Automated Transformation for Performance-Critical Kernels

Abstract

The performance of many scientific applications depends on a small number of key computational
kernels which require a level of efficiency rarely satisfied by existing native compilers. We present a
new approach to high performance kernel optimization, where a general-purpose transformation engine
automates the production of highly efficient library routines. Our framework requires only an annotated
kernel specification and can automatically produce optimized implementations based on tuning parame-
ters controlled by a search driver. The transformation engine includes an extensive suite of optimizations
which can be easily expanded using a custom transformation description language. We have applied our
transformation engine to generate highly tuned code for key linear algebra kernels used in the ATLAS
tuning framework. The time required to produce specifications for these kernels is orders of magnitude
less than that required to hand-craft kernel implementations, and yet our framework has achieved similar

performance to ATLAS’s highly tuned kernels.

1 Introduction

There are more than a few application areas where performance needs are not fully addressed by current
compilation techniques, either because the compiler lacks domain-specific knowledge about the application,
or because the compiler cannot fully address the extreme complexity of modern computer architectures. To
overcome this problem, many applications call performance-critical libraries which must be hand-tuned (often
directly in assembly) for each arcitecture of interest. For a few computational libraries, there exist empirical
tuning frameworks that can automate this tuning process, as in ATLAS [17, 15], FFTW [4, 11], among others.
The demand for such well-tuned library routines has led to several application-specific empirical tuning
frameworks where both domain-specific knowledge and direct timings are used to guide the optimization of
important kernel implementations (3, 5, 9, 13, 14, 9, 1, 2].

Despite the success of many domain-specific empirical tuning systems, there are limits to the generality
and portability of this approach. Since these frameworks require significant investment to create, and are

typically not as effective when the problem at hand deviates from their main domain, many computational



kernels are not well supported and thus do not achieve adequate performance. These systems are therefore
not of great assistance in optimizing applications beyond their domain that nonetheless require a high level
of performance.

This paper presents a new approach, where a general Applicationl

framework is proposed to automate the production of highly-

o . o Analyzer
optimized library kernels. As shown in Figure 1, our frame-

work includes three components: an analyzer, a transforma-

A Configuration
tion engine, and an empirical search driver. Currently, the an- ;3; space
(%] .
alyzer role from the above figure must currently be performed & Search driver &
® X
= | Parameter | # Transformation
. . A
by the programmer. Our research plan calls for replacing this % values | feedback r_?
S o
manual step with an optimizing compiler, which can automat- —» Transformation engine 3
)
=)
ically derive profitable optimizations through compiler analy- Optimized 2
code
sis (possibly with the help of programmer markup). Since the
Machine
analyzer understands the computational kernel to be imple- Final
program

mented and knows what transformations might potentially
improve performance of implementation, such information is
Figure 1: Our empirical tuning approach

expressed as a collection of transformation annotations em-

bedded in an kernel specification file. The annotated kernel specification is then used as the distribution file
of the kernel and can be ported to different machines for empirical tuning. On each platform that the kernel
needs to be tuned for, the kernel specification is used as input to a search driver and the transformation
engine, which together takes the transformation annotations and automatically search the transformation
space to find a highly optimized kernel implementation. This paper focuses on presenting a general-purpose
transformation engine which we have developed. Our transformation engine (TE) is portable, easy to ex-
tend, and simple to use. Additionally, the TE is language neutral and can be easily specifialized to produce
optimized kernels in an arbitrary source language, including C, FORTRAN, or assembly.

A key feature of our approach is that it uses a kernel specification which formulates the implementation

in terms of the sequence of parameterized transformations which may be applied by the search driver to



optimize performance. Compared to the conventional domain-specific empirical tuning frameworks, our

approach has the following advantages:

e First, our approach target at producing general-purpose kernel implementations. The transformation
engine includes an extensive library of code transformations that have proven to be able to significantly
improve application performance. The programmer need only specify where to apply these trans-
formations in order to extract high performance for an arbitrary computational routine. Although
domain-specific knowledge is required to correctly apply the transformations, the effort required to
generate a high-performance specification describing the transformation to try is orders of magnitude
less work than manually writing and tuning various implementations in order to discover the most

efficient implementation.

e Second, our transformation engine supports natural parameterization and re-configuration of all the
relevant code optimizations, so that a single version of kernel specification can be copied to to differ-
ent architectures and empirically tuned to find the best implementation. In contrast, although most
empirical tuning frameworks parameterize their kernel implementations to ensure portability, the pa-
rameterization is often not as comprehensive, and adapting to different architectures and/or extending

to other kernels takes significant more development and maintenance.

e Finally, using our transformation engine, the kernel specification file only needs to provide a primitive
routine using the most simple and intuitive algorithm. The code is therefore easier to understand and
maintain. As new machine architectures are brought forward, adapting the kernel implementation re-
quires simply adding a few more optimizations, while the rest of the kernel specification left unchanged.
This is significantly more efficient than having to rewrite the kernel implementations to accommodate

new architectural features.

To demonstrate that our transformation engine can produce kernel implementations as efficient as those
produced by domain-specific libraries, We have applied our framework to generate highly optimized code for
several linear algebra kernels in the ATLAS library [17, 15]. The kernel implementations produced by our

framework achieved similar performance to that seen in ATLAS’s highly tuned kernels. Our results indicate



that using a code transformation engine can achieve portable high performance for general-purpose kernels

while requiring significant less time and effort than hand-tuning the routines.

2 Related Work

There are more than a few highly successful empirical tuning frameworks which provide efficient kernel
implementations for important scientific domains, such as those for dense and sparse linear algebra [3], signal
processing [5, 9], among others [13, 14]. Some systems permit users to specify the desired kernel operation
in a high-level mathematical notation [9, 1, 2]. Our purpose is to target general-purpose applications beyond
those where high-performance kernels are readily available from domain-specific research. Our approach
aims to complement existing domain-specific research and to provide an efficient transformation engine to
help existing libraries more readily port to different computer architectures.

Recent research has produced some general-purpose empirical tuning frameworks where compilers are em-
ployed to support performance tuning of arbitrary applications. These empirical tuning compilers iteratively
re-configure well-known optimizations according to performance feedback of the optimized code and have
demonstrated that empirical tuning of application performance can significantly improve the effectiveness of
compiler optimizations [18, 10, 7, 8, 12, 6, 20]. These compiler-based frameworks apply to all applications
that have access to the optimizing compiler. However, they restrict applications to optimizations available
only within the compiler, which typically does not provides much information to the outside world, e.g.,
why particular transformations were or were not applied. Additionally, each empirical compiler is by itself a
significant infrastructure which typically includes a large and growing collection of routines for program anal-
ysis, code optimization, and language processing capabilities. Our own infrastructure is significantly lighter
weight, and therefore should be more suitable for inline use by applications or other tuning frameworks.

In contrast to a full blown iterative compilation framework, our transformation engine is simply comprised
of an interpreter for a small embedded language (POET), and a library of compact code transformation
routines written in this language. The transformation engine if very light-weight (currently including about
3000 lines of C++ code implementing the POET interpreter and about 600 lines of POET code implementing

various code transformations). Our transformation engine therefore can be easily included as part of the



library or application distribution and serve as the automated code generator for the empirical tuning of

kernel implementations.

3 The POET Transformation Engine

Our transformation engine (TE) is based on a small special-purpose language named POET (Parameterized
Optimizations for Empirical Tuning) [19]. The POET language is designed to specifically support parame-
terized code generation for empirical tuning and includes sophisticated features to support easy definition of
arbitrary customizable code transformations. Our TE has used POET to support an extensive code transfor-
mation library, an annotation interface for parsing and representing arbitrary computational routines, and
a programming interface for applying different code optimizations to the kernel computation. POET can
also be used to implement customized search drivers for the empirical tuning of arbitrary kernel implemen-
tations. This paper focuses on how to use the POET TE to automatically produce high-performance kernel
implementations.

As shown in Figure 2, our transformation engine includes ~ —~ = — .
ITransformation Engine

\
three components: a POET interpreter, a transformation li-

\
‘ |
| Transformation |
brary, and a collection of front-end definitions which special- Parameter | Library ‘
values | ‘
ize the transformation library for different programming lan- :
Kernel ,P?ET t . _H(z)ptimiz
guages such as C, FORTRAN, or Assembly. In the centerspecification | |nlerpre S | ernel
[ 4 \
. \
i . . . } L4
of the TE is the POET language interpreter, which takes C Frontend .. [Fortran |
'Specialization | | Frontend ||
as input a kernel specification from the programmer and a ‘ specialization ||
\
|
collection of parameter values from a separate search driver, L 7777777777 |
invokes a specialized language frontend to help parse the in-
put computation, and then invokes the transformation library Figure 2: POET transformation engine

to optimize the kernel implementation. An optimized kernel
implementation is output as the result, which is then empirically tested and measured by a separate search
driver until a satisfactory implementation is found.

In order to build optimized kernel implementations, the programmer needs to provide a kernel specifi-



<xform Stripmine pars=(inner,bsize,outer) tune=(unroll=0,split=0) output=(_nvars, _bloop, _tloop,_cloop,_body)>
switch outer { case inmner : ("","","" "" inner)
case Loop#(i,start,stop,step): ......
default: ...... }
</xform>

<xform BlockHelp pars = (bloop, tloop, rloop, bbody, cbody, cloop) >
if (bloop == "") ... <*base case*>... else { ...<*recursively call BlockHelp*>... }
</xform>

<xform BlockLoops pars=(inner,outer,decl,input) tune=(bsize=16, split=0, unroll = 0) >
. = Stripmine[unroll=unroll,split=split] (inner, bsize,outer);
. call BlockHelp ... ... modify input ...

</xform>

Figure 3: Skeleton of Loop blocking as defined in the transformation library

cation, which invokes optimization routines from the TE library specialized for a particular programming
language. Both the library and the language specialization can be used without detailed knowledge about
their implementation. Programmers, however, can easily expand the transformation library and define their
own customized transformations. In the following, Sections 3.1 and 3.2 first briefly introduce our existing
transformation library. Section 3.3 then focuses on how to use the POET TE to build optimized kernels for

empirical tuning.

3.1 The Transformation Library

Our transformation library includes an extensive collection of code optimizations that have proven to be
able to significantly improve application performance, including loop transformations such as loop blocking,
interchange, fission, fusion, unroll-and-jam, unrolling, splitting; memory optimizations such as array copying
and scalar replacement; as well as low-level optimizations such as strength reduction and SSE vectorization.
All transformations are implemened using POET, a high-level scripting languages with an xml-like syntax.
Figure 3 shows a few skeletons of POET routines relevant to applying a loop blocking transformation.

As shown in Figure 3, POET uses keyword z form to define routines that can be invoked to transform
input code fragments. Each zform routine uses the pars attribute to define the sequence of function
parameters, uses the tune attribute to define several tuning parameters which can be used to reconfigure
the transformation (each tuning parameter has a default value which defines the default configuration),
and uses the output attribute to define return values of the xform routine. The body of each xform

routine examines the input parameters and returns a new code fragment as replacement of the original one.



Additional information may be returned when the output attribute is defined.

The entire transformation library comprises zform routines as shown in Figure 3. These routines can be
separated into two categories: internal routines such as Stripmine and BlockHelp, which are helper routines
used by other facilities within the library; and interface routines such as BlockLoops, which can be invoked
directly from a kernel specification file. Programmers need only be aware of the syntax and semantics of
interface routines when defining the kernel specification for an input application.

We choose to use POET to implement our transformation library because using a scripting language is
orders of magnitude easier than using general-purpose languages such as C/C++ in writing dynamic code
transformation routines. In addition to supporting common language features such as loops and recursive
functions, POET has a special focus on program transformation by supporting easy construction and manip-
ulation of code fragments in a customized AST (abstract syntax tree) representation. The extensive support
for building customized transformations in POET allows programmers to easily extend the transformation
library with their own x form routines.

Most of the code transformations in our zform library are also typically included in optimizing compilers,
where the routines would be part of the compiler implementation and written in C/C++ (or whatever
language the compiler is implemented in). In essence, we have reimplemented many of the conventional
compiler transformations using the POET language and have provided these transformations as a library
for programmers to build extremely optimized kernel implementations. We argue that it is much easier and
more cost-efficient for programmers to invoke the appropriate code transformations than to hand-tune an
optimized assembly implementation. The built-in parameterization support by the transformation engine
also allows natural empirical tuning of the optimized kernels which would be much more portable than

hand-written assembly.

3.2 Frontend Specialization

Our transformation engine is language neutral in that both POET and the transformation library are in-
dependent of what language that the input kernel is coded in. POET is a scripting language which can

be embedded in an arbitrary source language and treats code fragments in the source language as strings



<code Function pars=(head,body)>

<code Exp pars=(str)> @head@
Q@str@ {
</code> @body@
}
<code Stmt pars=(str) > </code>
QstrQ;
</code> <code Loop pars=(i,start,stop,step) attr=(maxiternum)>
@for (@i@=@start@; Q@i@<@stop@; Q@iQ@+=@stepQ@)
<code ArrayRef pars=(arr,sub) > </code>
Qarr@[@sube]
</code> <code Nest pars=(loop, body)>
@loop@ {
<code PtrRef pars=(ptr)> @body@
*(Qptr0) }
</code> </code>
<code Assign pars=(lhs, rhs)> <code Sequence pars=(sl,s2) >
@lhs@ = @rhs@ @sie
</code> @s20
</code>

Figure 4: C frontend specialization

wrapped inside a collection of customized abstract syntax tree (AST) definitions called “code templates”.
Figure 4 shows some examples of code templates defined for optimizing kernels written in C. Each POET
code template conveys a special meaning and serves to present an abstract view of the input computation to
the transformation library, which applies transformations to the code templates without knowing how the
code templates are defined.

POET Code templates are compound data structures which are used both by the transformation library
and by the kernel specification as an abstract representation of the input computation. As shown in Figure 4,
each code template can have two attributes, pars and attr, which define the parameters and additional
properties of the source code. The concrete source code of each code template is then defined in a general
programming language such as C and is parameterized by variables declared in pars (in Figure 4, the reserved
token, ‘@’; is used for context switching between POET parameters and source strings of the underlying
language). As an example, Figure 4 includes several code templates which are recognized by the loop blocking
transformation shown in Figure 3. These templates are used to parse the matrix multiplication kernel given
in Figure 5

Code template specializations like those shown in Figure 4 are used only for parsing the input source and
for emitting the transformed output. The POET transformation library uses these templates as abstract
representations of the input code without knowing how these representations are implemented. When an

input program is defined in terms of code templates, generic routines predefined in our transformation



<input gemm>
//@; BEGIN(gemm)
void ATL_USERMM(const int M, comnst int N, const int K,
const double alpha, const double *A, const int lda,
const double *B, const int 1ldb, const double beta,
double *C, const int 1ldc) //@=>_:Exp
{ //@; BEGIN(.)
int i, j, 1; //@=>gemmDecl:Stmt; BEGIN(gemmBody)
for (j =0; jJ<N; j+=1) //@ =>loopJ:Loop BEGIN(nest3)
{ //@; BEGIN(body3)
for (i = 0; i < M; i +=1) //@=>1oopI:Loop BEGIN(nest2)
{ //@;BEGIN(body2) BEGIN(parse)
C[j*1ldc+i] = beta * C[j*ldc+il; //QEND(parse) =>_:Stmt
for (1 = 0; 1 < K; 1 +=1) //@=>1oopL:Loop BEGIN(nest1)
{ //@;BEGIN (parse)
C[j*ldc+i] += alpha * A[i*1lda+l] * B[j*1db+1l]; //QEND(parse) =>stmtl:Stmt
} //QEND (nest1:Nest) END(body2:Sequence)
¥ //QEND (nest2:Nest) END(body3:Nest)
¥ //@END (nest3:Nest) END(gemmBody:Nest) END(_:Sequence)
} //@END (gemm: Function)
</input>

Figure 5: Input specification for kernel dgemm

library can recognize the structure of the input program and apply optimizations accordingly. The definition
of code templates therefore serves to specialize the transformation library to kernels in a specific programming
language. To process kernels implemented in a language other than C, the programmer only needs to switch
to another predefined code template header file. The POET transformation engine can therefore be used to

optimize kernels in different languages without significant adaptation.

3.3 Kernel Specifications

The main input of POET transformation engine is a kernel specification file which includes two components:
an input specification, which defines the input computation to be tuned as a kernel; and a transformation
specification, which defines where and how to apply various parameterized transformations to the input code.
As example, Figure 5 shows the POET input specification for dgemm, the matrix multiplication kernel from

the ATLAS library [17, 15], and Figure 6 shows the transformation specification for the kernel.

Input Specification. In order to optimize a computational kernel, the POET TE needs to parse the
input code and translate it into an abstract code template representation that can be understood by the
transformation library. Figure 5 illustrates an input specification for the ATLAS dgemm routine, where
fragments of the the input code are annotated with information to help parse the matrix computation into
a code template representation (see Section 3.2). Each POET annotation either starts with “//@Q” and lasts

until the end of the current line, or starts with “/*@Q” and ends with “@*/”. Programmers can embed



these annotations as comments in their C/C++ code, where the source code of the computational routine
is readily accessible for both readability and easy maintenance of the kernel implementation.

POET supports both single and nested template annotations. A single template annotation starts from
the end of the last annotation and ends with an annotation in the format “=> x : T”, where x is the
name of a global variable that will be used to store the result of parsing the code fragment, and T is
the code template that should be used to parse the annotated code. For example, in Figure 5, the an-
notation “void ATL_USERMM](...const int ldc) //@=>_:Exp” indicates that the entire source string “void
ATL_USERMM(...const int ldc)” should be treated as the content of a single expression as defined by the

“w o

FExp code template, and the variable name indicates that the code fragment does not need to be stored
in any global variable. Similarly, the annotation “int i, j, 1; //@=>gemmDecl:Stmt” indicates that “int i,
j, 17 is a statement that should be parsed using the Stmt template, and the result should be stored in the
global variable gemmDecl. The definitions for both Exzp and Stmt can be found in Figure 4.

In contrast to single template annotations, nested annotations in POET are used to help parse compound
language constructs such as functions and loop nests, which include other code fragments as components.
Each nested POET annotation starts with “BEGIN(x)”, where x is the variable that should be used to
store the compound code template, and ends with “END(x:T)”, where T is the name of the code template
that should be used to parse the annotated code. In Figure 5, the annotation “for (1 =0;1 < K; 1 4= 1)
//@ =>loopL:Loop BEGIN(nestl) ... END(nestl)” is a nested annotation which starts with the for loop
(a singly annotated fragment stored in loopL) and ends after parsing the loop body stmtl. Other nested
annotations in Figure 5 include code fragments stored in gemmBody,nest3, nest2, body2,etc. The special
nested annotation “BEGIN(PARSE) ... END(PARSE)” indicates that the builtin POET expression parser
should be used to parse the enclosed code fragment, where appropriate code templates for parsing have been
pre-defined in the frontend specialization of the POET TE.

The input specification as illustrated in Figure 5 is necessary so that the POET interpreter can parse
the input computation correctly without being language specific (note that eventually much of this could
be handled automatically by a source-to-source analyzing compiler). Because each code template used in

parsing the input code can alternatively be defined using a different programming language, the POET TE

10



<parameter SSELEN=16, SSEN0=16 /> <output dgemm_kernel.c (

<parameter mu=6, nu=1, ku=36, NB=36, MB=36, KB = 36, PF=1 /> gemm = TRACE gemm
<trace nest3=Nest#(loopJ,body3), nest2=Nest#(loopI,body2), : (gemmDecl,gemmBody,nest3,nest2,nest1);
nest1=Nest#(loopL,stmtl), gemm=Sequence#(gemmDecl,gemmBody)/> APPLY Specialize;
<define Specialize DELAY { if (SP) { APPLY A_ScalarRepl;
REPLACE("N",NB,loopJ); REPLACE("M",MB,loopI); REPLACE("K",KB,loopL); APPLY nest3_UnrollJam;
REPLACE("1lda",MB, gemmBody); REPLACE("1db",NB, gemmBody) ; APPLY B_ScalarRepl;
if (alpha == 0) { REBUILD(REPLACE("alpha",1, gemmBody) } APPLY C_ScalarRepl;
Yy /> APPLY array_ToPtrRef;
<define nest3_UnrollJam DELAY { if (mu > 1 || nu > 1) { APPLY Abuf_SplitStmt;
UnrollJam[factor=(nu mu)] (nesti,nest3,gemmBody) ; APPLY body2_Vectorize;
Y} /> APPLY array FiniteDiff;
<define nestl_Unroll DELAY { if (ku > 1) { APPLY body2_Prefetch;
UnrollLoops [factor=ku] (stmtl,nestl,body2) ; APPLY nest1_Unroll;
} ¥/ gemm
...... ) />
(a) transformation definitions (b) output definition

Figure 6: Defining transformations for kernel dgemm

can be easily specialized to optimize code written in different source languages such as C or Fortran without
requiring a parser for each language. We have designed the annotation syntax to minimize intrusion to the
source code, so that if written in C, POET annotations can be treated merely as comments, and the source

code can be compiled with a regular C compiler without requiring any additional bookkeeping.

Transformation specifications. After the input specification is processed by a POET interpreter, an
internal representation of the given kernel computation is constructed and stored in a collection of global
variables. The programmer can then invoke the POET transformation library to optimize the input code.
Figure 6 illustrates some of the transformation specifications for optimizing the dgemm kernel in Figure 5.
These transformation specifications include four different kinds of POET declarations: parameter, trace,
define, and output, for manipulating the global variables used to store the input computation.

In POET, each keyword parameter declares a number of global variables that can be used to re-configure
transformations applied to the input code. The values of these parameters can be set from command line by
an independent search driver when the transformation engine is invoked, which allows the search driver to
generate different kernel implementations for empirical tuning. The parameter declarations therefore serve
as the communication interface between the transformation engine and the search driver.

Similar to the parameter declaration, each keyword trace serves to declare global variables which can
be embedded inside the input computation to keep track of selected code fragments as they go through

a sequence of transformations. In Figure 6(b), the TRACE operation inserts several trace variables,

11



gemmDecl,gemmBody,nest3, nest2,and nestl, into gemm, the global variable which stores the internal
representation of input code. As various code transformations are applied to optimize the input code, the
values of these trace variables are replaced with equivalent code fragments which may display better perfor-
mance. In Figure 6, the input code is optimized by applying 11 different transformations, each transformation
can operate on the trace variables without worrying about what transformations have already been applied.
The tracing capability therefore makes the ordering of different code transformations extremely flexible,
and the programmer can easily adjust transformation orders and even determine the best ordering through
empirical tuning if desired.

Each keyword define in POET serves to assign new values for global variables. At each assignment, the
target code fragment is first evaluated and the result is then assigned as the new value of the variable. If
the value of a global variable is a code transformation, the evaluation of the transformation can be delayed
using the DELAY operation, which packages the code fragment until an APPLY command is invoked, which
forces the evaluation of delayed transformations. Figure 6 illustrates the definition of three code transfor-
mations, Specialize, which specializes the input code by substituting constant values as bounds for loops;
nest3_UnrollJam, applies unroll-and-jam transformation to nest3; and nesti_Unroll applies loop unrolling
to nestl. Pre-defined transformation routines are invoked within these definitions, where REPLACE and
REBUILD are built-in functions within the POET language, and UnrollAndJam and UnrollLoops are rou-
tines defined in the transformation library. Both routines from the library have their tuning parameters
reconfigured when the routine name is invoked.

Finally, the output declaration in POET defines what code should be output to external files. The output
declaration in Figure 6 first applies a sequence of transformations to the input code and then outputs the
optimized code. A transformation specification can define multiple code fragments to output to different

files so that multiple implementations can be simultaneously produced by the transformation engine.

3.4 Optimizing Kernel Implementations

The goal of our transformation engine is to support compact description of both parameterized code op-

timizations and how these optimizations can be applied differently to improve the performance of input

12



applications. We have carefully designed our framework to offer strong support for the following capabilities:

e Generic transformations can be easily defined and applied to optimize arbitrary application codes.
In addition to an extensive library of predefined code optimizations commonly adopted by compilers,

library developers can use POET to readily define their own customized code transformations.

e Important properties and special semantics of code fragments can be conveniently expressed in the
description of input code. This information can then be utilized in the definition and application of
generic code transformations. POET provides language support for specially tagged code templates,
through which library developers can encode their domain-specific knowledge and can make the results
of their program analysis available both to the transformation engine and to the external world for

better readability and maintenance.

e Each transformation specification allows a collection of tuning parameters as the interface of re-
configuration. An optimization space is therefore explicitly available to external search drivers in
the empirical exploitation of best application performance. Generic search drivers can consequently be

developed without being tied to any specific compiler or library optimization.

Instead of utilizing any existing optimizing compiler, this paper focuses on using our transformation
engine as a generic tool box for library developers who would like to manually build highly optimized kernel
implementions. Our future work includes developing an optimizing compiler which can perform program
analysis, discover profitable optimizations, and then produce a POET kernel specification file as result of
optimization for flexible empirical tuning. Either manually produced by library developers or automatically
by an optimizing compiler, the POET kernel specification can serve as the distribution form of a kernel
implementation which can then be empirically tuned whenever the application needs to be ported to a
different machine.

The POET transformation engine offers more flexible empirical tuning of application performance because
it provides a modular communication interface among independent optimizing compilers, application devel-
opers, and empirical search drivers. It offers a generic tool box to library developers for building a customized

collection of code optimizations and allows such optimizations to be generalized for other applications. It

13



offers a portable output language for analyzers and source-to-source compilers to generate parameterized
code transformations and to explicitly formulate program analysis results to the external world. Moreover,
programmers can modify and extend the output of optimizing compilers to additionally incorporate their
domain-specific knowledge. Using POET TE can greatly improve the efficiency of tuning since the compiler
or library developer needs to perform the analysis only once when creating the scripts. The analysis result

is then tuned as many times as necessary without reapplying the analysis.

4 Results

We have used our POET transformation engine to tune several linear algebra kernels from the popular
ATLAS library [17]. By comparing the our performance results with the best kernel performance of ATLAS,
we have verified that (1) the POET TE can indeed produce kernel implementations with the performance
required for actual HPC applications; (2) our PTE can achieve better performance than hand-tuned kernels
when those kernels are not updated frequently enough in the face of architectural continuing evolution; (3) by
integrating our POET TE with empirically tuned libraries such as ATLAS, we can improve the performance
of existing highly performance libraries by providing a complementary kernel-optimization approach which
is more portable across different computer architectures than multiple implementation, while being less
dependent on the native compiler than source generation.

ATLAS first tunes some simplified performance kernels, and then uses these kernels to implement fast
BLAS and LAPACK routines [16]. We have used POET TE to generate both level-3 and level-2 BLAS
kernels in ATLAS, and present performance results of these kernels when compared against their best
ATLAS implementations and when compared against using the Intel compiler (icc) to tune their reference
implementations. Our comparison using icc has verified our belief that in general even highly aggressive

compilation techniques alone rarely achieve the required performance for high-performance kernels.

4.1 Methodology, Architecture and Version Details

To evaluate the overall performance impact when using POET TE to generate important library kernels, we

performed two sets of experiments. First, we used ATLAS timing routines to measure the performance of

14



PTE produced kernels and compared them directly against the best ATLAS implementations. Section 4.2
and 4.3 present relevant results for level-3 and 2 BLAS kernels respectively. Second, we integrated the POET
produced kernels within ATLAS as user-contributed routines, and evaluated the overal performance impact
when the extended ATLAS is used to implement higher-level LAPACK routines such as the QR-solve. S4.4

presents results of the second experiment.

[ Platform [ Cmp | Flags I
2.66Ghz C2D 19(:(_; -%(P -m?seS -O3 -mpl Prec s(gglrele\l/(c)ac As‘gg%on'&l 322
. -fomit-frame-pointer -
(Core2Duo) gee -mfpmath=sse -msse3 -02 single | 5,320 | 21,280 | 4,400 8,800
4.0.1 | -m64 -fomit-frame-pointer double | 5,320 | 10,640 |[ 4,400 4,400
H 2.2Ghz ATH ‘ gcc ‘ -mfpmath=387 -falign-Toops=4 H (b) Theoretical peak by platform (MFLOPS)
(Athlon 64 X2) | 4.2.0 -fomit-frame-pointer -O2 (Prec: precision of floating-point operations; scal:
(a) Compiler and flag information by platform using scalar op; vec: using vectorized op.)

Table 1: Platform Summary

We concentrate on the ubiquitious x86 platform, and report performance for the newest machines from
both AMD (2.2 Ghz Athlon-64 X2) and Intel (2.66 Ghz Core2Duo) that we have access to (abbrievated
as ATH and C2D, respectively). The ATH runs Linux, and the C2D OS X. The theoretical peak of the
platforms are summarized in Table 1(b). These architectures have different peak performance depending on
the precision of the floating-point operations used, and whether vectorized vs. scalar operations are used.

All timings were done with ATLAS version 3.7.30, using the best available compiler version and flags, as
shown in Table 1(a). We only used the Intel compiler icc on the C2D platform as icc was not specialized for
the AMD architecture. We do not report numbers for icc when using profiling because our profiling runs of
icc using the actual data never produced speedup, and occasionally caused slowdown. Since we were unable
to determine if this was due to the fact that icc is not yet well-tuned for OS X/Core2Duo, or if we were
simply unable to discover the proper flags for profiling to shine, we omit our disappointing profiling results.
All timers used ATLAS’s cycle-accurate walltimer, and since walltime is prone to outside interference, we
repeated each timing six times (on an unloaded machine) and took the minimum time. All results were
obtained using the ATLAS timers, which flush the cache (this means that our numbers will be lower, but
more accurate for usage, than those often reported elsewhere). We report performance in MFLOPS, rounded

to the nearest whole number.

15



4.2 Level 3 BLAS Kernels

ATLAS uses a simplified GEMM kernel to support the entire Level 3 BLAS [16] (we will refer to this simplified
kernel as gemmK to distinguish it from the full BLAS routine GEMM). The POET input specification for
this kernel is shown in Figure 5. This kernel is specialized into three cases in order to handle varying g in
Figure 5; in this section we report on the performance for ATLAS’s most commonly-used § variant, 0 = 1;
typically the 8 = 0 case is slightly faster, and the 8 = X case is slightly slower.

Since the cost of Level 3 BLAS kernels tends to dominate in the majority of algorithms, ATLAS tunes
Level 3 BLAS much more aggressively than the Level 1 or 2. In particular, gemmK, like all of ATLAS’s
kernels, is tuned by the multiple implementation [16, 17] method, where a series of hand-tuned and generic
implementations are searched, and the best performing is selected. ATLAS additionally tunes gemmK by a
second and orthogonal tuning strategy, where a completely automated ANSI C source generator is used to
find the best implementation for a given architecture and C compiler combination, Since the source generator
search is ATLAS’s most general strategy, we track the performance it achieves seperately as ATLAS-gen,;
the full search, which includes both multiple implementation and source generator search, is labeled ATLAS-
full.

Table 4.2 shows the performance of gemmK for each architecture and precision (kernel names are prefixed
by ‘s’ for single precision, and ‘d’ for double precision). The performance results of three different method-
ologies are presented: The performance of using gcc (gcc+ref) and icc (icc+ref) to compile a reference
implementation of gemm similar to the code shown in Figure 5; the performance of ATLAS kernels achieved
using code generator search only (ATLAS-gen) and achieved using both the code generator search and
multiple implementation search (ATLAS-full); and the performance results achieved by our POET kernel
specification when empirically tuned using our transformation engine (PTE-+spec).

The first thing to notice is that our PTE-tuned implementations handily outperforms ATLAS-gen for
all problems except double precision on the Athlon-64. This is primarily because SIMD vectorization is
required to get good performance for all other surveyed precision/architectures, but ATLAS-gen uses the
scalar FPUs only (as shown in Table 1(b), ATH has the same scalar and vector peak for double precision,

thus the code generator is competitive for this case). This is because ATLAS uses gcc as its default compiler,

16



2.66Ghz Core2Duo 2.2Ghz Athlon-64 X2

Kernel gcc icc ATLAS PTE+ gce ATLAS PTE+
name +ref | +ref | gen ‘ full spec || +ref | gen ‘ full spec
sgemmK 571 | 6226 | 4730 | 13972 15048 1009 | 4093 | 7651 6918
dgemmK 649 | 3808 | 4418 8216 7758 939 | 3737 | 4009 3754

Table 2: Performance in MFLOPS of Various gemmK Implementations (gec+ref/icctref: reference im-
plementation compiled with gece/icc; ATLAS gen/full: ATLAS implementation using source-generator/full
search; PTE+spec: implementation produced by POET transformation engine.)

and gcc cannot yet successfully autovectorize these kernels. Additionally, we see that the PTE numbers are
substantially better in all cases when compared against reference compilation using gec/ice (in our worst
case, we are still more than twice as fast as the fastest compiler). Therefore, we succeed in our first goal of
outperforming or matching the truly general part of ATLAS.

When we compare PTE and ATLAS-full, we get mixed results. For three of the four cases we see that
our numbers are competitive with those of ATLAS’s best hand-tuned codes, but that we lose by a modest
amount. For sgemmK/C2D, however, we win by a reasonable margin. The reason for this is clear: for the
three cases where we lose, ATLAS has kernels which have been hand-optimized by the ATLAS developers
for both the architecture and kernel in question. However, ATLAS’s multiple implementation shows the
Achiles’ heal of hand-tuning: the last case has not yet been hand-tuned specifically for the C2D, and thus
our automated process is able to outperform the best available hand-tuned kernel (which in this case is a
kernel originally tuned for the Pentium 4). We have not yet implemented all the optimization techniques
we know to our TE, so we expect to close the gap in the future on the hand-tuned codes. However, we are
already competitive enough to demonstrate the promise of this more automatic (and thus more persistent

in the face of architecture change) tuning process.

4.3 Level 2 BLAS Kernels

ATLAS uses three simplified kernels to optimize the entire Level 2 BLAS, and we will call these kernels
gemvNK, gemvTK, and gerK. In looking at the Level 2 kernels (summarized in Table 4.3), we see that ATLAS’s
reliance on an empirical search of hand-tuned kernels that are not well supported by the ATLAS developers
as the Level 3, results in less well-optimized implementations of these kernels, and thus our PTE-optimized

kernels exceed the performance obtained by ATLAS in the majority of these cases. As before, both ATLAS

17



and PTE substantially exceed the performance obtained by simple compilation. We have several optimizations
known to be beneficial for these types of kernels still to be added to our PTE, and so we expect our performance

advantage in these kernels to widen yet further.

2.66Ghz Core2Duo 2.2Ghz Athlon-64 X2
Kernel gcc ‘ icc ‘ ATLAS ‘ TE+ gcc ‘ ATLAS ‘ TE+
name +ref | +ref full | spec || Href full | spec
sgerK 1230 | 2927 3751 3400 639 1005 962
dgerK 439 438 462 519 411 518 500
dgemvNEK 382 574 939 1069 408 799 902
dgemvTK 556 574 835 1079 579 739 1049
sgemvNK 438 859 1838 2097 528 1185 1986
sgemv TK 556 | 1826 1752 2171 835 1389 [ 2056

Table 3: Performance in MFLOPS of various Level 2 BLAS Kernels (gcc+ref/icctref: reference implemen-
tation compiled with gee/ice; ATLAS full: ATLAS implementation using full search; PTE+spec: implemen-
tation produced by POET transformation engine.)

4.4 Improvements for LAPACK

So far, we have reported speedups in ATLAS’s kernel routines, which are used to speedup the entire Level 2
and 3 BLAS, which are in turn the performance engine of a host of Linear Algebra applications. A question
might arise as to whether speeding up such kernels indeed speeds up the higher-level codes as expected. A
survey of Linear Algebra applications is far beyond the scope of this paper, but to give some indication,
Figure 7 shows the performance of LAPACK’s widely used least squared solve ([D,S]GELS) driver routine,
which performs the solve using the QR factorization. Here we report the performance achieved by ATLAS
alone (xGELS-ATL) versus that achieved when we allow ATLAS’s multiple implementation search to use our
PTE-tuned kernels (xGELS-ATL+PTE). For the Athlon-64 (Figure 7(b)), we sped up the Level 2 BLAS, with
much greater advantage achieved in single precision. Thus we see that ATL+PTE is noticably faster for single
precision results than pure ATLAS. ATL+PTE is slightly faster for double precision, but only barely. The
results are largely the same on the Core2Duo, but since we sped up both the Level 2 and 3 BLAS for single
precision on this platform, the results are even more impressive. Therefore, these tunings are indeed more
widely useful, and we can additionally observe a key feature of our approach: we can use it improve existing
tuning frameworks. In the short term, we plan to submit our PTE-tuned kernels to the ATLAS group. Longer
term, it should be possible for packages such as ATLAS to directly leverage our PTE just as they presently

do the native compilers.

18



B SGELS-ATL ¢ SGELS-ATL+PTE V DGELS-ATL M DGELS-ATL+PTE B SGELS-ATL ¢ SGELS-ATL+PTE V DGELS-ATL M DGELS-ATL+PTE

10000 4500

. U
9000 0 .

8000 /\ \///:;A\. 50 e
7000 //

/\,/ 3000 ——

@ 6000 4 0 0 /'/ . e
S —_ e o] 5 _— /
d 5000 /,Ar/’:/kf:;‘; - ﬁ'\/\n e /
S 4000 = s W

3000 I//: / 1500 /

2000 // 1000

1000 500

00 200 300 400 50 600 700 80 900 1000 100 20 300 400 500 600 70 80 900 1000
Matrix Order Matrix Order
(a) On OS X/2.66Ghz Core2Duo (b) On Linux/2.2Ghz Athlon-64 X2

Figure 7: Performance vs. Problem size of LAPACK QR Factor and Solve

4.5 Conclusion and Future Work

This paper presents a new cost-effective approach for generating highly-tuned library routine implementa-
tions. Instead of hand-crafting efficient implementations directly, we provide a POET transformation engine
which can automatically produce highly optimized computational routines based on a kernel specification
file created by the programmer. The time required to create a kernel specification file is orders of magnitude
less than that required to hand-tune an optimized library routine, and yet a kernel specification file is much
more portable and has achieved performance similar to or even better than ATLAS’s highly tuned kernels.

Our future work includes developing an optimizing compiler which could perform program analysis, dis-
cover profitable optimizations, and then produce a POET kernel specification file as result of optimization
for flexible empirical tuning. The kernel specification file can then be modified by programmers to better
utilize domain-specific knowledge. Eventually, the POET kernel specification can serve as distribution form
of kernel implementations, which can be easily ported to different machine architectures and empirically

tuned for optimal performance.

References

[1] G. Baumgartner, A. Auer, D. E. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao, R. J. Harrison,
S. Hirata, S. Krishnamoorthy, S. Krishnan, C.-C. Lam, Q. Lu, M. Nooijen, R. M. Pitzer, J. Ramanujam,
P. Sadayappan, and A. Sibiryakov. Synthesis of high-performance parallel programs for a class of ab initio

quantum chemistry models. Proc. IEEE, Special Issue on Program Generation, Optimization, and Adaptation,
93(2), 2005.

[2] P. Bientinesi, J. A. Gunnels, M. E. Myers, E. Quintana-Orti, and R. van de Geijn. The science of deriving dense
linear algebra algorithms. ACM Transactions on Mathematical Software, 31(1):1-26, March 2005.

19



3]

[4]

[5]

[7]
8]

[9]

(10]

(11]
(12]

(13]

(14]
(15]
(16]

(17]

(18]
(19]

(20]

J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, C. Whaley, and K. Yelick. Self adapting
linear algebra algorithms and software. Proc. IEEE, Special Issue on Program Generation, Optimization, and
Adaptation, 93(2), 2005.

M. Frigo and S. Johnson. FFTW: An Adaptive Software Architecture for the FFT. In Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), volume 3, page 1381, 1998.

M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proc. IEEE, Special Issue on Program
Generation, Optimization, and Adaptation, 93(2), 2005.

G. Fursin, A. Cohen, M. O’Boyle, and O. Temam. A pratical method for quickly evaluating program optimiza-
tions. In HiPEAC, November 2005.

T. Kisuki, P. M. Knijnenburg, and M. F. O’Boyle. Combined selection of tile sizes and unroll factors using
iterative compilation. In PACT, Philadelphia, PA, October 2000.

G. Pike and P. Hilfinger. Better tiling and array contraction for compiling scientific programs. In SC, Baltimore,
MD, USA, November 2002.

M. Piischel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer, J. Xiong, F. Franchetti, A. Gacié,
Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code generation for DSP transforms.
Proc. IEEE, Special Issue on Program Generation, Optimization, and Adaptation, 93(2), 2005.

A. Qasem, K. Kennedy, and J. Mellor-Crummey. Automatic tuning of whole applications using direct search
and a performance-based transformation system. In Proc. Los Alamos Computer Science Institute (LACSI)
Symposium, 2004.

See page for details. FFTW homepage. http://www.fftw.org/.

M. Stephenson and S. Amarasinghe. Predicting unroll factors using supervised classification. In CGO, San Jose,
CA, USA, March 2005.

T. L. Veldhuizen and D. Gannon. Active Libraries: Rethinking the roles of compilers and libraries. In Proceedings
of the SIAM Workshop on Object Oriented Methods for Interoperable Scientific and Engineering Computing,
Philadelphia, PA, USA, 1998. STAM.

R. Vuduc, J. Demmel, and J. Bilmes. Statistical models for automatic performance tuning. International Journal
of High Performance Computing Applications, 18(1):65-94, 2004.

R. C. Whaley and A. Petitet. Atlas homepage. http://math-atlas.sourceforge.net/.

R. C. Whaley and A. Petitet. Minimizing development and maintenance costs in supporting

persistently optimized BLAS. Software:  Practice and FEzperience, 35(2):101-121, February 2005.
http://www.cs.utsa.edu/ whaley/papers/spercw04.ps.

R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimization of software and the ATLAS

project. Parallel Computing, 27(1-2):3-35, 2001. Also available as University of Tennessee LAPACK Working
Note #147, UT-CS-00-448, 2000 (www.netlib.org/lapack/lawns/lawnl47.ps).

R. C. Whaley and D. B. Whalley. Tuning high performance kernels through empirical compilation. In The 2005
International Conference on Parallel Processing, June 2005.

Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan. Poet: Parameterized optimizations for empirical tuning.
In Workshop on Performance Optimization for High-Level Languages and Libraries, Mar 2007.

Y. Zhao, Q. Yi, K. Kennedy, D. Quinlan, and R. Vuduc. Parameterizing loop fusion for automated empirical
tuning. Technical Report UCRL-TR-217808, Center for Applied Scientific Computing, Lawrence Livermore
National Laboratory, December 2005.

20



