
C++ Expression Templates Performance Issues inScienti�c ComputingFederico Bassetti� Kei Davis Dan QuinlanyAbstractEver-increasing size and complexity of software applications and libraries in scien-ti�c computing is making implementation in the programming languages traditionalfor this �eld|FORTRAN 77 and C|impractical. The major impediment to theprogression to a higher-level language such as C++ is attaining FORTRAN 77 or Cperformance, which is considered absolutely necessary by many practitioners. Theuse of template metaprogramming in C++, in the form of so-called expression tem-plates to generate custom C++ code, holds great promise for getting C performancefrom C++ in the context of operations on array-like objects. Several sophisticatedexpression template implementations of array-class libraries exist, and in certaincircumstances their promise of performance is realized. Unfortunately this is notuniformly the case; this paper explores the major reasons that this is so.1 IntroductionScienti�c computing, though traditionally lagging up-to-date software development andengineering practices, is nonetheless undergoing a rapid evolution. In particular largeand complex applications and software infrastructures are increasingly enjoying the ben-e�ts of object-oriented design and implementation in C++. In at least one respect theobject-oriented approach to scienti�c computing yields bene�ts not usually realized inmore mainstream computing: management of data distribution, parallel computation (of-ten SPMD), and communications can be incorporated into class libraries and so hiddenfrom the library user.This transition is not without problems or opponents. While simple inertia can inpart be blamed for the slow pace of change (and the fact that perhaps the majority ofscienti�c programmers are physical scientists or mathematicians with little or no formalcomputing science background), in scienti�c computing the very highest priority is mostoften performance, and the performance penalties generally associated with higher-levellanguages or language constructs is usually deemed unacceptable. Thus while the software�Bassetti: Computer Science Dept., New Mexico State University, Las Cruces, NM 88003.yBassetti, Davis, and Quinlan: Scienti�c Computing Group CIC-19, Computing, Information, andCommunications Division, Los Alamos NM, USA, 87545, ffede,kei,dquinlang@lanl.gov1



industry at large enthusiastically adopted C++ as an improvement over C and is increasingusing Java, scienti�c computing has been moving from FORTRAN 77 to C; signi�cantprogress to C++ will depend crucially on whether C++ can deliver the performance ofcarefully coded C or FORTRAN 77.The sheer size and complexity of the scienti�c applications being developed here atLANL and elsewhere has practically mandated development in a higher-level language suchas C++. We are therefore heavily invested in its continued use and greater acceptance andso in realizing `optimal'|C or FORTRAN 77|performance. A current `hot' area is the useof the C++ templating mechanism [8] to implement so-called expression templates (ETs)[10] to get automatic code in-lining and fusion of the loops implicit in expressions denoting(multiple) array operations that would more traditionally be implemented using overloadedbinary operators, in turn implemented by multiple function calls. This approach has muchpromise and quite sophisticated expression template implementations have been developed(e.g. [9]). Unfortunately this technique is not without its de�ciencies, some of which maybe regarded as artifacts of the current state of the art in C++ compiler technology (suchas incomplete support and astronomical compile-time and space requirements); othersappear to be inherent in the technique, consequences of lack of information needed by thecompiler to perform standard optimizations. It is in the possibly intrinsic limitations thatwe are interested.The study we describe was motivated by the performance of various state-of-the-artexpression template implementations of array and array-like C++ class libraries fallingshort of expectations. At this stage of investigation we do not claim that the causes weexplicate are insurmountable. Rather, the points are as follows: these are the �rst anal-yses of this depth, and, analysis at this depth is necessary to pinpoint the sources of theproblems, suggest possible solutions, and ultimately precisely characterize the trade-o� be-tween theoretical limitations on performance and practical limitations on implementabilityand usability of the ET technique.2 Problem Domain and Execution ModelsObjects with array-like semantics are fundamental to scienti�c computing, and numer-ous sophisticated array-class libraries have been implemented and are in heavy use, e.g.A++/P++ [5] and POOMA [6], often underneath higher-level C++ class libraries suchas OVERTURE [1], which add support for complex geometry, adaptive mesh re�nement,moving grids, and other features to meet more sophisticated applications requirements. Assuch the performance of the latter libraries and the applications that use them is directlyrelated to that of the underlying array-class libraries.The standard technique for implementing array class libraries in C++ is to overloadbinary operators such as + to denote for each type of array element, dimensionality and sizeof array, etc., the corresponding array operation, e.g. elementwise addition, implementedas a class member function call. Thus an array expression such as A+B+C entails twofunction calls and in turn two loops|one to add A and B, and one to add the resultto C. Moreover, a temporary array must be created for each intermediate result, and2



subsequently destroyed. Using expression templates these three sources of ine�ciencymay be avoided|the expression template mechanism essentially speci�es the C++ codeto be generated; typically function calls are inlined and a single loop generated. Dependingon the semantics and dependence of left- and right-hand side only one or zero temporariesneed be created. The expectation is for the performance of hand-written C code, andin certain circumstances this is realized. Our interest is in the circumstances and theunderlying reasons when it falls short.In brief, the greatest contributors to performance loss are the various consequences ofdemand for CPU registers. The second greatest cause|poor blocking|is not addressedhere.3 MethodologyFor various forms of expressions typical of scienti�c applications using array class librarieswe compare the performance of three implementations: overloaded binary operators, thenatural implementation in C++ code (in C style, not using overloaded binary opera-tors) and an idealized form of the code generated using expression templates (which wecall emulated expression template (EET) code). The EET code is idealized in that it issomewhat simpli�ed to eliminate extraneous e�ects and implementation-dependent irrele-vancies while maintaining the structure that gives the ET code its particular performancecharacteristics. In all cases the EET code gives an upper (best) bound on performance ofactual ET code.Tests were performed on an SGI Origin 2000 system [3]. The Origin 2000 uses the MIPSR10000 microprocessor [11] which has built-in hardware performance counters for collect-ing run-time statistics for arbitrary sections of code. Using these counters we measured thenumber of cycles executed, instructions executed, 
oating point operations, primary andsecondary cache misses, load and store instructions executed, and several other parame-ters. While most of these results are not reported the statistics were monitored to ensurethat our explanations of execution times were correct. Some of the metrics reported arecomputed from combinations of counters [7, 4, 2]. All tests were for serial codes on a singleprocessor within that processor's physical segment of the distributed shared memory, sodetails of the multi-processor environment are irrelevant. In is important to stress thatproblem sizes were chosen to be L1-cache resident to avoid cacheing issues.The benchmarking results were generated using the KAI C++ compiler and wereveri�ed using the SGI C++ compiler. The KAI compiler translates C++ code to interme-diate C code and then invokes an independent C compiler (here the SGI C compiler). Wepresent both C++ codes and the intermediate C codes produced from them. Examinationof assembly code produced by the C compiler was useful for determining the causes ofperformance loss, but its presentation is not necessary for our demonstrations.Stencil-like computations represent a signi�cant part of scienti�c codes. We addressthese in particular, as well as other common patterns of array use. This paper exploresa space of array statements and reports on their performance. The primary dimensionsof this space are number of dimensions and number of operands. In many cases the3



dependence on dimension is not signi�cant while the number of operands is more uniformlyimportant. We have chosen the number of operands from 1-61 since this is su�cient todisplay the relavant character of the problems we have exposed. Central to our thesisis that for stencil operations array statements with this number of operands are commonwithin our work using OVERTURE. OVERTURE includes specialized support for complexgeometry and applications using such support have numerical discritizations which includecross-derivative terms which contribute to the number of points included in a stencil.Additionally such applications include non-constant coe�cents which are themselves storedin arrays and so can e�ectively double the number of arrays (operands) used in an arraystatement. Higher-order discretizations fold in even more points into stencils so that3D stencils can have 125 operands, still not counting coe�cients which are additionalarrays along with scalar coe�cients. A commonly used operator within OVERTUREapplications, as a speci�c example, contains 130+ array operands, not including numerousscalar values. For completeness we also test the case of all operands are from distinctarrays but do not claim that this is representative of typical numerical computations.4 Test 1: Number of operands in a stencil-like codeThe two versions of the test code implement a simple 3-pt stencil using unidimensionalarrays. The core of the computation is a loop that traverses the elements of the arrays inmemory order; it is repeated 10 times to ensure the accuracy of the performance data. Aninstance of the code is given in Figure 1.The main di�erences between the two codes are in the way the arrays are accessed.In C++ the array on the right-hand-side is reused in all the terms, and this is trueregardless of the number of operands. Thus register requirements are constant. A codethat makes use of expression templates will use a di�erent array pointer for each operand(despite the fact that they have the same value), and also carries information on howto compute the proper o�set. (There is work underway to remove this latter problem,but at best this would reduce register demand by one-half.) Thus register requirementsare twice the number of operands. A more clear idea of the whole transformation canbe gained by looking at the intermediate C code generated by a compiler|together witha di�erent pointer per operand, a di�erent stride is also needed. Fundamentally, thedi�erent pointers are generated because the indexing operators generate di�erent returnvalues for each invocation, and for more complex reasons (because of the subtleties of ETimplementation) even when there is no indexing. Run-time optimizations can be used toavoid the additional stride information at the cost of extra code, but this adds a substantialpenalty to (already excessive) compile times and is not done in any of the production arrayclasses.4.1 Measurements and ResultsRegister spillage refers to the circumstance in which demand for registers exceeds thenumber available, resulting in register values being stored to memory and subsequently4



// C++for (int iter = 0; iter < cntmax; iter++)for (int i = 2; i < size; i++)A[i] = B[i-1] + B[i] + B[i+1];// Emulated Expression TemplatesArray B_1=B;Array B_2=B;Array B_3=B;for (int iter = 0; iter < cntmax; iter++)for (int i = 2; i < size; i_1++)A.DataPointer[A.offset(i)] = B_1.expand(i-1) + B_2.expand(i) + B_3.expand(i+1);//KCC intermediate C code for C++ codedo {auto int i =2;for (; i < size; i+=1)A[i] = B[i-1] + B[i] + B[i+1];iter += 1;} while ( iter < cntmax);//KCC intermediate C code for Emulated Expression Templates codeAA = A.DataPointer;BB_1 = B_1.DataPointer;BB_2 = B_2.DataPointer;BB_3 = B_3.DataPointer;int s_0 = A.Stride;int s_1 = B_1.Stride;int s_2 = B_2.Stride;int s_3 = B_3.Stride;do {auto int i =2;for (; i < size; i+=1)A[i*s_0] = B_1[(-1+i)*s_1] + B_2[i*s_2] + B_3[(1+i)*s_3];iter += 1;} while ( iter < cntmax); Figure 1: Test code 1|1D 3pt stencilreloaded. The impact of register spillage is determined by analyzing the number of loadsand stores performed. The actual number of loads and stores is determined using theperformance counters and the annotated assembly code shows what kind of registers areneeded (integer or 
oating point) and what optimizations have been enabled or disabled.Figure 2 shows that the execution time, measured in cycles, is signi�cantly di�erentbetween the two codes. The surfaces start diverging from a single operand. As the numberof operands increases the number of loads for C stays constant while for ETs it increaseslinearly. The �gure shows that the number of loads increases mildly until the number ofoperands is in the range 21{26. On the MIPS R10000 there is a maximum of 27 integerand 27 
oating-point registers available for general use. The assembly code shows thatit is only the integer register set that spilled. Fewer 
oating point registers are requiredbecause of the scheduling of the operations. Demand for registers from each set is shownin Table 1.For both number of cycles and loads the �gure shows three slopes for EET code. Forup to 4 operands EET performance is very close to C performance. Between 5 and 135
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Figure 2: Measured cycles using a stencil computationoperands the EET performance degrades more rapidly; in this range loop unrolling isinhibited to prevent register spillage. From 14 to 26 (and onward) the slope is steeper;here pipelining is also inhibited and there is register spillage.An increase in memory references appears to be the primary overhead of ETs as thenumber of operands grows. The �gures show that the number of loads increases rapidlyonce registers begin to spill. Surprisingly, the number of stores is also increased. Inparticular the result of the subscript computation needs to be stored on the stack and notkept in a register. It is clear that ETs stress the management of integer registers. Floatingpoint registers are well managed and demand is actually reduced by the spilling of integerregisters.Table 2 presents data collected from the annotated assembly for a pure C code. Thetable shows the same information as Table 1. Unrolling and pipelining are the two mainoptimizations that make a signi�cant impact on the performance of the codes. The datashow that the software pipeline is always possible since integer registers are never spilled.Unrolling, for the same reason, is possible for a higher number of operands. The demandfor 
oating point registers is instead slightly higher than the expression templates case. Inthe C code, the number of integer and 
oating point registers needed is of the same order,this is because more e�cient use can be made of the 
oating point register set.5 Test 2: Dimensionality in a stencil-like codeIn this test the impact of increasing the dimensionality of arrays in a stencil-like codeis examined. The test code is similar to that in the previous section except that thedimension of each array is varied rather than the number of operands. The goal is toquantify the overhead introduced by the descriptors associated with each array. Figures 4and 5 give the code for the 2D test cases and the corresponding intermediate C codes for6
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(b) Store.Figure 3: Register Spillage e�ects in a stencil codeC++ and EET, respectively.The intermediate representations of the two codes show that the o�sets needed in theinnermost loop are computed in the next outer loop. In particular, this computation is afunction of the number of elements in each dimension.5.1 Measurements and ResultsFigure 6 shows the impact on performance as a function of dimensionality. For C there isno e�ect. For EET increasing dimensionality degrades performance. As before the problemis related to the extra memory references generated as consequence of a high demand forregisters. It can be seen from the intermediate representation that increasing the dimen-sionality increases the computation needed to perform the subscript computation|morevariables are employed as the dimension grows. The e�ects caused by multidimensionalarrays are in addition e�ects caused by the increase in number of operands. Figure 6 showsthe e�ect on the number of cycles as the dimensionality increases, for 6D arrays extra over-head is about 60% over 1D. In comparison the consequence of increasing dimensionality isconsiderably less than increasing the number of operands; in perspective, for stencil-likecodes the number of operands typically increases more rapidly than the dimension.6 Test 3: Number of operands in a non-stencil codeThe previous tests have shown the impact on performance of duplication of pointers andstride variables. Here the duplication of pointers is not an issue since all the operandson the right-hand-side are distinct. The test codes are shown in Figures 7 and 8. The7



number of �xed point 
oating point software iterationsoperands registers used registers used pipelining unrolled1 15 1 ON 42 12 2 ON 23 16 4 ON 24 12 3 ON 05 14 3 ON 06 16 4 ON 07 18 3 ON 08 20 4 ON 09 22 4 ON 010 24 4 ON 011 24 4 ON 012 27 5 ON 013 27 3 ON 014 OFF 0Table 1: Integer and 
oating point registers demand and their impact on pipelining and unrollingusing Expression Templates.intermediate C codes are very similar. The only di�erence is that the ET code requiresan o�set variable for each operand. As noted previously, such o�sets can in some cases beeliminated.6.1 Measurements and ResultsFigure 9 shows the number of cycles for each code. The performance of the two codesare close though the EET code is slower. A notable point is that the C++ code showsan increase in cycles per operand added. The slope is shallow between 1 and 4 operands.The slope is greater between 5 and 26 operands because loop unrolling is inhibited, thoughsoftware pipelining is still active. From 26 to 36 operands the compiler manages to shedulethe instruction in such a way that it is still possible to pipeline but with slightly higherdemand for registers than are actually available. However, this `forced' pipelining doesn'tappear to have a positive impact on performance. From 41 operands and up, the slopebecomes again linear in the number of operands. Table 3 shows for C++ the demand oninteger and 
oating point registers and the corresponding impact on software pipeliningand loop unrolling. For ET code the numbers are exactly the same as shown in Table 1.Keeping in mind how and where the two codes di�er, the impact of having a more compli-cated subscript computation can be quanti�ed for ETs. The behavior shown for cycles isre
ected by the number of loads performed. It is that the ET code has a higher demandfor registers since the software pipeline is turned o� at 13 operands, while for the C++code that drop in performance comes at 26 operands. The more complicated subscriptcomputation, once registers are spilled, is the cause of an increase in store instructions asshow in Figure 10. The di�erence in the three metrics (cycles, loads, stores) quanti�esthe e�ects of duplicating o�set variables in the case of ETs. Note that for fewer than 13operands the performance of the two codes are identical.The test codes presented in this section, also help to determine parameterized ar-8



number of �xed point 
oating point software iterationsoperands registers used registers used pipelining unrolled1 5 12 ON 42 5 15 ON 43 6 18 ON 44 6 10 ON 25 6 10 ON 26 6 9 ON 07 8 9 ON 08 7 9 ON 09 8 9 ON 010 7 8 ON 011 7 8 ON 012 7 9 ON 013 7 8 ON 014 7 9 ON 015 7 8 ON 016 7 9 ON 017 7 8 ON 018 7 9 ON 019 7 8 ON 020 7 9 ON 021 7 8 ON 026 7 9 ON 031 7 8 ON 036 7 9 ON 0Table 2: Integer and 
oating point registers demand and their impact on pipelining and unrollingusing C++ code.eas/volumes of performance spaces. In fact, putting together the results obtained for testcode 1, we can �rst determine an upper bound and a lower bound for a class of C++codes, and an upper bound and a lower bound for the equivalent class of codes makinguse of expression templates.7 Test 4: Number operands in a stencil-like code withbinary operatorsHere the investigation of the variation in performance as a function of the number ofoperands when using binary operators. The results clarify the properties of binary opera-tors, but since the test data �t into cache they do not indicate the performance problemswith binary operators on stencil-like statements where reuse of operands is high whereinthe cache is 
ushed and performance is about 25% of optimal for optimized implementa-tions. The code, which emulates the behavior of binary operators in a 1-D stencil, is givenin Figure 7. The emulation gives an upper bound on possible performance. To preventloop fusion, conditional statements are interposed between the loops|in `real' code othercode is so interposed to the same e�ect. The comparison is between this code and the twocodes in Test 1. 9



// C++ codefor( int iter = 0; iter < cntmax ; iter++ )for( int j = 0; j < jsize; j++ )for( int k = 2; k < ksize - 3; k++ )A[(j * ksize) + k] = B[(j * ksize) + k] + B[(j * ksize) + k + 1] +B[(j * ksize) + k - 1];// KCC intermediate C code for C++ codedo {auto int j = 0;do {auto int k = 2;sss = j * ksize;for (; (k < ksize-3); k += 1)A[sss + k] = B[sss + k] + B[1 + (sss + k)] + B[(-1) + (sss + k)];j += 1;} while (j < jsize); }} while (iter < cntmax); } Figure 4: Test code 2|C++ 2D 3pt stencil7.1 Measurements and ResultsHere register spillage does not di�erentiate performance. Figure 12 shows the number ofcycles for all three codes. The slopes are all constant. From the numbers of loads and storesas shown in Figure 13 it may be inferred that `caching' of memory in registers is minimal.Worse, extra memory references are generated by the introduction of a temporary array.Looking at just stores one can see the impact of having to store values in a temporary,while in a regular C++ code only a number of stores close to the size of the array isneeded.More interesting is the comparison between binary operators and expression templates.From Figure 12 one can see that expression templates performs better than binary oper-ators until approaching a point where the number of operands causes register spillage. Inthis region the performance of the two are equivalent, but from this point on the expres-sion templates performs worse than binary operators. The justi�cations for this e�ect areshown by the number of loads. Register spillage is a more dramatic e�ect than just a naiveway of using the registers as in the case of binary operators. Nevertheless, the di�erencein cycles is not as big as the one for loads the extra stores generated by binary operatorsreduce the negative impact of extra loads for expression templates. Again, use of binaryoperators would force reloading of cache for problems exceeding cache size.8 Test 5: Number of operands in a non-stencil codeusing binary operatorsIn this section we study the performance of binary operators on a non-stencil code, such astest code 3. Also, we present a comparison of binary operators with expresion templatesand C++ code. Figure 4 shows the test code that emulates binary operators in a non-10



// Emulated Expression Templatesfor( int iter = 0; iter < cntmax; iter++ )for( int j = 0; j < jsize; j++ )for( int k = 2; k < ksize - 3; k++ )A.DataPointer[A.offset(k,j)] = B_1.expand(k,j) +B_2.expand(k+1,j) + B_3.expand(k-1,j);// KCC intermediate C code for Emulated Expression TemplatesAA = A.DataPointer;joffset_0 = A.Stride[0];BB_1 = B_1.DataPointer;joffset_1 = B_1.Stride[0];BB_2 = B_2.DataPointer;joffset_2 = B_2.Stride[0];BB_3 = B_3.DataPointer;joffset_3 = B_3.Stride[0];do {auto int j = 0;do {auto int k = 2;koffset_0 = j * A.Stride[1] * A.Size[0];koffset_1 = j * B_1.Stride[1] * B_1.Size[0];koffset_2 = j * B_2.Stride[1] * B_2.Size[0];koffset_3 = j * B_3.Stride[1] * B_3.Size[0];for (; (k < ksize_1); k += 1)AA[i * joffset_0 + koffset_0] =BB_1[k * joffset_1 + koffset_1] +BB_2[(1 + k) * joffset_2 + koffset_2] +BB_3[((-1) + k) * joffset_3 + koffset_3];j += 1;} while (j < jsize);i += 1;} while (i < isize);iter += 1;} while (iter < cntmax); Figure 5: Test code 2|EET 2D 3pt stencilstencil computation. This test code has the same characteristics of the code used inthe previous section. The main di�erence is that the minimal fraction of reuse, presentin a stencil-like code, is now absent, since every operand is di�erent from each other.In our benchmarking approach we evaluate the performance of binary operators againstexpression templates and C++, increasing the number of operands. Again the caveatregarding binary operators and cache residency is applicable.8.1 Measurements and ResultsFrom Figure 12 one can see that cycles for binary operators have a slope that is linear withthe number of operands. As discussed in the previous section, extra memory referencesare the reason for the behavior of the binary operators as shown by the surfaces for loadsand stores in Figure 13. The comparison of binary operators with C++ code has two mainparts. A �rst part in which the C++ code can use registers to avoid unnecessary memoryreferences. A second part in which, after spilling registers C++ and binary operators haveroughly the same slope. The volume between the two surfaces is due to the extra stores and11
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Figure 6: Measured cycles for an EET multidimensional stencilloads as can be seen in Figure 13. The comparison with expression templates has again twomain parts. The �rst one similarly to the C++ case is in favour of expression templatesthat manages to better use registers to avoid extra memory references. However, in thesecond part, once registers are spilled binary operators performs better than expressiontemplates. As can be observed from Figure 13, an excess number of loads is the reason forthe di�erence in performance. Notice that while C++ code and expression templates arespilling registers for some number of operands, binary operators never incurr this type ofproblem.9 ConclusionsWe have shown that artifacts of ET implementation lead to demand on registers greaterthan that of C code with consequent performance penalties. In doing so we have attemptedto de�ne in general terms the parameter spaces of array statements and their perfromanceon the Origin 2000, a single machine but a critically important one for ASCI work at LANL.Having so clearly related the performance data to the number of registers in the machinewe expect that such results can be parameterized by the number of registers of any machinewith predictable results. To the best of our knowledge this is the �rst such in-depth studyand analysis of performace issues of optimization mechanisms for object-oriented arrayclass libraries to date, encompassing expression templates, binary operators, and C codeas might be hand written or produced using alternative optimization mechanisms such assource-to-source transformation tools.We do not claim that the defects of ET implementation are intrinsic to the technique,but they certainly are present in all state-of-the-art implementations of which we areaware. In any case the results of this work have already stimulated closer examinationof the potential of ET techniques to achieve C performance, in both one of the author's12



// C++for( int iter=0; iter <cntmax ; iter++ )for( int i = 2; i < size-3; i++ ){A[i_1] = B_1[i] + B_2[i+1] + B_3[i-1];//Emulated Expression TemplatesArray<1> A(SizeArray);Array<1> B_1(SizeArray);Array<1> B_2(SizeArray);Array<1> B_3(SizeArray);for(int iter=0; iter < cntmax ; iter++ ){for(int i = 2; i < size-3; i++ ){A.DataPointer[A.offset(i)] = B_1.expand(i) + B_2.expand(i+1) +B_3.expand(i-1);//KCC intermediate C representation for C++ caseauto int iter = 0;do {auto int i = 2;for (; (i < size); i += 1)A[i] = B_1[i]) + B_2[1 + i] + B_3[(-1) + i] + B_4[i] + B_5[1 + i];iter += 1;} while (iter < cntmax ); }Figure 7: Test code 3|C++ non-stencil computation
//KCC intermediate C representation for Emulated Expression Templatesauto int iter = 0;AA = A.DataPointer;offset_0 = A.Stride;BB_1 = B_1.DataPointer;offset_1 = B_1.Stride;BB_2 = B_2.DataPointer;offset_2 = B_2.Stride;BB_3 = B_3.DataPointer;do {auto int i = 2;for (; (i < size); i += 1)AA[i * offset_0] = BB_1[i * offset_1] + BB_2[(1 + i) * offset_2] + BB_3[((-1) + i) * offset_3];iter += 1;} while (iter < cntmax); }Figure 8: Test code 3|EET non-stencil computation
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Figure 9: Measured cycles, stencil vs. non-stencil
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(a) Memory loads, C++ and EET �
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(b) Memory stores, C++ and EETFigure 10: Register Spillage e�ects, stencil vs. non-stencil code
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// Emulated Binary Operators codefor( int iter = 0; iter < cntmax ; iter++ ){double* restrict T = new double[size];assert (T != NULL);for( int i = 2; i < size-3; i++ )T[i] = B[i] + B[i-1];if ( no_fu > 0 ) // disable loop fusionno_fu++;elsefor(int index = 0; index < size; index++)no_fu += T[index];for( int i = 2; i < size-3; i++ )T[i] += B[i-1];if ( no_fu > 0 ) // disable loop fusionno_fu++;elsefor(int index = 0; index < size; index++)no_fu += T[index];for( int i = 2; i < size-3; i++ ){A[i] = T[i]; }delete T;} Figure 11: Test code 4|Emulation of a 1D 3pt stencil with binary operators
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Figure 12: Cycles for C++, EET, and binary operators for stencil and non-stencil code
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(a) Loads. �
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(b) Store.Figure 13: Register Spillage e�ects in a non stencil code
for( int iter = 0; iter < cntmax ; iter++ ){double* restrict T = new double[size];assert (T != NULL);for( int i = 2; i < size-3; i++ )T[i] = B[i] + C[i];if ( no_fu > 0 ) // disable loop fusionno_fu++;elsefor(int index = 0; index < size; index++)no_fu += T[index];for( int i = 2; i < size-3; i++ )T[i] += D[i];if ( no_fu > 0 ) // disable loop fusionno_fu++;elsefor(int index = 0; index < size; index++)no_fu += T[index];for( int i = 2; i < size-3; i++ ){A[i] = T[i]; }delete T;} Figure 14: Test code 5|Non-stencil computation emulating binary operators
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number of �xed point 
oating point software iterationsoperands registers used registers used pipelining unrolled1 5 12 ON 42 8 16 ON 23 11 20 ON 24 12 22 ON 05 15 21 ON 06 11 17 ON 07 12 16 ON 08 14 19 ON 09 16 20 ON 010 15 18 ON 011 18 18 ON 012 19 17 ON 013 19 16 ON 014 21 16 ON 015 21 17 ON 016 21 18 ON 017 24 19 ON 018 24 20 ON 019 24 21 ON 020 26 22 ON 021 26 23 ON 026 26 18 ON 031 25 5 ON 036 OFF 0Table 3: Integer and 
oating point register demand and their impact on pipelining and unrolling(Quinlan) implementation (as an option in A++) and others'.As a transformation mechanism ETs are convenient in that the underlying templat-ing mechanism is part of the C++ language, remarkably powerful considering that thetemplating mechanism was not designed to provide for such complex transformations.On the other hand it is not readily programmable and only addresses single statementoptimizations (namely inlining of code and fusing binary operations into a single loop).Stretching the ET mechanism to include more than single statement fusion of binary op-erations seems to be problematic and forces various compromises which would not berequired with more powerful transformation mechanisms. Fundamentally it is macro-likemechanism and cannot be made to perform semantics-based analyses generally needed fornon-trivial optimization.We expect that future work using more powerful source-to-source transformations couldresult in a superior approach to achieving the desired performance. As such this paper isemphatically not a criticism of the use of object-oriented approaches to scienti�c numericalsoftware but a recomendation for more work at addressing its optimization through bothexisting and alternative mechanisms.References[1] David Brown, Geo� Chesshire, William Henshaw, and Dan Quinlan. Overture: Anobject-oriented software system for solving partial di�erential equations in serial and17
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