
A C++ Infrastru
ture for Automati
Introdu
tion and Translation of OpenMPDire
tivesDan Quinlan, Markus S
hordan, Qing Yi, and Bronis R. de SupinskiLawren
e Livermore National Laboratory??, USAfdquinlan, s
hordan1, yi4, bronisg�llnl.govAbstra
t. In this paper we des
ribe a C++ infrastru
ture for sour
e-to-sour
e translation. We demonstrate the translation of a serial programwith high-level abstra
tions to a lower-level parallel program in two sepa-rate phases. In the �rst phase OpenMP dire
tives are introdu
ed, drivenby the semanti
s of high-level abstra
tions. Then the OpenMP dire
tivesare translated to a C++ program that expli
itly
reates and managesparallelism a

ording to the spe
i�ed dire
tives. Both phases are imple-mented using the same me
hanisms in our infrastru
ture.1 Introdu
tionThe use of OpenMP within the OpenMP resear
h
ommunity seems
ompli-
ated by the la
k of easy to use
ompiler infrastru
ture. Although mu
h workis fo
used on OpenMP for FORTRAN 77 and FORTRAN 90, and there maybe an abundan
e of C language
ompiler infrastru
ture; the unavailability ofC++
ompiler infrastru
ture has signi�
antly limited the many resear
h oppor-tunities. In this paper, we present a useful infrastru
ture, ROSE [1℄, to assistthe OpenMP resear
h
ommunity generally, but parti
ularly for OpenMP/C++resear
h.Our infrastru
ture allows the automated introdu
tion of OpenMP dire
tivesbased on the semanti
s of user-de�ned abstra
tions. The introdu
tion of prag-mas, when adding OpenMP dire
tives to a given
ode, is one of many possible ap-pli
ations. Another one is the translation of OpenMP dire
tives; the re
ognitionof spe
i�
 pragma dire
tives and the translation of asso
iated
ode fragments togenerate a program that expli
itly
reates and manages parallelism. We shall usea running example to illustrate both phases and how the ROSE infrastru
ture[1℄
an simplify these tasks. Through this example, we demonstrate the rela-tively simple spe
i�
ation of an OpenMP transformation to use the lower levelNanos Library for OpenMP [2℄. We also dis
uss how to modify that transfor-mation to implement the full OpenMP standard. Given the semanti
 similarity?? This work was performed under the auspi
es of the U.S. Department of Energy byUniversity of California Lawren
e Livermore National Laboratory under
ontra
tNo. W-7405-Eng-48.

2between most OpenMP runtime libraries, we expe
t that transformations forother OpenMP runtime libraries should be equally simple.Sin
e within ROSE we have the full type resolution within the AST, andnot just syntax, the type information of spe
i�
 user-de�ned types
an be usedas a basis for the optimization of appli
ations that use them. And by in
ludingknowledge of the semanti
s of spe
i�
 abstra
tions, fundamentally more infor-mation is available to the
ompiler and greater levels of optimization are oftenpossible, depending upon the abstra
tions. We will show through the use of anarray abstra
tion, that be
ause the stronger array semanti
s is satis�ed by theweaker OpenMP
onstraints we
an automate the introdu
tion of OpenMP di-re
tives into otherwise serial
ode. This approa
h permits fundamentally serial
ode to use the additional semanti
s of the array abstra
tions and be run asparallel
ode.2 Infrastru
tureThe ROSE infrastru
ture o�ers several
omponents to build a sour
e-to-sour
etranslator. A
omplete C++ frontend is available that generates an obje
t-oriented annotated abstra
t syntax tree (AST) as intermediate representation.Several di�erent
omponents
an be used to build the midend of a transla-tor: to operate on the AST, a prede�ned traversal me
hanism, a restru
turingme
hanism, and an attribute evaluation me
hanism
an be used to implementa transformation. Other features are for example parsing of OpenMP dire
tivesand integrating these dire
tives into the AST. A C++ ba
kend
an be used tounparse the AST and generate C++
ode (see �g. 1).
frontend midend backend

unparsed AST fragment

ASTC++ source AST C++ source

attribute evaluation

restructure operators

AST

AST(completed) source fragment

Fig. 1. ROSE Sour
e-To-Sour
e infrastru
ture with frontend/ba
kend reinvo
ation2.1 FrontendWe use the Edison Design Group C++ frontend (EDG) [3℄ to parse C++ pro-grams. The EDG frontend generates an AST and performs a full type evaluationof the C++ program. The AST is represented as a C data stru
ture. We trans-late this data stru
ture into an obje
t-oriented abstra
t syntax tree whi
h isused by the midend as intermediate representation.

32.2 MidendThe midend supports restru
turing of the AST. Code that is added to the AST
an be spe
i�ed as a sour
e string, using C++ syntax, or by
onstru
ting subtreesnode by node. An AST restru
turing operation spe
i�es a lo
ation in the ASTwhere
ode should be inserted, deleted, or repla
ed. The
ode
an be spe
i�edas C++ sour
e string or an AST subtree. A program transformation
onsists ofa series of AST restru
turing operations.The order of the restru
turing operations is based on a pre-de�ned traversal.In a transformation the AST is traversed and di�erent restru
turing operationsare invoked on the AST. The problem of restru
uring the AST while traversing it,is addressed by making restru
turing operations side-e�e
t free fun
tions thatde�ne a mapping from one subtree of the AST to another subtree. The newsubtree is not inserted before the traversal of this subtree is �nished. We provideinterfa
es for invoking restru
turing operations that bu�er these operations toensure that no subtrees are repla
ed while they are traversed.The attribute evaluation me
hanism allows the
omputation of attribute val-ues for AST nodes. Context information
an be passed down the AST as in-herited attributes and results of
omputations on a subtree
an be
omputedas synthesized attributes (passing information upwards the tree). Examples forvalues of inherited and synthesized attributes are type information, size of ar-rays, the nesting level of loops, the s
opes of asso
iated pragma statements, et
.These values
an be used to spe
ify
onstraints on a transformation, i.e. to de
idewhether a restru
turing operation should be applied.Our infrastru
ture allows to use C++ sour
e
ode strings to de�ne
ode frag-ments. Any sour
e string whi
h represents a valid de
laration, statement(list), orexpression
an spe
ify a
ode pattern to be inserted into the AST. The transla-tion of a sour
e
ode string, s, into an AST fragment, is performed by reinvokingthe frontend. The string, s, is extended by our system to form a
omplete pro-gram. This
ompleted program is parsed into an AST by reinvoking the frontend.From this AST, we extra
t the AST fragement that
orresponds to the sour
estring s. This AST fragement is inserted into the AST.2.3 Ba
kendThe AST is unparsed and C++ sour
e
ode is generated. It
an be spe
i�ed tounparse all in
luded (header) �les or the sour
e �le(s) spe
i�ed on the
ommandline only. This feature is important when transforming user-de�ned data types,for example when adding generated methods.The ba
kend
an also be invoked during a transformation, to obtain thesour
e
ode string that
orresponds to a subtree of the AST. Su
h a string
anbe
ombined with new
ode (also represented as a sour
e string) and insertedinto the AST.Both phases, the introdu
tion of OpenMP dire
tives and the translation ofOpenMP dire
tives,
an be automated using the above me
hanisms, as des
ribedin the following se
tions.

43 Semanti
s-Driven Introdu
tion of OpenMP Dire
tivesThe use of high-level abstra
tions so greatly improves the produ
tivity of de-veloping s
ienti�
 appli
ations that we seek a way to address the numerousperforman
e issues asso
iated with it.3.1 User-De�ned Abstra
tionsUser-de�ned abstra
tions permit a way to tailor the user-environment to be moredomain spe
i�
 than a general purpose language
ould allow. General purposelanguages are expensive to develop and result from many years of work. The
ompilers that de�ne the language are both expensive and diÆ
ult to develop.Su
h an investment is only possible for a suÆ
iently large user group.Simplifying the development of many appli
ations within a spe
i�
 domainis
ommonly done through the development of domain-spe
i�
 libraries. Thelibraries invariably de�ne abstra
tions that hide numerous tedious details as-so
iated with the development of appli
ations within a spe
i�
 domain. The
ombination of a general purpose language and a domain spe
i�
 library is notthe same as a domain-spe
i�
 language. The essential di�eren
e is that the
om-plete semanti
s of a library's abstra
tions are unknown at
ompile time and,thus, some signi�
ant optimizations are impossible for the
ompiler to imple-ment. The result is all too often that many essential abstra
tions are abandonedbe
ause they
an't provide suÆ
iently high performan
e.3.2 A++/P++ Serial and Parallel Array Class LibraryWe use a motivating example from the A++/P++ array
lass library [4℄ toshow how the ROSE framework
an be used by the library writer to develop asour
e-to-sour
e translator that optimizes
ode based on high-level semanti
s.The example uses two
lasses whi
h are implemented twi
e; on
e in the serialA++ library and again in the parallel P++ library. Within our motivating exam-ple we
onsider the following trivial �ve-point sten
il array operation. In �gure2, A and B are multidimensional array obje
ts of type floatArray. I and J areRange obje
ts that together spe
ify a two dimensional index spa
e of the arrays Aand B. The following se
tions demonstrate how ROSE supports the optimizationof a s
ienti�
 appli
ation
ode through our running example.3.3 Automated Insertion of OpenMP Dire
tivesBe
ause of the parallel semanti
s of the A++ and P++ array obje
ts, their useis inter
hangeable. This permits serial appli
ations to be developed using A++(serial arrays) and then re
ompiled to run in distributed memory mode usingP++ (parallel arrays). Some simple
onstraints are that any use of non A++array obje
ts not
onstrain the data-parallel model that is hidden within thearray semanti
s.

5Sin
e the parallel array semanti
s of A++ and P++ are
onsistent with thoseof OpenMP, OpenMP dire
tives
an safely introdu
e shared memory parallelisminto all uses of A++ and P++ array obje
ts. This is essential for the automatedinsertion of OpenMP dire
tives without
omplex dependen
e analysis of theserial
ode.3.4 Example C++ CodeThe example
odes in �gure 2 and �gure 3 demonstrate the transformationof high-level A++
ode to highly eÆ
ient OpenMP
ode. The two
odes aresemanti
ally equivalent, but the �rst
ode shows the use of high-level array ab-stra
tions. The semanti
s of the array abstra
tions are similar to those of arraystatements in FORTRAN 90, but the implementation is a (C++)
lass libraryinstead of a (FORTRAN77) language extension. Clearly, the standard
ompila-tion pro
ess
annot take the semanti
s of the array
lass obje
ts into a

ountsin
e those semanti
s are user de�ned. At this high level of abstra
tion, the C++
ompiler is quite powerless to introdu
e any signi�
ant optimizations, pre
iselybe
ause the abstra
tion's semanti
s that are relevant to
riti
al optimizationsare user-de�ned and unknown.int n;Range I,J,K;floatArray A(n,n,n);floatArray rhs(n,n,n);floatArray B(n,n,n);...A(I,J,K) = rhs(I,J,K) + (B(I+1,J,K) + B(I-1,J,K) + B(I,J-1,K) +B(I,J+1,K) + B(I,J,K-1) + B(I,J,K+1) - 6.0 * B(I,J,K));Fig. 2. Example: Code fragment showing the use of A++/P++ array semanti
s.The high-level A++
ode
an be automati
ally transformed into the greatlyexpanded, but more eÆ
ient
ode shown in �gure 3. The ROSE infrastru
tureallows the library implementer to leverage the semanti
s of the array
lass ob-je
ts that are required to implement the transformation in a sour
e-to-sour
etranslator that provides a library-spe
i�

ompilation pro
ess. Spe
i�
ally, theROSE frontend
reates an AST. The traversal me
hanism allows the targetedarray
lass statements to be lo
ated in the
ode. The restru
turing me
hanismis used to repla
e the high-level
ode with the
orresponding, but more eÆ
ient
ode and the attribute me
hanism supports important details of the transfor-mation su
h as proper de
laration of the loop
ontrol variables. A very smalland almost trivial part of the transformation is the additional step to have thetransformation also generate the OpenMP dire
tive before the outermost loop.

6#define SC(x1,x2,x3) /*
ase UniformSizeUnitStride */ (x1)+(x2)*_size1+(x3)*_size2#pragma omp parallel for private (_3, _2, _1) \shared (AIJKpointer, rhsIJKpointer, BIJKpointer)for (_3 = 0; _3 < _length3; _3++) {for (_2 = 0; _2 < _length2; _2++) {for (_1 = 0; _1 < _length1; _1++) {AIJKpointer[SC(_1,_2,_3)℄ =rhsIJKpointer[SC(_1,_2,_3)℄ +(BIJKpointer[SC((_1 + 1),_2,_3)℄ + BIJKpointer[SC((_1 - 1),_2,_3)℄ +BIJKpointer[SC(_1,(_2 - 1),_3)℄ + BIJKpointer[SC(_1,(_2 + 1),_3)℄ +BIJKpointer[SC(_1,_2,(_3 - 1))℄ + BIJKpointer[SC(_1,_2,(_3 + 1))℄ -6.0 * BIJKpointer[SC(_1,_2,_3)℄);}}}Fig. 3. Example: Transformed A++/P++ array
lass
ode fragment showing the in-sertion of an OpenMP dire
tive (ex
luding pre
eding de
larations)3.5 Dis
ussionThe ROSE me
hanisms provide a general approa
h for the optimization of
om-plex libraries that is not spe
i�
 to the A++/P++ library. We use this examplebe
ause it is both a high-level abstra
tion spe
i�
ally tailored to parallel s
i-enti�

omputing and be
ause it is one with whi
h we are familiar. Improvingthe performan
e of the A++/P++ library also has a dire
t impa
t on otherappli
ations and libraries using it (the Overture Framework [5℄ in parti
ular).4 Translation of OpenMP Dire
tivesWe use ROSE to build a spe
ialized sour
e-to-sour
e translator that transformsOpenMP dire
tives into lower-level
ode using an OpenMP runtime library. Forour work, we have sele
ted the Nanos OpenMP runtime library [2℄, but our in-tention is to demonstrate that any runtime library
ould be used. We believe ourapproa
h would be nearly the same for any OpenMP runtime library, given theseemingly strong semanti
 resemblan
e between the few that we have seen. Anaspe
t of our e�ort is to show how easily other resear
hers within the OpenMP
ommunity
ould use the ROSE
ompiler infrastru
ture for OpenMP resear
h.We hope that a

ess to open
ompiler infrastru
ture for C, and parti
ularly forC++, will be found useful.4.1 Translation Spe
i�
ationBefore translating OpenMP dire
tives into runtime library
alls, we must �rstde�ne a spe
i�
ation that maps the input and output of the translation. Fig-ure 4 presents an example of su
h mapping, whi
h translates the OpenMPparallel-for dire
tive (with the shared, private, default and s
hedule
lauses) into
alls to the lower-level Nanos OpenMP runtime library [2℄. We
hoose the parallel-for dire
tive be
ause it is suitable for illustrating ourOpenMP sour
e-to-sour
e translator (shown in Figure 5) and be
ause the ROSE

7Input:#pragma omp parallel for s
hedule($s
heduletype, $
hunksize) default ($defaulttype) nshared($shared var list) private($private var list)for ($i = $lb; $i <= $ub; $i + = $step) f$loop bodygOutput:void supportingOpenMPFun
tion$id(int* intone me 01, int* intone npro
s 01,int* intone master01, $shared var de
l list)f $private var de
l list;int intone start, intone end, intone last;intone begin for($lb, $ub, $step, $
hunksize, $s
heduletype);while (intone next iters(&intone start, &intone end, &intone last)) ffor ($i = intone start; $i <= intone end-1; $i + = $step) f$loop bodyggintone end for(true)gint intone npro
s 01 = intone
pus
urrent();intone spawnparallel(supportingOpenMPFun
tion$id, $numOfArgs, intone npro
s 01,$shared var list);Fig. 4. Spe
i�
ation for translating the OpenMP parallel-for dire
tive into Nanos run-time library
alls (the bold text marks OpenMP keywords, and the $ sign denotesparameters of the input and output fragments.)infrastru
ture
an automati
ally introdu
e it using the A++/P++ array seman-ti
s, as shown in Figure 3. After applying the mapping in Figure 4, our OpenMPsour
e-to-sour
e translator
an further transform the OpenMP
ode in Figure 3into the Nanos runtime library
alls; the result is shown in Figure 6.In general, to provide translation support for the entire set of OpenMP di-re
tives, we need to spe
ify a translation mapping, su
h as the one in Figure 4,for ea
h OpenMP dire
tive. These mappings should be easily
onstru
ted fromthe manual of an OpenMP runtime library. We then use these mappings to in-stantiate the general translation algorithm in Figure 5. Though
urrently wehave implemented only the translation of the parallel-for dire
tive within theROSE infrastru
ture, other OpenMP dire
tives
an be translated in a similarfashion.4.2 Translation AlgorithmFigure 5 presents the stru
ture of a ROSE sour
e-to-sour
e translator that trans-forms an arbitrary OpenMP dire
tive into its
orresponding runtime library
alls.This sour
e-to-sour
e translator is separated into the following three phases.The �rst phase uses the front end of ROSE to parse the input program intoan AST, whi
h provides support for most C++ high-level
onstru
ts and thus
losely mat
hes the stru
ture of the original program. Within the same phase,the sour
e-to-sour
e translator then makes a se
ond pass of the
onstru
ted AST

8(1)Parse the C++/C input program and
onstru
t an Abstra
t Syntax TreeParse the OpenMP dire
tives in the
onstru
ted AST(2)Traverse the Abstra
t Syntax Tree of the input programAt ea
h tree node astNode:if ((pragma = PrevStatement(astNode)) is an OpenMP dire
tive)string OpenMP support fun
 = parameterized supporting-fun
tion string for pragmafor (ea
h parameter par in OpenMP support fun
)string par val = Compute-Parameter-Value(par,astNode)String-Repla
e-Substring(OpenMP support fun
, par, par val)Add OpenMP support fun
 into global s
opeOpenMP repla
e pragma = parameterized intone spawnparallel
all for pragmaSubstitute parameters in OpenMP repla
e pragma with
orre
t valuesrepla
e pragma and astNode subtrees with OpenMP repla
e pragma(3)Unparse the Abstra
t Syntax TreeFig. 5. Algorithm for translating OpenMP dire
tives into runtime library within theROSE infrastru
tureto expand the OpenMP dire
tives. Unlike the C++ front end, the OpenMP
on-stru
t parser is not already implemented in ROSE and thus needs to be providedby the OpenMP sour
e-to-sour
e translator. It is our plan to provide a full im-plementation of this parser within our OpenMP sour
e-to-sour
e translator.The OpenMP
onstru
t parser not only translates ea
h string pragma intostru
tured AST nodes, it also automati
ally
olle
ts all the impli
it paralleliza-tion information pertinent to the OpenMP dire
tive. For example, after this pass,even if the parallel-for dire
tive in Figure 4 does not have a shared
lause(assuming all variables are shared by default), the OpenMP parser will auto-mati
ally
olle
t the set of shared variables and then insert a shared
lause intothe parsed pragma. The exa
t behavior for variables in either $shared var listor $private var list is determined by the default
lause (if present) and is im-plemented entirely in the OpenMP parser. Thus, the subsequent phases of thetranslation algorithm
an assume that all data storage attributes are expli
it(this is equivalent to having a default (none)
lause in the original work-sharing
onstru
t).The se
ond phase of the OpenMP sour
e-to-sour
e translator then traversesthe AST and transforms the fully expanded OpenMP dire
tives within the AST.At ea
h node astNode, if the statement pragma immediately before astNode isan OpenMP dire
tive, we translate this dire
tive by �rst
onstru
ting a support-ing fun
tion (OpenMP support fun
) for the original
ode (the subtree rootedat astNode). This supporting fun
tion is a parameterized string provided bythe translation mapping spe
i�
ation (e.g., the se
tion output in Figure 4). Wethen pro
eed to substitute all the parameters in the supporting-fun
tion stringwith their
orresponding string values pertinent to the original
ode. Sin
e thesour
e-to-sour
e translator has the pre-knowledge about all the parameters inthe OpenMP support fun
 string, it
an
ompute the values for these parame-ters by invoking pre-de�ned AST analysis fa
ilities within ROSE. We then insertthe fully expanded OpenMP support fun
 into the global s
ope and thus makeit another fun
tion de�nition of the original C++ program. Next, we
reate astring, OpenMP repla
e pragma, that invokes the expanded supporting fun
-

9void supportingOpenMPFun
tion__0_0(int* intone_me_01, int* intone_npro
s_01,int* intone_master_01, float * AIJKpointer, float * rhsIJKpointer,float * BIJKpointer, int _length1, int _length2, int _size1, int _size2){ int _1, _2, _3;int intone_start, intone_end, intone_last;intone_begin_for(0,100,1,0,0);while(intone_next_iters(&intone_start,&intone_end,&intone_last)) {for (_3 = intone_start; _3 <= intone_end; _3++) {for (_2 = 0; _2 < _length2; _2++) {for (_1 = 0; _1 < _length1; _1++) {AIJKpointer[_1 + _2 * _size1 + _3 * _size2℄ =rhsIJKpointer[_1 + _2 * _size1 + _3 * _size2℄ +(BIJKpointer[(_1 + 1) + _2 * _size1 + _3 * _size2℄ +BIJKpointer[(_1 - 1) + _2 * _size1 + _3 * _size2℄ +BIJKpointer[_1 + (_2 - 1) * _size1 + _3 * _size2℄ +BIJKpointer[_1 + (_2 + 1) * _size1 + _3 * _size2℄ +BIJKpointer[_1 + _2 * _size1 + (_3 - 1) * _size2℄ +BIJKpointer[_1 + _2 * _size1 + (_3 + 1) * _size2℄ -6.0 * BIJKpointer[_1 + _2 * _size1 + _3 * _size2℄);}}}}intone_end_for(true);}intone_npro
s_01 = intone_
pus_
urrent();intone_spawnparallel(supportingOpenMPFun
tion__0_0, 8, intone_npro
s_01, AIJKpointer,rhsIJKpointer, BIJKpointer, _length1,_length2,_size1,_size2);Fig. 6. Example: transformed A++/P++ array
lass
ode fragment using the Nanosruntime librarytion using parallel threads (e.g., the intone spawnparallel
all in Figure 4).Finally, after substituting the parameters in OpenMP repla
e pragma with
or-responding values, we use OpenMP repla
e pragma to repla
e both the originalOpenMP dire
tive (pragma) and the original
ode fragment (the subtree rootedat astNode).Most steps des
ribed above
an be realized in a straightforward fashion bysimply invoking existing ROSE me
hanisms. To illustrate the simpli
ity of thismapping, Figure 7 presents the ROSE C++ implementation for translating theparallel-for dire
tive de�ned in Figure 4. Here we omit some parameter sub-stitutions due to la
k of spa
e. Note that ROSE provides fa
ilities to dire
tlyedit parameters in strings and to insert strings dire
tly into the AST (they areparsed into abstra
t syntax subtrees before being inserted into the global AST).As the �nal phase, after all the OpenMP dire
tives have been translated, thesour
e-to-sour
e translator unparses the transformed AST to produ
e a C++program that in
ludes only
alls to the OpenMP runtime library.4.3 Dis
ussionGeneralizing the sour
e-to-sour
e translator dis
ussed in the pre
eding se
tionsto provide support for the full OpenMP spe
i�
ation is the subje
t of on-goingwork. In this se
tion, we dis
uss the modi�
ations that our approa
h requires to

10OpenMPSynthesizedAttributeOpenMPTraversal::evaluateRewriteSynthesizedAttribute (SgNode* astNode, OpenMPInheritedAttribute inheritedAttribute,SubTreeSynthesizedAttributes synthesizedAttributeList) {OpenMPSynthesizedAttribute returnAttribute(astNode);if (OmpUtility::isOmpParallelFor(astNode)) {SgForStatement *forStatement = isSgForStatement(astNode);string supportFun
tion = " \n\void supportingOpenMPFun
tion_$ID (int* intone_me_01, int* intone_npro
s_01,int* intone_master01, $SHARED_VAR_DECL_LIST) { \n\$PRIVATE_VAR_DECL_LIST; \n\int intone_start, intone_end, intone_last; \n\intone_begin_for($LB,$UB,$STEP,$CHUNKSIZE,$SCHEDULETYPE); \n\while (intone_next_iters(&intone_start,&intone_end,&intone_last)) { \n\for ($LOOPINDEX = intone_start; $LOOPINDEX <= intone_end; $LOOPINDEX += $STEP) { \n\$LOOP_BODY; \n\} \n\} \n\intone_end_for(true); \n\} \n";string spawnParallel = " \intone_npro
s_01 = intone_
pus_
urrent(); \n\intone_spawnparallel(supportingOpenMPFun
tion_$ID,$NUM_ARGS,intone_npro
s_01,\$SHARED_VAR_LIST);\n";// Edit the fun
tion name and define a unique number as an identifierstring uniqueID = buildUniqueFun
tionID();supportFun
tion = StringUtility::
opyEdit(supportFun
tion, "$ID",uniqueID);spawnParallel = StringUtility::
opyEdit(spawnParallel, "$ID",uniqueID);// Edit the loop parameters into pla
estring loopBody = forStatement->get_loop_body()->unparseToString();supportFun
tion = StringUtility::
opyEdit(supportFun
tion, "$LOOP_BODY",loopBody);... // similar
opyEdits for $LOOPINDEX, $LB, $UB, $STEP// Edit the OpenMP parameters into pla
eOmpUtility ompData (astNode);string privateVarDe
lList = ompData.generatePrivateVariableDe
laration();string sharedVarList = ompData.generateSharedVariableFun
tionParameters();string sharedVarDe
lList = ompData.generateSharedVariableFun
tionDe
larations();supportFun
tion = StringUtility::
opyEdit(supportFun
tion,"$SHARED_VAR_DECL_LIST",sharedVarDe
lList);supportFun
tion = StringUtility::
opyEdit(supportFun
tion, "$SHARED_VAR_LIST",sharedVarList);spawnParallel = StringUtility::
opyEdit(spawnParallel,"$SHARED_VAR_LIST",sharedVarList);supportFun
tion = StringUtility::
opyEdit(supportFun
tion,"$PRIVATE_VAR_DECL_LIST",privateVarDe
lList);... // similar
opyEdits for $CHUNKSIZE,$SCHEDULETYPE, and $NUM_ARGSAST_Rewrite::addSour
eCodeString(returnAttribute, "#in
lude \"nanos.h\"",inheritedAttribute, AST_Rewrite::GlobalS
ope,AST_Rewrite::TopOfS
ope, AST_Rewrite::TransformationString, false);AST_Rewrite::addSour
eCodeString(returnAttribute, supportFun
tion, inheritedAttribute,AST_Rewrite::GlobalS
ope, AST_Rewrite::BeforeCurrentPosition,AST_Rewrite::TransformationString, false);AST_Rewrite::addSour
eCodeString(returnAttribute, transformationVariables,inheritedAttribute, AST_Rewrite::Lo
alS
ope, AST_Rewrite::TopOfS
ope,AST_Rewrite::TransformationString, false);AST_Rewrite::addSour
eCodeString(returnAttribute, spawnParallel, inheritedAttribute,AST_Rewrite::Lo
alS
ope, AST_Rewrite::Repla
eCurrentPosition,AST_Rewrite::TransformationString, false);}return returnAttribute;} Fig. 7. Example: Code fragment showing translation of an OpenMP dire
tive.

11provide that support. We
onsider all OpenMP dire
tives, in
luding any asso
i-ated
lauses.The sour
e-to-sour
e translator presented thus far implements the OpenMPparallel-for
onstru
t, in
luding the private, shared, default and s
hedule
lauses. The sour
e-to-sour
e translator, as des
ribed, does not implement sev-eral possible
lauses of the dire
tive; extending it to support the remaining
lauses is straightforward. As dis
ussed in se
tion 4.2, parsing of the
onstru
tdetermines the lists of private and shared variables, in
luding those for whi
hthe storage attribute is impli
it. The
onstru
t parsing
an easily be modi�ed tobuild lists for the other data attribute
lauses. As dis
ussed in the Nanos do
-umentation [6℄, variables with the firstprivate and lastprivate attributesbe
ome arguments to the
all of the supporting fun
tion with
orresponding in-ternal variable names for the parameters. The only other
hange ne
essary toour sour
e-to-sour
e translator is to in
lude the appropriate assignment betweenthe internal variable name and the name used in the loop body in the supportingfun
tion string. The redu
tion
lause requires similar
hanges, with the assign-ment guarded by a lo
k that is initialized prior to spawning the parallel region.The if
lause requires that OpenMP repla
e pragma be extended to in
ludethe intone spawnparallel
all in an if statement with the original
ode
lonedinto the else
lause, whi
h is easily implemented with the ROSE restru
turingme
hanism.Changes to the sour
e-to-sour
e translator that would support splitting the
ombined parallel-for dire
tive are not diÆ
ult. In order to support theOpenMP parallel
onstru
t (i.e., without the for loop), the string used for thesupporting fun
tion would only in
lude the portions that establish the variablelists and the original
ode. We
an support stand-alone OpenMP for
onstru
tsby repla
ing the pragma and original
ode with the body of the supporting fun
-tion instead of the intone spawnparallel
all. In order to implement orphaneddire
tives
orre
tly with separate
ompilation, the runtime library must supportthis in-pla
e repla
ement.Straightforward modi�
ations to the sour
e-to-sour
e translator will also ex-tend it to implement the other work-sharing
onstru
ts and syn
hronizationdire
tives. The Nanos do
umentation dis
usses how to implement the se
tions
onstru
t and the single dire
tive as variations of the for
onstru
t, while therepla
ement
ode for the syn
hronization
onstru
ts are even simpler. Althoughwe
ould modify the repla
ement
ode to use other
alls for runtime librariesthat provide
alls spe
i�
 to the se
tions
onstru
t and the single dire
tive,we plan to implement them as variants of the for
onstru
t initially.We have not fully determined how to support threadprivate storage in oursour
e-to-sour
e translator. Our support for threadprivate storage is highly de-pendent on the support provided by the OpenMP run time library. The Nanosruntime library targets FORTRAN, and uses pseudo-dynami
ally allo
ated stor-age. More straightforward solutions are possible in C and C++ and one optionis to provide an alternative me
hanism. Whether or not we use the existing sup-port of the runtime library, we expe
t that providing support for threadprivate

12storage will be fairly straightforward if it has stati
 blo
k-s
ope; while the sup-port may be more
omplex for �le-s
ope or name-spa
e s
ope, parti
ularly forinitializating the storage.The generality of the OpenMP translation in Figure 5 and the just dis
ussedmodi�
ations depends on spe
i�
 design properties of the OpenMP runtime li-brary. In parti
ular, given an OpenMP runtime library implementation, if atranslation interfa
e similar to Figure 4
an be de�ned for ea
h OpenMP dire
-tive, the sour
e-to-sour
e translator
an easily be adapted to provide all the ne
-essary translation support. Otherwise, if the translation of a parti
ular OpenMPdire
tive not only depends on itself and the sour
e
ode that it applies to, butalso depends on the subtle variations of its en
losing
ontext, the algorithm inFigure 5 may not be dire
tly appli
able.An example is the treatment of OpenMP threadprivate
lauses. If the trans-lation interfa
e requires the OpenMP sour
e-to-sour
e translator to generate dif-ferent output
ode patterns depending on whether or not threadprivate storagehas been previously used, a straightforward adaptation of Figure 5 will not work.For su
h
ases, more
ompli
ated global analysis and transformation te
hniquesare required.5 Related WorkAlthough a number of
ompilers were developed to support OpenMP appli
a-tions, most OpenMP resear
h proje
ts [2, 7{9℄ only support appli
ations writtenin C or FORTRAN. Be
ause
ommer
ial C++
ompilers, su
h as the SGI MIP-Spro [10℄, the IBM XL [11℄, the Intel KAI Guide [12℄, and the Fujitsu for SPARCSolaris [13℄, target spe
i�
 ma
hine ar
hite
tures and do not provide an opensour
e-to-sour
e transformation interfa
e to the outside world, they
annot beused by the resear
h
ommunity dire
tly to plug in di�erent OpenMP imple-mentations. As the result, no OpenMP sour
e-to-sour
e translator was availablefor resear
h into optimizing C++ appli
ations. By providing a
exible sour
e-to-sour
e translator, we present an open resear
h infrastru
ture for optimizingC++
onstru
ts and OpenMP dire
tives.Previous resear
h sour
e-to-sour
e translators provide various infrastru
turesfor optimizing OpenMP dire
tives. In parti
ular, the OdinMP/CCp
ompiler [7℄takes a C-program with OpenMP dire
tives and produ
es a C-program forPOSIX threads. In
ontrast, the Omni
ompiler [8℄ translates the OpenMP prag-mas in C-programs into runtime library
alls, whi
h in turn then invoke eitherPOSIX or Solaris threads. The NanosCompiler [2℄ and the Polaris
ompiler [9℄translate Fortran programs with OpenMP dire
tives in a similar fashion as theOmni
ompiler. In addition to OpenMP-dire
tive translation, most of these in-frastru
tures also investigate te
hniques to automati
ally generate OpenMP di-re
tives and to optimize the parallel exe
ution of OpenMP appli
ations. We
omplement the previous resear
h by presenting an infrastru
ture for the C++OpenMP pragma translation and for the automati
 generation and optimizationof C++ parallel appli
ations.

136 Con
lusions and Future WorkWe have presented infrastru
ture for the transformation of C and C++ appli
a-tions. We have used the semanti
s of high-level abstra
tions to demonstrate theautomated introdu
tion of OpenMP dire
tives to parallelize serial
odes. Finallywe demonstrated the translation of a representative OpenMP dire
tive using theNanos library.In future work we will make available the OpenMP translation phase as aseparate
omponent. This will permit anyone de�ning transformations to spe
-ify them more simply via OpenMP dire
tives and to then pro
ess the AST togenerate the �nal
ode automati
ally using an OpenMP runtime library.We are
onsidering applying the ROSE infrastru
ture to the optimization ofthe use of OpenMP runtime libraries. This third aspe
t of ROSE-based OpenMPsupport would be similar to the A++/P++ sour
e-to-sour
e translator in thatit would optimize library use, based domain-spe
i�
 semanti
s. For example,we
ould spe
ialize the use of the Nanos runtime library for spe
ial
ases forwhi
h
ommer
ial
ompilers yield signi�
ant performan
e gains, su
h as whenthe number of threads is set to one.Referen
es1. Daniel Quinlan, Brian Miller, Bobby Philip, and Markus S
hordan. Treating auser-de�ned parallel library as a domain-spe
i�
 language. In 16th InternationalParallel and Distributed Pro
essing Symposium (IPDPS, IPPS, SPDP), pages 105{114. IEEE, April 2002.2. Eduard Ayguade, Mar
 Gonzalez, and Jesus Labarta. Nanos
ompiler: A resear
hplatform for openMP extensions. In European Workshop on OpenMP, September1999.3. Edison Design Group. http://www.edg.
om.4. R. Parsons and D. Quinlan. A++/P++ array
lasses for ar
hite
ture indepen-dent �nite di�eren
e
omputations. In Pro
eedings of the Se
ond Annual Obje
t-Oriented Numeri
s Conferen
e, April 1994.5. Federi
o Bassetti, David Brown, Kei Davis, William Henshaw, and Dan Quinlan.OVERTURE: An obje
t-oriented framework for high-performan
e s
ienti�

om-puting. In Pro
eedings of Super
omputing'98 (CD-ROM), Orlando, FL, November1998. ACM SIGARCH and IEEE. Los Alamos National Laboratory.6. Centre Europeu de Parallelism de Bar
elona, Spain. Nanos Manual.http://nereida.deio
.ull.es/html/nanos.html.7. Christian Bruns
hen and Mats Brorsson. OdinMP/CCp - a portable implementa-tion of openMP for
. In European Workshop on OpenMP, September 1999.8. Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka. Designof openMP
ompiler for an SMP
luster. In European Workshop on OpenMP,September 1999.9. Seung Jai Min, Seon Wook Kim, Mi
hael Voss, Sang Ik Lee, and Rudolf Eighmann.Portable
ompilers for openMP. In Workshop on OpenMP Appli
ations and Tools,July 2001.10. Sili
an Graphi
s In
. Optimizing Compilers for High-Performan
e Computing.www.sgi.
om/developers/devtools/languages/mipspro.html.

1411. IBM. VisualAge C++ Professional for AIX V6.0. www-1.ibm.
om/servers/eserver/e
atalog/us/software/6146.html.12. Xinmin Tian, Aart Bik, Milind Girkar, Paul Grey, Hideki Saito, and Ernesto Su.Intel openMP C++/Fortran
ompiler for hyper-threading te
hnology: Implemen-tation and performan
e. Intel Te
hnology Journal, 6(1):36{46, 2002.13. Fujitsu. Fortran & C Pa
kages for SPARC Solaris.www.fr.fse.fujitsu.
om/devuk/solaris.shtml.

