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Abstract. We describe ROSE, a C++ infrastructure for source-to-source
translation, that provides an interface for programmers to easily write
their own translators for optimizing user-defined high-level abstractions.
Utilizing the semantics of these high-level abstractions, we demonstrate
the automatic parallelization of loops that iterate over user-defined con-
tainers that have interfaces similar to the lists, vectors and sets in the
Standard Template Library (STL). The parallelization is realized in two
phases. First, we insert OpenMP directives into a serial program, driven
by the recognition of the high-level abstractions, containers, that are
thread-safe. Then, we translate the OpenMP directives into library rou-
tines that explicitly create and manage parallelism. By providing an in-
terface for the programmer to classify the semantics of their abstractions,
we are able to automatically parallelize operations on containers, such as
linked-lists, without resorting to complex loop dependence analysis tech-
niques. Our approach is consistent with general goals within telescoping
languages.

1 Introduction

In object-oriented languages such as C++, abstractions are a key aspect of
library design, sharing aspects of language design, which aims to provide the
application developer with an efficient and convenient interface. For example,
the C++ Standard Template Library (STL), parts of which are standardized
within the C++ standard libraries, includes a collection of template classes that
can be used as containers for user-defined constructs. Some STL containers,
such as vectors, provide random access to their elements using an integer index,
while other containers such as lists and sets provide other means to access their
elements. Nevertheless, all STL containers provide sequential element accesses
and thus all of them can be used in the code fragment in Figure 1. This design
strategy permits all containers to be used interchangeably in algorithms that
process a sequence of elements.

At this level, library design greatly resembles language design, but without
increasing the complexity of the compiler. The term telescoping languages was
coined by Kennedy [1] in 2000. Within telescoping languages, a base language
is chosen and domain-specific types are constructed entirely within the base
language with no language extension. The iterative progression of a library to a



higher-level language comes only with compile-time support for its user-defined
types. The telescoping aspect relates to the optional use of the compile-time
optimizations, because the abstractions are defined fundamentally as a library
completely within the base language. The idea of higher-level languages driving
the generation of lower-level C++ code was originally discussed by Stroustrup
in 1994 [2] (page 204). The techniques presented in this paper are a special case
of compiler support for high-level abstractions such as those defined in the STL.
Specifically in this paper we utilize the semantics of the high-level abstractions
and generate low-level C++ code.

MyContainer myContainer;

MyContainer::iterator p;

for (p = myContainer.begin(); p != myContainer.end(); ++p) {
foo(*p);

}

Fig. 1. Example: a code fragment processing a user-defined container

Due to the increasing popularity of the STL library, more and more libraries
provide containers that conform to the STL interface. Since the library devel-
oper knows the semantics of the library’s containers and of each element in the
containers, he can write a source-to-source translator that optimizes the perfor-
mance of every program that uses his library. For example, in Figure 1, if the
library writer knows that none of the elements in MyContainer can be aliased
and that the function foo is side-effect free (i.e., it does not modify any global
variables), he can safely parallelize the surrounding loop and thus achieve better
performance for the user’s application. Due to the undecidability of precise alias
and control-flow analysis, it could be impossible for a compiler to automatically
figure out this semantic information. Thus, our approach can better optimize
any application code that uses the library since we allow the library developer
to communicate this semantic information to the source-to-source translator.
The application developer sees only an automated process.

We present ROSE, a C++ source-to-source infrastructure especially for this
purpose [3,4]. In addition to being a general source-to-source compiler infrastruc-
ture, ROSE provides several mechanisms, including a very high level Abstract
Syntax Tree (AST) that maintains the original structure of the user program,
traversal facilities for modifying the AST, and a string interface for inserting
new C++ code fragments (which are represented as strings) into the AST di-
rectly. Since we have not only the syntax of the original program but also its
full type resolution within the ROSE AST, we can use specific user-defined type
information as a basis for optimizing an application. Thus, the compiler has
fundamentally more information, enabling greater levels of optimization. In the
case of parallelizing user-defined containers, for example, we can automate the
introduction of OpenMP directives into otherwise serial code because the library
writer guarantees the required semantics. Based on the additional semantics of



user-defined abstractions, this approach permits parallel execution of appropri-
ate fundamentally serial code. Section 2 presents the ROSE infrastructure in
more detail.

Using the ROSE approach for processing user-defined abstractions, we present
a source-to-source translator that automatically introduces OpenMP directives
in loop computations on STL-like container classes such as the one in Figure 1.
The only additional information that needs to be provided by the library pro-
grammer is the set of container classes that disallow aliased elements and the
side-effects of library functions. We then invoke another translator within ROSE
to recognize specific OpenMP pragma directives and to translate these direc-
tives (along with their associated code fragments). The final result is a parallel
program that explicitly creates and manages parallelism.

2 Infrastructure

The ROSE infrastructure offers several components to build a source-to-source
translator. A complete C++ frontend is available that generates an object-
oriented annotated abstract syntax tree (AST) as an intermediate representa-
tion. Several different components can be used to build the midend of a translator
that operates on the AST to implement transformations: a predefined traversal
mechanism; a restructuring mechanism; and an attribute evaluation mechanism.
Other features include parsing of OpenMP directives and integrating these di-
rectives into the AST. A C++ backend can be used to unparse the AST and
generate C++ code (see Figure 2).
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Fig. 2. ROSE Source-To-Source infrastructure with frontend/backend reinvocation

2.1 Frontend

We use the Edison Design Group C++ frontend (EDG) [5] to parse C++ pro-
grams. The EDG frontend performs a full type evaluation of the C++ program
and then generates an AST, which is represented as a C data structure. We
translate this data structure into an object-oriented abstract syntax tree (AST)
which is used by the midend as an intermediate representation. We use Sage III



as an intermediate representation, which we have developed as a revision of the
Sage II [6] AST restructuring tool.

2.2 Midend

The midend supports restructuring of the AST. The programmer can add code
to the AST by specifying a source string using C++ syntax, or by constructing
subtrees node by node. A program transformation consists of a series of AST
restructuring operations, each of which specifies a location in the AST where a
code fragment (specified as a C++ source string or as an AST subtree). should
be inserted, deleted, or replaced.

The order of the restructuring operations is based on a pre-defined traversal.
A transformation traverses the AST and invokes multiple restructuring oper-
ations on the AST. To address the problem of restructuring the AST while
traversing it, we make restructuring operations side-effect free functions that de-
fine a mapping from one subtree of the AST to another subtree. The new subtree
is not inserted until after the complete traversal of the original subtree. We pro-
vide interfaces for invoking restructuring operations that buffer these operations
to ensure that no subtrees are replaced while they are being traversed.

The midend also provides an attribute evaluation mechanism that allows
the computation of arbitrary attribute values for AST nodes. During traver-
sal, context information can be passed down the AST as inherited attributes,
and results of transforming a subtree can be passed up the tree as synthesized
attributes. Examples for inherited and synthesized attributes include the type
information of objects, the sizes of arrays, the nesting levels of loops and the
scopes of associated pragma statements. These attributes can then be used to
compute constraints on transformations for example, to decide whether to
apply a restructuring operation on a particular AST node.

Our infrastructure supports the use of C++ source strings to define code
fragments. Any source string that represents a valid declaration, statement list,
or expression can specify a code pattern to be inserted into the AST. The transla-
tion of a source code string, s, into an AST fragment, is performed by reinvoking
the frontend. Our system extends s to form a complete program, which it then
parses into an AST by reinvoking the frontend. From this AST, it finally extracts
the AST fragment that corresponds to s. This AST fragment is inserted into the
AST of the original program.

Further, we provide an abstract C++ grammar which covers all of C++
and defines the set of all abstract syntax trees. We have integrated an attribute
grammar tool which allows the specification of attribute evaluations on the ab-
stract C++ grammar. The grammar is abstract with respect to the concrete
C++ grammar and does not contain any C++ syntax. Similar to our traversal
mechanism, source-strings and restructure operators can be used in the semantic
actions of the attribute grammar. In section 3.3 we show how a transformation
can be specified using the abstract grammar, source-strings, and AST restructure
operations.



2.3 Backend

The backend unparses the AST and generates C++ source code. It can either
unparse all included (header) files or the source file(s) specified on the command
line only. This feature is important when transforming user-defined data types,
for example, when adding compiler-generated methods. Using this feature pre-
serves all C preprocessor (cpp) control structures (including comments). Output
code from the backend appears nearly indistinguishable from input code, except
for transformations, to simplify acceptance by users.

The backend can also be invoked during a transformation, to obtain the
source code string that corresponds to a subtree of the AST. Such a string can
be combined with new code (also represented as a source string) and inserted
into the AST.

Both phases, the introduction of OpenMP directives and the translation of
OpenMP directives, can be automated using the above mechanisms, as described
in the following sections.

3 Parallelizing User-Defined Containers Using OpenMP

Most modern machines have a parallel architecture that requires applications
to be efficiently parallelized in order to achieve high performance. The OpenMP
standard provides a convenient mechanism to parallelize applications. It extends
the traditional sequential languages Fortran, C and C++ to introduce paral-
lelism without requiring the programmer to manage threads or communications
explicitly. However, introducing OpenMP directives into a sequential program
still requires a significant amount of work, although substantially less than using
distributed memory programming models like MPI.

In addition, current use of distributed memory programming models only
extends to a subset of the number of processors available on IBM machines at
LLNL. Specifically, the limit on the number of MPI tasks requires a hybrid pro-
gramming model that combines message passing and shared memory program-
ming in order to use all of the machine’s processors. These hybrid programming
models significantly increase the complexity of the already difficult task of de-
veloping scientific applications that include advanced numerical algorithms and
physics, and non-trivial geometrics domains. Thus, our approach is particularly
useful in extending existing distributed memory applications to use these mod-
ern computer architectures effectively. The automated/simplified introduction
of parallelism to leverage the shared memory nodes and, thus, a larger part of
these machines can significantly improve programmer productivity. The use of
dual shared memory and distributed memory programming models is a more
general issue within cluster computing (using a connected set of shared memory
nodes).

Most C++ programs, including many scientific applications, use high-level
abstractions that tailor the user-environment to a specific application domain.



Thus, object-oriented design creates a programming environment that is essen-
tially a programming language that is more domain-specific than a general pur-
pose language could allow, thereby improving programmer productivity.

The ROSE infrastructure provides support for generating source-to-source
translators that essentially act as compilers for these domain-specific languages.
The designer of the high-level abstractions captures the semantics of those ab-
stractions so that the source-to-source translators can generate high performance
code for the user of the domain-specific language. Generally, the designer of the
abstractions will be a library writer, although nothing prevents the end user
from designing clean interfaces and capturing the semantics for his specific ab-
stractions.

In this section, we present a mechanism to automatically introduce OpenMP
directives for user-defined STL-like containers, which is one of the most com-
monly used user-defined abstractions in object-oriented programming.

3.1 User-Defined Containers

Scientific applications are increasingly using STL, but at present with no path
available toward automated shared memory parallelization. Clearly our goal in
addressing the optimization (parallelization) of user-defined container classes
includes eventually processing STL containers. Such work would have broad
impact on how STL could be used within scientific programming.

At present, the ROSE infrastructure does not handle templates sufficiently
well to address STL optimization directly. Figure 3 presents a compromise, an
example container class that is similar to the STL list class. It has an identi-
cal iterator interface, but does not use templates. The example list class accu-
rately reproduces the same iterator interface as is used in STL and more general
user-defined containers. The exact details of the iterator interface are not par-
ticularly important; our approach could be used to parallelize alternative meth-
ods of traversing the elements of containers. Further, the easy construction of
compile-time transformations with ROSE could use even more precise semantics
of domain-specific containers if necessary.

Figure 4 defines a class to support the automated transformation of iter-
ation on user-defined containers. The automated transformation process in-
troduces new code that uses this supporting class into the application. The
SupportingOmpContainer 1ist class builds an array of fixed size, internally,
containing pointers to the container’s elements. Using this array the class pro-
vides indexed access for the OpenMP parallel for loop.

3.2 Safety of Parallelization

Our goal is to parallelize loops that iterate over user-defined containers. Given
a candidate loop, we must ensure that it is safe to parallelize, that is, depen-
dences must not exist between different iterations of the loop body [7]. Figure 5



class list {
// List class defined similarly to STL List class (but without templates)

public:
// fixed element type for list class (to avoid templates)
typedef int elementType;

protected:
struct list_node {
list_node* next;
list_node* prev;
elementType data;
}

typedef elementType* pointer;
typedef elementType& reference;

typedef list_node* link_type;
typedef size_t size_type;

protected:
link_type first;
link_type last;

size_type length;

public:
class iterator
{
friend class list;
protected:
link_type node;
iterator (link_type x);
public:
iterator();
bool operator==(const iterator& x) const;
bool operator!=(const iterator& x) const;
reference operatorx() const;
iterator& operator++();
iterator operator++(int);
};
list();

iterator begin();
iterator end();

unsigned int size();
void push_back(const reference x);

Fig. 3. Example: Code fragment showing 1ist class using iterators.



class SupportingOmpContainer_list {
// This class is used to support the transformation of iterations over STL
// containers to a form with which we can use OpenMP to parallelize the execution.

public:
typedef list::elementType elementType;
list::elementType** dataPointer;
unsigned int length;

public:
SupportingOmpContainer_list(list & 1) {
length = l.size();
dataPointer = new list::elementType* [lengthl;
assert (dataPointer != NULL);

list::iterator p;
int i = 0;
for (p = 1l.begin(); p !'= l.end(); p++) {
dataPointer[i++] = &(*p);
}
}

unsigned int size() { return length; }
elementType& operator[](int i) {
return *dataPointer[il;

}

Fig. 4. Example: Code fragment showing the implementation of supporting abstraction
for OpenMP translation.

presents our algorithm for this analysis, where TestParallelLoop is the top-
level function, and function get modified_vars is invoked to compute the set
of variables modified by a list of arbitrary statements.

Our algorithm is different from traditional dependence-based approaches in
that the library developer supplies domain-specific information to drive the anal-
ysis. This information allows us to recognize opportunities of loop parallelization
without having to perform aliasing or interprocedural dependence analysis. In
Figure 5, this information is represented as the userSpec input parameter, which
contains the following information from pre-specified inputs by the library de-
veloper.

— known_containers(userSpec) A set of user-defined containers for which the
library writer guarantees element uniqueness, i.e., the instances of the con-
tainer class do not include duplicated elements. All of these containers must
have an iterator interface that is similar to Figure 1. Since the elements can-
not be aliased to each other, our analysis can safely conclude that it is safe
to parallelize a loop that iterates over the container if the loop body does
not contain cross-iteration dependences.

— known_functions(userSpec) A set of user-defined functions whose side ef-
fects are known to the library writer. These functions can include both global
functions and the member functions of user-defined abstractions.

— side_effects(f,userSpec) Vf € known_functions(userSpec) The side ef-
fects of each function f defined in userSpec. Specifically, for each function



TestParallelLoop (I, userSpec)
l: loop to be parallelized;
userSpec: info. from programmer
return: whether loop [ can be parallelized
header = get_loop_header(l)
body = get_loop_body(l)
if (header iterates over a container ¢ and
¢ €known_containers(userSpec) )
cur_elem = get_current_element(c)
local vars = get_local_defined vars(body)
mod = get_modified_vars(body, user Spec)
if (mod ==UNKNOWN) return false;
for (each variable var € mod)
if (var ¢ local vars and var # cur_elem)
return false;
return true;
return false;

get_modified_vars(body, userSpec)
body: statements to be examined;
userSpec: info. from programmer
return: variables modified by body
F = get_function_calls(body);
modVars = (J;
for (each function call f € F)
if (f €known_functions(userSpec) )
modVars = modV arsU
side_effect(f, userSpec);
else return UNKNOWN
modV ars = modVarsU
get_local_mod_vars(body);
return modVars

Fig. 5. Algorithm for safety analysis of parallelization

f € known_functions(userSpec), it defines which parameters and global
variables can be modified by f. This information allows us to compute the
set of variables modified by an arbitrary statement without resorting to
inter-procedural side effect analysis.

In Figure 5, the function get modified vars uses the semantic information
of user-defined functions to help determine the side effects at each iteration of
the loop body: for each statement within the loop body and for each function
invocation f within the statement, if the function does not belong to the known
functions in userSpec, we assume that the function could induce unknown side
effects and thus conservatively disallow the loop parallelization. In addition,
the variables locally modified by each statement is also returned as part of the
complete side effect of the loop body.

The function TestParallelLoop uses both the known containers and known
functions from wuserSpec to identify opportunities of loop parallelization. First,
we examine the candidate loop to see if it iterates over a container that is known
to be safe to be parallelized. We then invoke get modified vars to summarize
the complete side effect of the loop body. To determine the dependence pattern of
the loop body, for every variable var modified by the loop body, if var is exactly
the element of the container being accessed by the current iteration, or if var is a
local variable defined within the loop body, we know that the variable is private
to the current iteration and thus cannot introduce cross-iteration dependences;
otherwise, we assume that the variable could be aliased to a global variable and
disallow the parallelization.

Note that although the algorithm in Figure 5 is more conservative than tra-
ditional dependence-based approaches, it provides a way to utilize user-defined
semantic information that might not be available to the other systems. For ex-
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ample, even the most aggressive parallelizing compilers may not be able to figure
out that the elements of a user-defined pointer-container can never be aliased. By
configuring our system with general, user-defined type information, we therefore
are able to optimize user-defined objects more effectively in various cases.

3.3 OpenMP Transformation

OpenMP transformations are specified as source-to-source translations. The in-
put program is a sequential C++ program in which we introduce OpenMP
pragmas and transform parts of the program into a canonical OpenMP form
if necessary.

A transformation is specified as semantic actions of an abstract C++ gram-
mar. The grammar is abstract with respect to the concrete C++ grammar and
does not include any concrete C++ syntax. The abstract grammar defines the
set of all abstract syntax trees (ASTs) and covers full C++. Computations on the
abstract grammar can be specified as attribute evaluations. Attributes can be of
arbitrary type, including source strings. The source-strings specify new program
fragments for which the corresponding AST fragment can always be obtained
and inserted into an existing AST. To allow semantics based transformations,
which require the full type information of a given program, we make the type
information of the program available as annotations of the AST. The availability
of the full type information is crucial to allow semantics based transformations
as we shall demonstrate in the following example.

The abstract grammar describes the set of all ASTs. Because we do not
use multiple inheritance, the class hierarchy of the object-oriented AST forms a
tree. The abstract grammar is designed such that it directly corresponds to the
class hierarchy and the successor information of AST nodes. Inner nodes of the
class hierarchy tree correspond to non-terminals in the grammar whereas outer
nodes (leafs) correspond to terminals in the grammar. The correspondence is
made explicit by using the class names as names for terminals and non-terminals
respectively.

Our present version of the default abstract grammar for full C++ has 165
rules. All annotated AST information gathered by the frontend at each AST node
is available through a variable astNode. The variable always holds a pointer to
the corresponding AST node of a parsed terminal. Information available is type
information for every expression and declaration, line and column information
of the original program, etc.

In the following example we show how the attribute grammar in combination
with the use of source-strings and AST replacement operations, allows to specify
the introduction of OpenMP pragmas and the transformation of for-loops to
conform to the required canonical form of an omp parallel for.

In the example source in fig. 6 we show an iteration on a user-defined con-
tainer with an iterator. This pattern is frequently used in applications using
C++498 standard container classes. The object f is an instance of the user-defined
class Foo. The transformation we present takes into account the semantics of the
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Before transformation
Foo f; list 1;

for (list::iterator i = 1l.begin(); i != l.end(); i++) {
f.foo(xi);
}

After transformation

Foo f; list 1;

// Build the supporting container
SupportingOmpContainer_list 12 (1);

#pragma omp parallel for

for (int i = 0; i < 12.size(); i++) {
f.foobar( 12[i] );

}

Fig. 6. An iteration on a user-defined container 1 that provides an iterator interface.
The object f is an instance of the user-defined class Foo. Object 1 is of type list. In
the optimization the iterator is replaced by code conforming to the required canonical
form of an OpenMP parallel for.

type Foo and the semantics of class 1ist. The transformation is therefore specific
to these classes and its semantics.

For the type 1ist we know that the type iterator defined in the class follows
the iterator pattern as used in the STL. For the type Foo we know that the
method f is thread safe. We show the core of a transformation to transform the
code into the canonical form of a for-loop as required by the OpenMP standard.
We also introduce the OpenMP pragma directive. Note that the variable i in
the transformed code is implicitly private according to the OpenMP standard
2.0 .

The test, isUserDefIteratorForStatement, to determine whether the trans-
formation can be applied, is conservative. It might not always allow to perform
the optimization although it would be correct but it is never applied when we
cannot ensure that the transformed code would be correct.

In the example in fig. 7 the grammar rule of SgScopeStatement is shown. The
terminal SgForStatement in the example corresponds to the class SgForStatement.
The semantic actions associated with this rule are executed whenever a node of
type SgForStatement is parsed. The variable astNode is a pointer to the respec-
tive AST node of the terminal and assigned by our supporting system when the
scanner accesses the token stream. Note that every terminal in the grammar
corresponds to a node in the AST, except the parentheses.

Methods of the object subst allow to insert new source code and delete sub-
trees in the AST. The substitution object subst buffers pairs of target location
and string. The substitution is not performed before the semantic actions of
all subtrees of the target location node have been performed. This mechanism
allows to check whether substitutions would operate on overlapping subtrees of
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the AST (in the same attribute evaluation). In case of overlapping subtrees an
error is reported.

The object query is of type AstQuery and provides frequently used methods
for obtaining information stored in annotations of the AST. These methods are
also implemented as attribute evaluations.

SgScopeStatement<bool isOmpFor>
= SgForStatement
.
isOmpFor
= ompTransUtil.isUserDefIteratorForStatement (astNode,isOmpFor);
)
"(" SgForInitStatementNT<isOmpFor> SgExpressionRootNT
SgExpressionRootNT SgBasicBlockNT<isOmpFor>
I|)I|
C.
if (isOmpFor) {
string iVarName = query.iteratorVariableName (astNode) ;
string iContName = query.iteratorContainerName(astNode);
string iContType = query.iteratorContainerType(astNode);
string parTypeName = ompTransUtil.supportingParType(astNode,iContType) ;
string parContName = ompTransUtil.uniqueVarName (astNode,iContName) ;
string modifiedBodyString
= ompTransUtil.derefToIndexBody (astNode,iVarName,iContName) ;
string support = parTypeName+" "+parContName+"("+iContName+");\n";
string beforeForStmt
= "#pragma omp parallel for\n";
string newForStmt = "for( int "+iVarName+"=0;"
+ iVarName+"<"+parContName+".size();"
+ iVarName+"++ ) "+modifiedBodyString;
subst.replace(astNode,support + beforeForStmt + newForStmt);

Fig. 7. A part of the grammar rule of SgScopeStatement of the abstract C++ grammar
with the semantic action specifying the transformation of a SgForStatement.

The inherited attribute isOmpFor is used to handle the nesting of for-loops.
It depends on how an OpenMP compiler supports nested parallelism whether
we want to parallelize inner for statements or only the outer for statement. In
future this decision will be made more specific to OpenMP compilers on different
platforms and the boolean attribute will be replaced by an object to provide more
information about the context of OpenMP for-loops.

The object query of type AstQuery offers methods to provide information
on subtrees that have been proven to be useful in different transformations. In
the example we use it to obtain variable names and type names. The example
shows how we can decompose different aspects of a transformation into separate
attribute evaluations. The methods of the query object are implemented by using
the attribute evaluation.

After a preprocessing step of the grammar file, we use a successor of Coco/R
[8], the C/C++ version ported by Frankie Arzu to generate the parser code.
Coco/R is a compiler generator which allows to specify a scanner and a parser
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in EBNF for context free languages. The grammar has to be LL(1). We use this
tool to operate on the token stream of AST nodes. Therefore we do not use the
scanner generator capabilities of Coco/R and implemented a scanner to operate
on the token stream of AST nodes. The stream is defined by a fixed traversal on
the AST. The integration of this parsing tool allowed us to leverage the attribute
evaluation capabilities of parsing tools.

In fig. 6 the generated code is shown. The access uses the notation for random
access iterators. The SupportingOmpContainer 1list class is used to generate
an array of pointers to all elements of the list to achieve a complexity of O(1)
for the element access. The list of pointers is generated when the supporting
container 12 is created. When the generated code is compiled with an OpenMP
compiler the body is executed in parallel.

Note that the generated source code can have a slightly different format-
ting because the format of the source code is a beautified version of the source
corresponding to the transformed AST.

4 Translation of OpenMP Directives

To generate code that explicitly manages parallelism, we use ROSE to build a
specialized source-to-source translator that transforms OpenMP parallel for
directives into explicit calls to an OpenMP runtime library [9]. For our work, we
have selected the Nanos OpenMP runtime library [10]. We are in the process of
adding support for additional OpenMP constructs to our infrastructure. Alter-
natively, we can unparse the original source code with OpenMP directives and
use the resulting source code as input to a commercial OpenMP C++ compiler
to generate parallel code [11-14].

5 Related Work

The research community has developed many automatic parallelizing compilers.
Examples of these research compilers include the DSystem [15], the Fx com-
piler [16], the Vienna Fortran Compiler [17], the Paradigm compiler [18], the
Polaris compiler [19], and the SUIF compiler [20]. However, except for SUIF,
which has frontends for Fortran, C, and C++; the others listed above optimize
only Fortran applications. By providing a C++ frontend for automatic paral-
lelization, we complement previous research in providing support for higher-
level object-oriented languages. In addition, we extend previous techniques by
utilizing the semantic information of user-defined containers and thus allowing
user-defined abstractions to be treated as part of a domain-specific language.
As more and more programmers are using OpenMP to express parallelism,
many OpenMP supporting compilers were developed, including both research
projects [10,21-23] and commercial compilers [11-14]. In addition to OpenMP-
directive translation, many research compiler infrastructures also investigate
techniques to automatically generate OpenMP directives and to optimize the

parallel execution of OpenMP applications. However, these research compilers



14

only support applications written in C or FORTRAN, while existing commercial
C++ compilers target only specific machine architectures and do not provide an
open source-to-source transformation interface to the outside world. By provid-
ing a flexible source-to-source translator, we complement previous research by
presenting an open research infrastructure for optimizing C++ constructs and
OpenMP directives.

6 Conclusions and Future Work

This paper presents a C++ infrastructure for semantic-driven parallelization of
computations that operate on user-defined containers that have an access inter-
face similar to that provided by the Standard Template Library in C++. First,
we provide an interface for library developers to inform our compiler about the
semantics of their containers and the side-effects of their library functions. Then,
we use this information to parallelize loops that iterate over these containers au-
tomatically when it is safe to do so.

Our analysis algorithm conservatively disallows the parallelization of loops
that modify non-local memory locations, that is, memory locations that are not
elements of the user-defined container and are defined outside of the loop. In the
future, we will extend our algorithm to be more precise by incorporating global
alias analysis and array dependence analysis techniques [7]. This more sophisti-
cated algorithm will be as precise as those used by other automatic parallelizing
compilers [15 20], while still being more aggressive for user-defined abstractions
by optimizing them as part of a domain-specific language.

References

1. Cooper K. Dongarra J. Fowler R. Gannon D. Johnsson L. Kennedy K. Mellor-
Crummey J. Torczon L. Broom, B. Telescoping languages: A strategy for automatic
generation of scientific problem-solving systems from annotated libraries. Journal
of Parallel and Distributed Computing, 2000.

2. Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.

3. Daniel Quinlan, Brian Miller, Bobby Philip, and Markus Schordan. Treating a
user-defined parallel library as a domain-specific language. In 16th International
Parallel and Distributed Processing Symposium (IPDPS, IPPS, SPDP), pages 105—
114. IEEE, April 2002.

4. Daniel Quinlan, Markus Schordan, Brian Miller, and Markus Kowarschik. Parallel
object-oriented framework optimization. Special Issue of Concurrency: Practice
and Ezperience, 2003, to appear.

5. Edison Design Group. http://www.edg.com.

6. Francois Bodin, Peter Beckman, Dennis Gannon, Jacob Gotwals, Srinivas
Narayana, Suresh Srinivas, and Beata Winnicka. Sage++: An object-oriented
toolkit and class library for building fortran and C++ restructuring tools. In
Proceedings. OONSKI ’94, Oregon, 1994.

7. R. Allen and Ken Kennedy. Optimizing Compilers for Modern Architectures. Mor-
gan Kaufmann, San Francisco, October 2001.



10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

15

Hanspeter Moessenboeck. Coco/R - A generator for production quality compilers.
In LNCS477, Springer, 1991.

Daniel Quinlan, Markus Schordan, Qing Yi, and Bronis de Supinski. A C++
infrastructure for automatic introduction and translation of OpenMP directives.
In WOMPAT’03: OpenMP Shared Memory Parallel Programming, International
Workshop on OpenMP Applications and Tools, volume 2716 of Lecture Notes in
Computer Science, pages 13 25. Springer Verlag, June 2003.

Eduard Ayguade, Marc Gonzalez, and Jesus Labarta. Nanoscompiler: A research
platform for openMP extensions. In European Workshop on OpenMP, September
1999.

Silican Graphics Inc. Optimizing Compilers for High-Performance Computing.
www.sgi.com/developers/devtools/languages/mipspro.html.

IBM. VisualAge C++  Professional for AIX V6.0. WWW-
1.ibm.com /servers/eserver/ecatalog/us/software/6146.html.

Xinmin Tian, Aart Bik, Milind Girkar, Paul Grey, Hideki Saito, and Ernesto Su.
Intel openMP C++/Fortran compiler for hyper-threading technology: Implemen-
tation and performance. Intel Technology Journal, 6(1):36 46, 2002.

Fujitsu. Fortran & C Packages for SPARC Solaris.
www.fr.fse.fujitsu.com/devuk/solaris.shtml.

V. Adve, G. Jin, J. Mellor-Crummey, and Q. Yi. High performance fortran com-
pilation techniques for parallelizing scientific codes. In Proceedings of SC98: High
Performance Computing and Networking, Nov 1998.

J. Subhlok, J. Stichnoth, D. O’Hallaron, and T. Gross. Exploiting task and data
parallelism on a multicomputer. In Proc. of the Sizth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), San Diego, May
1993.

S. Benkner. Vfc: The vienna fortran compiler.

P. Banerjee, J. A. Chandy, M. Gupta, J. G. Holm, A. Lain, D. J. Palermo, S. Ra-
maswamy, and E. Su. The paradigm compiler for distributed-memory message
passing multicomputers. In in Proceedings of the First International Workshop on
Parallel Processing, Bangalore,India, Dec 1994.

D. Padua, R. Eigenmann, J. Hoeflinger, P. Petersen, P. Tu, S. Weatherford, and
K. Faigin”. Polaris: A new-generation parallelizing compiler for mpp’s. Technical
Report 1306, Univ. of Illinois at Urbana-Champaign, Center for Supercomputing
Res. and Dev., june 1993.

M. S. Lam S. P. Amarasinghe, J. M. Anderson and C. W. Tseng. The suif compiler
for scalable parallel machines. In in Proceedings of the Seventh SIAM Conference
on Parallel Processing for Scientific Computing, Feb 1995.

Christian Brunschen and Mats Brorsson. OdinMP/CCp - a portable implementa-
tion of openMP for c. In European Workshop on OpenMP, September 1999.
Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka. Design
of openMP compiler for an SMP cluster. In Furopean Workshop on OpenMP,
September 1999.

Seung Jai Min, Seon Wook Kim, Michael Voss, Sang Ik Lee, and Rudolf Eighmann.
Portable compilers for openMP. In Workshop on OpenMP Applications and Tools,
July 2001.



