A C++ Infrastructure for Automatic
Introduction and Translation of OpenMP
Directives

Dan Quinlan, Markus Schordan, Qing Yi, and Bronis R. de Supinski

Lawrence Livermore National Laboratory**, USA
{dquinlan, schordanl, yi4, bronis}@llnl.gov

Abstract. In this paper we describe a C++ infrastructure for source-
to-source translation. We demonstrate the translation of a serial program
with high-level abstractions to a lower-level parallel program in two sepa-
rate phases. In the first phase OpenMP directives are introduced, driven
by the semantics of high-level abstractions. Then the OpenMP directives
are translated to a C++ program that explicitly creates and manages
parallelism according to the specified directives. Both phases are imple-
mented using the same mechanisms in our infrastructure.

1 Introduction

The use of OpenMP within the OpenMP research community seems compli-
cated by the lack of easy to use compiler infrastructure. Although much work
is focused on OpenMP for FORTRAN 77 and FORTRAN 90, and there may
be an abundance of C language compiler infrastructure; the unavailability of
C++ compiler infrastructure has significantly limited the many research oppor-
tunities. In this paper, we present a useful infrastructure, ROSE [1], to assist
the OpenMP research community generally, but particularly for OpenMP /C++
research.

Our infrastructure allows the automated introduction of OpenMP directives
based on the semantics of user-defined abstractions. The introduction of prag-
mas, when adding OpenMP directives to a given code, is one of many possible ap-
plications. Another one is the translation of OpenMP directives; the recognition
of specific pragma directives and the translation of associated code fragments to
generate a program that explicitly creates and manages parallelism. We shall use
a running example to illustrate both phases and how the ROSE infrastructure
[1] can simplify these tasks. Through this example, we demonstrate the rela-
tively simple specification of an OpenMP transformation to use the lower level
Nanos Library for OpenMP [2]. We also discuss how to modify that transfor-
mation to implement the full OpenMP standard. Given the semantic similarity

** This work was performed under the auspices of the U.S. Department of Energy by
University of California Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48.

between most OpenMP runtime libraries, we expect that transformations for
other OpenMP runtime libraries should be equally simple.

Since within ROSE we have the full type resolution within the AST, and
not just syntax, the type information of specific user-defined types can be used
as a basis for the optimization of applications that use them. And by including
knowledge of the semantics of specific abstractions, fundamentally more infor-
mation is available to the compiler and greater levels of optimization are often
possible, depending upon the abstractions. We will show through the use of an
array abstraction, that because the stronger array semantics is satisfied by the
weaker OpenMP constraints we can automate the introduction of OpenMP di-
rectives into otherwise serial code. This approach permits fundamentally serial
code to use the additional semantics of the array abstractions and be run as
parallel code.

2 Infrastructure

The ROSE infrastructure offers several components to build a source-to-source
translator. A complete C++ frontend is available that generates an object-
oriented annotated abstract syntax tree (AST) as intermediate representation.
Several different components can be used to build the midend of a transla-
tor: to operate on the AST, a predefined traversal mechanism, a restructuring
mechanism, and an attribute evaluation mechanism can be used to implement
a transformation. Other features are for example parsing of OpenMP directives
and integrating these directives into the AST. A C++ backend can be used to
unparse the AST and generate C++ code (see fig. 1).

(completed) source fragment AST

Y v

T
attribute evaluation
C#+ source AT | T AST C#+ source

— frontend midend backend

!

AST unparsed AST fragment

\
restructure operators |

!

Fig. 1. ROSE Source-To-Source infrastructure with frontend/backend reinvocation

2.1 Frontend

We use the Edison Design Group C++ frontend (EDG) [3] to parse C++ pro-
grams. The EDG frontend generates an AST and performs a full type evaluation
of the C++ program. The AST is represented as a C data structure. We trans-
late this data structure into an object-oriented abstract syntax tree which is
used by the midend as intermediate representation.

2.2 Midend

The midend supports restructuring of the AST. Code that is added to the AST
can be specified as a source string, using C++ syntax, or by constructing subtrees
node by node. An AST restructuring operation specifies a location in the AST
where code should be inserted, deleted, or replaced. The code can be specified
as C++ source string or an AST subtree. A program transformation consists of
a series of AST restructuring operations.

The order of the restructuring operations is based on a pre-defined traversal.
In a transformation the AST is traversed and different restructuring operations
are invoked on the AST. The problem of restrucuring the AST while traversing it,
is addressed by making restructuring operations side-effect free functions that
define a mapping from one subtree of the AST to another subtree. The new
subtree is not inserted before the traversal of this subtree is finished. We provide
interfaces for invoking restructuring operations that buffer these operations to
ensure that no subtrees are replaced while they are traversed.

The attribute evaluation mechanism allows the computation of attribute val-
ues for AST nodes. Context information can be passed down the AST as in-
herited attributes and results of computations on a subtree can be computed
as synthesized attributes (passing information upwards the tree). Examples for
values of inherited and synthesized attributes are type information, size of ar-
rays, the nesting level of loops, the scopes of associated pragma statements, etc.
These values can be used to specify constraints on a transformation, i.e. to decide
whether a restructuring operation should be applied.

Our infrastructure allows to use C++ source code strings to define code frag-
ments. Any source string which represents a valid declaration, statement(list), or
expression can specify a code pattern to be inserted into the AST. The transla-
tion of a source code string, s, into an AST fragment, is performed by reinvoking
the frontend. The string, s, is extended by our system to form a complete pro-
gram. This completed program is parsed into an AST by reinvoking the frontend.
From this AST, we extract the AST fragement that corresponds to the source
string s. This AST fragement is inserted into the AST.

2.3 Backend

The AST is unparsed and C++ source code is generated. It can be specified to
unparse all included (header) files or the source file(s) specified on the command
line only. This feature is important when transforming user-defined data types,
for example when adding generated methods.

The backend can also be invoked during a transformation, to obtain the
source code string that corresponds to a subtree of the AST. Such a string can
be combined with new code (also represented as a source string) and inserted
into the AST.

Both phases, the introduction of OpenMP directives and the translation of
OpenMP directives, can be automated using the above mechanisms, as described
in the following sections.

3 Semantics-Driven Introduction of OpenMP Directives

The use of high-level abstractions so greatly improves the productivity of de-
veloping scientific applications that we seek a way to address the numerous
performance issues associated with it.

3.1 User-Defined Abstractions

User-defined abstractions permit a way to tailor the user-environment to be more
domain specific than a general purpose language could allow. General purpose
languages are expensive to develop and result from many years of work. The
compilers that define the language are both expensive and difficult to develop.
Such an investment is only possible for a sufficiently large user group.

Simplifying the development of many applications within a specific domain
is commonly done through the development of domain-specific libraries. The
libraries invariably define abstractions that hide numerous tedious details as-
sociated with the development of applications within a specific domain. The
combination of a general purpose language and a domain specific library is not
the same as a domain-specific language. The essential difference is that the com-
plete semantics of a library’s abstractions are unknown at compile time and,
thus, some significant optimizations are impossible for the compiler to imple-
ment. The result is all too often that many essential abstractions are abandoned
because they can’t provide sufficiently high performance.

3.2 A++/P++ Serial and Parallel Array Class Library

We use a motivating example from the A++/P++ array class library [4] to
show how the ROSE framework can be used by the library writer to develop a
source-to-source translator that optimizes code based on high-level semantics.
The example uses two classes which are implemented twice; once in the serial
A++ library and again in the parallel P4+ library. Within our motivating exam-
ple we consider the following trivial five-point stencil array operation. In figure
2, A and B are multidimensional array objects of type floatArray. I and J are
Range objects that together specify a two dimensional index space of the arrays A
and B. The following sections demonstrate how ROSE supports the optimization
of a scientific application code through our running example.

3.3 Automated Insertion of OpenMP Directives

Because of the parallel semantics of the A++ and P++ array objects, their use
is interchangeable. This permits serial applications to be developed using A++
(serial arrays) and then recompiled to run in distributed memory mode using
P++ (parallel arrays). Some simple constraints are that any use of non A++
array objects not constrain the data-parallel model that is hidden within the
array semantics.

Since the parallel array semantics of A++ and P4+ are consistent with those
of OpenMP, OpenMP directives can safely introduce shared memory parallelism
into all uses of A++ and P++ array objects. This is essential for the automated
insertion of OpenMP directives without complex dependence analysis of the
serial code.

3.4 Example C++ Code

The example codes in figure 2 and figure 3 demonstrate the transformation
of high-level A++ code to highly efficient OpenMP code. The two codes are
semantically equivalent, but the first code shows the use of high-level array ab-
stractions. The semantics of the array abstractions are similar to those of array
statements in FORTRAN 90, but the implementation is a (C++) class library
instead of a (FORTRANTY7) language extension. Clearly, the standard compila-
tion process cannot take the semantics of the array class objects into account
since those semantics are user defined. At this high level of abstraction, the C++
compiler is quite powerless to introduce any significant optimizations, precisely
because the abstraction’s semantics that are relevant to critical optimizations
are user-defined and unknown.

int n;

Range I,J,K;
floatArray A(n,n,n);
floatArray rhs(n,n,n);
floatArray B(n,n,n);

A&i,J,K) = rhs(I,J,K) + (B(I+1,J,K) + B(I-1,J,K) + B(I,J-1,K) +
B(I,J+1,K) + B(I,J,K-1) + B(I,J,K+1) - 6.0 * B(I,J,K));

Fig. 2. Example: Code fragment showing the use of A++/P++ array semantics.

The high-level A4++ code can be automatically transformed into the greatly
expanded, but more efficient code shown in figure 3. The ROSE infrastructure
allows the library implementer to leverage the semantics of the array class ob-
jects that are required to implement the transformation in a source-to-source
translator that provides a library-specific compilation process. Specifically, the
ROSE frontend creates an AST. The traversal mechanism allows the targeted
array class statements to be located in the code. The restructuring mechanism
is used to replace the high-level code with the corresponding, but more efficient
code and the attribute mechanism supports important details of the transfor-
mation such as proper declaration of the loop control variables. A very small
and almost trivial part of the transformation is the additional step to have the
transformation also generate the OpenMP directive before the outermost loop.

#define SC(x1,x2,x3) /* case UniformSizeUnitStride */ (x1)+(x2)*_sizel+(x3)*_size2
#pragma omp parallel for private (_3, _2, _1) \
shared (AIJKpointer, rhsIJKpointer, BIJKpointer)
for (_3 = 0; _3 < _length3; _3++) {
for (_2 = 0; _2 < _length2; _2++) {
for (_1 = 0; _1 < _lengthl; _1++) {
AIJKpointer[SC(_1,_2,_3)] =
rhsIJKpointer[SC(_1,_2,_3)] +
(BIJKpointer[SC((_1 + 1),_2,_3)] + BIJKpointer[SC((_1 - 1),_2,_3)] +
BIJKpointer[SC(_1,(_2 - 1),_3)] + BIJKpointer[SC(_1,(_2 + 1),_3)] +
BIJKpointer[SC(_1,_2,(_3 - 1))] + BIJKpointer[SC(_1,_2,(_3 + 1))] -
6.0 * BIJKpointer[SC(_1,_2,_3)]);
}
}
}

Fig. 3. Example: Transformed A++/P++ array class code fragment showing the in-
sertion of an OpenMP directive (excluding preceding declarations)

3.5 Discussion

The ROSE mechanisms provide a general approach for the optimization of com-
plex libraries that is not specific to the A++/P++ library. We use this example
because it is both a high-level abstraction specifically tailored to parallel sci-
entific computing and because it is one with which we are familiar. Improving
the performance of the A++/P++ library also has a direct impact on other
applications and libraries using it (the Overture Framework [5] in particular).

4 Translation of OpenMP Directives

We use ROSE to build a specialized source-to-source translator that transforms
OpenMP directives into lower-level code using an OpenMP runtime library. For
our work, we have selected the Nanos OpenMP runtime library [2], but our in-
tention is to demonstrate that any runtime library could be used. We believe our
approach would be nearly the same for any OpenMP runtime library, given the
seemingly strong semantic resemblance between the few that we have seen. An
aspect of our effort is to show how easily other researchers within the OpenMP
community could use the ROSE compiler infrastructure for OpenMP research.
We hope that access to open compiler infrastructure for C, and particularly for
C++, will be found useful.

4.1 Translation Specification

Before translating OpenMP directives into runtime library calls, we must first
define a specification that maps the input and output of the translation. Fig-
ure 4 presents an example of such mapping, which translates the OpenMP
parallel-for directive (with the shared, private, default and schedule
clauses) into calls to the lower-level Nanos OpenMP runtime library [2]. We
choose the parallel-for directive because it is suitable for illustrating our
OpenMP source-to-source translator (shown in Figure 5) and because the ROSE

Input:
#pragma omp parallel for schedule($scheduletype, $chunksize) default ($defaulttype) \
shared($shared_var_list) private($private_var_list)
for ($i = $1b; 8i <= $ub; $i + = $step) {
$loop_body

}

Output:
void supportingOpenMPFunction$id(int* intone_me_01, int* intone_nprocs_01,
int* intone_master01, $shared_var_decllist)
{

$private_var_decl list;
int intone_start, intone_end, intone_last;

intone_begin_for($lb, $ub, $step, $chunksize, $scheduletype);
while (intone_next_iters(&intone_start, &intone_end, &intone_last)) {
for ($i = intone_start; $i <= intone_end-1; $i + = $step) {

$loop_body
}
intone_end_for(true)
}
int intone_nprocs_01 = intone_cpus_current();

intone_spawnparallel(supportingOpenMPFunction$id, $numOfArgs, intone_nprocs_01,
$shared_var_list);

Fig. 4. Specification for translating the OpenMP parallel-for directive into Nanos run-
time library calls (the bold text marks OpenMP keywords, and the $ sign denotes
parameters of the input and output fragments.)

infrastructure can automatically introduce it using the A++/P++ array seman-
tics, as shown in Figure 3. After applying the mapping in Figure 4, our OpenMP
source-to-source translator can further transform the OpenMP code in Figure 3
into the Nanos runtime library calls; the result is shown in Figure 6.

In general, to provide translation support for the entire set of OpenMP di-
rectives, we need to specify a translation mapping, such as the one in Figure 4,
for each OpenMP directive. These mappings should be easily constructed from
the manual of an OpenMP runtime library. We then use these mappings to in-
stantiate the general translation algorithm in Figure 5. Though currently we
have implemented only the translation of the parallel-for directive within the
ROSE infrastructure, other OpenMP directives can be translated in a similar
fashion.

4.2 Translation Algorithm

Figure 5 presents the structure of a ROSE source-to-source translator that trans-
forms an arbitrary OpenMP directive into its corresponding runtime library calls.
This source-to-source translator is separated into the following three phases.
The first phase uses the front end of ROSE to parse the input program into
an AST, which provides support for most C++ high-level constructs and thus
closely matches the structure of the original program. Within the same phase,
the source-to-source translator then makes a second pass of the constructed AST

(1)Parse the C++/C input program and construct an Abstract Syntax Tree
Parse the OpenMP directives in the constructed AST
(2)Traverse the Abstract Syntax Tree of the input program
At each tree node astNode:
if ((pragma = PrevStatement(astNode)) is an OpenMP directive)
string OpenM P _support_-func = parameterized supporting-function string for pragma
for (each parameter par in OpenM P _support_func)
string par_-val = Compute-Parameter-Value(par,ast Node)
String-Replace-Substring(Open M P_support_func, par, par_val)
Add OpenM P _support_func into global scope
OpenM P_replace_pragma = parameterized intone_spawnparallel call for pragma
Substitute parameters in OpenM P_replace_pragma with correct values
replace pragma and astNode subtrees with OpenM P_replace_pragma
(3)Unparse the Abstract Syntax Tree

Fig. 5. Algorithm for translating OpenMP directives into runtime library within the
ROSE infrastructure

to expand the OpenMP directives. Unlike the C++ front end, the OpenMP con-
struct parser is not already implemented in ROSE and thus needs to be provided
by the OpenMP source-to-source translator. It is our plan to provide a full im-
plementation of this parser within our OpenMP source-to-source translator.

The OpenMP construct parser not only translates each string pragma into
structured AST nodes, it also automatically collects all the implicit paralleliza-
tion information pertinent to the OpenMP directive. For example, after this pass,
even if the parallel-for directive in Figure 4 does not have a shared clause
(assuming all variables are shared by default), the OpenMP parser will auto-
matically collect the set of shared variables and then insert a shared clause into
the parsed pragma. The exact behavior for variables in either $shared_var_list
or $private_var_list is determined by the default clause (if present) and is im-
plemented entirely in the OpenMP parser. Thus, the subsequent phases of the
translation algorithm can assume that all data storage attributes are explicit
(this is equivalent to having a default (mone) clause in the original work-
sharing construct).

The second phase of the OpenMP source-to-source translator then traverses
the AST and transforms the fully expanded OpenMP directives within the AST.
At each node astNode, if the statement pragma immediately before ast Node is
an OpenMP directive, we translate this directive by first constructing a support-
ing function (OpenM P_support_func) for the original code (the subtree rooted
at astNode). This supporting function is a parameterized string provided by
the translation mapping specification (e.g., the section output in Figure 4). We
then proceed to substitute all the parameters in the supporting-function string
with their corresponding string values pertinent to the original code. Since the
source-to-source translator has the pre-knowledge about all the parameters in
the OpenM P_support_func string, it can compute the values for these parame-
ters by invoking pre-defined AST analysis facilities within ROSE. We then insert
the fully expanded OpenM P_support_func into the global scope and thus make
it another function definition of the original C++ program. Next, we create a
string, OpenM P _replace_pragma, that invokes the expanded supporting func-

void supportingUpenMPFunction__O_O(int* intone_me_01, int* intone_nprocs_01,
int* intone_master_01, float * AIJKpointer, float * rhsIJKpointer,
float * BIJKpointer, int _lengthl, int _length2, int _sizel, int _size2)
{
int _1, _2, _3;
int intone_start, intone_end, intone_last;
intone_begin_for(0,100,1,0,0);
while(intone_next_iters(&intone_start,&intone_end,&intone_last)) {
for (_3 = intone_start; _3 <= intone_end; _3++) {
for (_2 = 0; _2 < _length2; _2++) {
for (L1 = 0; _1 < _lengthl; _1++) {
AIJKpointer[_1 + _2 * _sizel + _3 * _size2] =
rhsIJKpointer[_1 + _2 % _sizel + _3 % _size2] +

(BIJKpointer[(_1 + 1) + _2 x _sizel + _3 % _size2] +
BIJKpointer[(_1 - 1) + _2 * _sizel + _3 % _size2] +
BIJKpointer[_1 + (_2 - 1) * _sizel + _3 % _size2] +
BIJKpointer[_1 + (_2 + 1) % _sizel + _3 * _size2] +
BIJKpointer[_1 + _2 * _sizel + (_3 - 1) * _size2] +
BIJKpointer[_1 + _2 * _sizel + (_3 + 1) * _size2] -
6.0 * BIJKpointer[_1 + _2 * _sizel + _3 * _size2]);
}
}
}
}
intone_end_for(true);

}
intone_nprocs_01 = intone_cpus_current();
intone_spawnparallel(supportingOpenMPFunction__0_0, 8, intone_nprocs_01, AIJKpointer,
rhsIJKpointer, BIJKpointer, _lengthl,_length2,_sizel,_size2);

Fig. 6. Example: transformed A++/P++ array class code fragment using the Nanos
runtime library

tion using parallel threads (e.g., the intone_spawnparallel call in Figure 4).
Finally, after substituting the parameters in OpenM P_replace_pragma with cor-
responding values, we use OpenM P_replace_pragma to replace both the original
OpenMP directive (pragma) and the original code fragment (the subtree rooted
at astNode).

Most steps described above can be realized in a straightforward fashion by
simply invoking existing ROSE mechanisms. To illustrate the simplicity of this
mapping, Figure 7 presents the ROSE C++ implementation for translating the
parallel-for directive defined in Figure 4. Here we omit some parameter sub-
stitutions due to lack of space. Note that ROSE provides facilities to directly
edit parameters in strings and to insert strings directly into the AST (they are
parsed into abstract syntaz subtrees before being inserted into the global AST).

As the final phase, after all the OpenMP directives have been translated, the
source-to-source translator unparses the transformed AST to produce a C++
program that includes only calls to the OpenMP runtime library.

4.3 Discussion

Generalizing the source-to-source translator discussed in the preceding sections
to provide support for the full OpenMP specification is the subject of on-going
work. In this section, we discuss the modifications that our approach requires to

10

OpenMPSynthesizedAttribute
OpenMPTraversal: :evaluateRewriteSynthesizedAttribute (
SgNode* astNode, OpenMPInheritedAttribute inheritedAttribute,
SubTreeSynthesizedAttributes synthesizedAttributelist) {
OpenMPSynthesizedAttribute returnAttribute(astNode);
if (OmpUtility::isOmpParallelFor(astNode)) {
SgForStatement *forStatement = isSgForStatement (astNode);
string supportFunction = " \n\
void supportingUpenMPFunction_$ID (int* intone_me_01, int* intone_nprocs_01,
int* intone_masterO1, $SHARED_VAR_DECL_LIST) { \n\
$PRIVATE_VAR_DECL_LIST; \n\
int intone_start, intone_end, intone_last; \n\
intone_begin_for ($LB, $UB, $STEP, $CHUNKSIZE, $SCHEDULETYPE) ; \n\
while (intone_next_iters(&intone_start,&intone_end,&intone_last)) { \n\
for ($LOOPINDEX = intone_start; $LOOPINDEX <= intone_end; $LOOPINDEX += $STEP) { \n\
$LOOP_BODY; \n\
} \n\
} \n\
intone_end_for (true); \n\
} \n";
string spawnParallel = " \
intone_nprocs_01 = intone_cpus_current(); \n\
intone_spawnparallel (supportingOpenMPFunction_$ID,$NUM_ARGS,intone_nprocs_01,\
$SHARED_VAR_LIST);\n";

// Edit the function name and define a unique number as an identifier
string uniqueID = buildUniqueFunctionID();

supportFunction = StringUtility::copyEdit (supportFunction, "$ID",uniquelD);
spawnParallel = StringUtility::copyEdit(spawnParallel, "$ID",uniquelD);

// Edit the loop parameters into place

string loopBody = forStatement->get_loop_body()->unparseToString();

supportFunction = StringUtility::copyEdit (supportFunction, "$LOOP_BODY",loopBody) ;
// similar copyEdits for $LOOPINDEX, $LB, $UB, $STEP

// Edit the OpenMP parameters into place

OmpUtility ompData (astNode);

string privateVarDeclList = ompData.generatePrivateVariableDeclaration();

string sharedVarList = ompData.generateSharedVariableFunctionParameters();

string sharedVarDeclList = ompData.generateSharedVariableFunctionDeclarations();

supportFunction = StringUtility::copyEdit (supportFunction,
"$SHARED_VAR_DECL_LIST",sharedVarDeclList);

supportFunction = StringUtility::copyEdit (supportFunction, "$SHARED_VAR_LIST",
sharedVarList);

spawnParallel = StringUtility::copyEdit(spawnParallel,
"$SHARED_VAR_LIST",sharedVarList);

supportFunction = StringUtility::copyEdit (supportFunction,
"$PRIVATE_VAR_DECL_LIST",privateVarDeclList);

// similar copyEdits for $CHUNKSIZE,$SCHEDULETYPE, and $NUM_ARGS

AST_Rewrite::addSourceCodeString(returnAttribute, "#include \"nanos.h\"",
inheritedAttribute, AST_Rewrite::GlobalScope,
AST_Rewrite::TopOfScope, AST_Rewrite::TransformationString, false);

AST_Rewrite::addSourceCodeString(returnAttribute, supportFunction, inheritedAttribute,
AST_Rewrite::GlobalScope, AST_Rewrite::BeforeCurrentPosition,
AST_Rewrite::TransformationString, false);

AST_Rewrite::addSourceCodeString(returnAttribute, transformationVariables,
inheritedAttribute, AST_Rewrite::LocalScope, AST_Rewrite::TopOfScope,
AST_Rewrite::TransformationString, false);

AST_Rewrite::addSourceCodeString(returnAttribute, spawnParallel, inheritedAttribute,
AST_Rewrite::LocalScope, AST_Rewrite::ReplaceCurrentPosition,
AST_Rewrite::TransformationString, false);

}
return returnAttribute;

}

Fig. 7. Example: Code fragment showing translation of an OpenMP directive.

11

provide that support. We consider all OpenMP directives, including any associ-
ated clauses.

The source-to-source translator presented thus far implements the OpenMP
parallel-for construct, including the private, shared, default and schedule
clauses. The source-to-source translator, as described, does not implement sev-
eral possible clauses of the directive; extending it to support the remaining
clauses is straightforward. As discussed in section 4.2, parsing of the construct
determines the lists of private and shared variables, including those for which
the storage attribute is implicit. The construct parsing can easily be modified to
build lists for the other data attribute clauses. As discussed in the Nanos doc-
umentation [6], variables with the firstprivate and lastprivate attributes
become arguments to the call of the supporting function with corresponding in-
ternal variable names for the parameters. The only other change necessary to
our source-to-source translator is to include the appropriate assignment between
the internal variable name and the name used in the loop body in the supporting
function string. The reduction clause requires similar changes, with the assign-
ment, guarded by a lock that is initialized prior to spawning the parallel region.
The if clause requires that OpenM P_replace_pragma be extended to include
the intone_spawnparallel call in an if statement with the original code cloned
into the else clause, which is easily implemented with the ROSE restructuring
mechanism.

Changes to the source-to-source translator that would support splitting the
combined parallel-for directive are not difficult. In order to support the
OpenMP parallel construct (i.e., without the for loop), the string used for the
supporting function would only include the portions that establish the variable
lists and the original code. We can support stand-alone OpenMP for constructs
by replacing the pragma and original code with the body of the supporting func-
tion instead of the intone_spawnparallel call. In order to implement orphaned
directives correctly with separate compilation, the runtime library must support,
this in-place replacement.

Straightforward modifications to the source-to-source translator will also ex-
tend it to implement the other work-sharing constructs and synchronization
directives. The Nanos documentation discusses how to implement the sections
construct and the single directive as variations of the for construct, while the
replacement code for the synchronization constructs are even simpler. Although
we could modify the replacement code to use other calls for runtime libraries
that provide calls specific to the sections construct and the single directive,
we plan to implement them as variants of the for construct initially.

We have not fully determined how to support threadprivate storage in our
source-to-source translator. Our support for threadprivate storage is highly de-
pendent on the support provided by the OpenMP run time library. The Nanos
runtime library targets FORTRAN, and uses pseudo-dynamically allocated stor-
age. More straightforward solutions are possible in C and C++ and one option
is to provide an alternative mechanism. Whether or not we use the existing sup-
port of the runtime library, we expect that providing support for threadprivate

12

storage will be fairly straightforward if it has static block-scope; while the sup-
port may be more complex for file-scope or name-space scope, particularly for
initializating the storage.

The generality of the OpenMP translation in Figure 5 and the just discussed
modifications depends on specific design properties of the OpenMP runtime li-
brary. In particular, given an OpenMP runtime library implementation, if a
translation interface similar to Figure 4 can be defined for each OpenMP direc-
tive, the source-to-source translator can easily be adapted to provide all the nec-
essary translation support. Otherwise, if the translation of a particular OpenMP
directive not only depends on itself and the source code that it applies to, but
also depends on the subtle variations of its enclosing context, the algorithm in
Figure 5 may not be directly applicable.

An example is the treatment of OpenMP threadprivate clauses. If the trans-
lation interface requires the OpenMP source-to-source translator to generate dif-
ferent output code patterns depending on whether or not threadprivate storage
has been previously used, a straightforward adaptation of Figure 5 will not work.
For such cases, more complicated global analysis and transformation techniques
are required.

5 Related Work

Although a number of compilers were developed to support OpenMP applica-
tions, most OpenMP research projects [2, 7-9] only support applications written
in C or FORTRAN. Because commercial C++ compilers, such as the SGI MIP-
Spro [10], the IBM XL [11], the Intel KAI Guide [12], and the Fujitsu for SPARC
Solaris [13], target specific machine architectures and do not provide an open
source-to-source transformation interface to the outside world, they cannot be
used by the research community directly to plug in different OpenMP imple-
mentations. As the result, no OpenMP source-to-source translator was available
for research into optimizing C++ applications. By providing a flexible source-
to-source translator, we present an open research infrastructure for optimizing
C++ constructs and OpenMP directives.

Previous research source-to-source translators provide various infrastructures
for optimizing OpenMP directives. In particular, the OdinMP /CCp compiler [7]
takes a C-program with OpenMP directives and produces a C-program for
POSIX threads. In contrast, the Omni compiler [8] translates the OpenMP prag-
mas in C-programs into runtime library calls, which in turn then invoke either
POSIX or Solaris threads. The NanosCompiler [2] and the Polaris compiler [9]
translate Fortran programs with OpenMP directives in a similar fashion as the
Omni compiler. In addition to OpenMP-directive translation, most of these in-
frastructures also investigate techniques to automatically generate OpenMP di-
rectives and to optimize the parallel execution of OpenMP applications. We
complement the previous research by presenting an infrastructure for the C++
OpenMP pragma translation and for the automatic generation and optimization
of C++ parallel applications.

13

6 Conclusions and Future Work

We have presented infrastructure for the transformation of C and C++ applica-
tions. We have used the semantics of high-level abstractions to demonstrate the
automated introduction of OpenMP directives to parallelize serial codes. Finally
we demonstrated the translation of a representative OpenMP directive using the
Nanos library.

In future work we will make available the OpenMP translation phase as a
separate component. This will permit anyone defining transformations to spec-
ify them more simply via OpenMP directives and to then process the AST to
generate the final code automatically using an OpenMP runtime library.

We are considering applying the ROSE infrastructure to the optimization of
the use of OpenMP runtime libraries. This third aspect of ROSE-based OpenMP
support would be similar to the A++/P++ source-to-source translator in that
it would optimize library use, based domain-specific semantics. For example,
we could specialize the use of the Nanos runtime library for special cases for
which commercial compilers yield significant performance gains, such as when
the number of threads is set to one.

References

1. Daniel Quinlan, Brian Miller, Bobby Philip, and Markus Schordan. Treating a
user-defined parallel library as a domain-specific language. In 16th International
Parallel and Distributed Processing Symposium (IPDPS, IPPS, SPDP), pages 105
114. TEEE, April 2002.

2. Eduard Ayguade, Marc Gonzalez, and Jesus Labarta. Nanoscompiler: A research

platform for openMP extensions. In European Workshop on OpenMP, September

1999.

Edison Design Group. http://www.edg.com.

4. R. Parsons and D. Quinlan. A++/P++ array classes for architecture indepen-
dent finite difference computations. In Proceedings of the Second Annual Object-
Oriented Numerics Conference, April 1994.

5. Federico Bassetti, David Brown, Kei Davis, William Henshaw, and Dan Quinlan.
OVERTURE: An object-oriented framework for high-performance scientific com-
puting. In Proceedings of Supercomputing’98 (CD-ROM), Orlando, FL, November
1998. ACM SIGARCH and IEEE. Los Alamos National Laboratory.

6. Centre Europeu de Parallelism de Barcelona, Spain. Nanos Manual.
http://nereida.deioc.ull.es/html/nanos.html.

7. Christian Brunschen and Mats Brorsson. OdinMP/CCp - a portable implementa-
tion of openMP for c. In European Workshop on OpenMP, September 1999.

8. Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka. Design
of openMP compiler for an SMP cluster. In Furopean Workshop on OpenMP,
September 1999.

9. Seung Jai Min, Seon Wook Kim, Michael Voss, Sang Tk Lee, and Rudolf Eighmann.
Portable compilers for openMP. In Workshop on OpenMP Applications and Tools,
July 2001.

10. Silican Graphics Inc. Optimizing Compilers for High-Performance Computing.

www.sgi.com/developers/devtools/languages/mipspro.html.

w

14

11.

12.

13.

IBM. VisualAge C++ Professional for AIX V6.0. WWW-
1.ibm.com /servers/eserver/ecatalog/us/software/6146.html.

Xinmin Tian, Aart Bik, Milind Girkar, Paul Grey, Hideki Saito, and Ernesto Su.
Intel openMP C++/Fortran compiler for hyper-threading technology: Implemen-
tation and performance. Intel Technology Journal, 6(1):36 46, 2002.

Fujitsu. Fortran & C Packages for SPARC Solaris.
www.fr.fse.fujitsu.com/devuk/solaris.shtml.

