Analyzing and Visualizing Whole Program Architectures

Thomas Panas

Dan Quinlan

Richard Vuduc

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
P.O. Box 808, L-550
Livermore, California 94551, USA
{panas2, dquinlan, richie} @lInl.gov

1. Introduction

This paper describes our work to develop new tool sup-
port for analyzing and visualizing the architecture of com-
plete large-scale (millions or more lines of code) programs.
Our approach consists of (i) creating a compact, accurate
representation of a whole C or C++ program, (ii) analyzing
the program in this representation, and (iii) visualizing the
analysis results with respect to the program’s architecture.
We have implemented our approach by extending and com-
bining a compiler infrastructure and a program visualiza-
tion tool, and we believe our work will be of broad interest
to those engaged in a variety of program understanding and
transformation tasks.

We have added new whole-program analysis support to
ROSE [17,116], a source-to-source C/C++ compiler infras-
tructure for creating customized analysis and transforma-
tion tools. Our whole-program work does not rely on pro-
cedure summaries; rather, we preserve all of the informa-
tion present in the source while keeping our representation
compact. In our representation, a million-line application in
well less than 1 GB of memory.

Because whole-program analyses can generate large
amounts of data, we believe that abstracting and visualiz-
ing analysis results at the architecture level are critical to
reducing the cognitive burden on the consumer of the anal-
ysis results. Therefore, we have extended Vizz3D [21]], an
interactive program visualization tool, with an appropriate
metaphor and layout algorithm for representing a program’s
architecture. Our implementation provides developers with
an intuitive, interactive way to view analysis results, such
as those produced by ROSE, in the context of the program’s
architecture.

The remainder of this paper summarizes our approach
to whole-program analysis (Section [2)) and provides a con-
crete example of how we visualize the analysis results (Sec-

tion[3)).

2. Whole-Program Analysis

Our source code analysis and transformation work is part
of the ROSE project, sponsored by the U.S. Department of
Energy (DOE). Although research in the ROSE project em-
phasizes performance optimization, ROSE contains many
of the components and analyses common to any compiler
infrastructure, and thus facilitates the development of a
broad range of source-based analysis tools. ROSE routinely
compiles million-line applications. This section describes
our whole-program analysis implementation in ROSE.

2.1. Representing whole programs

Whole-program analysis is typically implemented ei-
ther using procedure summaries or by embedding infor-
mation into the object files to use whole-program context
at link-time. In ROSE, we approach the problem differ-
ently, namely, by using a space-efficient representation of
the complete source.

We use the Edison Design Group C++ front-end
(EDG) [9] to parse C and C++ programs. The EDG
front-end generates an abstract syntax tree (AST) and fully
evaluates all types. We translate the EDG AST into our
own object-oriented AST, SAGEIII, based on Sage II and
Sage++ [3)]. The SAGEIII intermediate representation (IR)
has 240 types of IR nodes and can fully represent original
structure of the application, including the preservation of
comments and preprocessor control structure. From the IR,
the original source may be reproduced completely.

The IR is space-efficient by design. In particular, we
share parts of the AST (subtrees) that are determined to be
identical. This technique is critical for C and C++. For
example, a typical million-line applications compiled by
ROSE have on the order of 1000 files containing 75K lines
contributed from header files and 1K lines of actual source
code in the source file. In this scenario, the effective 76K
lines of code generate an AST with about 500K IR nodes.

mailto:panas2@llnl.gov?subject=HPC%20code%20quality%20paper
mailto:dquinlan@llnl.gov?subject=HPC%20code%20quality%20paper
mailto:richie@llnl.gov?subject=HPC%20code%20quality%20paper

)
&=
- =
,
(Sl
e
S @
@@ ©
J ©
AR €
: =
= &
E=.
, oo
s Sles
=@
S ¢

S

Figure 1. (7op) The AST before merging. File 1 = green nodes, File 2 = blue nodes, File 3 = red
nodes. (Bortom) The AST after merging. The magenta subtree shows common structure that has

been merged.

To support whole-program analysis, ROSE merges mul-
tiple ASTs from the compilation of different source files
into a single AST, without losing project, file, and direc-
tory structure. Merging 75K lines over each of the 1000
files saves 75 million lines of code from being represented
redundantly in the AST.

Using a 250 KLOC benchmark, we have estimated that a
million-line application will fit into approximately 400 MB
of memory after merging header files. The AST holding
the million-line application can also be saved to and loaded
from disk using a custom ROSE-specific binary file format;
on current single-processor desktop machines, one of these
binary files can be written in roughly 30 sec and read in
under a minute. Simple traversals of the whole AST (in
memory) are expected to take only a few seconds.

Figure [I] (top) shows the AST for three example source
files, with AST subtrees colored by file. The ASTs from the
files are not shared. Figure |I| (bottom) shows the AST af-
ter the merge process, where the diamond shaped IR nodes
of the AST indicate that those IR nodes are shared. To be
shared, the declaration at the root of the subtrees had to gen-
erate the same internal name (in C++, this includes standard
name mangling plus a number of other language specific de-
tails) and the subtrees had to pass the One-time Definition
Rule (ODR) test of equivalence. For a more detailed de-
scription of our merge algorithm, see our recent paper [16].

2.2. Analysis

ROSE internally implements a number of forms of pro-
cedural and interprocedural analysis, with much of this
work in current development. ROSE currently includes sup-
port for dependence, call graph, and control flow analysis.
In collaboration with academic groups, we are extending
the analysis infrastructure to interface with general analy-
sis tools, including PAG [2] OpenAnalysis [19], as well as
analysis tools specifically for automated debugging and se-
curity, MOPS for finite state machine-based temporal spec-
ification checking [6]], and coverage analysis tools [S]].

ROSE contains a variety of graphs, metrics, and analyses
to support program developers in understanding their soft-
ware quality, software security, performance bottlenecks,
and software structure. The following list provides exam-
ples of these analyses:

Strongly Connected Components (SCC). We detect
cyclic dependencies between functions, classes or files. In
general, nodes in a cyclic dependency may be merged to re-
duce call dependencies, and hence to reduce the structural
complexity of the system.

Unsafe Function Calls. Certain aspects of C++ (e.g.,
unchecked array access, raw pointers), can lead to low-level
buffer overflows, page faults, and segmentation faults. In
this analysis, we detect calls to “unsafe” functions, such as

Fle Efit View Layout Tools Hierrchy Help

Raf aaaaE ¥bo oc|m+ERE o

Figure 2. A conventional architecture visual-
ization.

sprintf, scanf, strcpy.

Global Variables. We traverse the program’s abstract
syntax tree (AST) to check for public declared variables
(within the scope of classes) and global variables (outside
the scope of classes). Global variables are a bad program-
ming style and should not appear, especially in object-
oriented code.

Arithmetic Complexity. For each function, this analy-
sis counts the number of arithmetic operations on float, int,
float pointer, and int pointer types. Thus, functions and
classes with large arithmetic operation counts can be de-
tected. This property is particularly important in scientific
computing codes, since such functions should be the most
robust and reliable pieces of the software.

3. Architecture Visualization

The aim of architecture-level visualization is to rapidly
summarize and communicate the architecture and design
decisions of the overall software system. Architectural vi-
sualization is naturally more abstract than low-level visual-
izations (from low-level analyses) [15]], and therefore better
suited to visualizations in the large. Abstract visualizations
of software architectures combined with metrics can help
software developers to answer many questions about a soft-
ware system.

Common examples of architectural visualizations are
function call graphs, hierarchy graphs, and directory struc-
tures. There are many ways to present these graphs, such as
UML diagrams, graph browsers, and component/connector
graph drawings. For example, Figure |2 shows the visual-
ization of various analysis results. The results are repre-
sented within one image to reduce the cognitive burden a
viewer has in order to associate same entities from multiple
views [18]]. This image carries a tremendous amount infor-

mation, and techniques for information reduction become
necessary.

To help a viewer better navigate and understand analy-
sis results of large-scale applications, we have implemented
a 3D city metaphor, a predictable layout, and abstraction
and navigation mechanisms within our visualization tool,
Vizz3D. We show an example of visualizing SMG2000 [[1]],
a semicoarsing multigrid code, in Figure 3] This image
shows exactly the same information as Figure [2] but in our
view, in a more cognitively accessible way.

More specifically, Figure[3)is a snapshot taken of Vizz3D
while running on SMG2000. The directories of this appli-
cation appear as “islands,” individual files as “cities” within
the island, and individual function definitions as “build-
ings.” In addition, aggregate shaded edges between cities
indicates that some function in one file (red end) calls some
function in another file (dark end). Other user-selected met-
rics and analyses (whether static or dynamic) may be ren-
dered as textures, colors, and icons in this view. We believe
that the right choice of metaphor and layout are crucial, and
we will investigate this claim in future studies.

4. Related Work

Whole-program analysis has traditionally been applied
in performance optimization contexts [4, 20], but has re-
cently also been used to find bugs and detect security flaws
using global dataflow analyses [12}[13}|10]. Our techniques
complement earlier work by providing the basic infrastruc-
ture for accurately representing the source of an entire pro-
gram but for purposes of program understanding. Among
other open C or C++ infrastructures [11} 14} 3L [7] and C++
static analysis infrastructures [22]], our basic mechanisms
for building whole-program representations are unique.

References

[1] The SMG2000 Benchmark, 2001.
1Inl.gov/asci/platforms/purple/rfp/benchmarks/limited/smg.

[2] Abslnt, Inc. PAG: The Program Analysis Generator, 2006.
absint.com/pag.

[3] S.P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W.
Tseng. The SUIF Compiler for Scalable Parallel Machines|
In Proc. SIAM Conference on Parallel Processing for Scien-
tific Computing, Feb 1995.

[4] D. C. Atkinson and W. G. Griswold. The design of whole-
program analysis tools. In Proc. International Conference
on Software Engineering, Berlin, Germany, March 1996.

[5] F. Bodin, P. Beckman, D. Gannon, J. Gotwals, S. Narayana,
S. Srinivas, and B. Winnicka. Sage++: An object-oriented
toolkit and class library for building fortran and C++ restruc-
turing tools. In Proceedings. OONSKI 94, Oregon, 1994.

[6] H. Chen, D. Dean, and D. Wagner. Model checking one
million lines of C code. In Proc. Network and Distributed

http://suif.stanford.edu/papers/siam95a.ps

(7]

(8]

(9]
(10]

[11]

[12]

[13]

[14]

[15]

[16]

File Edit MNavigation Layout Binding Environment Info

cEE0Ew == B

7 Vizz3D - OpenGL (JOGL)

HO B AD e NOd® @@ FRIPS

F39 Memory usage: 21 MB #Nodes: 451 #Edges: 172

Figure 3. Our architecture visualization.

System Security Symposium, San Diego, CA, USA, February
2004.

S. Chiba. Macro processing in object-oriented languages.
In TOOLS Pacific °98, Technology of Object-Oriented Lan-
guages and Systems, 1998.

O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and
S. Ur. Testing multithreaded Java programs. IBM Systems
Journal: Special Issue on Software Testing, February 2002.
Edison Design Group. EDG front-end. edg. com.

D. Engler and M. Musuvathi. Static analysis versus soft-
ware model checking for bug finding. In Proc.International
Conference on Verification, Model Checking, and Abstract
Interpretation, Venice, Italy, 2004.

F. S. Foundation. =~ GNU Compiler Collection, 2005.
gCe.gnu.org.

S. Z. Guyer, E. D. Berger, and C. Lin. Detecting er-
rors with configurable whole-program dataflow analysis. In
Proc. Conference on Programming Language Design and
Implementation, Berlin, Germany, 2002.

D. L. Heine and M. S. Lam. A practical flow-sensitive
and context-sensitive C and C++ memory leak detector. In
Proc. Conference on Programming Language Design and
Implementation, pages 168—181, June 2003.

G. Keating. Inter-module analysis in GCC. In Proc. GCC
Developers’ Summit, Ottowa, Canada, June 2005.

T. Panas. Towards a Generic Framework for Reverse En-
gineering. Licentiate thesis, Vixjo University, Sweden,
November 2003.

D. Quinlan, R. Vuduc, T. Panas, J. Hirdtlein, and
A. Sxbjgrnsen. Support for whole-program analysis

(17]

[18]

(19]

(20]

(21]

[22]

and verification of the One-Definition Rule in C++. In
Proc. Static Analysis Summit, Gaithersburg, MD, USA, June
2006. National Institute of Standards and Technology Spe-
cial Publication.

M. Schordan and D. Quinlan. A source-to-source architec-
ture for user-defined optimizations. In Proc. Joint Modular
Languages Conference, 2003.

M.-A. D. Storey, F. D. Fracchia, and H. A. Mueller. Cogni-
tive design elements to support the construction of a mental
model during software visualization. In Proc. of the 5th Int.
Workshop on Program Comprehension (WPC ’97), Wash-
ington, DC, USA, 1997. IEEE Computer Society.

M. M. Strout, J. Mellor-Crummey, and P. D. Hov-
land. Representation-independent program analysis. In
Proc. ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, September
2005.

S. Triantafyllis, M. J. Bridges, E. Raman, G. Ottoni, and
D. I. August. A framework for unrestricted whole-program
optimization. In Proc. Conference on Programming Lan-
guage Design and Implementation, Ottowa, Canada, June
2006.

Vizz3D. Available at:
sourceforge.net, July 2006.
D. Wilkerson. OINK: A collection of composable C++ static
analysis tools, 2005. freshmeat.net/projects/oink.

http://vizz3d.

http://gcc.gnu.org
http://www.cs.colostate.edu/~mstrout/Papers/strout-paste05.pdf
http://vizz3d.sourceforge.net
http://vizz3d.sourceforge.net

	. Introduction
	. Whole-Program Analysis
	. Representing whole programs
	. Analysis

	. Architecture Visualization
	. Related Work

