architectures and Compilers, Nov. 2005.

15. K. Kennedy. Fast greedy weighted fusion. In ICS, Santa Fe, NM, May 2000.
16. K. Kennedy and K. S. McKinley. Typed fusion with applications to parallel and se-

quential code generation. Technical Report TR93-208, Dept. of Computer Science,
Rice University, Aug. 1993. (also available as CRPC-TR94370).

17. T. Kisuki, P. M. Knijnenburg, and M. F. O’Boyle. Combined selection of tile sizes
and unroll factors using iterative compilation. In PACT, Oct. 2000.

18. N. Mitchell, L. Carter, and J. Ferrante. A modal model of memory. In ICCS,
volume 2073 of LNCS, pages 81–96, San Francisco, CA, May 2001. Springer.

19. G. Pike and P. Hilfinger. Better tiling and array contraction for compiling scientific
programs. In SC, Baltimore, MD, USA, Nov. 2002.
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