A Source-To-Source Architecture for
User-Defined Optimizations

Markus Schordan! and Dan Quinlan!

Lawrence Livermore National Laboratory, CA 94551, USA,
schordan1@llnl.gov, dquinlan@llnl.gov

Abstract. We present an architecture for the specification of source-
to-source transformations. New source code can be specified as source-
fragments. The translation of source-fragments to the intermediate rep-
resentation is accomplished by invoking the frontend. For any inserted
fragment we can guarantee that it is typed correctly. If no error is re-
ported on inserted fragments, the whole program can always be compiled
without errors. Based on a given abstract attribute grammar the user can
specify transformations as semantic actions and can combine the com-
putation of attributes with restructure operations on the intermediate
representation.

1 Introduction

The development of special purpose (domain-specific) libraries to encapsulate
the complexity of software is a significant step toward the simplification of soft-
ware. But the abstractions presented by such libraries are user-defined and not,
optimized by the vendor’s language compiler. The economics and maturation
of new language and compiler designs make it particularly difficult for highly
specialized languages to appear and be accepted by developers of large scale ap-
plications. Unfortunately, the generally poor level of optimization of user-defined
abstractions within applications thus negates their effective widespread use in
fields where high performance is a necessity.

Though significant aspects of our approach are language independent, our re-
search work has targeted the optimization of C++ applications. The framework
developed to support this research, ROSE, [1], allows us to express optimizations
based on an abstract C++ grammar, eliminating the syntactical idiosynchrases
of C++ in the specification of a transformation. Because we target library de-
velopers generally, our approach avoids the requirement that users learn a new
special purpose language to express transformations. The semantic actions which
specify a transformation are implemented in C++.

Within previous research we have demonstrated the use of ROSE [1, 2] and
that the performance penalty of user-defined abstractions can be overcome by
source-to-source transformations. We presented how a speedup of up to four can
be achieved for user-defined abstractions as they are used in practice. The use of
the semantics of the user-defined abstractions has been an essential part of this

nation with source strings and restructuring of the intermediate representation.
As example we discuss the core of an OpenMP parallelization. The high-level
semantics of the user-defined type utilized in the example is the thread-safety of
its methods.

In section 2 we describe the architecture and how we can translate incomplete
source-fragments to corresponding fragments of the intermediate representation.
In section 3 we discuss how program transformations are specified by the use of
the abstract grammar and source-strings. In the final sections we discuss related
research and our conclusions.

2 Source-To-Source Architecture

In a usual source-to-source translation the frontend is invoked once. Transfor-
mations are either syntax directed or defined as explicit operations on an inter-
mediate representation (IR). Eventually the backend is called to generate the
final source program. In our architecture, see fig. 1, the frontend and backend
are components that can be invoked at any point in an operation on the IR to
obtain program fragments.

The capability of translating source-fragments to IR-fragments and back is
essential to allow a compact specification of transformations as demonstrated
in the example in section 3. This allows the definition of a transformation by
combining sequential strings although our intermediate representation has a tree
structure. Although strings are used, by invoking the frontend each fragment is
type-checked before it is inserted in the IR. This ensures that in each step of a
transformation, when a part of the intermediate representation is replaced by a
new fragment, the program fragment is checked for syntactical and semantical
correctness.

The combination of different source-fragments is specified in semantic actions
associated with rules of an abstract grammar. The computed attribute values
can be of arbitrary type, including source-fragments. Because the computed
attributes can also be source-fragments it is necessary to translate them to IR-
fragments to insert them into the IR. Note, we do not re-parse source-strings,
a source-string is only parsed once by the frontend. But the frontend can be
invoked to translate computed source-strings, ensuring that all semantic checks
are performed on the inserted IR-fragments as well. Note that our approach does
not require any modifications to an existing frontend.

We use the EDG-frontend [3] for parsing C++ programs. This frontend per-
forms template instantiation and a full type evaluation. In our abstract grammar
all type information is made available to the user as annotations of nodes in the
abstract syntax tree (AST) which can be accessed in semantic actions of the ab-
stract attribute grammar. The availability of semantic compile-time information
is an essential aspect of our architecture. In the following sections we describe
in detail how source-fragments can be translated to IR-fragments by utilizing an
existing frontend and how all semantic information can be updated in the IR.

unoptimized program

source

front—end

Fragment |fra9ment | pragment | program | completed program

Substitution in IR Extractor inIR

92In0s

Intermediate

Representation

(AST)
8
prefix = 3 prefix
Attribute ’
fragment Fragement
B I -
Evaluation) Concatenator
postfix x g postfix
N g
Y
IR
source

optimized program

Fig. 1. Source-To-Source architecture with frontend/backend invocation

2.1 Fragment Concatenator and Extractor

In general, a source-fragment cannot be parsed by the frontend because it is
an incomplete program. Therefore it needs to be extended by a source-prefix
and a source-postfix to a complete program such that it can be parsed by the
frontend. This computation of the prefix and postfix is automated. The user only
specifies the fragment and the target location of the corresponding IR-fragment.
In our IR, the target location, Lyps, is a node in the AST. The prefix and postfix
are automatically generated. The source-prefix consists of all declarations and
opening braces of scopes before the target location, the source-postfix consists
of all closing braces of scopes after the target position.

The frontend returns a program in IR. From this the corresponding IR-
fragment needs to be extracted. A source string shall be denoted as S and an
intermediate representation as I. We shall denote any prefix by <, any fragment
by O, and any postfix by >.

A given source-fragment, Sp, is translated to an IR-fragment, I'5, by invoking
the frontend.

The fragment concatenator concatenates the source-prefix S4, the source-
fragment Sg, and the source-postfix Si. Information necessary to extract the
IR-fragment, In, corresponding to the source-fragment, Sq, from the IR of the
completed program, shall be denoted Lg.,. It represents separators that are
inserted by the concatenator before invoking the frontend, and used by the ex-
tractor to separate the fragment from the prefix and postfix.

(S, Lsep) = concatenator(Sq, So, Sp)

The completed program S can be parsed by the frontend

I = frontend(S)

to obtain the program in intermediate representation I. From this program
I, the IR-fragment, I, is extracted by the fragment extractor.

In = extractor(, Lsep)

The fragment extractor strips off the IR-prefix, I, corresponding to S and
I corresponding to Si. Information on where these parts are separated, Lgep,
which is returned by the fragment concatenator, is used to find start and end
points of 14 and I.

We have shown how we can obtain the corresponding IR-fragment I for a
given source-fragment Sp by invoking the frontend. The inverse operation, by
invoking the backend, is

St = backend(In).

Since both representations, In and So, can always be translated one to the
other, both can be used interchangeably in the definition of a transformation.

 rontend ™

source . IR
fragment reinvoke fragment

Npmien /

Fig. 2. A source-fragment can always be translated into an IR-fragment by invoking
the frontend and an IR-fragment can always be translated into a source-fragment by
invoking the backend.

In figure 2 this correspondence is shown as a diagram. The definition of a
transformation is simplified because source-fragments, Sg, can be used to de-
fine source code patterns as strings. On the other hand, source-fragments cor-
responding to subtrees of the IR can always be used as values in an attribute

evaluation because we can always obtain the corresponding source-fragment for
an IR-fragment.

This allows the definition of a transformation by combining sequential strings
although the intermediate representation has a tree structure. All semantic in-
formation, such as type information for each expression, symbol tables, etc.,
is updated by the underlying system. Note that the order in which the IR is
processed is (mostly) source sequence.

2.2 Fragment Substitution

An IR-fragment, In, which is obtained from the fragment extractor, substitutes
an IR-fragment in the IR as specified by Lgps.
It = (I8, I, Laps), IY)

The substitution # replaces the IR-fragment I% by the new IR-fragment I
(which corresponds to a So) at the specified location Lyps. I} is an IR-fragment
in I*. After a substitution has been applied the restructured IR, I't!, becomes
accessible for the next transformation. This ensures that a substitution operates
as a side-effect free function, with respect to the IR structure, in a transforma-
tion.

Once an attribute evaluation has been performed and a transformation is fin-
ished, I'*! becomes accessible and I’ is no longer accessible. Note that fragments
Ii and Is can be empty, corresponding to empty strings e (source-fragments)
which allows to define insertions and deletions.

3 Program Transformations

Program transformations are specified as semantic actions of the abstract C++
grammar. The abstract grammar covers full C++. We use a successor of Coco/R
[4], the C/C++ version ported by Frankie Arzu. Coco/R is a compiler generator
that allows to specify a scanner and a parser in EBNF for context free languages.
The grammar has to be LL(1). We use this tool to operate on the token stream
of AST nodes. Therefore we do not use the scanner generator capabilities of
Coco/R and implemented a scanner to operate on a token stream of AST nodes.

A terminal in our default abstract grammar always directly corresponds to
AST nodes of one type. The name of this type is the name of the terminal in the
grammar. The grammar can be modified but the user has to ensure that it still
accepts all programs that are to be transformed. Qur present version of the de-
fault abstract grammar for full C++ has 165 rules. Non-terminals either directly
match names of base types in the AST’s object-oriented class hierarchy, or the
non-terminals were introduced (with the postfix NT in our default grammar)
for better readability. The user can also access all annotated AST information
gathered by the frontend at each AST node through a variable astNode. The
variable always holds the pointer to the corresponding AST node of a parsed
terminal.

Before transformation

for(ValContainer::iterator i=l.begin(); i!=l.end(); i++) {
a.update (*i) ;
}

After transformation

#pragma omp parallel for

for(int i = 0; i < l.size(); i++) {
a.update(1[il);

}

Fig. 3. An iteration on a user-defined container 1 that provides an iterator inter-
face. The object a is an instance of the user-defined class Range. Object 1 is of type
ValContainer. In the optimization the iterator is replaced by code conforming to the
required canonical form of an OpenMP parallel for. The user-defined method update
is thread-safe. This semantic information is used in the transformation.

In the example source in fig. 3 we show an iteration on a user-defined con-
tainer with an iterator. This pattern is frequently used in applications using
C++498 standard container classes. The object a is an instance of the user-defined
class Range. The transformation we present takes into account the semantics of
the type ValContainer and the semantics of class Range. The transformation is
therefore specific to these classes and its semantics.

For the type ValContainer we know that the type iterator defined in the
class follows the iterator pattern as used in the C++98 standard library. For
the type Range we know that the method update is thread safe. We show the
core of a transformation to transform the code into the canonical form of a
for-loop as required by the OpenMP standard. We also introduce the OpenMP
pragma directive. Note that the variable i in the transformed code is implicitly
private according to the OpenMP standard 2.0 . If the generated code is compiled
with an OpenMP compiler, different threads are used for executing the body of
the for-loop. The test, isUserDefIteratorForStatement, to determine whether
the transformation can be applied, is conservative. It might not always allow to
perform the optimization although it would be correct but it is never applied
when we cannot ensure that the transformed code would be correct.

In the example in fig. 4 the rule of SgScopeStatement is shown. The terminal
SgForStatement corresponds to an AST node of type SgForStatement. The
variable astNode is a pointer to the respective AST node of the terminal and
assigned by our supporting system when the scanner accesses the token stream.
Note that every terminal in the grammar corresponds to a node in the AST,
except the parentheses.

Methods of the object subst allow to insert new source code and delete sub-
trees in the AST. The substitution object subst buffers pairs of target location
and string. The substitution is not performed before the semantic actions of
all subtrees of the target location node have been performed. This mechanism

allows to check whether substitutions would operate on overlapping subtrees of
the AST (in the same attribute evaluation). In case of overlapping subtrees an
error is reported.

The object query is of type AstQuery and provides frequently used methods
for obtaining information stored in annotations of the AST. These methods are
also implemented as attribute evaluations.

SgScopeStatement<bool isOmpFor>
= SgForStatement
(.
isOmpFor
= ompTransUtil.isUserDefIteratorForStatement (astNode,isOmpFor) ;
)
"(" SgForInitStatementNT<isOmpFor> SgExpressionRootNT
SgExpressionRootNT SgBasicBlockNT<isOmpFor>
ll) n
(.
if (isOmpFor) {
string ivarName = query.iteratorVariableName (astNode);
string icontName = query.iteratorContainerName (astNode) ;
string modifiedBodyString
= ompTransUtil.derefToIndexBody (ivarName,icontName) ;
string beforeForStmt
= "#pragma omp parallel for\n";
string newForStmt = "for(int "+ivarName+"=0;"
+ ivarName+"<"+icontName+".size();"
+ ivarName+"++) "+modifiedBodyString;
subst.replace(astNode,beforeForStmt + newForStmt) ;

Fig. 4. A part of the SgScopeStatement rule of the abstract C++ grammar with the
semantic action specifying the transformation of a SgForStatement.

The inherited attribute isOmpFor is used to handle the nesting of for-loops.
It depends on how an OpenMP compiler supports nested parallelism whether
we want to parallelize inner for statements or only the outer for statement. In
future this decision will be made more specific to OpenMP compilers on different
platforms and the boolean attribute will be replaced by an object to provide more
information about the context of OpenMP for-loops.

The object query of type AstQuery offers methods to provide information
on subtrees that have been proven to be useful in different transformations. In
the example we use it to obtain the name of the iterator variable, and to obtain
the node of the declaration of the iterator variable. Note that these functions

must return valid values because it has been tested that the for-loop qualifies
for transformation before.

The example shows how we can decompose different aspects of a transfor-
mation into separate attribute evaluations. The methods of the query object
are implemented by using the attribute evaluation. For this reason we allow to
call any method of the recursive descent parser generated by COCO to parse
a sublanguage, and start an evaluation at a certain node in the AST. Multiple
grammar files can also be used for such cases and each file contains a version of
the abstract C++ grammar. In the example, isUserDefIteratorForStatement
is a wrapper function of another attribute evaluation generated by COCQO that
starts at a SgForStatement node.

In fig. 3 the generated code is shown. The access uses the notation for random
access iterators. Even if the access is not of complexity O(1) the parallelization
can still provide speedup. The user who implements the transformation has to
take such tradeoffs into account in a test function to decide whether a trans-
formation should be applied or not. Note that the generated source code can
have a slightly different formatting because the format of the source code is a
beautified version of the source corresponding to the transformed AST.

4 Related Work

We use Sage III as intermediate representation, which we have developed as
a revision of the Sage II [5] AST restructuring tool. Its predecessor, Sage++,
included a Fortran frontend, while Sage IT included the EDG C++ frontend [3]
and represented a more robust handling of C++ as a direct result. Our work
has substantially modified Sage II (e.g., adding template support and changes
of the structure and interfaces of Sage II of about 25% of the node classes). Sage
IT required modifying the AST by explicitly rearranging pointers between AST
nodes and creating new node objects if new code needed to be added. In our
framework this can be done by using source strings and an abstract grammar.
Related work on the optimization of libraries on telescoping languages [?]
shares many of the same goals as our research work and we expect to work
more closely with these researchers in the near future. Qur approach so far is
less ambitious than the telescoping languages research, but is in some aspects
further along, though currently specific to abstractions represented in C++.
Further approaches are based on the definition of library-specific annotation
languages to guide optimizing source code transformations [6] and on the spec-
ification of both high-level languages and corresponding sets of axioms defining
code optimizations, see [7] for example. We address the need of annotations
for guiding optimizations either by pragmas, comments, or make optimizations
specific to user-defined types as discussed in the example transformation.
Kimwitu [8] allows to associate semantic actions with rules of a tree gram-
mar. Conceptually Kimwitu could be used instead of COCO as well. But the
substitution mechanism is more difficult to integrate into our system when us-
ing the C++ version of Kimwitu from our experience because it uses its own

memory handling and puts restrictions on some code fragments used in seman-
tic actions. COCO was easier to integrate in our system because it only copes
with issues of parsing and not transformation, and does not put any restrictions
on the code used in semantic actions. However, our grammar conforms to the
essential properties of a tree grammar as required by Kimwitu. The other mode
of Kimwitu, to express term rewriting explicitly by using subterms describing
subtrees on both sides of a rule, is an advantage of Kimwitu in particular for the
compact specification of algebraic optimizations.

The Microsoft .NET CodeDom Compiler Framework is used by various tools,
including ASP.NET and Visual Studio.NET. It offers an interface for restructur-
ing source-code, designed to handle different languages. Nigel Perry has defined
an abstract grammar for the CodeDom Language [9]. A program in the language
is represented by a tree of CodeDom objects, which corresponds to a parse tree
in a compiler for a conventional language. In our framework the abstract gram-
mar can actually be used to specify transformations. In the abstract CodeDom
EBNF grammar, type information is made explicit as extension in the gram-
mar. In our grammar type information is available as accessible annotation of
the AST nodes. Also we do not use tree extensions to identify grammar sym-
bols that correspond to AST nodes. A terminal always directly corresponds to an
AST node. We only added parentheses to the token stream. However, most of all
information required for our approach is available for the CodeDom framework,
which makes it an interesting target in our future work.

5 Conclusions and Future Work

The use of an abstract grammar greatly simplifies the specification of a source-to-
source transformation. Many aspects of parsing source code and type evaluation
are not helpful for expressing code transformations. The specification of a source-
to-source transformation should not interfere with specific parsing issues of the
concrete syntax of the language. On the other hand, the concrete syntax is what
developers, who want to optimize their application codes, are most familiar with.
From this we conclude that offering the use of source-strings for specifying new
code and using an abstract grammar to allow to specify transformations is a
practical solution to this problem. The availability of full type information is
necessary for the optimization of user-defined abstractions.

Instead of requiring the user to learn a new language to express transforma-
tions, all transformations are themselves defined in C++, the same language in
which the application code is written and which the user seeks to optimize. The
grammar forces the user to structure the transformation according to the struc-
ture of the language, the decomposition in different transformation objects, as
shown in the example, gives the necessary freedom in designing complex trans-
formations.

Future work is targeted at demonstrating the development of a wide range of
optimizing source-to-source translators for specific scientific libraries and appli-
cations. Additional work is the analysis of complex data structures to automate

10

the generation of application specific tools (connection to visualization libraries,
dump/restart functions, etc.).

By permitting developers to add highly tailored companion optimizations to

their user-defined types and applications, we define a hierarchical (telescoping)
approach to language design which builds incrementally upon existing general
purpose languages. We hope that a similar approach could in the future form a
significant mechanism within a general purpose language compiler to allow users

to

extend the range of optimizations.

References

. Daniel Quinlan, Brian Miller, Bobby Philip, and Markus Schordan. Treating a

user-defined parallel library as a domain-specific language. In 16th International
Parallel and Distributed Processing Symposium (IPDPS, IPPS, SPDP), pages 105—
114. IEEE, April 2002.

Daniel Quinlan, Markus Schordan, Brian Miller, and Markus Kowarschik. Parallel
object-oriented framework optimization. Concurrency and Computation: Practice
and Ezperience, 2003, to appear.

Edison Design Group. http://www.edg.com.

Hanspeter Moessenboeck. Coco/R - A generator for production quality compilers.
In LNCS477, Springer, 1991.

Francois Bodin, Peter Beckman, Dennis Gannon, Jacob Gotwals, Srinivas Narayana,
Suresh Srinivas, and Beata Winnicka. Sage++: An object-oriented toolkit and class
library for building fortran and C++ restructuring tools. In Proceedings. OONSKI
’94, Oregon, 1994.

Samuel Z. Guyer and Calvin Liri. An annotation language for optimizing software
libraries. In Proceedings of the 2nd Conference on Domain-Specific Languages, pages
39 52, Berkeley, CA, October 3 5 1999. USENIX Association.

Vijay Menon and Keshav Pingali. High-level semantic optimization of numerical
codes. In Conference Proceedings of the 1999 International Conference on Super-
computing, pages 434-443, Rhodes, Greece, June 20-25, 1999. ACM SIGARCH.

P. van Eijk, A. Belinfante, H. Eertink, and H. Albas. The term processor Kimwitu.
In E. Brinksma, editor, Tools and Algorithms for the Construction and Analysis of
Systems, pages 96-111, Enschede, The Netherlands, 1997. Springer Verlag, LNCS
1217.

Nigel Perry. A definition of the codedom abstract language, http://www.mondrian-
script.org/codedom/codedom grammar.html, 2002.

