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ABSTRACT

We present our on-going work to develop techniques for spec-
ifying source code signatures of bug patterns. Specifically,
we discuss two approaches. The first approach directly an-
alyzes a program in the intermediate representation (IR)
of the ROSE compiler infrastructure using ROSE’s API.
The second analyzes the program using the BDDBDDB sys-
tem of Lam, Whaley, et al.. In this approach, we store
the IR produced by ROSE as a relational database, express
patterns as declarative inference rules on relations in the
language Datalog, and BDDBDDB implements the Datalog
programs using binary decision diagram (BDD) techniques.
Both approaches readily apply to large-scale applications,
since ROSE provides full type analysis, control flow, and
other available analysis information. In this paper, we pri-
marily consider bug patterns expressed with respect to the
structure of the source code or the control flow, or both.
More complex techniques to specify patterns that are func-
tions of data flow properties may be addressed by either of
the above approaches, but are not directly treated here.

Our BDDBDDB-based work includes explicit support for
expressing patterns on the use of the Message Passing In-
terface (MPI) in parallel distributed memory programs. We
show examples of this on-going work as well.

Categories and Subject Descriptors

D.1.3 [Software]: Concurrent Programming—parallel pro-
gramming, distributed programming; D.2.5 [Software En-
gineering]: Testing and Debugging—distributed debugging,
testing tools, tracing

1. INTRODUCTION

Modern large-scale parallel applications in scientific com-
puting, which often consist of a million or more lines of code
and must run on hundreds of thousands of processors, are
largely still written in serial languages, such as C, C++, and
Fortran, and parallelized using complex library abstractions,
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such as the Message Passing Interface (MPI). The complex-
ity of these codes, as well as the difficulty of testing and de-
bugging on full-scale runs, demand automated mechanisms
to address software quality concerns. These trends drive
much of our general interest in automated static bug detec-
tion and our specific interest in bug pattern specification.
We are actively pursuing this work within ROSE, an open
and extensible source-to-source compiler infrastructure for
developing a wide variety of customized analysis, transfor-
mation, and optimization tools |23} 26| 24]. ROSE currently
processes million-plus line C and C++ programs, with For-
tran 2003 support in progress. The main intermediate pro-
gram representation in ROSE is an abstract syntax tree
(AST) that preserves the detailed structure of the input
source (including source file position and comment infor-
mation), thereby enabling source-based tool builders to ac-
curately analyze and transform programs. In this paper, we
use ROSE as a basis for exploring bug pattern specification.
Specifically, we report on two approaches, so that they
may be contrasted. The first uses a direct pattern search
specified on the AST, written using the interfaces in ROSE’s
IR, called Sagelll. The second uses a declarative language,
Datalog, to query a database of relations built from ROSE’s
AST. The database stores basic structural facts about the
program, and the Datalog specification expresses a pattern
(i.e., a program analysis) as inference rules on those facts.
We process the Datalog queries are processed using the BD-
DBDDB system [18] [30], which implements the query using
binary decision diagram (BDD) techniques. Both mecha-
nisms use the ROSE compiler infrastructure as a basis, and
therefore essentially both operate on the same AST. How-
ever, they represent the specification of bug patterns differ-
ently from one other. In particular, the Datalog specification
operates through a single level indirection over the AST.
We describe this work by a series of anecdotal examples.
The first is a trivial example of a common bug pattern,
namely detecting a switch statement in C or C++ that does
not implement a default case (Section . This example is
taken from SAMATE [22], a catalog of common program-
ming errors. We show how to detect the switch-statement
bug both using ROSE directly and using Datalog, explain-
ing each approach in detail. Though our emphasis is not
on the performance of these approaches, we present a result
from processing a moderately sized 200K line code to make
it clear that our work applies to realistic applications.
The second and third examples appear in Section [3] and
are two non-trivial tests: searching for bugs related to static
constructor initialization in C++4, a famous source of porta-
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Listing 1: The switch-lacks-default bug.

int
main () {
int x =4,y =0;

// switch with default case
switch (x) {
case 0: y = 5; break;
case 1: y = 3; break;
case 2: y = 7; break;
default: y = —1;

}

// switch without default case
switch (x) {

case 0: y

case 1: y

case 2: y

}

return 0;

}
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bility bugs; and testing for null pointer dereferences in C or
C++. These are not implemented redundantly using both
proposed bug pattern specification approaches, but help il-
lustrate interesting aspects of each approach.

The final examples are MPI-specific tests implemented us-
ing only Datalog. Correctly using MPI can be daunting [10],
owing to the size of the MPI standard and the rich semantics
of MPI’s abstractions |20} 21]. To build the static checkers
for these examples, we implemented a library of Datalog
relations that capture MPI-specific abstractions, including
data types, constants, and calls. Though still evolving, this
library enables simple specification of MPI bug patterns.

2. FINDING SWITCHES THAT LACK DE-

FAULTS USING THE TWO APPROACHES

In this section, we use the two bug pattern specification
approaches to find switch statements in a C or C++ pro-
gram that do not have a 'default’ case. The two approaches
are as follows.

1. Direct search for a pattern in the AST. The ROSE
compiler infrastructure provides an interface to the
AST and tools to simplify the use of the AST for anal-
ysis. In this approach, we use only ROSE itself to
build tools for finding a particular pattern.

2. Declarative Datalog specification of a pattern in the
AST. We output the AST in the form of binary rela-
tions into a database, use Datalog to specify a pattern
search (i.e., program analysis) on the relations in the
database, and use BDDBDDB to implement the Data-
log program. Because the initial database is derived
from the AST, the Datalog query program essentially
uses an equivalent underlying program representation.
Datalog represents a layer of indirection that, in princi-
ple, removes the dependence on the ROSE API present
in the first approach.

Listing [I] shows an example of a switch statements with
and without ’default’ cases.
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Listing 2: A ROSE-based program to search for
switches lacking a default case.
#include "rose.h"

class visitorTraversal : public AstSimpleProcessing {
public:
virtual void visit (SgNodex n) {
SgSwitchStatements* s = isSgSwitchStatement (n);
if (s) {
SgStatementPtrList& cases =
s—>get_body ()—>get_statements ();
bool switch_has_default = false;

// ’default’ could be at any position in the list of cases.
SgStatementPtrList::iterator i = cases.begin();
while (i #cases.end () && !switch_has_default) {
if (isSgDefaultOptionStmt (xi))
switch_has_default = true;
++i;

if (!switch_has_default)
s—>get_startOfConstruct ()
—>display ("Error: switch without default case");

}
}
};

int main (int argc, chars* argv[]) {
SgProject* project = frontend (argc, argv);

// Build the traversal object
visitorTraversal exampleTraversal;

// Call the traversal starting at the project node of the AST
exampleTraversal.traverseInputFiles (project, preorder);

return 0;

2.1 Directly searching the AST

Directly searching the AST in ROSE for this bug is rela-
tively simple, but is ROSE-specific and particularly explicit.
Listing [2] is an example a ROSE-based program that imple-
ments a search for switches that lack a default case. Line
27 creates the AST, and the exampleTraversal object tra-
verses all nodes of the AST on line 33. The visit () method
defined at line 5 checks if a given node is a switch (lines 6-7),
and if so, searches through the list of its cases for a default
(lines 8-18). This program works on any size AST, including
a whole program AST as supported in ROSE |25].

We ran Listing[2Jon a 200 KLOC file taken from the ROSE
compiler itselff’| This file is automatically generated when
building ROSE. Rather surprisingly, our checker discovered
two violations (bugs). These bugs had existed in spite of
previously having always compiled ROSE with all possible
warnings enabled. Section [3] presents performance data for
this direct AST handling using both this test and the one
detailed in that section.

2.2 Specifying the bug using Datalog

Listing [4 shows the same test as Listing 2} but imple-
mented using Datalog. Datalog is a declarative language for
deductive databases, and is a subset of Prolog with better-

'ROSE_build/src/frontend /Sagelll/Cxx_Grammar.C



Listing 3: A simple Datalog program to find
switches lacking a default case. This example han-
dles most instances of the bug.
switch_with_default (s:node)
switch_with_default (s) :— \ 3
switchS (s, -, -), \
defaultS (d, -), \
parent (s, d).

switch_without_default (s:node) 8
switch_without_default (s) :— \
switchS (s, -, -), \

I'switch_with_default (s).

switch_without_default (S)? 13

defined termination within its specification. Statements in
Datalog are declarative inference rules; these rules are con-
verted into equivalent queries on a relational database matches
to the bug patterns are reported as violations. There is a
significant freedom as to how to express patterns in Datalog,

in this case the code could be just that shown in Listing 3] 23
To simplify the description we will explain the simpler case
first and then say why the actual test is required to be more
complex.

Listing [3| defines two rules. The first rule, on lines 1-5,
specifies a rule switch with_ default(s) for a statement s.
This rule evaluates to true on s if all of the following specific
tests pass:

e (Line 3) s is a switch statement. This particular bi-
nary relation, switchS(s,c,b), is precomputed from
the AST and stored in a database as ’true’ for all s,
¢, and b, such that s is a switch statement on condi-
tion ¢ and with a body (list of cases) b. Here, c and
b are specified as the special operator, _, which means
“don’t care” (at least 1).

e (Line 4) d is a default statement, also a precomputed
binary relation.

e (Line 5) d is a parent of s; specifically it is in the
structural chain of parents as defined recursively from
d to the root of the AST.

The second rule is that switch_without_default(s) is a
match if (all must pass):

o (Line 9) s is a switch statement.

e (Line 10) switch with_ default(s) (the first rule) is
not a match.

Lastly, switch_without_default(S)? on line 12 is the query
for all true instances of the rule.

These two rules taken together define the pattern which
can be used to search the database of relations built from the
AST. This technique is distinctly different from the direct
search of the AST from the previous bug pattern specifica-
tion technique; though with exactly same result. We have
found this approach to be simpler than the direct pattern
evaluation on the AST, though it takes a while for the use
of Datalog to become natural.

This completes the simple test for a switch without a de-
fault except for the corner case of a nested switch statement

Listing 4: Handling nested switches. We extend
Listing [3] to handle nested switch statements.
parent_noswitch( p:node, c:node )
parent_noswitch( p, ¢ ) :— \

IswitchS( p, *, * ), \

IswitchS( ¢, *, * ), \

se(p), se(c), \

parent( p, ¢ ).

anc_noswitch( a:node, c:node )

anc_noswitch( a, ¢ ) :— parent_noswitch( a, ¢ ).

anc-_noswitch( a, ¢ ) :— anc_noswitch( a, b ),
parent_noswitch( b, ¢ ).

switch_with_default( s:node )

switch_with_default( s ) :—\
switchS( s, -, - ), \
defaultS( d, - ), \
parent( s, ¢ ), \
anc_noswitch( ¢, d ).

switch_without_default( s:node )

switch_without_default( s ) :— \
switchS('s, -, - ), \
I'switch_with_default( s ).

switch_without_default( S )?

with a default inside of the switch statement not having a
default. To address this complexity, we augment Listing
with additional rules to avoid such a false negative as would
otherwise be generated (because a default would be found
but not matched properly to the correct switch). The com-
plete, and a bit more complex, example is shown in List-
ing E[ However, Listing E| could be made to be as simple
as Listing [3] with additional work in, for example, defining
the initial database of binary relations. Just as in most pro-
gramming languages there are a lot of ways to implement
the same idea in Datalog.

What is not shown are the numerous boolean relations
that are computed to support this query and which are spe-
cific to the AST generated for any target application. The
relations are general and numerous, and not specific to this
query. All relations are computed as binary relations from
an automated analysis of the AST. It is not clear how many
relations are required for general queries, and our experience
has been that while numerous queries can be built using a
standard set of precomputed relations from the AST, a num-
ber of more complex Datalog queries have driven us to re-
visit what relations are required and add new precomputed
relations. The performance of the Datalog queries are also
dependent upon the number of relations computed and in
ways that are rarely obvious due to the nature of the BDDs
how they are combined. While simple and declarative, Dat-
alog has caused us to frequently reevaluate what standard
relations should be computed. We expect this to settle down
over time as the approach and its use in ROSE matures. For
these reasons, it is still difficult to evaluate this technique.

3. MORE BUG PATTERN EXAMPLES

This section describes more interesting examples of bug
patterns and their specification in the two approaches. We
implement two specific tests. The first tests C+-+-specific
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Listing 5: Detecting static constructor initialization.
(Boiler-plate traversal code omitted.)
void Traversal:: visit (SgNodex n) {
SgVariableDeclarationx v = isSgVariableDeclaration (n);
i (v) {
// For each variable i’ in declaration v’...
SglInitializedNamePtrList::iterator i =
v—>get_variables ().begin ();
while (i #v—>get_variables ().end ()) {
SglInitializedNamex name = xi;
// Check for a class type (strip typedefs).
SgTypex type = name—>get_type ();

SgClassType *class_type = isSgClassType (type—>strip ());

if (class_type) {

// Check for a global variable or a static class member.

SgScopeStatements* scope = v—>get_scope ();

if (isSgGlobal (scope)

|| (isSgClassDefinition (scope)
&& v—>get_declarationModifier()
.get_storageModifier()
.isStatic()))
print_position (v);

++i; // Next variable in declaration...

bug that effects the portability of applications between com-
pilers. The second tests null pointer dereferences, which are
common in Java, C, and C++ applications.

3.1 Directly using the AST to detection of static
constructor initialization

Listing [5] demonstrates the search for static data mem-
bers of a class type. Since the order of static initialization is
compiler dependent, the use of static data members leads to
constructors being called in different and unpredictable or-
ders and often causes many subtle bugs in large scale appli-
cations used across different compilers. It is the experience
in large scale numerical codes that they are worth while to
eliminate, or at least clearly locate their use. However, they
are difficult to locate in large scale codes because they are
not part of the explicit control flow (the compiler calls them
before executing main, so they are called implicitly) and
have type names that are the same as existing types caus-
ing declarations of them to appear as normal data member
declarations making them difficult to find using regular ex-
pressions. CPP macro handling can also make them more
difficult to identify. For these reasons such static data mem-
ber initialization is particularly difficult to locate and elim-
inate; worse yet then can continuously creep back into the
application code unexpectedly. We present the specification
of this pattern using the direct AST approach, this pattern
is part of infrequent use on a number of large scale C++
applications at LLNL.

We ran Listing [f]and the simpler switch-lacks-default test
from Section Listing 2] on a 200K line single C++ file
(one of the larger automatically generated files from ROSE
itself). The performance of the compilation and test was
just under 60 seconds, and the time of both tests were 1.5
seconds each. The compilation of both ROSE and the bug
pattern test codes were unoptimized, and included internal
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Listing 6: Null pointer dereferences.
int main () {
int* x_pointer;
struct { int a; } xy_pointer;
int (xfunction_ptr) ();

xx_pointer = 7; // Normal deref through null
y-pointer—>a = 42; // Member access through null
function_ptr (); // Function call through null

return 0;

debugging, but the performance of the traversal over the
two million IR node AST was at a rate of 135K lines of code
per second. Ultimately numerous tests will be required and
traversals for each test may be impractical in the context of
performing hundreds of tests. We expect significant efficien-
cies will come from combining tests so that the AST can be
traversed in memory less frequently. Our demonstration of
such simple tests on such a large single file is intended to re-
flect the size of AST that is formed from the whole program
analysis capabilities within ROSE, which merges the ASTs
from multiple files in a large project to form a single AST
held in memory, with a size of 400 megabytes per million
lines of code [25]. Performance results of the much newer
Datalog based tests are however currently unavailable.

3.2 Datalog example

This example code demonstrates a test for the dereferenc-
ing of a null pointer. Any use of the pointer is considered a
pointer dereference (e.g. normal variable dereference, func-
tion call from pointer to function, data member access from
pointer to struct, etc.). A pointer is assumed to be null if,
after its declaration, it has not be explicitly initialized at
some point in the control flow upstream of its use. Listing[f]
shows an example of a few types of null pointer dereferences.

Checking for null pointer dereferences is a large research
area and we do not presume to handle all cases. Recent work
has shown a number types of null pointer dereference bug
just in Java [15, |16], and there are likely even more within
C and C++. Here, we present a null dereference checker to
show an example of combined analysis of the AST structure
and the program’s control flow.

Listing [7] shows a Datalog program to specify a test for
a number of types of null pointer dereferences. It is a bug
pattern specification on the control flow and the AST; a cor-
responding example expressed using the AST directly would
have been significantly more complex and has not been at-
tempted. To support this test, additional relations were
generated to build a more sophisticated database of precom-
puted relations for the Datalog queries. We believe that a
large set of binary relations will at some point become clear
and that these will become sufficient to express a wide range
of Datalog queries without requiring additional relations to
be defined as was required in this case. The current release
of ROSE includes the internal tools for defining additional
relations.

4. DETECTING BUGS IN MPI USAGE

We have implemented a library of Datalog relations, pre-
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Listing 7: Datalog to check for null pointer derefer-
ences.

.include common

# ’n’ is a potential null dereference
null_deref ( n:node )

# Expression ’e’ is a pointer
ptr_exp( e:node )

# Expression e’ may be null
maybe_null_e( e:node )

# Variable v’ may be null at target node ’t’
maybe_null_var( vinode, t:node )

# Path from ’s’ to ’t’ without ’v’ in a conditional
cfg_path_nocheck( s:node, si:number,
t:node, ti:number, v:node )

# Symbol ’v’ is used in node ’c’
symbol_used( v:node, c:node )

=== Define the above rules ===
ptrexp( e ) :— expType( e, t ), ptrT(t, - ).

maybe_null_e( e ) :— ptr_exp(e), callE( e, - ).
maybe_null_e( e ) :— maybe_null_e(s), castE(e,s).
maybe null e( e ) :—

ptrexp(e), varE(e,v), maybe_null_var(v,e).
maybe_null_e( e ) :—

ptr_exp(e), addE(e,l,_), maybe null_e(l).
maybe_null_e( e ) :—

ptr_exp(e), anyAssignE(e,_,r), maybe_null_e(r).

maybe_null_var( v, t ) :—\

anyAssignE(t,1,r), varE(l,v), maybe_null_e(r).
maybe_null_var( v, t ) :(—\

maybe_null_var( v, s ), \

cfg_path_nocheck( s, 0, t, 0, v).

cfg_path_nocheck( s, si, t, ti, - ) :— s=t, si=ti.
cfg_path_nocheck( s, si, t, ti, - ) :—
cfgNext( s, si, t, ti ).
cfg_path_nocheck( s, si, t, ti, v ) :—\
cfgNext( s, si, m, mi), \
VIfS (m %, ,%), \
cfg_path_nocheck( m, mi, t, ti, v ).
cfg_path_nocheck( s, si, t, ti, v ) :—\
cfgNext( s, si, m, mi), \
ifS(m,c,,,,), \
Isymbol_used( v, ¢ ), \
cfg_path_nocheck( m, mi, t, ti, v ).

symbol_used( v, c ) :—\
varE( e, v ), \
anc( ¢, e ).

null deref ( n ) :—

maybe_null_e(e), ptrDerefE( m, e ), parent( n, m ).
null_deref ( n ) :—

maybe_null_e(e), arraySubscriptE( m, e, _ ), parent( n, m ).
null_deref ( n ) :—

maybe_null_e(e), arrowE( m, e, - ), parent( n, m ).

null_deref ( N )?

Listing 8: Mismatched buffer types in an MPI call.
#include <mpi.h>

void send-bufs (intx ibuf, charx cbuf, int d, int n) {
int p; // My rank
int np; // Total no. of procs.
MPI_Comm_rank (MPI.COMM_WORLD, &p);
MPI_Comm size (MPI.COMM_WORLD, &np);

// Send int buf to left neighbor (ok).
MPI_Send (ibuf + d, n, MPLINT,
(p+np—1) % np, 1001, MPI_.COMM_WORLD);

// Send char buf to right neighbor (error).
MPI_Send (cbuf + d, n, MPILINT,
(p+1) % np, 1002, MPI.COMM_WORLD);

computed from the AST, to support statically checking MPI
usage. These relations represent MPI data types, constants,
and calls. In this section, we discuss two examples of simple
MPI checkers, one that checks MPI buffer types (a structural
AST test), and another that extends the null-dereference ex-
ample for MPI buffers.

Listing |8 shows an example of an MPI buffer type mis-
match error. The C-binding of MPI_Send is:

int MPI_Send (voidx buf, int count,
MPI_Datatype buf_elem_type,
int dest, int tag, MPI_Comm comm);

where buf_elem_type specifies the type of each element of
buf, passed to MPI_Send through a void pointer. Listing
line 14, sends a char buffer but incorrectly specifies the type
as MPI_INT instead of MPI_CHAR.

The Datalog program in Listing [J] catches this bug. We
provide precomputed relations for MPI data types, such as
mpilInt(t), which indicates a use of the constant, MPI_INT.
Moreover, we provide relations for MPI calls and their ar-
guments. For instance, the relation, mpiCall(c), shown on
line 15, is true if the function call ¢ corresponds to any MPI
call; alternatively, we can test for specific calls using rela-
tions such as, mpiSend(c), mpiIsend(c), mpiRecv(c), and
so on. We can “extract” parameters to calls, such as the
buffer argument (mpiArgBuf) or the buffer element type ar-
gument (mpiArgBufT). These relations can easily be derived
from more basic AST relations; however, providing a library
of higher-level relations that map directly is convenient and
suggests the overall extensibility of the Datalog approach.

As a second example, we can easily extend the null deref-
erence checkers in Listing[7] with a single additional inference
rule to check for null MPI buffers:

null_deref (n) :— maybe_null_e (e), \
mpiCall (n), mpiArgBuf (e, n).

We are currently building checkers for a variety of MPI us-
age errors, including the use of uninitialized buffers, non-
blocking operations without matching waits, and barriers
and other collectives not called on all paths, among others.

S. RELATED WORK

Many commercial static analysis tools (2| |1} 4] 3], with at
least 30 companies active in this area. Most are based on
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Listing 9: Datalog to check MPI buffer types.
.include common

# Primitive C type ’p’ does NOT match the MPI type "t’.
mpi_type_mismatch (p:node, t:node)

mpi_type_mismatch (p, t) :— lintT (p), mpilnt (t).
mpi_type_mismatch (p, t) :— !floatT (p), mpiFloat (t).

# ... etc.

# MPI call ’c’ has a buffer type mismatch.

# E.g.,: charx buf = ..
# MPI_Send (buf, count, MPI_INT, dest, tag, comm);

mpi_buftype_mismatch (c:node)
mpi_buftype_mismatch (c) :— \
mpiCall (c), \
mpiArgBuf (b, c¢), expType (b, s), ptrT (s, p), \
mpiArgBufT (t, c), \
mpi_type_mismatch (p, t).

mpi-buftype_mismatch (C)?

a parser technology and marginally handle the type analy-
sis required to support C++ fully, for instance, when over-
loaded functions must be resolved using the complex type
evaluation rules in C++. Coverity and GrammaTech prod-
ucts are the only analysis tools we know of that are based
on a full compiler front-end technology, with both using the
Edison Design Group front-end (EDG) internally, just as
ROSE does. Neither Coverity nor GrammaTech, to our
knowledge, make the internal AST fully available for user-
defined queries, though both permit limited degrees of bug
pattern specification. The details of these interfaces are
only available to customers and unavailable to us currently.
Both of these products and others are quite widely used and
our work does not compete with such commercial products.
In contrast, our focus has been on the expression of user-
defined bug patterns.

The BDDBDDB project has used their own work for both
general program analysis (including an impressive pointer
analysis demonstrated on a million lines of Java code) and
recognition of general patterns in Java code [18] [30]. The
Java specific work is not made available, where as BDDBDDB
is an open source project. Because we use BDDBDDB, our
work is related to theirs, though we are also keenly interested
in C and C++.

Recognition of language specific source code patterns places
special constraints on a compiler infrastructure, and few
handle these details. Such a compiler infrastructure must
save everything about the structure of the source code, and
thus must handle language-specific details. In general, most
compiler infrastructures target binary executables and so ig-
nore and lose much of the source information. The internal
ASTs from such compilers infrastructure include normaliza-
tion or lowering that lose fundamental information about
the original source code and these can cause false positives
or false negatives when matching against user specified bug
patterns. Both SUIF [8] and Open64 [5] are substantial and
respected open compiler infrastructures, but have interme-
diate representations which lose high level C++ constructs.
OpenC++ [6] is an older compiler infrastructure (specific
to C++), but lacks support for templates; as substantial
limitation for use on modern C++ applications. Pivot [7]

is a newer compiler infrastructure specifically for C++ and
focused on source to source, it used EDG and is being de-
veloped by Stroustrup and others at Texas A&M to support
experimental language research on C++0x (the next C++
standard) and a wide range of other work. Pivot is the
closest compiler infrastructure to ROSE, that we know of,
both in philosophy and design, both also use the same EDG
front-end and share some internal collaboration, they have
a high level IR design, even though the goals for each are
subtly different and this results in numerous subtle issues
being handled differently.

One of our goals is to support abstractions like MPI rel-
evant to large-scale high-performance scientific computing.
Indeed, a few such tools exist already. Several focus on
dynamic error detection, including MPI-CHECK [19], Um-
pire [28], MARMOT [17], the Intel Message Checker [10],
and our own work on JITTERBUG [29).

MPI-CHECK statically locates certain classes of MPI er-
rors [19]. However, many other kinds of errors require deeper
program analysis and detailed knowledge of the semantics
of MPI to find many other kinds of MPI errors statically.
For example, the control-flow of typical MPI programs de-
pends on the unique rank of the process; this information
could be used to help match calls, such as sends and re-
ceives, barriers or other collectives. Conversely, we could
find errors due to improper or non-existing call matchings.
Dependence analysis could trace the flow of data that passes
through MPI, and thereby check for common buffer errors
in MPI programs, such as buffer overruns, reading from a
receive buffer before a non-blocking receive completes, and
using unitialized buffers, among others [10]. Other analy-
sis and model checking approaches could be used to verify
temporal usage properties (e.g., non-blocking sends followed
by waits), similar to recent work for 1/O, operating system
kernel, and threading library abstractions |11 (9].

MPI-SPIN uses powerful model checking techniques to
verify MPI programs [27], and has been applied to finding
actual bugs in a widely-used textbook on MPI [12]. The
examples we consider in this paper check lighter-weight pro-
gram properties. However, our general work in ROSE is
synergistic with the MPI-SPIN or other model checking ef-
forts in the sense that we can provide the accurate repre-
sentations of the source code used to drive and derive input
models for the model checkers.

Other existing tools pattern-based tools could be extended
to support MPI as well, including those proposed by Farchi,
et al., in the context of code reviews [13], and frameworks
like FINDBUGS for general programs |14]. FINDBUGS is par-
ticularly aligned with the goals of the examples of our paper,
with the focus of our paper on the mechanics of specifying
the patterns themselves.

6. CONCLUSIONS AND FUTURE WORK

The specification of source code patterns form a basis for
how numerous sorts of bugs can be identified in real code
and how users can be expected to tailor domain-specific bug
finders for their applications. The complexity of the process
is critical to allowing users a mechanism to simply specify
their own custom bug patterns.

This paper discusses two approaches: first, a direct ac-
cess of the AST using ROSE dependent mechanisms, data
structures, traversals; and secondly, a using Datalog form-
ing a compiler infrastructure independent approach using



precomputed relations taken from the AST. The experience
with the direct use of the AST, has been that it can be te-
dious and requires a moderate understanding the the AST
interfaces to implement. In contrast, the use of Datalog re-
sults in a significantly simpler declarative specification, but
in a language that may be unfamiliar to many users. Impor-
tantly, for there to be standards for bug patterns we seek a
compiler infrastructure independent technique and this is an
additional attractiveness of the Datalog approach. Clearly
this would require a standard set of binary relations to be
defined. Furthermore we believe that the bug pattern speci-
fications may be more useful than for just driving the search
for bugs in source code. For example, using the specifica-
tions to drive in introduction of bugs in arbitrary codes (bug
seeding) may permit the automated evaluation the effective-
ness of commercial and open source bug finding tools.

The Datalog approach is attractive due to its simple declar-
ative nature, but Datalog is a foreign language to most users,
so it is not clear how attractive it would be for end-user bug
pattern specification. Our use of Datalog for building MPI
checkers relies on additional precomputed relations, and we
expect libraries of relations to grow over time. Toward that
end, the ROSE-BDDBDDB work includes specialized tools for
building relations from AST traversals, though these are not
discussed in this paper.

The work on BDDBDDB includes the development of a spec-
ification language, PQL, based on the concrete syntax of
Java, and it is likely that this approach would work well for
C, C++, and other languages.

We mention anecdotal performance results in Section
for the direct approach on a moderately-sized (200 KLOC,
2 million IR node) example. In future work, we will carry
out much more extensive performance comparisons of the
direct AST handling to the Datalog representation (these
result were unavailable for this paper).

Looking forward, we plan to extend our work and ex-
periments not just to source pattern analysis, but also to
binaries. Recent work in ROSE to include binary analysis,
specifically the disassembled instruction sequence represen-
tation of a binary in an AST form will permit these identical
techniques to be applied to pattern matching of instructions
on the binary. Significant forms of binary analysis consist
of the identification and synthesis of subtle patterns of in-
structions; these approaches may be significant in this future
work.
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