
Automated Transformation for Performance-Critical Kernels

Abstract

The performance of many scientific applications depends on a small number of key computational

kernels which require a level of efficiency rarely satisfied by existing native compilers. We present a

new approach to high performance kernel optimization, where a general-purpose transformation engine

automates the production of highly efficient library routines. Our framework requires only an annotated

kernel specification and can automatically produce optimized implementations based on tuning parame-

ters controlled by a search driver. The transformation engine includes an extensive suite of optimizations

which can be easily expanded using a custom transformation description language. We have applied our

transformation engine to generate highly tuned code for key linear algebra kernels used in the ATLAS

tuning framework. The time required to produce specifications for these kernels is orders of magnitude

less than that required to hand-craft kernel implementations, and yet our framework has achieved similar

performance to ATLAS’s highly tuned kernels.

1 Introduction

There are more than a few application areas where performance needs are not fully addressed by current

compilation techniques, either because the compiler lacks domain-specific knowledge about the application,

or because the compiler cannot fully address the extreme complexity of modern computer architectures. To

overcome this problem, many applications call performance-critical libraries which must be hand-tuned (often

directly in assembly) for each arcitecture of interest. For a few computational libraries, there exist empirical

tuning frameworks that can automate this tuning process, as in ATLAS [17, 15], FFTW [4, 11], among others.

The demand for such well-tuned library routines has led to several application-specific empirical tuning

frameworks where both domain-specific knowledge and direct timings are used to guide the optimization of

important kernel implementations [3, 5, 9, 13, 14, 9, 1, 2].

Despite the success of many domain-specific empirical tuning systems, there are limits to the generality

and portability of this approach. Since these frameworks require significant investment to create, and are

typically not as effective when the problem at hand deviates from their main domain, many computational

1

kernels are not well supported and thus do not achieve adequate performance. These systems are therefore

not of great assistance in optimizing applications beyond their domain that nonetheless require a high level

of performance.

Figure 1: Our empirical tuning approach

This paper presents a new approach, where a general

framework is proposed to automate the production of highly-

optimized library kernels. As shown in Figure 1, our frame-

work includes three components: an analyzer, a transforma-

tion engine, and an empirical search driver. Currently, the an-

alyzer role from the above figure must currently be performed

by the programmer. Our research plan calls for replacing this

manual step with an optimizing compiler, which can automat-

ically derive profitable optimizations through compiler analy-

sis (possibly with the help of programmer markup). Since the

analyzer understands the computational kernel to be imple-

mented and knows what transformations might potentially

improve performance of implementation, such information is

expressed as a collection of transformation annotations em-

bedded in an kernel specification file. The annotated kernel specification is then used as the distribution file

of the kernel and can be ported to different machines for empirical tuning. On each platform that the kernel

needs to be tuned for, the kernel specification is used as input to a search driver and the transformation

engine, which together takes the transformation annotations and automatically search the transformation

space to find a highly optimized kernel implementation. This paper focuses on presenting a general-purpose

transformation engine which we have developed. Our transformation engine (TE) is portable, easy to ex-

tend, and simple to use. Additionally, the TE is language neutral and can be easily specifialized to produce

optimized kernels in an arbitrary source language, including C, FORTRAN, or assembly.

A key feature of our approach is that it uses a kernel specification which formulates the implementation

in terms of the sequence of parameterized transformations which may be applied by the search driver to

2

optimize performance. Compared to the conventional domain-specific empirical tuning frameworks, our

approach has the following advantages:

• First, our approach target at producing general-purpose kernel implementations. The transformation

engine includes an extensive library of code transformations that have proven to be able to significantly

improve application performance. The programmer need only specify where to apply these trans-

formations in order to extract high performance for an arbitrary computational routine. Although

domain-specific knowledge is required to correctly apply the transformations, the effort required to

generate a high-performance specification describing the transformation to try is orders of magnitude

less work than manually writing and tuning various implementations in order to discover the most

efficient implementation.

• Second, our transformation engine supports natural parameterization and re-configuration of all the

relevant code optimizations, so that a single version of kernel specification can be copied to to differ-

ent architectures and empirically tuned to find the best implementation. In contrast, although most

empirical tuning frameworks parameterize their kernel implementations to ensure portability, the pa-

rameterization is often not as comprehensive, and adapting to different architectures and/or extending

to other kernels takes significant more development and maintenance.

• Finally, using our transformation engine, the kernel specification file only needs to provide a primitive

routine using the most simple and intuitive algorithm. The code is therefore easier to understand and

maintain. As new machine architectures are brought forward, adapting the kernel implementation re-

quires simply adding a few more optimizations, while the rest of the kernel specification left unchanged.

This is significantly more efficient than having to rewrite the kernel implementations to accommodate

new architectural features.

To demonstrate that our transformation engine can produce kernel implementations as efficient as those

produced by domain-specific libraries, We have applied our framework to generate highly optimized code for

several linear algebra kernels in the ATLAS library [17, 15]. The kernel implementations produced by our

framework achieved similar performance to that seen in ATLAS’s highly tuned kernels. Our results indicate

3

that using a code transformation engine can achieve portable high performance for general-purpose kernels

while requiring significant less time and effort than hand-tuning the routines.

2 Related Work

There are more than a few highly successful empirical tuning frameworks which provide efficient kernel

implementations for important scientific domains, such as those for dense and sparse linear algebra [3], signal

processing [5, 9], among others [13, 14]. Some systems permit users to specify the desired kernel operation

in a high-level mathematical notation [9, 1, 2]. Our purpose is to target general-purpose applications beyond

those where high-performance kernels are readily available from domain-specific research. Our approach

aims to complement existing domain-specific research and to provide an efficient transformation engine to

help existing libraries more readily port to different computer architectures.

Recent research has produced some general-purpose empirical tuning frameworks where compilers are em-

ployed to support performance tuning of arbitrary applications. These empirical tuning compilers iteratively

re-configure well-known optimizations according to performance feedback of the optimized code and have

demonstrated that empirical tuning of application performance can significantly improve the effectiveness of

compiler optimizations [18, 10, 7, 8, 12, 6, 20]. These compiler-based frameworks apply to all applications

that have access to the optimizing compiler. However, they restrict applications to optimizations available

only within the compiler, which typically does not provides much information to the outside world, e.g.,

why particular transformations were or were not applied. Additionally, each empirical compiler is by itself a

significant infrastructure which typically includes a large and growing collection of routines for program anal-

ysis, code optimization, and language processing capabilities. Our own infrastructure is significantly lighter

weight, and therefore should be more suitable for inline use by applications or other tuning frameworks.

In contrast to a full blown iterative compilation framework, our transformation engine is simply comprised

of an interpreter for a small embedded language (POET), and a library of compact code transformation

routines written in this language. The transformation engine if very light-weight (currently including about

3000 lines of C++ code implementing the POET interpreter and about 600 lines of POET code implementing

various code transformations). Our transformation engine therefore can be easily included as part of the

4

library or application distribution and serve as the automated code generator for the empirical tuning of

kernel implementations.

3 The POET Transformation Engine

Our transformation engine (TE) is based on a small special-purpose language named POET (Parameterized

Optimizations for Empirical Tuning) [19]. The POET language is designed to specifically support parame-

terized code generation for empirical tuning and includes sophisticated features to support easy definition of

arbitrary customizable code transformations. Our TE has used POET to support an extensive code transfor-

mation library, an annotation interface for parsing and representing arbitrary computational routines, and

a programming interface for applying different code optimizations to the kernel computation. POET can

also be used to implement customized search drivers for the empirical tuning of arbitrary kernel implemen-

tations. This paper focuses on how to use the POET TE to automatically produce high-performance kernel

implementations.

Figure 2: POET transformation engine

As shown in Figure 2, our transformation engine includes

three components: a POET interpreter, a transformation li-

brary, and a collection of front-end definitions which special-

ize the transformation library for different programming lan-

guages such as C, FORTRAN, or Assembly. In the center

of the TE is the POET language interpreter, which takes

as input a kernel specification from the programmer and a

collection of parameter values from a separate search driver,

invokes a specialized language frontend to help parse the in-

put computation, and then invokes the transformation library

to optimize the kernel implementation. An optimized kernel

implementation is output as the result, which is then empirically tested and measured by a separate search

driver until a satisfactory implementation is found.

In order to build optimized kernel implementations, the programmer needs to provide a kernel specifi-

5

<xform Stripmine pars=(inner,bsize,outer) tune=(unroll=0,split=0) output=(_nvars, _bloop, _tloop,_cloop,_body)>
switch outer { case inner : ("","","","",inner)

case Loop#(i,start,stop,step):
default: }

</xform>

<xform BlockHelp pars = (bloop, tloop, rloop, bbody, cbody, cloop) >
if (bloop == "") ... <*base case*>... else { ...<*recursively call BlockHelp*>... }

</xform>

<xform BlockLoops pars=(inner,outer,decl,input) tune=(bsize=16, split=0, unroll = 0) >
... = Stripmine[unroll=unroll,split=split](inner, bsize,outer);
... call BlockHelp modify input ...

</xform>

Figure 3: Skeleton of Loop blocking as defined in the transformation library

cation, which invokes optimization routines from the TE library specialized for a particular programming

language. Both the library and the language specialization can be used without detailed knowledge about

their implementation. Programmers, however, can easily expand the transformation library and define their

own customized transformations. In the following, Sections 3.1 and 3.2 first briefly introduce our existing

transformation library. Section 3.3 then focuses on how to use the POET TE to build optimized kernels for

empirical tuning.

3.1 The Transformation Library

Our transformation library includes an extensive collection of code optimizations that have proven to be

able to significantly improve application performance, including loop transformations such as loop blocking,

interchange, fission, fusion, unroll-and-jam, unrolling, splitting; memory optimizations such as array copying

and scalar replacement; as well as low-level optimizations such as strength reduction and SSE vectorization.

All transformations are implemened using POET, a high-level scripting languages with an xml-like syntax.

Figure 3 shows a few skeletons of POET routines relevant to applying a loop blocking transformation.

As shown in Figure 3, POET uses keyword xform to define routines that can be invoked to transform

input code fragments. Each xform routine uses the pars attribute to define the sequence of function

parameters, uses the tune attribute to define several tuning parameters which can be used to reconfigure

the transformation (each tuning parameter has a default value which defines the default configuration),

and uses the output attribute to define return values of the xform routine. The body of each xform

routine examines the input parameters and returns a new code fragment as replacement of the original one.

6

Additional information may be returned when the output attribute is defined.

The entire transformation library comprises xform routines as shown in Figure 3. These routines can be

separated into two categories: internal routines such as Stripmine and BlockHelp, which are helper routines

used by other facilities within the library; and interface routines such as BlockLoops, which can be invoked

directly from a kernel specification file. Programmers need only be aware of the syntax and semantics of

interface routines when defining the kernel specification for an input application.

We choose to use POET to implement our transformation library because using a scripting language is

orders of magnitude easier than using general-purpose languages such as C/C++ in writing dynamic code

transformation routines. In addition to supporting common language features such as loops and recursive

functions, POET has a special focus on program transformation by supporting easy construction and manip-

ulation of code fragments in a customized AST (abstract syntax tree) representation. The extensive support

for building customized transformations in POET allows programmers to easily extend the transformation

library with their own xform routines.

Most of the code transformations in our xform library are also typically included in optimizing compilers,

where the routines would be part of the compiler implementation and written in C/C++ (or whatever

language the compiler is implemented in). In essence, we have reimplemented many of the conventional

compiler transformations using the POET language and have provided these transformations as a library

for programmers to build extremely optimized kernel implementations. We argue that it is much easier and

more cost-efficient for programmers to invoke the appropriate code transformations than to hand-tune an

optimized assembly implementation. The built-in parameterization support by the transformation engine

also allows natural empirical tuning of the optimized kernels which would be much more portable than

hand-written assembly.

3.2 Frontend Specialization

Our transformation engine is language neutral in that both POET and the transformation library are in-

dependent of what language that the input kernel is coded in. POET is a scripting language which can

be embedded in an arbitrary source language and treats code fragments in the source language as strings

7

<code Exp pars=(str)>
@str@
</code>

<code Stmt pars=(str) >
@str@;
</code>

<code ArrayRef pars=(arr,sub) >
@arr@[@sub@]
</code>

<code PtrRef pars=(ptr)>
*(@ptr@)
</code>

<code Assign pars=(lhs, rhs)>
@lhs@ = @rhs@
</code>

<code Function pars=(head,body)>
@head@
{

@body@
}
</code>

<code Loop pars=(i,start,stop,step) attr=(maxiternum)>
@for (@i@=@start@; @i@<@stop@; @i@+=@step@)
</code>

<code Nest pars=(loop, body)>
@loop@ {

@body@
}
</code>

<code Sequence pars=(s1,s2) >
@s1@
@s2@
</code>

Figure 4: C frontend specialization

wrapped inside a collection of customized abstract syntax tree (AST) definitions called “code templates”.

Figure 4 shows some examples of code templates defined for optimizing kernels written in C. Each POET

code template conveys a special meaning and serves to present an abstract view of the input computation to

the transformation library, which applies transformations to the code templates without knowing how the

code templates are defined.

POET Code templates are compound data structures which are used both by the transformation library

and by the kernel specification as an abstract representation of the input computation. As shown in Figure 4,

each code template can have two attributes, pars and attr, which define the parameters and additional

properties of the source code. The concrete source code of each code template is then defined in a general

programming language such as C and is parameterized by variables declared in pars (in Figure 4, the reserved

token, ‘@’, is used for context switching between POET parameters and source strings of the underlying

language). As an example, Figure 4 includes several code templates which are recognized by the loop blocking

transformation shown in Figure 3. These templates are used to parse the matrix multiplication kernel given

in Figure 5

Code template specializations like those shown in Figure 4 are used only for parsing the input source and

for emitting the transformed output. The POET transformation library uses these templates as abstract

representations of the input code without knowing how these representations are implemented. When an

input program is defined in terms of code templates, generic routines predefined in our transformation

8

<input gemm>
//@; BEGIN(gemm)
void ATL_USERMM(const int M, const int N, const int K,

const double alpha, const double *A, const int lda,
const double *B, const int ldb, const double beta,
double *C, const int ldc) //@=>_:Exp

{ //@; BEGIN(_)
int i, j, l; //@=>gemmDecl:Stmt; BEGIN(gemmBody)
for (j = 0; j < N; j += 1) //@ =>loopJ:Loop BEGIN(nest3)
{ //@; BEGIN(body3)

for (i = 0; i < M; i += 1) //@=>loopI:Loop BEGIN(nest2)
{ //@;BEGIN(body2) BEGIN(parse)

C[j*ldc+i] = beta * C[j*ldc+i]; //@END(parse) =>_:Stmt
for (l = 0; l < K; l +=1) //@=>loopL:Loop BEGIN(nest1)
{ //@;BEGIN(parse)

C[j*ldc+i] += alpha * A[i*lda+l] * B[j*ldb+l]; //@END(parse) =>stmt1:Stmt
} //@END(nest1:Nest) END(body2:Sequence)

} //@END(nest2:Nest) END(body3:Nest)
} //@END(nest3:Nest) END(gemmBody:Nest) END(_:Sequence)

} //@END(gemm:Function)
</input>

Figure 5: Input specification for kernel dgemm

library can recognize the structure of the input program and apply optimizations accordingly. The definition

of code templates therefore serves to specialize the transformation library to kernels in a specific programming

language. To process kernels implemented in a language other than C, the programmer only needs to switch

to another predefined code template header file. The POET transformation engine can therefore be used to

optimize kernels in different languages without significant adaptation.

3.3 Kernel Specifications

The main input of POET transformation engine is a kernel specification file which includes two components:

an input specification, which defines the input computation to be tuned as a kernel; and a transformation

specification, which defines where and how to apply various parameterized transformations to the input code.

As example, Figure 5 shows the POET input specification for dgemm, the matrix multiplication kernel from

the ATLAS library [17, 15], and Figure 6 shows the transformation specification for the kernel.

Input Specification. In order to optimize a computational kernel, the POET TE needs to parse the

input code and translate it into an abstract code template representation that can be understood by the

transformation library. Figure 5 illustrates an input specification for the ATLAS dgemm routine, where

fragments of the the input code are annotated with information to help parse the matrix computation into

a code template representation (see Section 3.2). Each POET annotation either starts with “//@” and lasts

until the end of the current line, or starts with “/*@” and ends with “@*/”. Programmers can embed

9

these annotations as comments in their C/C++ code, where the source code of the computational routine

is readily accessible for both readability and easy maintenance of the kernel implementation.

POET supports both single and nested template annotations. A single template annotation starts from

the end of the last annotation and ends with an annotation in the format “=> x : T”, where x is the

name of a global variable that will be used to store the result of parsing the code fragment, and T is

the code template that should be used to parse the annotated code. For example, in Figure 5, the an-

notation “void ATL USERMM(...const int ldc) //@=> :Exp” indicates that the entire source string “void

ATL USERMM(...const int ldc)” should be treated as the content of a single expression as defined by the

Exp code template, and the variable name “ ” indicates that the code fragment does not need to be stored

in any global variable. Similarly, the annotation “ int i, j, l; //@=>gemmDecl:Stmt” indicates that “int i,

j, l;” is a statement that should be parsed using the Stmt template, and the result should be stored in the

global variable gemmDecl. The definitions for both Exp and Stmt can be found in Figure 4.

In contrast to single template annotations, nested annotations in POET are used to help parse compound

language constructs such as functions and loop nests, which include other code fragments as components.

Each nested POET annotation starts with “BEGIN(x)”, where x is the variable that should be used to

store the compound code template, and ends with “END(x:T)”, where T is the name of the code template

that should be used to parse the annotated code. In Figure 5, the annotation “for (l = 0; l < K; l += 1)

//@ =>loopL:Loop BEGIN(nest1) ... END(nest1)” is a nested annotation which starts with the for loop

(a singly annotated fragment stored in loopL) and ends after parsing the loop body stmt1. Other nested

annotations in Figure 5 include code fragments stored in gemmBody,nest3, nest2, body2,etc. The special

nested annotation “BEGIN(PARSE) ... END(PARSE)” indicates that the builtin POET expression parser

should be used to parse the enclosed code fragment, where appropriate code templates for parsing have been

pre-defined in the frontend specialization of the POET TE.

The input specification as illustrated in Figure 5 is necessary so that the POET interpreter can parse

the input computation correctly without being language specific (note that eventually much of this could

be handled automatically by a source-to-source analyzing compiler). Because each code template used in

parsing the input code can alternatively be defined using a different programming language, the POET TE

10

<parameter SSELEN=16, SSENO=16 />
<parameter mu=6, nu=1, ku=36, NB=36, MB=36, KB = 36, PF=1 />
<trace nest3=Nest#(loopJ,body3), nest2=Nest#(loopI,body2),

nest1=Nest#(loopL,stmt1), gemm=Sequence#(gemmDecl,gemmBody)/>
<define Specialize DELAY { if (SP) {

REPLACE("N",NB,loopJ); REPLACE("M",MB,loopI); REPLACE("K",KB,loopL);
REPLACE("lda",MB, gemmBody); REPLACE("ldb",NB, gemmBody);
if (alpha == 0) { REBUILD(REPLACE("alpha",1, gemmBody) }

} } />
<define nest3_UnrollJam DELAY { if (mu > 1 || nu > 1) {

UnrollJam[factor=(nu mu)](nest1,nest3,gemmBody);
} } />
<define nest1_Unroll DELAY { if (ku > 1) {

UnrollLoops[factor=ku](stmt1,nest1,body2);
} }/>
......

(a) transformation definitions

<output dgemm_kernel.c (
gemm = TRACE gemm

: (gemmDecl,gemmBody,nest3,nest2,nest1);
APPLY Specialize;
APPLY A_ScalarRepl;
APPLY nest3_UnrollJam;
APPLY B_ScalarRepl;
APPLY C_ScalarRepl;
APPLY array_ToPtrRef;
APPLY Abuf_SplitStmt;
APPLY body2_Vectorize;
APPLY array_FiniteDiff;
APPLY body2_Prefetch;
APPLY nest1_Unroll;
gemm

) />

(b) output definition

Figure 6: Defining transformations for kernel dgemm

can be easily specialized to optimize code written in different source languages such as C or Fortran without

requiring a parser for each language. We have designed the annotation syntax to minimize intrusion to the

source code, so that if written in C, POET annotations can be treated merely as comments, and the source

code can be compiled with a regular C compiler without requiring any additional bookkeeping.

Transformation specifications. After the input specification is processed by a POET interpreter, an

internal representation of the given kernel computation is constructed and stored in a collection of global

variables. The programmer can then invoke the POET transformation library to optimize the input code.

Figure 6 illustrates some of the transformation specifications for optimizing the dgemm kernel in Figure 5.

These transformation specifications include four different kinds of POET declarations: parameter, trace,

define, and output, for manipulating the global variables used to store the input computation.

In POET, each keyword parameter declares a number of global variables that can be used to re-configure

transformations applied to the input code. The values of these parameters can be set from command line by

an independent search driver when the transformation engine is invoked, which allows the search driver to

generate different kernel implementations for empirical tuning. The parameter declarations therefore serve

as the communication interface between the transformation engine and the search driver.

Similar to the parameter declaration, each keyword trace serves to declare global variables which can

be embedded inside the input computation to keep track of selected code fragments as they go through

a sequence of transformations. In Figure 6(b), the TRACE operation inserts several trace variables,

11

gemmDecl,gemmBody,nest3, nest2,and nest1, into gemm, the global variable which stores the internal

representation of input code. As various code transformations are applied to optimize the input code, the

values of these trace variables are replaced with equivalent code fragments which may display better perfor-

mance. In Figure 6, the input code is optimized by applying 11 different transformations, each transformation

can operate on the trace variables without worrying about what transformations have already been applied.

The tracing capability therefore makes the ordering of different code transformations extremely flexible,

and the programmer can easily adjust transformation orders and even determine the best ordering through

empirical tuning if desired.

Each keyword define in POET serves to assign new values for global variables. At each assignment, the

target code fragment is first evaluated and the result is then assigned as the new value of the variable. If

the value of a global variable is a code transformation, the evaluation of the transformation can be delayed

using the DELAY operation, which packages the code fragment until an APPLY command is invoked, which

forces the evaluation of delayed transformations. Figure 6 illustrates the definition of three code transfor-

mations, Specialize, which specializes the input code by substituting constant values as bounds for loops;

nest3 UnrollJam, applies unroll-and-jam transformation to nest3; and nest1 Unroll applies loop unrolling

to nest1. Pre-defined transformation routines are invoked within these definitions, where REPLACE and

REBUILD are built-in functions within the POET language, and UnrollAndJam and UnrollLoops are rou-

tines defined in the transformation library. Both routines from the library have their tuning parameters

reconfigured when the routine name is invoked.

Finally, the output declaration in POET defines what code should be output to external files. The output

declaration in Figure 6 first applies a sequence of transformations to the input code and then outputs the

optimized code. A transformation specification can define multiple code fragments to output to different

files so that multiple implementations can be simultaneously produced by the transformation engine.

3.4 Optimizing Kernel Implementations

The goal of our transformation engine is to support compact description of both parameterized code op-

timizations and how these optimizations can be applied differently to improve the performance of input

12

applications. We have carefully designed our framework to offer strong support for the following capabilities:

• Generic transformations can be easily defined and applied to optimize arbitrary application codes.

In addition to an extensive library of predefined code optimizations commonly adopted by compilers,

library developers can use POET to readily define their own customized code transformations.

• Important properties and special semantics of code fragments can be conveniently expressed in the

description of input code. This information can then be utilized in the definition and application of

generic code transformations. POET provides language support for specially tagged code templates,

through which library developers can encode their domain-specific knowledge and can make the results

of their program analysis available both to the transformation engine and to the external world for

better readability and maintenance.

• Each transformation specification allows a collection of tuning parameters as the interface of re-

configuration. An optimization space is therefore explicitly available to external search drivers in

the empirical exploitation of best application performance. Generic search drivers can consequently be

developed without being tied to any specific compiler or library optimization.

Instead of utilizing any existing optimizing compiler, this paper focuses on using our transformation

engine as a generic tool box for library developers who would like to manually build highly optimized kernel

implementions. Our future work includes developing an optimizing compiler which can perform program

analysis, discover profitable optimizations, and then produce a POET kernel specification file as result of

optimization for flexible empirical tuning. Either manually produced by library developers or automatically

by an optimizing compiler, the POET kernel specification can serve as the distribution form of a kernel

implementation which can then be empirically tuned whenever the application needs to be ported to a

different machine.

The POET transformation engine offers more flexible empirical tuning of application performance because

it provides a modular communication interface among independent optimizing compilers, application devel-

opers, and empirical search drivers. It offers a generic tool box to library developers for building a customized

collection of code optimizations and allows such optimizations to be generalized for other applications. It

13

offers a portable output language for analyzers and source-to-source compilers to generate parameterized

code transformations and to explicitly formulate program analysis results to the external world. Moreover,

programmers can modify and extend the output of optimizing compilers to additionally incorporate their

domain-specific knowledge. Using POET TE can greatly improve the efficiency of tuning since the compiler

or library developer needs to perform the analysis only once when creating the scripts. The analysis result

is then tuned as many times as necessary without reapplying the analysis.

4 Results

We have used our POET transformation engine to tune several linear algebra kernels from the popular

ATLAS library [17]. By comparing the our performance results with the best kernel performance of ATLAS,

we have verified that (1) the POET TE can indeed produce kernel implementations with the performance

required for actual HPC applications; (2) our PTE can achieve better performance than hand-tuned kernels

when those kernels are not updated frequently enough in the face of architectural continuing evolution; (3) by

integrating our POET TE with empirically tuned libraries such as ATLAS, we can improve the performance

of existing highly performance libraries by providing a complementary kernel-optimization approach which

is more portable across different computer architectures than multiple implementation, while being less

dependent on the native compiler than source generation.

ATLAS first tunes some simplified performance kernels, and then uses these kernels to implement fast

BLAS and LAPACK routines [16]. We have used POET TE to generate both level-3 and level-2 BLAS

kernels in ATLAS, and present performance results of these kernels when compared against their best

ATLAS implementations and when compared against using the Intel compiler (icc) to tune their reference

implementations. Our comparison using icc has verified our belief that in general even highly aggressive

compilation techniques alone rarely achieve the required performance for high-performance kernels.

4.1 Methodology, Architecture and Version Details

To evaluate the overall performance impact when using POET TE to generate important library kernels, we

performed two sets of experiments. First, we used ATLAS timing routines to measure the performance of

14

PTE produced kernels and compared them directly against the best ATLAS implementations. Section 4.2

and 4.3 present relevant results for level-3 and 2 BLAS kernels respectively. Second, we integrated the POET

produced kernels within ATLAS as user-contributed routines, and evaluated the overal performance impact

when the extended ATLAS is used to implement higher-level LAPACK routines such as the QR-solve. S4.4

presents results of the second experiment.

Platform Cmp Flags
2.66Ghz C2D icc -xP -msse3 -O3 -mp1

9.1 -fomit-frame-pointer
(Core2Duo) gcc -mfpmath=sse -msse3 -O2

4.0.1 -m64 -fomit-frame-pointer
2.2Ghz ATH gcc -mfpmath=387 -falign-loops=4
(Athlon 64 X2) 4.2.0 -fomit-frame-pointer -O2

(a) Compiler and flag information by platform

Core2Duo Athlon-64 X2
Prec scal vec scal vec
single 5,320 21,280 4,400 8,800
double 5,320 10,640 4,400 4,400

(b) Theoretical peak by platform (MFLOPS)
(Prec: precision of floating-point operations; scal:
using scalar op; vec: using vectorized op.)

Table 1: Platform Summary

We concentrate on the ubiquitious x86 platform, and report performance for the newest machines from

both AMD (2.2 Ghz Athlon-64 X2) and Intel (2.66 Ghz Core2Duo) that we have access to (abbrievated

as ATH and C2D, respectively). The ATH runs Linux, and the C2D OS X. The theoretical peak of the

platforms are summarized in Table 1(b). These architectures have different peak performance depending on

the precision of the floating-point operations used, and whether vectorized vs. scalar operations are used.

All timings were done with ATLAS version 3.7.30, using the best available compiler version and flags, as

shown in Table 1(a). We only used the Intel compiler icc on the C2D platform as icc was not specialized for

the AMD architecture. We do not report numbers for icc when using profiling because our profiling runs of

icc using the actual data never produced speedup, and occasionally caused slowdown. Since we were unable

to determine if this was due to the fact that icc is not yet well-tuned for OS X/Core2Duo, or if we were

simply unable to discover the proper flags for profiling to shine, we omit our disappointing profiling results.

All timers used ATLAS’s cycle-accurate walltimer, and since walltime is prone to outside interference, we

repeated each timing six times (on an unloaded machine) and took the minimum time. All results were

obtained using the ATLAS timers, which flush the cache (this means that our numbers will be lower, but

more accurate for usage, than those often reported elsewhere). We report performance in MFLOPS, rounded

to the nearest whole number.

15

4.2 Level 3 BLAS Kernels

ATLAS uses a simplified GEMM kernel to support the entire Level 3 BLAS [16] (we will refer to this simplified

kernel as gemmK to distinguish it from the full BLAS routine GEMM). The POET input specification for

this kernel is shown in Figure 5. This kernel is specialized into three cases in order to handle varying β in

Figure 5; in this section we report on the performance for ATLAS’s most commonly-used β variant, β = 1;

typically the β = 0 case is slightly faster, and the β = X case is slightly slower.

Since the cost of Level 3 BLAS kernels tends to dominate in the majority of algorithms, ATLAS tunes

Level 3 BLAS much more aggressively than the Level 1 or 2. In particular, gemmK, like all of ATLAS’s

kernels, is tuned by the multiple implementation [16, 17] method, where a series of hand-tuned and generic

implementations are searched, and the best performing is selected. ATLAS additionally tunes gemmK by a

second and orthogonal tuning strategy, where a completely automated ANSI C source generator is used to

find the best implementation for a given architecture and C compiler combination, Since the source generator

search is ATLAS’s most general strategy, we track the performance it achieves seperately as ATLAS-gen;

the full search, which includes both multiple implementation and source generator search, is labeled ATLAS-

full.

Table 4.2 shows the performance of gemmK for each architecture and precision (kernel names are prefixed

by ‘s’ for single precision, and ‘d’ for double precision). The performance results of three different method-

ologies are presented: The performance of using gcc (gcc+ref) and icc (icc+ref) to compile a reference

implementation of gemm similar to the code shown in Figure 5; the performance of ATLAS kernels achieved

using code generator search only (ATLAS-gen) and achieved using both the code generator search and

multiple implementation search (ATLAS-full); and the performance results achieved by our POET kernel

specification when empirically tuned using our transformation engine (PTE+spec).

The first thing to notice is that our PTE-tuned implementations handily outperforms ATLAS-gen for

all problems except double precision on the Athlon-64. This is primarily because SIMD vectorization is

required to get good performance for all other surveyed precision/architectures, but ATLAS-gen uses the

scalar FPUs only (as shown in Table 1(b), ATH has the same scalar and vector peak for double precision,

thus the code generator is competitive for this case). This is because ATLAS uses gcc as its default compiler,

16

2.66Ghz Core2Duo 2.2Ghz Athlon-64 X2

Kernel gcc icc ATLAS PTE+ gcc ATLAS PTE+
name +ref +ref gen full spec +ref gen full spec

sgemmK 571 6226 4730 13972 15048 1009 4093 7651 6918

dgemmK 649 3808 4418 8216 7758 939 3737 4009 3754

Table 2: Performance in MFLOPS of Various gemmK Implementations (gcc+ref/icc+ref: reference im-
plementation compiled with gcc/icc; ATLAS gen/full: ATLAS implementation using source-generator/full
search; PTE+spec: implementation produced by POET transformation engine.)

and gcc cannot yet successfully autovectorize these kernels. Additionally, we see that the PTE numbers are

substantially better in all cases when compared against reference compilation using gcc/icc (in our worst

case, we are still more than twice as fast as the fastest compiler). Therefore, we succeed in our first goal of

outperforming or matching the truly general part of ATLAS.

When we compare PTE and ATLAS-full, we get mixed results. For three of the four cases we see that

our numbers are competitive with those of ATLAS’s best hand-tuned codes, but that we lose by a modest

amount. For sgemmK/C2D, however, we win by a reasonable margin. The reason for this is clear: for the

three cases where we lose, ATLAS has kernels which have been hand-optimized by the ATLAS developers

for both the architecture and kernel in question. However, ATLAS’s multiple implementation shows the

Achiles’ heal of hand-tuning: the last case has not yet been hand-tuned specifically for the C2D, and thus

our automated process is able to outperform the best available hand-tuned kernel (which in this case is a

kernel originally tuned for the Pentium 4). We have not yet implemented all the optimization techniques

we know to our TE, so we expect to close the gap in the future on the hand-tuned codes. However, we are

already competitive enough to demonstrate the promise of this more automatic (and thus more persistent

in the face of architecture change) tuning process.

4.3 Level 2 BLAS Kernels

ATLAS uses three simplified kernels to optimize the entire Level 2 BLAS, and we will call these kernels

gemvNK, gemvTK, and gerK. In looking at the Level 2 kernels (summarized in Table 4.3), we see that ATLAS’s

reliance on an empirical search of hand-tuned kernels that are not well supported by the ATLAS developers

as the Level 3, results in less well-optimized implementations of these kernels, and thus our PTE-optimized

kernels exceed the performance obtained by ATLAS in the majority of these cases. As before, both ATLAS

17

and PTE substantially exceed the performance obtained by simple compilation. We have several optimizations

known to be beneficial for these types of kernels still to be added to our PTE, and so we expect our performance

advantage in these kernels to widen yet further.

2.66Ghz Core2Duo 2.2Ghz Athlon-64 X2
Kernel gcc icc ATLAS TE+ gcc ATLAS TE+
name +ref +ref full spec +ref full spec
sgerK 1230 2927 3751 3400 639 1005 962
dgerK 439 438 462 519 411 518 500
dgemvNK 382 574 939 1069 408 799 902
dgemvTK 556 574 835 1079 579 739 1049
sgemvNK 438 859 1838 2097 528 1185 1986
sgemvTK 556 1826 1752 2171 835 1389 2056

Table 3: Performance in MFLOPS of various Level 2 BLAS Kernels (gcc+ref/icc+ref: reference implemen-
tation compiled with gcc/icc; ATLAS full: ATLAS implementation using full search; PTE+spec: implemen-
tation produced by POET transformation engine.)

4.4 Improvements for LAPACK

So far, we have reported speedups in ATLAS’s kernel routines, which are used to speedup the entire Level 2

and 3 BLAS, which are in turn the performance engine of a host of Linear Algebra applications. A question

might arise as to whether speeding up such kernels indeed speeds up the higher-level codes as expected. A

survey of Linear Algebra applications is far beyond the scope of this paper, but to give some indication,

Figure 7 shows the performance of LAPACK’s widely used least squared solve ([D,S]GELS) driver routine,

which performs the solve using the QR factorization. Here we report the performance achieved by ATLAS

alone (xGELS-ATL) versus that achieved when we allow ATLAS’s multiple implementation search to use our

PTE-tuned kernels (xGELS-ATL+PTE). For the Athlon-64 (Figure 7(b)), we sped up the Level 2 BLAS, with

much greater advantage achieved in single precision. Thus we see that ATL+PTE is noticably faster for single

precision results than pure ATLAS. ATL+PTE is slightly faster for double precision, but only barely. The

results are largely the same on the Core2Duo, but since we sped up both the Level 2 and 3 BLAS for single

precision on this platform, the results are even more impressive. Therefore, these tunings are indeed more

widely useful, and we can additionally observe a key feature of our approach: we can use it improve existing

tuning frameworks. In the short term, we plan to submit our PTE-tuned kernels to the ATLAS group. Longer

term, it should be possible for packages such as ATLAS to directly leverage our PTE just as they presently

do the native compilers.

18

(a) On OS X/2.66Ghz Core2Duo (b) On Linux/2.2Ghz Athlon-64 X2

Figure 7: Performance vs. Problem size of LAPACK QR Factor and Solve

4.5 Conclusion and Future Work

This paper presents a new cost-effective approach for generating highly-tuned library routine implementa-

tions. Instead of hand-crafting efficient implementations directly, we provide a POET transformation engine

which can automatically produce highly optimized computational routines based on a kernel specification

file created by the programmer. The time required to create a kernel specification file is orders of magnitude

less than that required to hand-tune an optimized library routine, and yet a kernel specification file is much

more portable and has achieved performance similar to or even better than ATLAS’s highly tuned kernels.

Our future work includes developing an optimizing compiler which could perform program analysis, dis-

cover profitable optimizations, and then produce a POET kernel specification file as result of optimization

for flexible empirical tuning. The kernel specification file can then be modified by programmers to better

utilize domain-specific knowledge. Eventually, the POET kernel specification can serve as distribution form

of kernel implementations, which can be easily ported to different machine architectures and empirically

tuned for optimal performance.

References

[1] G. Baumgartner, A. Auer, D. E. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao, R. J. Harrison,
S. Hirata, S. Krishnamoorthy, S. Krishnan, C.-C. Lam, Q. Lu, M. Nooijen, R. M. Pitzer, J. Ramanujam,
P. Sadayappan, and A. Sibiryakov. Synthesis of high-performance parallel programs for a class of ab initio
quantum chemistry models. Proc. IEEE, Special Issue on Program Generation, Optimization, and Adaptation,
93(2), 2005.

[2] P. Bientinesi, J. A. Gunnels, M. E. Myers, E. Quintana-Orti, and R. van de Geijn. The science of deriving dense
linear algebra algorithms. ACM Transactions on Mathematical Software, 31(1):1–26, March 2005.

19

[3] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, C. Whaley, and K. Yelick. Self adapting
linear algebra algorithms and software. Proc. IEEE, Special Issue on Program Generation, Optimization, and
Adaptation, 93(2), 2005.

[4] M. Frigo and S. Johnson. FFTW: An Adaptive Software Architecture for the FFT. In Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), volume 3, page 1381, 1998.

[5] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proc. IEEE, Special Issue on Program
Generation, Optimization, and Adaptation, 93(2), 2005.

[6] G. Fursin, A. Cohen, M. O’Boyle, and O. Temam. A pratical method for quickly evaluating program optimiza-
tions. In HiPEAC, November 2005.

[7] T. Kisuki, P. M. Knijnenburg, and M. F. O’Boyle. Combined selection of tile sizes and unroll factors using
iterative compilation. In PACT, Philadelphia, PA, October 2000.

[8] G. Pike and P. Hilfinger. Better tiling and array contraction for compiling scientific programs. In SC, Baltimore,
MD, USA, November 2002.

[9] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer, J. Xiong, F. Franchetti, A. Gačić,
Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code generation for DSP transforms.
Proc. IEEE, Special Issue on Program Generation, Optimization, and Adaptation, 93(2), 2005.

[10] A. Qasem, K. Kennedy, and J. Mellor-Crummey. Automatic tuning of whole applications using direct search
and a performance-based transformation system. In Proc. Los Alamos Computer Science Institute (LACSI)
Symposium, 2004.

[11] See page for details. FFTW homepage. http://www.fftw.org/.

[12] M. Stephenson and S. Amarasinghe. Predicting unroll factors using supervised classification. In CGO, San Jose,
CA, USA, March 2005.

[13] T. L. Veldhuizen and D. Gannon. Active Libraries: Rethinking the roles of compilers and libraries. In Proceedings
of the SIAM Workshop on Object Oriented Methods for Interoperable Scientific and Engineering Computing,
Philadelphia, PA, USA, 1998. SIAM.

[14] R. Vuduc, J. Demmel, and J. Bilmes. Statistical models for automatic performance tuning. International Journal
of High Performance Computing Applications, 18(1):65–94, 2004.

[15] R. C. Whaley and A. Petitet. Atlas homepage. http://math-atlas.sourceforge.net/.

[16] R. C. Whaley and A. Petitet. Minimizing development and maintenance costs in supporting
persistently optimized BLAS. Software: Practice and Experience, 35(2):101–121, February 2005.
http://www.cs.utsa.edu/~whaley/papers/spercw04.ps.

[17] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimization of software and the ATLAS
project. Parallel Computing, 27(1–2):3–35, 2001. Also available as University of Tennessee LAPACK Working
Note #147, UT-CS-00-448, 2000 (www.netlib.org/lapack/lawns/lawn147.ps).

[18] R. C. Whaley and D. B. Whalley. Tuning high performance kernels through empirical compilation. In The 2005
International Conference on Parallel Processing, June 2005.

[19] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan. Poet: Parameterized optimizations for empirical tuning.
In Workshop on Performance Optimization for High-Level Languages and Libraries, Mar 2007.

[20] Y. Zhao, Q. Yi, K. Kennedy, D. Quinlan, and R. Vuduc. Parameterizing loop fusion for automated empirical
tuning. Technical Report UCRL-TR-217808, Center for Applied Scientific Computing, Lawrence Livermore
National Laboratory, December 2005.

20

