Techniques for Software Quality Analysis of Binaries:
Applied to Windows and Linux

Thomas Panas Daniel Quinlan
Center for Applied Scientific Computing Center for Applied Scientific Computing
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory
Livermore, CA, USA Livermore, CA, USA
panas@linl.gov dquinlan@linl.gov
AB ST RACT @@_'{ EDG Front-end/ ‘ IDA_-Pro | Software
In this paper we present our efforts to measure different quality ~— .SeureeCode Dben Porfen oy fopfonah By
aspects of large-scale, binary software. We apply four well estab-
Fq

lished metrics to binary versions of Windows and Debian Linux, ‘ EDG/Fortran
analyze our results and discuss our observations. It is surprising ROSE-Connector
to see that our metrics, which search for well known bad coding

habits, result with so many violations. It appears that although bad Y ——
and insecure software development practices are well understood Compiler

ROSE
Disassembler

) Program Analysis

@

and documented, in practice, recommended coding styles are nol ﬁ
followed. Our work evaluates binary versions of software, allow- =
ing us to inspect software quality without the need of source code. @_{ ROSE Unparesr |
We believe that this approach, if successful, could lead in the future [Fortran Code

to better priced software. This is because the quality of software ROSE

bought today is not transparent to its users.
Figure 1: ROSE, a customizable compiler infrastructure

Categories and Subject Descriptors

F.3.2 [Semantics of Programming Languagels Program analysis s required to identify the same bad coding styles in software bi-
naries. The short availability of binary expertise and the difficultly
General Terms associated with it have led many to believe that the measurement
of software quality directly in the binary is intractable. Our work
shows that automated tests can be developed that measure the sam
software flaws in either the source code or the binary using substan-
Keywords tially similar techniques. Our work uses the ROSH][framework
Static Analysis, Binary Analysis, Software Quality Whi_ch subs_ta_ntially unifies the analysis_ of_ both source code and bi-
naries providing an approach to test this idea.
A specific goal is to remove the asymmetry of information as-
1. INTRODUCTION sociated with the measurement of quality of source code owned
Bad software coding practices often lead to vulnerable software, by the developer and COTS software more commonly available to
which then is either exploited by adversaries or more prone to fail at users. Properly measured this would reward developers and permit
runtime. For this reason, bad coding habits (styles) are documentedprice to match quality; resulting in better software.
in the literature, c.f. 2, 6]. These documents elaborate not only We developedinQ, which is based on thROSEcompiler in-
on bad practices and possible vulnerabilities, but also on the sever-frastructure 10], to analyze software binaries. Within BinQ we
ity of using such practices. Preferably, bad coding styles should beimplemented literature based program analyses that search for pos-
avoided so that software with high quality can be developed and sible security flaws and bad coding styles. In Secfame intro-
deployed. The evaluation of software quality is an attempt to char- duce our software analysis tools: ROSE and BinQ. We selected and
acterize and measure the prevalence of such flaws. Because softtmplemented four analysis metrics, c.f. SectbrAnalysis results
ware developers are used to looking at code, the source code is freare reported in Sectioh Verification is discussed in Secti@n Re-
quently considered the most relevant medium in which to measure |ated work and conclusions are found in Sectéand Sectiorv,
software quality. Far more time and significantly greater expertise respectively.

Security, Measurement

2. TOOLS

Permission to make digital or hard copies of all or part of this work for ROSE is a source-to-source compiler infrastructure that is open
personal or classroom use is granted without fee provided that copies aresource, BSD licensed and freely available. ROSE supports research
not made or distributed for profit or commercial advantage and that copies work on compiler transformations, especially optimizations, and
bear this notice and the full citation on the first page. To copy otherwise, 10 generg| analysis of source code and binary executables. ROSE
republish, to post on servers or to redistribute to lists, requires prior specific . .

permission and/or a fee was developed for experts and non-experts to build their own cus-
DEFECTS'09,uly 19, Chicago, lllinois, USA. tomized software analysis and optimization tools.

Copyright 2009 ACM 978-1-60558-654-0/09/07 ...$5.00.

Figure 1 illustrates the general approach of ROSE. ROSE pro- strcat:May cause buffer overflaw
vides interfaces for the user to perform compiler specific tasks, such e rand:Does not produce high-quality random numbers
as the parsing of C/C++ or Fortran source code and the construction e rewind: Implement fseek over rewind
of an internal intermediate representation (IR). The parsing itself is e atoi, atol, atoll, atofUse strtol, strtoll, strtod for converting
performed by utilizing well-established frontends, such as the Edi- strings to numbers
son Design Group (EDG) C++ front-end] for C and C++ and the Using ROSE, the implementation of the analyses is merely a
Open Fortran Parser (OFFg][for Fortran. To support optimiza- traversal of the programs’ AST. Whenever a AST node is traversed
tion of scientific codes in DOE, ROSE handles C (C89,C99), C++, that represents a call to a function (for both source code and bi-
Fortran 2003 (including F66, F77, F90/95), OpenMP, and UPC. To nary), the name of the function is resolved and checked against the
support general binary analysis ROSE supports the x86, PowerPC ist above. ROSE offers the ability to resolve function names by
and ARM instruction sets using a number of specific binary file using a files input table. However, in our experiment all symbols
formats: ELF, PE, LE, NE, and MS-DOS. are provided by IDA-Pro.

All information about the source code and the binary is repre- .
sented in an easily traversalbistract syntax treAST). The gener- 3.2 # Complex Functions

ated ROSE IR includes an AST, symbol tables holding types, com- Definition: Cyclomatic Complexitgomputes the number of con-
ments, pre-processor information, etc. The IR is rich enough so thattro| branches within a functiorb]. Branches are defined through
the original program can be faithfully represented and reproduced. if-conditions, switch statements, goto statements, while loops, etc.
Once user defined analyses and transformations have been implermp|ementation: This ana|y5i5 counts the number of uncondi-
mented and applied, the ROSE Unparser, cf. Figuutputs the tional and conditional control transfer instructions within each func-
new (optimized) program back to source code in the original source tion. This includes instructions suchx86_jmpx86_loop x86_ja
language with all original source level details (including comments x86_je etc. The threshold that we assigned for this analysis is 45,
and C preprocessor control structures) preserved. Optionally, ven-j e if the number of conditions is 45 or more, we flag the function
dor compilers can be used to compile the transformed source codeto be complex.
into executables for different platforms. Our threshold is arbitrarily chosen. In practice 20 is a com-
For binary handling, ROSE may be utilized using one of two mon value used in industry for source code (McCabe's Complex-
frontends, cf. Figurd: IDA-Pro [3] the industry standard for inter- ity Metric) whereas 45 should merely reflect the fact that there
active disassembly or the in-house developed recursive disassemare more control transfer instructions within a binary than within
bler (part of ROSE). IDA-Pro supports many different processors source code. Within our experiment we have found that 45 is a
under Linux and Windows, our own disassembler currently sup- good binary correlation value to 20 used in source code. How-

ports the x86, Power-PC, and ARM architectures. A distinguishing ever, this value can be individually adjusted just as it is adjusted for
point is that our parsing of the binary includes the whole binary spurce code purposes.

file format (all sections, including dwarf) and all details required
to reconstruct the original binary executable; making the full rep- 3.3 # Malloc without Free

resentation available for analysis. The disassembled binaries arepgfinition: According to CERT g] it is recommended that mem-
represented in the ROSE IR in the same way as source code whenyy e allocated and freed at the same level of abstraction, and ide-
parsed. This has the advantage that mechanisms for source codg”y in the same code module.

analysis can be re-used for binaries, such as AST traversals, in-jnjlementation: Initially, our algorithm traverses the AST and
tegrity checks, documentation generation, IR node generation, etc. qqks for AST nodes representingall instruction. When a call
instruction is found, its symbols are resolved and hereby also the

3. ANALYSES name of the function that is called. If the function to be called

In order to evaluate bad coding styles on binaries using our bi- is malloc or calloc , then we have found a candidate. As an
nary analysis capability within ROSE, we chose four well estab- example look at the following source code and its assembly form.
lished metrics from the literature[5, 6] that detect bad coding ~ 2 ™t mannt rigrc;cfhg;o?ﬁ\gq{oy
styles in source code. We implemented these four well defined 3 free(arr): '
coding violation specifications as “checkers” (analyses) to detect 4 }
bad coding stylc_es in binaries. Initia_llly,_ we chose simpler metrics 0x400418: push rbp
that do not require data-flow analysis, in order to properly evaluate gy4004f9: mov rop, rsp
our ongoing work with binaries_. Again, for _this experimc_ent, we gijggggc& Sr?ql;v rsgngég PTR dsiibp + Oxfifec), edi
el e ol wel defned bad codrg s 801D ki noy Guon P i - o)

. 0x400507: mov edi, 0x28

is to establish a tool that allows us to write arbitrary analyses on 0x40050c: call 0x400420 %% call to malloc
binaries - including data-flow analyses in the future. Our selection 0x400511: mov. QWORD PTR ds:[rbp + Oxffffffg], rax

. . . . 0x400515: mov rdi, QWORD PTR ds:[rbp + Oxfffffff8]
and implementation of analyses is described next. Ox400519: call 0x400430 %% call to free

3.1 # Unsafe Functions In the assembly representation, the function header for main is
Definition: Our first analysis detects calls to possibly unsafe func- represented at addres€sl004f8 ,0x4004f9 and0x4004fc .
tions. We define unsafe functions as functions with possible side At addres0x40050c is the call tomalloc . The size of the al-
effects. According to CERTZ] such functions should be replaced location is encoded at addre®s400507 , namelyOx28 heximal

by their “safe” counterparts. (hex) or 40 decimal (dec). Thereafter, at add®&t00511 there-
Implementation: We define, in accordance to literaturd,[the sultfrom registerax is stored in memory at locatiais:[rbp +
following functions and hence calls to them as unsafe: Oxfffffff8] . This is the location of our pointer variabéer

o vfork: Do not use this function in POSIX program in line 2. Finally,free is called at addre€3x400519 where the

o sprintf, scanf, sscanf, gets, strcpy, _mbscpy, Istrcat, memcpy, argument is stored in rdi, namely memory addrdsgrbp +

BinQ

= .
Cron Plreset 1 open [0] auit
Binary File Analysis Information

| K1 | I
Analyses Console | Analysis Results | Fileinfo | Sectoninfo | (7t ey =i
Forbidden Function Call «|| | Running ... Binary Dynamic Info time : 0.0395529 Problems: 0 shstrtab
Malloc needs Free Total time ... 00401702 Total problems 0
Null After Free Running ... Forbidden Function Call time : 0.0374391 Problems: &
Init Pointer to Null Dont call: strepy (8049a5a) : call 0xB04Bda <strcpy> <strepy> in function:
Complexity Metric + || Dontcall: strcpy (8049a6b) : call 0x8048da0 <strcpy> <strepy> in function
. Dent call: strepy (B049a7¢) : call 0xB048da0 <strepy> <strcpy= in function:
Dont call: strepy (804afes) : call 0x8048da0 <strepy> <strepy> in function
Dont call: strepy (804b07¢) - call 0x8048da0 <strepy> <strcpy in function:
Dont call: memepy (8043bed) : call 0x8048c70 <memepy> <memcpy> infunction
Running ... Malloc needs Free time : 0.0332642 Problems: 2 1)
functon =] functon =] debian_ Graph FileB L debian_ | Graph Filea
—init callgraph row address instr operands comment pi*|| row address instr operands comment pty
iniproc 1462 B04%bc6 mov DWORD PTR ssifebp + Oxffifiddc], eax 45 1238 804%bcc mov eax, DWORD PR dsieax] 61/
readlink readlink 1463 8049bcc mov eax, DWORD PTR ds:[eax] a5 1239 8049bce mov ¢, BYTE PTR ds:[edi] 61,
mkdir mkdir 1464 8049bce mov o, BYTE PTR ds:[edi], as 1240 8049bd0 movsx eds, cl 61
getgmam getgrmam | 1465 804sbdo movsx edx,cl, 45 1241 B04sbd3 test BYTE PTR ds:fox1 + eax), 0x20, 61/
chown chown 1466 B049bd3 test BYTE PTR dsifeax + edx*0x2 + 0x1], 0x20, 45 1242 8049bd8 jne 0x8048bb7 <loc_8049BB7> Ioc_B043B87 61
readdired readdirgq 1467 8049bdE jne 0xB049bb7, 45 1243 8049bda cmp o, 0x23 61
strehr [| strehr 1468 B04%bda cmp ol 023 45 1244 804sbdd je 0x8048cf9 <loc_B049CFSs loc_B045CF 61
write write 1469 B045bdd e 0xB049CT8 45 1245 804%bed push eax, 61/
stremp stremp 1470 8049be3 push eax 45| ||| 1246 804%bed push es i 61
close close 1471 8049bed push esi 45 1247 8049be5 push edi < 61|
getenv geteny 1472 8049bes push edi 45[7|| 1248 B04%bes lea ebx, DWORD PTR ss:(0xffffdec <var_21. 61/
unlink unlink 1473 B04%beb lea ebx, DWORD PTR ss:febp + Oxfffidec] a5 1249 §04Sbec push ebx <. <void > 61 |
mmap64 mmap64 1474 804%bec push ebx 46 1250 &049bed call 0xB8048c70 <_memcpy>, 61
strerror strerror 1475 8049bed call 0x8048c70, memcpy a6 1251 8049bf2 mow ecx, ebx, 61
—enmo_locadon —ermo_location 1476 B04%bf2 mov ecx,ebx 46 1252 804%bi4 add esp, 0x10 61/
chmod chmod 1477 8049bf4 add esp, 0x10, 46 1253 8049bf7 mov BYTE PTR ss:[Oxffffdec <var_214> +eb... var_214 61,
puts puts 1478 8049bf7 mov BYTE PTR ss:[ebp + esi+ 0xfffffdec], 0x0, 46 1254 B049bF mow eax, DWORD PTR ss:[0xffffiddc <var_22... var_224 61
malloc malloc 1479 B04Sbff mov eax, DWORD PTR ssiebp + Oxfffiddc] a6| ||| 1255 8049c05 mov esi, DWORD PTR ds:feax] 61
munmap munmap 1480 8049c05 mov esi, DWORD PTR dsileax, 46 1256 §049c07 jmp 0x8049c0a <loc_B049C0A> Ioc_8048COA 61
famatch famatch 1481 804907 jmp 0xBO49c0a, 46 1257 8049c09 inc eex 61,
strstr strstr 1482 804909 inc eox 46| ||| 1258 8043c0a movsx eax, BYTEPTR dsfecy] 61]
. suncmp 1483 8049c0a movsx eax, BYTE PTR dsfec] 46 1259 8049c0d test BYTE PTR ds:[0x1 + esil, 0x20, 61/
sl strol 1484 B049c0d test BYTE PTR dsiesi +eax*0x2 + 0x1], 0x20 46| ||| 1260 B043c12 jne 0x8049¢09 <loc_B049C09> Ioc_8045€09 61
openlag apenlog 1485 8049c12 jne 0xB049¢09, 46 1261 8049cl4 mow edi, ecx 61
—etated o) ot] 1ess s040c1a mov edecx a6\~|| | 1262 804gcls inc ecx 61[-
IR |) | (LT [v) | |G I I»]

Figure 2: BinQ - Our binary analysis tool showing an unsafe function call to memcpy in /shin/udevtrigger (Linux). Lower left using
our disassembly and lower right disassembly from IDA-Pro.

Ox(fffffff8] . This address represents our variaie and so 4, RESULTS & DISCUSSION

we know thaffree was called witherr as an argument. We applied BinQ on Windows XP and Debian Minimal (Linux).
Therefore, to come back to our algorithm, ongealoc callis In both cases we used IDA-Pro as the disassembly front-end. IDA-
found, we need to go forward in the programs control flow and de- pyq s a highly effective tool that can deal even with some com-
tect amovinstruction that moves the registeix (representingthe pjexities often found in malware. In addition, IDA-Pro can resolve
result of malloc) into memory. We remember the memory location many symbols needed for our analyses. The analyses are exactly

and traverse the function further according to its control flow. If we the same for Windows and Linux (implemented in BinQ), c.f. Ta-
find a call tofree , we need to traverse the control flow backwards pje 1.

to determine the last movement of memory to a register (parameter

to free). Thereafter, we compare the memory location against the Metric Linux | Windows
one we remembered and if they match, we have found a matching # Files 970 210
malloc andfree . Otherwise, we report a coding style violation. # Unsafe Function Cal§ 9424 1964

3.4 # Dangling Pointers (after Free) # Complex Functions || 3,583| 3,195
_ . . # Malloc without Free 1,912 797
Definition: Pointers that are not set to NULL after the function - -
. . ; . # Dangling Pointers 6,506 1,732
free is called. Dangling pointers can lead to exploitable double-
free and access-freed-memory vulnerabilitiéls A simple yet ef- Sum of detected flaws || 21,425 7,688

fective way to eliminate dangling pointers and avoid many memory Ratio of flaws/files 22.1 18.6

related vulnerabilities is to set pointers to NULL after they have) .

been freed. Table 1: Binary Analysis Results.

Implementation: The binary analysis traverses the ROSE AST

and checks evergall instruction for a call toree . If found, We analyzed 970 binary files in the Debian Minimal distribution

we follow the control flow backwards (from that node) to find the and noticed that many bad coding practices, according to our few
memory location that corresponds to the variable that is being freed. metrics, are present. This may be an indication that Linux develop-

Thereafter, we follow the control flow forward (from the sacadi ers pay less attention to exactly these coding styles that we chose.
node) to findnovoperations. We are looking fomaov mem,val Figure3illustrates our results for Linux. The x-axis represents the
instruction that copies a value, in our case NULL (or 0) to the mem- different files and the y-axis represents the number of flaws (bad
ory location of our predetermined variable (argumerftée). If coding practices according to our metrics) that we identified. Ex-

no correspondingnov. mem,0is found, then we have detected a amples of files that have a distinctive amount of flaws (y-axis) in
violation of this metric. that image are:

o for Unsafe Function Callgbin/bash(437), /usr/bin/gpg(324),
lusr/bin/ex (302), /bin/busybox (263), /ust/lib/libdb-4.4.s0
(210), /bin/netstat(183), /usr/lib/libdb-4.3.s0(181), /usr/bin/
tack(163), and /usr/lib/libdb-4.2.s0(162).

o for High Complexity/usr/bin/aptitude(200), /usr/bin/ex(160),
{usr/lin/libdb-4.4.s0(137), /usr/bin/perl(137), fusr/lib/libdb-4.
3.s0(106), and /usr/bin/gpg(105).

e for Dangling Pointers:/ustr/lib/libkrb5.s0.3(485), /lib/libse-
pol.s0.1(243), /usr/bin/dpkg (214), /usr/bin/info (165), /bin/
bash(151), and /bin/nano(144).

o for Malloc without Free:/ustr/lib/libkrb5.s0.3(193), /lib/libse-
pol.s0.1(87), and /usr/bin/dpkg(83).

For Windows, we analyzed 410 binary files in the system32 di-
rectory. Figured illustrates our results. Examples of files that have
a distinctive amount of bad coding practices (y-axis) are:

e for Unsafe Function Calls:URTTemp/mscorwks.dll(538),
infosoft.dll (188), URTTemp/msvcr71.dll (144), mfc42.dll
(139), mfc42u.dll(139), and drmv2clt.dll(117).
for High Complexity: URTTemp/mscorwks.dll(208), d3d9.
dil(114), shell32.dll(91), and Isasrv.dell(76).
for Dangling Pointers:URTTemp/mscorwks.dll(395), ntback-
up.exe (217), URTTemp/msvcr71.dll (203), msvcert.dll (182),
hypertrm.dll(123), and infosoft.dll(97).
for Malloc without Free:ntbackup.exe(151), URTTemp/ms-
ver71.dl1(112), msvert(105), hypertrm.dll(81), and infosoft.
dli(40).

It appears that the software quality, based on our few metrics, of
Linux and Windows is poor. Both systems reveal a high number of
bad software coding practices that are known to cause probms [
6]. However, it is possible that we chose metrics that are not part of
good coding practices of neither Microsoft Windows or the Linux
development community.

5. VERIFICATION

We have manually inspected random files in both Linux and

1005b52 call PTR ds:[0x1001248] <free>

1005b58 pop ecx
1005b59 jmp 0x1005b64
1005b5b mov ...
1005b64 xor eax, eax
1005b66 inc eax
1005b67 pop ebx
1005b68 pop ed
1005b69 pop esi
1005b6a leave

1005b6b ret

Our analysis correctly detectedDangling Pointerflaw in the
code above: the variabfffffffc + ebpis never set to 0 after free()
is called. We expect that the false positive rate forlinsafe Func-
tion analysis is zero, which is the same for @Bemplex Function
analysis The other two analyses may have some false positives be-
cause these analyses use control flow information but no data-flow
information or symbol evaluation. Such information would possi-
bly increase the precision of these two metrics and is part of our
future work.

6. RELATED WORK

GrammaTech9] has demonstrated particularly broad capabili-
ties and developed both source code and binary analysis tools. The
source code analysis version is a high quality commercial static
analysis tool and the binary analysis is specific to Windows x86
and is not openly available. These tools automate the detection of
violations to numerous predefined rules and are useful for detailed
analysis for software code for quality inspections, subtle bugs, and
security violations. The BitBlazel] project at Berkeley is focused
on binary analysis infrastructure and provides an openly available
analysis capability for Linux x86 binaries. Other tools tools for
binary analysis can be found &f[

CONCLUSION AND FUTURE WORK

Currently, if it is possible to measure the quality of software it is
most likely accessible via only source code analysis. This is not a

7.

Windows and judged from the disassembly whether our results are problem for open source code, but a majority of software is closed
correct. In the case of Linux, we were sometimes able to find cor- source. This denies users any mechanism to obtain an indepen-
responding source code and verify that the problem was also inher-dent analysis of software quality and forms the fundamental asym-
ent in the source. For instance, the following code snippet is part metry that limits the ability of software quality to be priced (and
of /shin/getty. OuMalloc without Freeanalysis reports one mal- ~ rewarded). In this paper, we attempted to measure simple quality

loc without free. The corresponding source code contains only one features of binary software, namely Linux and Windows. Interest-
malloc allocation in the following code: ingly, our quality measurements do not show off either Windows or

1. ' Linux favorably - but this may be even typical of OS implementa-
g folfr ((50? ! Ze?f?a)é?ﬁ? :'f)(D{EF 5 NULL) tions. The point is however that these metrics (and we expect many
4 brgak; P more metrics in the future) can be evaluated directly on binaries and
5 if ((next =(DEF*) malloc((unsigned) sizeof(DEF))) == therefore indirectly reflect properties of source code. Future work
(DEF *) NULL) { ; i ; i
6 logerr(“malloc() failed:defaults list truncated”); will focus on the improvement of our binary analysis capabilities.
7 break;
8) 8. REFERENCES
- = dp- : . .
io ”ﬁé;f?i;?fe = g;:j;?fé; [1] BitBlaze.http://bitblaze.cs.berkeley.edu ,
11 deflisti] = next; 20009.
12 debug(D_DEF, “deflist[%d]: name=(%s), value=(%s)", [2] CERT. Secure Coding Standards, 200ps:
ii) i, deflist[il->name, deflist[i]->value); /Iwww.securecoding.cert. org/confluence/
o .] .) N [3] DATARESCUE. IDA - Interactive Disassembler, 2007
ig ?fg!';)t[']de}clgggm;) NULL; f* terminate list */ http://www.datarescue.com/
17 debug(D_DEF, “defbuild() successful”); [4] Edison Design Group. EDG front-end
18 return(deflist); http://www.edg.com .
18 } 5] W. Liand S. Henry. Maintenance Metrics for the Object

We can see that free() is not called (after the call to malloc) - at
least not as part of this function, which is the requirement as defined
by CERT PJ. In the following is an example assembly code snippet

from tasklist.exe (Windows).
1005b4d je ...
1005b4f push DWORD PTR ss:[Oxfffffffc + ebp]

Oriented Paradigm. IEEEE Proc. of the 1st Int. Software
Metrics Symposiuppages 52-60, May 1993.

MITRE Corporation. Common Weakness Enumeration,
2007.http://cwe.mitre.org/

NIST. Binary Code Scannensttps: //samate nist.
gov/index.php/Binary_Code_Scanners

(6]

(7]
, 2009.

http://bitblaze.cs.berkeley.edu
https://www.securecoding.cert.org/confluence/
https://www.securecoding.cert.org/confluence/
http://www.datarescue.com/
http://www.edg.com
http://cwe.mitre.org/
https://samate.nist.gov/index.php/Binary_Code_Scanners
https://samate.nist.gov/index.php/Binary_Code_Scanners

600

500

400

300

200

100

600

500

400

300

200

100

51

101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901

«— Forbidden Function Call Complexity Null After Free Malloc Needs Free

Figure 3: Debian Linux, parsed using IDA-Pro. X-Axis: Files - Y-Axis: # Flaws.

51 101 151 201 251 301 351

Null After Free = Malloc Needs Free

Forbidden Function Call Complexity

Figure 4: Windows, parsed using IDA-Pro. X-Axis: Files - Y-Axis: # Flaws.

951

401

[8] C. Rasmussen et al. Open Fortran Parser.
http://fortran-parser.sourceforge.net/ .

[9] Reps, T. and Balakrishnan, G. and Lim, J. and Teitelbaum, T.
. A next-generation platform for analyzing executables.
Programming Languages and Systeig80/2005:212-229,
2005.

[10] ROSE. Rose compiler, 2008.
http://www.rosecompiler.org/

http://fortran-parser.sourceforge.net/
http://www.rosecompiler.org/

	1 Introduction
	2 Tools
	3 Analyses
	3.1 # Unsafe Functions
	3.2 # Complex Functions
	3.3 # Malloc without Free
	3.4 # Dangling Pointers (after Free)

	4 Results & Discussion
	5 Verification
	6 Related Work
	7 Conclusion and Future Work
	8 References

