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ABSTRACT

Although unstructured mesh algorithms are a popular means
of solving problems across a broad range of disciplines—from
texture mapping to computational fluid dynamics—they are
often dominated not by computation, but by mesh overhead.
Our study of an object-oriented mesh-based benchmark re-
veals that 72% of its execution time is spent on mesh-related
operations, such as iterating over faces or chasing pointers.
We report a series of optimizations—some traditional, some
novel—that dramatically improve the benchmark’s compu-
tational intensity—the ratio of floating point operations to
memory accesses. This improvement is attributable to an
eight-fold reduction in memory operations and results in a
4.7x speedup in execution time.

Our work demonstrates that common subexpression elim-
ination and code motion are important optimizations for
mesh-based codes. However, conservative analysis prevents
their application. We discuss these barriers to analysis and
argue that an understanding of mesh semantics complements
more traditional analyses, such as pointer alias analysis, and
certifies the correctness of these optimizations. Our identifi-
cation of overheads in mesh-based codes, optimizations that
address them, and limitations of current compiler analyses
are required for our eventual goal of automating these opti-
mizations in a semantics-aware compiler.

1. INTRODUCTION

The flexibility of unstructured meshes, or unstructured
grids, is reflected in their application across a wide cross-
section of important scientific challenges: meshes facilitate
the study of gravitational collapse to black holes and are used
to simulate blood flowing through the heart. Even within a
narrow domain, mesh solvers can be parameterized accord-
ing to equation (e.g., Navier-Stokes or Euler); assumptions
(e.g., the ideal gas law or van der Waals equation of state);
and fluid (e.g., water or a monatomic gas).

Leveraging this flexibility to provide a problem-
independent framework that can be reused across physical
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simulations requires a code base that is generic, modular,
and extensible to the specifics of the domain in terms of
mesh structure, boundary conditions, operators, and physical
quantities represented as fields. Any general framework in-
tended to encompass such an extensive application space will
be large: even the simplified KOLAH mesh framework, studied
in this work as a representative of libraries used in Lawrence
Livermore National Laboratory’s more extensive production
codes, has 282 files and 68,000 lines of code. These consid-
erations are best addressed by an object-oriented design and
implementation.

With their heavy use of indirect addressing and pointer
chasing, unstructured grid codes are highly sensitive to mem-
ory performance [10]. Unlike structured grids, which use
a regular spatial decomposition that is easily traversed by
a stencil, unstructured grids employ an irregular mesh to
cover a volume using geometric mesh entities, including faces,
edges, and nodes. Object-oriented implementations exacer-
bate poor memory performance through the additional in-
direction induced by object-based indexing of fields, such as
momentum and pressure: where an imperative approach uses
a for loop with an integer induction variable to access an ar-
ray, these codes dereference mesh entity iterators and then
use the entity to index into field abstractions.

The resulting mesh overhead is significant. A hydro-
dynamic simulation within the KOLAH framework executes
nearly one and a half branches per floating point instruc-
tions and nine times as many loads. In contrast, mesh, an
unstructured grid benchmark written in C and popular in the
literature [7], has a relatively high computational intensity:
nearly one floating point instruction per memory access and
100 floating point instructions per branch.

Table 1 shows the execution-time distribution of a bench-
mark built within the KOLAH framework. We group
statements into three categories—mesh, memory, and
computation—decomposing compound statements as re-
quired. Computation statements are arithmetic operations
on local variables. Memory statements access operands for
computation statements or write their results to memory.
Mesh statements represent mesh-related overhead: iteration,
iterator dereferencing, and pointer chasing. The table shows
that mesh overhead dominates KOLAH’s execution time: 72%
of time is dedicated to mesh-related operations, while com-
putation consumes only 13%.

This significant overhead may seem surprising given the ef-
ficiency of STL and similar libraries that are the foundations
of KOLAH. Though the implementation of underlying abstrac-
tions is highly tuned, optimizing across library invocations



Percent of

Statement Type Execution Time

Mesh 2%
Memory 15 %
Computation 13 %

Table 1: Distribution of execution time.

requires contextual information unavailable during library
development. Even after inlining abstractions to view this
context, compiler analysis is often too conservative to certify
the safety of many relevant optimizations, such as loop fu-
sion [21]. Our remedy is not to pursue more sophisticated
pointer alias analysis, but to exploit higher-level, expressive
semantic information. High-level knowledge of an iterator,
for example, can transform it from an unintelligible collec-
tion of pointers to a well-defined abstraction with specific
semantics that complement traditional, fine-grained analy-
sis [28].

We leverage the following semantics of unstructured grids
in general, and KOLAH in particular, to manually introduce
safe optimizations that ameliorate mesh-induced overhead:

e Object-based field indexing is side-effect free and
context-insensitive;

e Mesh iterators do not revisit elements;

e The mesh is static.

The third semantic assumption can be relaxed, as discussed
in Section 6.

We exploit these features to improve the computational
intensity of a KOLAH-based benchmark. When applied on a
POWERS3, our optimizations provided a 6.5x reduction in
the ratio of memory accesses to floating point operations,
yielding a ratio of 2.1, and a nearly 5.4x reduction in the
ratio of branches to floating point operations. We achieve a
3.6x improvement in Mflips or millions of floating point in-
structions plus fused multiply-adds per second. These factors
contribute to an overall 4.7x speedup in total execution time
with respect to the KCC front-end compiler used in tandem
with IBM’s x1c compiler. These results are not particular
to this system or compiler: the same optimizations achieve a
4.9x speedup over the baseline when both are compiled with
gcc 3.3.3 -03 on a Pentium 4.

A compiler armed with semantic knowledge of meshes
could attain similar performance results. With respect to our
ultimate goal of automatically introducing semantics-aware
optimizations within the ROSE compiler framework [21], this
paper makes several significant contributions.

Quantifying mesh overhead in a representative un-
structured grid library. Given our experience with un-
structured grid technology, we believe that KOLAH is not ex-
ceptional in its high ratio of mesh overhead to computation,
but is an exemplar of object-oriented mesh-based libraries.

Identifying barriers to compiler optimization. The
pointer-rich abstractions used in meshes present barriers to
compiler analysis. Section 3 discusses how semantic knowl-
edge overcomes these barriers and enables automation of op-
timizations targeting mesh overheads.

Identifying traditional compiler optimizations im-
portant to mesh-based codes. Section 5 shows that two
well-known optimizations—code motion of conditionals and
common subexpression elimination—provide a 46% perfor-
mance improvement. Identifying those traditional optimiza-
tions most likely to impact unstructured grids allows us to

Figure 1: Mesh entities: corner (left) and side (right) within
a zone.

determine how best to complement existing analysis within
a compiler.

Introducing novel optimizations. Our observed mesh
overheads motivate a series of novel optimizations that im-
prove computational intensity and overall performance:

o Mesh precomputation: Physical quantities, such as vol-
umes, change every time step, but mesh connectivity
information, such as the list of mesh edges, does not.
Computing these static quantities once during appli-
cation setup and storing them for subsequent access
relieves the code from recomputing them at each time
step, and results in an additional 19% reduction in ex-
ecution time, as shown in Section 6.1.

Iteration-space narrowing: Section 6.2 proposes a tech-
nique to extract side-effect free function calls from a
loop if they are executed repeatedly with the same in-
puts. Embedding them in a new iteration space that
avoids this repetition results in a 2x performance im-
provement.

Iteration-space partitioning and loop specialization:
Many static mesh properties, such as an edge’s near-
est neighbors, are frequently evaluated in condition-
als. Section 7.2 shows that by partitioning an iteration
space according to each element’s response to such a
conditional, we can create partially evaluated versions
of a loop without the conditional that iterate over a
subset of the original iteration space. The outcome of
the conditional is implied by the partitioned iteration
space without being explicitly evaluated.

Packing order confliction resolution: The ordering in-
duced by data packing prevents iteration-space parti-
tioning and loop specialization. We believe we are the
first to address conflicting order preferences. In so do-
ing, we obtain the benefits of both optimizations—a
reduction in dynamic instructions and a lower average
load latency—for an additional 14% improvement.

2. A MESH FRAMEWORK

The versatility and scientific importance of meshes have
spurred development of libraries that encapsulate their ab-
stractions [4, 20]. These libraries manage connectivity infor-
mation between the mesh entities that discretize a volume.
They provide interfaces to traverse mesh entities and to ac-
cess data stored in fields, which sample continuous physical
quantities at discrete points corresponding to mesh entities.

KOLAH is a framework that provides such functionality to fa-
cilitate benchmarking numerical methods on arbitrary polyg-
onal and polyhedral meshes. Its design was motivated by the
classes and patterns used in production codes at Lawrence
Livermore National Laboratory. It relies upon a generic mesh
interface and provides reference mesh implementations along
with a variety of mesh utility functions. testhydro is a



for(ZoneIlterator zi = mesh.zoneBegin();

zi != mesh.zoneEnd(); ++zi)
{
double tmp = P[*zi] * div[*zi] * zi->volume()
- zoneHeating[*zi];
e[*zi] = e[*zi] - dt * tmp / mass[*zi];
}

Figure 2: Iteration over zones.

benchmark using these facilities to solve the Euler equations
using the Lagrangian method and an ideal gas law equation
of state.

Numerical algorithms are written to KOLAH’s generic mesh
interface, enabling underlying mesh implementations to be
evaluated without rewriting the algorithm for each mesh in-
stance. KOLAH interprets a variety of input mesh specifica-
tions, representing each as a class. After reading the input
mesh, a compatibility layer converts and copies data from the
underlying mesh implementation to a common mesh form.

The generic polyhedral mesh interface provides geometric
mesh entities including zones, sides, faces, corners, edges, and
nodes. To provide an intuitive understanding of mesh enti-
ties, Figure 1 shows a zone as it would appear in a rectilinear
mesh, along with a representative corner and side. In general,
a zone is a three-dimensional subvolume used to partition the
volume discretized by the mesh; it needn’t be a cube. A zone
volume is itself subdivided into three-dimensional corners. A
corner corresponds to each zone node and also has as vertices
the zone center, the face centers of all faces containing the
node, and the edge centers of all edges containing the node. A
zone volume may also be subdivided into three-dimensional
sides, whose vertices are the zone center, a face center, and
two nodes of an edge lying in that face. Finally, faces are
two-dimensional entities that cover a zone’s surface.

The mesh interface maintains connectivity information, al-
lowing accesses via STL-like iterators, as shown by the code
in Figure 2 which iterates over zones. Mesh entity abstrac-
tions provide similar iterator access to neighboring entities.
For example, given a node, one can iterate over all zones
containing it using data contained in the node object. This
fairly complete connectivity information provides great flexi-
bility in writing numerical algorithms. The figure also shows
the data access paradigm popular in KOLAH. It dereferences a
ZoneIterator to obtain a zone object and uses that object
to index a field, such as the pressure field P.

3. BARRIERS TO AUTOMATION

Because user-defined abstractions, such as STL-based it-
erators and mesh entities, are not part of the base language,
compilers do not recognize them and so are not aware of their
high-level properties. Instead compilers rely on a myopic ap-
proach that cobbles together alias and side-effect information
on those parts of the abstraction that are defined in the base
language. In some cases, this task is futile because source
code is not distributed with libraries implementing the ab-
stractions. When source code is available, a potentially costly
global analysis may be needed to examine both the use of the
abstractions and their implementation. Finally, without any
a priori understanding of abstractions, compiler analysis is
often too conservative to apply transformations to them.

The simple loop shown in Figure 2 displays both the need
for optimization in mesh-based applications and the inherent
difficulties a compiler faces in performing those optimiza-

tions. This section shows that traditional compiler analyses
are inadequate to determine the correctness of applying com-
mon subexpression elimination and iteration-space reorder-
ing to this loop. We discuss simple semantics of mesh ab-
stractions in general, rather than of KOLAH in particular, that
would enable these optimizations.

Though the repeated dereferences of the ZoneIterator in
the loop seem good candidates for common subexpression
elimination, x1c does not perform the optimization because it
can not determine that operator[] is side-effect free. getID,
one of the methods invoked during the object-based field ref-
erence, is neither declared inline nor implemented in the
header file; as such, it is bypassed by KCC’s aggressive in-
lining. Unable to inline operator[] completely, x1c cannot
analyze its implementation at the call site and must con-
servatively assume it generates side effects that potentially
modify the common subexpression *zi.

A number of remedies would enable common subexpres-
sion elimination. Moving the implementation of getID to
its header file would allow inlining and would overcome the
immediate barrier to applying the optimization. Annotating
getID’s prototype with a declaration that it is side-effect free
would have the same effect. However, these approaches are
intimately tied to the implementation of field addressing in
KOLAH. Other mesh libraries are likely to offer the same, side-
effect free style of access, but are unlikely to employ getID
in doing so; the tedious, iterative round of discovering and
annotating any functions which cannot be inlined will need
to be done anew for each application.

Our solution recognizes fields as an abstraction common
across mesh libraries. Doing so allows us to imbue them
with semantics that carry over from one implementation to
another: object-based indexing, the overloaded indexing of
a field with a mesh entity, is a side-effect free operation de-
pendent only on its mesh entity argument. This expressive
statement enables common subexpression elimination since
the compiler is confident nothing within the loop modifies
the ZoneIterator.'

Nested loops in testhydro access zones in a non-strided
manner. Packing the zones can mitigate the effects of such
accesses by rearranging their memory layout. Unfortunately,
reordering data to benefit nested loops leads to computa-
tional reordering of the loop in Figure 2. In order to re-
order this loop safely, a compiler must disambiguate the
loop’s pointers to guarantee that there are no loop-carried
dependences. Since alias analysis is unable to determine the
uniqueness of each element in the iteration space, the com-
piler must assume the iterator is non-trivial and may repeat-
edly access a zone to create a flow dependence on e. This de-
pendence prevents loop reordering. Fortunately, the simple
assertion that mesh iterators do not revisit elements ensures
there is no such dependence. These semantics complement
side-effect analysis, allowing it to determine that the loop
may be reordered.

4. METHODOLOGY AND BASELINE

To quantify the importance of the semantics outlined in
the introduction, we apply the optimizations they enable to
the computational core of the KOLAH-based hydrodynamics
benchmark testhydro. The results are reported as averages
over three runs of ten time steps and were collected using the

!Type-based alias analysis guarantees that the write to the
field does not modify the ZoneIterator.



Processor 375 MHz POWERS3-II

Integer Units 3
Floating-point Units 2
Peak TPC 8
Peak Floating-point TPC 4
Peak Mflops 1500
Registers 32
Data TLB 128 entries
Data TLB Associativity 128-way
L1 Data Cache Size 32 KB
L1 Tnstr Cache Size 32 KB
L1 Latency 1 cycle
L1 Line Size 128 B
L1 Associativity 128-way
L2 Size 8 MB
L2 Associativity 4-way
L2 Latency 7-10 cycles
Memory 16 GB
Memory Latency 20-50 cycles

Table 2: Hardware specification.

IBM HPM hardware performance monitor Tool Kit [5]. Due
to the duration of production runs, we do not account for ap-
plication, mesh, or optimization configuration time, which we
expect to be amortized over many time steps. We collected
the results while running on the dedicated POWERS3 node
described in Table 2 [25]. In addition to the architectural
features listed above, the POWERS3 implements a hardware-
based prefetch engine that detects sequential instruction and
data accesses and prefetches up to four streams simultane-
ously.

We compile testhydro with the KCC front-end optimizing
compiler, passing it the +K3 optimization flag to instruct it
to perform branch simplification, loop unrolling, small object
optimization, and function inlining. KCC produces intermedi-
ate C code that is compiled by IBM’s x1c back-end compiler.
We pass x1lc -02, as well as arch=pwr3 to enable POWERS3-
specific optimizations and ignerrno to allow the compiler to
emit the sqrt instruction. The input data set, ellipsoid, is
the largest provided with KOLAH, with 70K zones, 383K faces,
530K corners, 1.5M sides, 195K edges, and 66K nodes.

Tables 3 and 4 summarize the results. Table 3 lists the
results relative to the baseline run and Table 4 shows the
raw data as reported by the HPM Tool Kit. Each column
provides results with respect to the optimization it names.
Entries in Table 4 are counts reported in millions of instances,
except load latency, which is in cycles; memory stalls, which
is in millions of cycles; percent idle cycles, which is a percent-
age; elapsed time, which is in seconds; and computational
intensity, which is a ratio. In most cases, a reduction in the
metric reported indicates an improvement due to optimiza-
tion, such as with number of load instructions. In these cases,
the entries in Table 3 list the baseline result divided by the
optimized result. In the few cases in which an increase signals
an improvement (e.g., computational intensity), we instead
report the optimized result divided by the baseline. Thus,
any entry greater than one indicates that an optimization
provided some benefit to the respective metric.

The optimizations are generally applied serially, from left
to right across the table heading. This is not the case for
the three data and computation reordering optimizations:
data packing, iteration-space partitioning, and multiple-
constraint reordering. Because these are conflicting opti-
mizations, they are alternatives; we apply each on top of
the iteration-space narrowing optimization.
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for (Sidelterator sidelt = mesh->sides();
sideIt != NULL; ++sidelt)
{
// extract the edge from the side
Edgelterator edgelt = sideIt->edge();

// extract the nodes from this edge
NodelIterator nodellt = edgelt->nodel();
NodelIterator node2It = edgelt->node2();

// calculate change in position & sign
const Vector &S = sidelt->arealNormal();
Vector deltaX = nodelIt->position()

- node2It->position();
int sign = (S.dot(deltaX) < 0) 7 -1 : 1;

// calculate change in velocity
Vector deltaV = velocity[*nodelIt]
- velocity[*node2It];

rhol

= volumeWeightedAvg(zoneMass,nodellt);
rho2 =

volumeWeightedAvg (zoneMass,node2It);

Zonelterator zonelt = sideIt->zone();
soundSpeed = sqrt( inGamma * pressure [*zoneIt] /
max(rhol, rho2) );

map<int,<pair<int,int> >::iterator mapIt =
edgeMap .find (edgeIt->getID());

int leftEdgeIndex = (*mapIt).second.first;
if( leftEdgeIndex > -1 ) {

/] ...
}

// ... mem ops, method calls, sqrts, etc.

int signDotProd = sign * S.dot(deltaV);
if (signDotProd < 0.0) {

edgeForcing = doPhysics(deltaV, ...);
} else {

edgeForcing.Zero();

}

// write back the results
nodeForcing [*nodelIt] +=
nodeForcing [*node2It] -=

edgeForcing;
edgeForcing;

}

Figure 3: Iteration over sides.

Table 4 presents the baseline results. Notice the relative
paucity of floating point instructions: they constitute only
3% of the total instructions and are nearly 1.5 and 14 times
less plentiful than branches and memory operations, respec-
tively.

5. TRADITIONAL OPTIMIZATIONS

The following subsections describe optimizations well
known in compiler optimization lore, but inapplicable in
KOLAH for lack of sufficient analysis. In particular, the com-
piler is unable to perform code motion and common subex-
pression elimination because of its inability to guarantee that
object-based indexing does not produce side effects. With
our knowledge that this operation is side-effect free, we are
safely able to apply the optimizations manually.

5.1 Code Motion of Control Structures

The code fragment in Figure 3 calculates an artificial vis-
cosity and is one of several dominant loops in the testhydro



c ] COS";Eon Mesh Pre- Iteration- Data Iteration- Multipl_e-
. ode Motion . tation space Packin space constraint
Metric (Section 5.1) expression compu narrowing cng Partitioning Reordering
Elimination || (Section 6.1) (Section 6.2) (Section 7.1) (Section 7.2) || (Section 7.3)
(Section 5.2) : : .
Load instrs 1.13 1.62 2.15 6.62 6.62 8.37 7.46
L1 load misses 1.06 1.08 1.21 1.50 1.51 1.70 1.59
L2 misses 1.00 1.02 1.15 1.11 1.12 1.12 1.12
Load latency 0.98 0.78 0.70 0.39 0.44 0.28 0.41
Loads & stores 1.14 1.59 2.08 7.30 7.30 9.42 8.40
Useful prefetchest 1.01 0.97 0.76 1.37 1.80 0.74 1.68
Memory stalls 1.19 1.35 1.48 2.86 2.88 3.29 3.00
Branches 1.27 1.69 2.33 6.84 6.83 7.54 7.22
Mispredictions 2.18 1.86 3.96 4.86 4.73 5.18 4.69
Flips 1.10 1.07 1.05 1.30 1.30 1.37 1.29
Mflips/st 1.08 1.37 1.71 3.10 3.35 2.93 3.61
Instr completed 1.17 1.61 2.13 7.32 7.32 9.30 8.42
Comp intensityt 1.03 1.49 1.97 5.62 5.62 6.86 6.47
Elapsed time 1.19 1.46 1.80 4.02 4.34 4.01 4.67
Table 3: Reduction across metrics after optimization with respect to baseline. {In cases where an increase is desirable, the

entry represents the optimized result divided by the baseline result.

Common . . .
] Sub- Mesh Pre- Iteration- Data Iteration- Multlpl_e—
- Code Motion . . space - space constraint
. Baseline . expression computation . Packing A .
Metric - (Section 5.1) P . narrowing . Partitioning Reordering
(Section 4) Elimination || (Section 6.1) : (Section 7.1) : -
. (Section 6.2) (Section 7.2) || (Section 7.3)
(Section 5.2)

Load instrs 73065 64691 44999 34024 11033 11039 8728 9791
L1 load misses 885 832 821 733 592 587 519 558
L2 misses 348 346 342 303 314 310 310 310
Load latency 1.24 1.26 1.59 1.78 3.21 2.81 4.42 2.99
Loads & stores 110491 96909 69458 53194 15126 15129 11730 13156
Useful prefetches 83 84 81 63 114 149 61 139
Memory stalls 7856 6599 5829 5295 2745 2725 2389 2614
Branches 11581 9119 6843 4977 1693 1694 1536 1604
Mispredictions 585 268 315 148 120 124 113 125
Flips 8042 7314 7550 7652 6208 6207 5872 6211
Mflips/s 12.80 13.88 17.59 21.93 39.71 42.83 37.45 46.16
Instr completed 238519 204317 147905 111973 32598 32598 25651 28325
% idle cycles 51.98 52.01 56.76 59.79 75.24 73.40 80.38 75.16
Comp intensity 0.07 0.07 0.11 0.14 0.41 0.41 0.50 0.47
Elapsed time 628.40 526.79 429.21 348.99 156.35 144 .95 156.77 134.55
Table 4: Raw data. Entries are counts in millions, except load latency, which is in cycles; memory stalls, which is in millions

of cycles; percent idle cycles, which is a percentage; computational intensity, which is a ratio; and elapsed time, which is in

seconds.

time step. Careful inspection of this loop reveals that the
conditional of line 39 could be evaluated earlier. The argu-
ment to the conditional is evaluated at line 38, but the depen-
dences of that statement are computed by line 18. The ellip-
sis abstracts 23 intervening statements; these include mem-
ory accesses, another conditional, method invocations, and
long-latency square root instructions. Lifting the conditional
and its dependent instructions, such that they are evaluated
as early as is feasible, avoids the unnecessary execution of
the independent instructions when the condition is false.

In order to lift the conditional so that it follows
line 18, compiler analysis needs to determine that all
intervening statements are side-effect free. KCC inlines
volumeWeightedAvg, so that the only obstacles are the over-
loaded indexing operator of line 25 and the invocation of
STL’s find on line 28, which can not be completely inlined
to determine its side-effect behavior.? Semantics of object-
based field indexing and an additional annotation on find

2This optimization could change program behavior if sqrt

instruct the compiler that both are side-effect free and that
it may safely perform the optimization.

Of the 1,500,000 total iterations of the loop, lifting the
conditional results in fewer dynamic instruction executions
in the 183,000 iterations in which the conditional evaluates
to false. As shown in Table 3, the 17% reduction in dynamic
instructions translates to a 19% performance improvement.

5.2 Common Subexpression Elimination

KOLAH frequently dereferences iterators to access physical
fields, as illustrated by the code fragments in Figures 2 and 3.
The brevity of mesh field access reflects the elegance of the
object-oriented interface, not the simplicity of its implemen-
tation: dereferencing an iterator involves three method in-
vocations, evaluating a conditional, three member field ac-
cesses, and at least two pointer dereferences; object-based

generates an exception or if the memory access causes a
segmentation fault. Nevertheless, because the optimization
doesn’t introduce any potential exceptions, it is safe.




indexing leads to five method invocations, two pointer deref-
erences, and one array access.

The code of Figure 3 dereferences nodelIt three times:
on lines 13, 18, and 46. The tight loop of Figure 2, with its
repeated dereferencing of the same iterator variable, is a pat-
tern that occurs even more frequently. We manually apply
common subexpression elimination to such dereferences; by
leveraging the mesh field semantics discussed in Section 3, we
pledge that the expression is constant throughout the loop,
a guarantee the compiler is unable to make.

Eliminating the dereferences does not address the more
costly aspect of field access: the overhead induced by object-
based indexing. Object-based indexing extracts an integer
MeshID from the object through a series of method invoca-
tions that culminates in a call to getID. This integer ulti-
mately indexes into a vector representing the field. Because
indexing a field with an object is logically equivalent to in-
dexing it with the MeshID, we replace the iterator deference
by an invocation of getID. Rather than eliminating the def-
erence as above, we may now eliminate the call to getID
to remove additional overhead: getID executes two loads in
addition to the three loads required by iterator dereferenc-
ing. This transformation sacrifices the expressive power of
a mesh-independent construct for the efficiency of one that
is intimately aware of mesh internals. Automating this opti-
mization within a semantics-aware compiler would improve
performance without imposing on the programmer.

The convenience of field access comes at the expense of
eight loads. Aside from the access to the underlying ar-
ray and the five accesses required to satisfy the dereference
and object-based indexing, sampling a single value from a
mesh field requires two additional accesses to calculate the
array base: one to negotiate KOLAH’s field abstraction and
the other to traverse a shared pointer abstraction. These
last two accesses are loop-invariant expressions that could be
hoisted from the loop were it not for the single, opaque invo-
cation of getID which prevents the compiler from recognizing
the safety of this operation. Because it involves eliminating
mesh field internals that are not visible until being inlined,
we do not manually apply this optimization. These array
base calculations will be eliminated once we have automated
semantics-based optimizations, since our research compiler
performs inlining.

We explore an alternate means of removing the two ac-
cesses involved in the base address calculation, as well as the
one remaining invocation of getID, that exploits the common
motif represented by the loops of Figures 2 and 3: iteration
over all mesh objects of a particular class. Where elsewhere
an iterator hides potentially non-strided access, here the iter-
ation is a simple traversal over every mesh element. A local
side-effect analysis, complemented by our semantic assertions
that object-based indexing is side-effect free and that mesh
iterators do not revisit elements, ensures us that there are
no loop-carried dependences and that the loop may be re-
ordered. This allows us to replace the opaque iterator with
an integer induction variable that covers the same set of el-
ements, though possibly in a different order. The integer
induction variable eliminates the invocation of getID, which
makes it safe to hoist the calculation of the array’s base ad-
dress out of the loop.

Table 3 summarizes the results of these techniques, all of
which exploit mesh semantics to ensure correctness where
compiler analysis is too conservative. Their additional 14-
30% reduction in executed instructions, loads, and branches

leads to a 19% improvement over code motion and a cumu-
lative 46% improvement over the baseline.

6. EARLY EVALUATION

KOLAH’s design stresses flexibility over performance: its in-
terface facilitates numerical programming by providing con-
venient access to mesh entities, but also encourages unneces-
sary and redundant computation. Section 6.1 shows that
re-evaluating static mesh connectivity information during
traversal is wasteful, but avoidable. Section 6.2 discusses
narrowing an iteration space that re-computes expensive op-
erations to one that avoids this redundancy.

6.1 Mesh Precomputation

Section 5.2 found that dereferencing a mesh iterator entails
three memory accesses. Such overheads are often incurred
when traversing a mesh entity as an intermediary when ac-
cessing an entity of a different type. For example, the code
for the gradient operator shown in the top third of Figure 4
iterates over zones and faces to reach connected sides with-
out otherwise accessing data associated with the faces. Such
overhead is avoidable.

Unstructured grid codes retain a static mesh throughout
their execution. Adaptive mesh-based schemes reconstitute
a mesh automatically when accuracy falls to unacceptable
levels, but also hold the mesh static across a large number of
iterations. This static property allows us to evaluate mesh
connectivity metadata prior to performing computation over
the mesh, during application initialization or immediately
after remeshing in an adaptive scheme. This avoids unneces-
sary iteration or pointer chasing needed to recompute static
properties, including the mesh entity interconnectivity of the
gradient operator and the relationship of an edge to a side
as expressed in line 5 of Figure 3.

Figure 4 shows our intuitive approach to mesh precom-
putation. setupGrad mimics the original loop structure of
grad to precompute and store for subsequent retrieval only
those target mesh entities needed for the calculation, rather
than those intermediate mesh entities required to access the
target objects. In the case of grad, this requires storing the
zone and nodes associated with a side in a vector, but does
not require storing the face. precomputedGrad transforms
the original three, perfectly nested loops into a single loop
and accesses the stored objects linearly from the vectors to
avoid the loop and indirection overheads inherent in mesh
traversal.

Table 3 shows that precomputing mesh connectivity pro-
vides a 19% improvement over the semantic-aware optimiza-
tions of the previous section. Like those optimizations, it sig-
nificantly reduces loads; however, a larger fraction of those
loads removed by precomputation were responsible for L1
and L2 misses. The 2x reduction in branch mispredictions
indicates the high overhead of mesh traversal and the large
gains attained by avoiding it.

6.2 Iteration-space Narrowing

The connectivity between KOLAH’s mesh objects provides
latitude in object traversal and algorithm design. Computa-
tion operating on all mesh entities of a given type, such as
the code in Figure 2, is best implemented as a simple itera-
tion over those elements. Other computation, including the
program fragment of Figure 3, is a complex function of mul-
tiple iteration spaces—those ranging over zones, side, edges,
and nodes. In such cases, the choice of iteration space or



void grad(Field& field, Mesh& mesh, Field& grad) {
Zonelterator zi;
for (zi = mesh.ZoneBegin();
zi != mesh.ZoneEnd(); ++zi) {
Facelterator fij;
for (fi = zi->faceBegin();
fi != zi->faceEnd(); ++fi) {
SideIterator sij;
for (si = fi->sideBegin();
si != fi->sideEnd(); ++si) {
Vector ds;
ds = field[*si->zone()] * si->arealNormal();
grad[*si->nodel1 ()] += ds;
grad[*si->node2()] -= ds;
}
}
T
T

void setupGrad(Field& field, Mesh& mesh) {
Zonelterator zi;
for (zi = mesh.ZoneBegin();
zi != mesh.ZoneEnd(); ++zi) {
Facelterator fij;
for (fi = zi->faceBegin();
fi != zi->faceEnd(); ++fi) {
SidelIterator sij;
for (si = fi->sideBegin();
si != fi->sideEnd(); ++si) {
sideIts.push_back(si);
zoneIts.push_back(*si->zone());
nodelIts.push_back(*si->nodel());
node2Its.push_back (*si->node2());
T
}
T
T

void precomputedGrad(Field& field, Field& grad) {
for (int i = 0; i < zoneIts.size(); ++i) {
Sidelterator si = sidelts[i];

Vector ds = field[zonelIts[i]] * si->areaNormal();
grad[nodelIts[i]] += ds;
grad[node2Its[i]] -= ds;
T
¥

Figure 4: Gradient operators.

spaces is not obvious since one mesh entity domain can be
reached from any other through their interconnections. This
flexibility allows a programmer to implement all operations
involving a logical computation within a single loop, rather
than distributing them over multiple iteration spaces.

While such flexibility facilitates scientific programming,
the resulting implementation is potentially inefficient. The
lack of a bijection between mesh entity domains means
that iteration spaces that uniquely visit sides, for exam-
ple, may revisit any mesh entity they access from a side.
Such is the case in Figure 3 which revisits nodes, since
the same node may be associated with different sides.
The original loop structure makes 3,000,000 invocations of
volumeWeightedAvg, though only 66,351 of those invoca-
tions access unique nodes. Thus the vast majority of these
calls incur the unnecessary loop and memory accesses of
volumeWeightedAvg.

Iteration-space narrowing eliminates redundancy by ex-
tracting a function that is re-evaluated with the same ar-
guments and executing it within an iteration space that

uniquely visits those arguments. In the above example,
iteration-space narrowing instantiates a loop that iterates
over nodes, invokes volumeWeightedAvg on each, and mem-
oizes the results for subsequent access in the original loop.
Memoizing results of volumeWeightedAvg within the origi-
nal loop is less efficient, because it requires a conditional
to check whether the result has already been calculated.
Such branches degrade performance directly by introducing
pipeline stalls and indirectly by complicating compiler- or
hardware-directed prefetching.

Table 3 shows that iteration-space narrowing is the most
powerful optimization we consider. By eliminating the many
repeated invocations on volumeWeightedAvg, it provides a
3x reduction in executed instructions and loads over the
previous mesh precomputation optimization. The result is
a doubling in performance.

The legality of the transformation follows directly from the
mesh semantics we use above to allow code motion and to
determine that loops are side-effect free. More interesting is
the question of profitability; we offer an approach to infer
the presence of redundant execution automatically based on
a knowledge of mesh semantics.

To recognize that elements are being revisited we need to
characterize the domain of a loop nest and of the statement
succinctly. Ahmed et al. [1] describe a statement iteration
space, based on the loops surrounding a statement, that char-
acterizes the dynamic instances of a statement as a set of
points in an iteration space induced by affine functions of the
loop indices. Since iterators introduce non-affine expressions
into loops, this approach is not applicable. Strout et al. [24]
avoid this problem by describing dependences using Pres-
burger arithmetic with uninterpreted functions and resolv-
ing the dependences at run time. This inspector/executor-
inspired approach [6] could also be used to determine whether
a loop revisits entities by simply traversing the iteration
space and keeping a record of any accessed element.

We propose a symbolic approach that codifies the relations
between mesh entities, e.g., that an edge is associated with
two nodes. This allows a compiler to determine statically
whether iteration-space narrowing is likely to be profitable.
For example, given the previous assertion, a compiler can in-
fer that a function on nodes invoked within a loop over edges
will be repeatedly executed with the same arguments. If the
compiler determines that the function is sufficiently complex
and that its computation is side-effect free and independent
of the surrounding loop, it can re-instantiate it within a loop
that directly iterates over its arguments.

7. DATA AND COMPUTATION REORDER-
ING

Data packing strategies that reorder the layout of data
elements have been successful in improving locality and re-
ducing bandwidth consumption [13]. We show in Section 7.1
that KOLAH benefits from this traditional use of data packing.
In addition, we propose using packing to manipulate iteration
spaces, making them amenable to code restructuring. Sec-
tion 7.2 introduces a loop partitioning scheme that reorders
computation and creates several partially evaluated versions
of a loop to facilitate data reuse through blocking. Finally,
Section 7.3 demonstrates that the two above approaches have
different iteration-space ordering preferences and that resolv-
ing them leads to better performance than the application of
either in isolation.



Each of the following computation reordering strategies
relies on mesh semantics to complement traditional anal-
yses to ensure correctness. In each case, mesh and field
semantics developed above are sufficient to ensure that no
loop-carried dependences exist and that reordering is safe.
Other attempts to overcome limitations of compiler analyses
to reorder or, equivalently, to parallelize loops have lever-
aged specialized language constructs or run-time dependence
analysis. Titanium is a Java dialect that includes a foreach
construct that does not specify the execution order of body
instances [27]. Unfortunately, given the entrenched nature
of scientific codes, we can not mandate new programming
interfaces. Run-time data dependence analysis [22, 24] and
simple run-time checks that select between safe and opti-
mized code versions [3] are powerful approaches, but incur
run-time overheads and increase code size to accommodate
alternate code versions.

7.1 Data Packing

The triply-nested loop structure that implements
performance-critical gradient and divergence operators leads
to non-strided memory accesses. The implementation of
grad in Figure 4 shows that the iteration space on sides
traversed in the inner loop is defined by a face, whose
iteration space is in turn defined by an enclosing loop over
zones. Each of these loops accesses a subvolume of the mesh.
Since these accesses do not match memory order, they result
in a non-strided access pattern.

Consecutive packing [7] reduces the impact of this non-
sequential behavior by linearizing mesh entities in memory
according to their access order within the loop, to the extent
allowed by repeated accesses. Thus mesh entities accessed
consecutively in time are more likely to be stored consecu-
tively in memory. This effectively increases spatial locality
for small objects. Unfortunately, a cache line is not large
enough to accommodate multiple mesh entities; consecutive
accesses do not enjoy spatial reuse of a cache line. Thus, Ta-
ble 3 shows packing sides does not affect L1 and L2 misses,
though it should reduce TLB misses by providing page-level
reuse.’

Although KOLAH does not benefit from fine-grained spa-
tial reuse, consecutive packing produces a sequence of ad-
dresses more amenable to stream prefetching than those re-
sulting from coarse-grained packing strategies, such as bucket
tiling [18]. Data packing transforms the address stream such
that it has many short sequences of strided addresses that
can be identified and exploited by the POWERS3’s hardware-
based prefetcher. By doing so, it increases the number of
useful prefetches by 30% over iteration-space narrowing. The
result is a reduction in load latency from 3.2 cycles prior to
data packing to 2.8 cycles afterwards and a 7% performance
improvement.

7.2 Ilteration-space Partitioning and Loop Spe-
cialization

Execution within mesh algorithms is often conditionalized
on geometric properties. For example, the loop in Figure 3
performs additional computation if the conditional on line 32
evaluates to true, indicating that the edge has a “left” neigh-
bor. The complete loop has a symmetric test for the “right”
neighbor. Such conditionals reduce basic block size, making

3We do not report results from the POWER3 TLB miss
counter because it does not measure TLB misses directly.

it more challenging for the architecture to effectively schedule
instructions. This degrades performance since accommodat-
ing the frequent memory accesses and long-latency floating-
point instructions common to unstructured grid codes re-
quires a balanced instruction mix [9)].

Though these properties are not known until run time, af-
ter the mesh has been constructed, many of them remain
static after initialization. This knowledge allows us to re-
move conditionals, just as an awareness of static mesh con-
nectivity helps eliminate unnecessary recomputation. In this
example, we create four versions of the loop corresponding
to the cross product of the results from the two branches:
both taken, neither taken, left branch taken, or right branch
taken. In all cases, the conditionals have been removed and
their bodies have been inlined or removed as appropriate. For
example, in the specialized loop corresponding to existence
of the right neighbor only, we replace the two conditionals
with the inlined body for the right neighbor.

A one-time traversal of the iteration space evaluates the
conditionals and assigns an edge to one of four partitions.
These partitions of the original iteration space then form the
sub-iteration spaces for the specialized loops. Packing re-
orders the original iteration space so that elements in each
successive partition are arranged before elements in any un-
packed partition. The lengths of the four partitions then
divide the reordered iteration space across the four loops.

The loop corresponding to edges with neither a left nor
a right neighbor admits further partial evaluation, and in
fact can be removed entirely. Through constant folding and
aggressive inlining after both conditionals and their bodies
have been removed, a compiler should be able to determine
that line 38 sets signDotProd to zero, so that the condi-
tional on line 39 fails and line 42 sets edgeForcing to the
zero vector. Since adding a zero vector to nodeForcing has
no effect?, the entire loop is side-effect free and may be elimi-
nated. Eliminating this loop reduced the number of executed
loop instances by 29,800 out of 1,500,000.

This transformation to statically evaluate and remove con-
ditionals is a specific instance of iteration-space partitioning
and loop specialization. Mellor-Crummey et al. [16] also rec-
ognized that data packing reorders computation when the
data is stored in an array that is accessed without indirection
both prior to and after packing. By using a space-filling curve
to reorder computation, they attained significant cache miss
reductions. Our approach differs since it reorders computa-
tion according to some property of the induction variable to
facilitate subsequent optimizations. This subsequent special-
ization and restructuring of loop bodies contrasts with com-
putation reordering optimizations that only reorder iteration
spaces or introduce additional loop nests. Optimizations that
introduce temporal locality illustrate these differences.

Gropp et al. [10] reorder a loop over edges in the unstruc-
tured mesh code FUNS3D to introduce locality within loop
body statements operating on nodes. By sorting the edges
according to the identifier of the node at either end, they
move loop body instances accessing the same node tempo-
rally close to one another so that they reuse data in cache.
In their study of irregular scientific applications, Mellor-
Crummey et al. [16] extend blocking used in dense-matrix
calculations to interaction lists in molecular dynamics appli-

“Menon et al. [17] discuss a compiler framework that incor-
porates a semantic understanding of vectors and matrices.
In this case, such knowledge is not required because the code
is inlined as scalars, which the compiler is able to analyze.



cations. They do so by first assigning a block number to
each particle based on its memory location and then access-
ing particles by iterating over blocks.

The loop over sides in Figure 3 also exhibits temporal
reuse; edges are revisited since they are not unique to a given
side. We sort the sides based on their edge’s identifier; this
makes sides sharing an edge contiguous in the iteration space
and provides temporal reuse of cached data. We can further
exploit this iteration space reordering to tile the loop. We do
so by lifting all statements that are dependent solely on an
edge before any statements dependent on the side induction
variable. Because edges are reused across consecutive loop
instances, we introduce an inner loop over all sides sharing
an edge. This register tiling over edges ensures an edge and
computation on that edge are reused across sides sharing it.

Despite the significant reduction in loads and instructions,
Table 3 shows that iteration-space partitioning does not per-
form as well as data packing. Loop partitioning induces an
order that interferes with the POWERS3 hardware prefetch-
ing mechanism, reducing the number of useful prefetches per
load from 0.013, in the case of data packing, to 0.007. This
results in an average load latency of 4.4 cycles for iteration-
space partitioning, whereas data packing maintains a signif-
icantly lower 2.8-cycle load latency.

7.3 Packing Order Conflict Resolution

Applications studied in previous work [7] have a single
dominant loop that provides an obvious packing order; the
above two sections demonstrate that this is not the case in
KOLAH, where packing orders inspired by different concerns in-
duce different performance. The presence of multiple packing
order preferences implies that orders that balance data pack-
ing’s reduction in load latency with iteration-space partition-
ing’s reduction in dynamic instructions can improve overall
performance.

Table 3 shows that a compromise with superior perfor-
mance does exist: multiple-constraint reordering both allows
code restructuring to eliminate instructions and successfully
exploits the hardware prefetcher to reduce the load latency
to 3 cycles. It outperforms all previous optimizations and re-
sults in a final cumulative speedup of 4.7 over the baseline.

This compromise order visits sides in gradient-induced or-
der but divides them into the same four partitions described
above. Though partition membership is unchanged, the or-
dering within each partition is conducive to prefetching. As
above, the loops are specialized, with the side-effect free loop
eliminated. Register tiling is not applicable since this order
does not contiguously place those side sharing an edge. En-
forcing this additional constraint on the ordering would allow
little freedom to accommodate the gradient operator.

8. RELATED WORK

We broadly group related work into studies characterizing
the performance limitations of scientific codes and frame-
works for expressing and leveraging domain-specific seman-
tics. Other work related to proposed optimizations is dis-
cussed in the respective sections.

Performance studies of scientific codes: Several re-
ports indicate the significant performance impact of indirect
memory accesses on unstructured grid applications. Ander-
son et al. [2] concentrate on minimizing memory references in
the Fortran77 unstructured mesh code FUN3D. In their per-
formance evaluation of scientific codes, Vetter and Yoo [26]
study the unstructured mesh code UMT. They find that

UMT suffers poor cache performance and significant stalls
due to loads. The regularity metric defined by Mohan et
al. [19] lends insight to this poor cache performance. They
quantify a code’s regularity as the number of memory ac-
cesses that occur within a strided stream divided by the to-
tal number of accesses. They determine that UMT has a
relatively low regularity of 0.44, a result consistent with its
heavy use of indirection. Semantics-enabled common subex-
pression elimination and mesh precomputation reduce the in-
direct memory accesses responsible for the overhead of mesh
entity iterator dereferencing and mesh traversal to avoid ex-
acerbating the effect of indirection in these codes.

Jin and Mellor-Crummey [14] also take the approach of
manually optimizing a scientific library. To optimize stencil
computation in SMG98, they target hypre, a library that
provides abstractions of Cartesian grids, grid hierarchies, and
iterators for use in creating multigrid applications.

Semantics-aware compilers and optimizations: Sev-
eral projects have the goal of extending the base language
with an awareness of user-defined abstractions [8, 12, 15,
21]. ROSE [21] is a source-to-source translator written to
optimize C++ libraries and user-defined abstractions. Like
Magik [8], it allows users to directly access and manipulate
the compiler’s IR. ROSE supports a Magik-like IR-based
transformation scheme, as well as a string-based interface
that requires less intimate knowledge of compiler technol-
ogy. Users write analyses and transformations that traverse,
query, and transform the abstract syntax tree. Broadway [12]
and Telescoping Languages [15] share the goal of exploiting
semantic information to optimize user-defined libraries, but
do not focus on providing a framework for writing translators
as do ROSE and Magik.

Recent work within the ROSE project [28] describes an
array abstraction interface used to explicitly communicate
array semantics to the compiler. The interface maps stan-
dard, abstracted operations on arrays, such as len(), to the
concrete implementation within the particular array class,
such as this.getLength(). Thus, the compiler operates at
the level of the array abstractions until it needs to emit code.
We are extending this work to encompass mesh abstractions.

9. CONCLUSION

We proposed a small set of semantics, tailored to unstruc-
tured mesh abstractions but independent of their implemen-
tations. These semantics complement traditional analyses;
by providing information where alias and side-effect analy-
sis proved too conservative to optimize mesh abstractions,
they enabled traditional optimizations including code mo-
tion and common subexpression elimination, and improved
performance by 46%. Recognition of these semantics both in-
spired and enabled novel optimizations that led to speedups
of 4.7x and 4.9x on POWER3 and Pentium 4 platforms,
respectively. Because the semantics apply to any application
or library using common mesh and field abstractions, we ex-
pect them to enable optimizations, with similar gains, across
mesh implementations.

Recognizing the limits of traditional compiler analyses
when confronted with mesh abstractions and defining a set of
semantics to overcome them were necessary steps towards the
automation of the optimizations that exploit these semantics.
We are in the process of implementing these mesh optimiza-
tions within the ROSE [21, 23] compiler framework. We
have incorporated a parser for the Broadway annotation lan-



guage [11] into ROSE and intend to adapt it to describe mesh
semantics. We will use this language to express domain-
specific semantic information [12] where our alias and side-
effect analysis are insufficient to determine the correctness of
a desired optimization.
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