
ROSE: Compiler Support forObje
t-Oriented FrameworksDan Quinlan1Lawren
e Livermore National Laboratory, Livermore, CA, USA,dquinlan�llnl.gov,WWW home page: http://www.llnl.gov/CASC/people/quinlan/Abstra
t. ROSE is a prepro
essor generation tool for the supportof
ompile time performan
e optimizations of general obje
t-orientedframeworks. Within this work ROSE is being applied �rst to Overture,a serial/parallel obje
t-oriented framework for solving partial di�eren-tial equations in two and three spa
e dimensions. The optimization ofthe intera
tions between obje
ts within Overture is of parti
ular inter-est sin
e the Overture appli
ations
an be
omputationally large (manymillions of mesh points and iterating over thousands of time-steps). Un-fortunately, optimizations that might be obvious to the framework devel-oper or appli
ation developer (e.g.
a
he based optimizations), due to thepre
ise semanti
s of the framework's abstra
tions, are often lost throughthe C++
ompiler's inability to re
ognize or leverage su
h semanti
s.Prepro
essing steps
an be used to introdu
e transformations using thesemanti
s of a framework's abstra
tions, but the development of su
h aprepro
essor tool is parti
ularly
ompli
ated for a general obje
t-orientedlanguage su
h as C++. This paper shows how su
h framework spe
i�
prepro
essors
an be automati
ally generated.In this paper we brie
y present Overture with some examples, andpresent our approa
h toward optimizing the performan
e for Overtureand the A++P++ array
lass abstra
tions upon whi
h Overture de-pends. The results we present show that the semanti
s of the abstra
tionsrepresented within Overture and the A++P++ array
lass library
anbe used to generate a prepro
essor using ROSE. The results demonstratethe performan
e of an Overture appli
ation with and without su
h aprepro
essing step, the �nal performan
e with prepro
essing is equiva-lent to that of optimized C and Fortran 77. By design, ROSE is generalin its appli
ation to any obje
t-oriented framework or appli
ation and isin no way spe
i�
 to Overture .1 Introdu
tionROSE is a programmable sour
e-to-sour
e transformation tool for the optimiza-tion of C++ obje
t-oriented frameworks. In our work we target the OvertureFramework spe
i�
ally (www.llnl.gov/
as
/Overture), a parallel obje
t-orientedC++ framework for solving partial di�erential equations asso
iated with
om-putational
uid dynami
s appli
ations within
omplex moving geometries. Work

on the Overture framework represents our resear
h in the modeling of dieselengine
ombustion. While we have spe
i�
 goals for this work within Overture,ROSE applies equally well to any other obje
t-oriented framework.A
ommon problem within obje
t-oriented C++ s
ienti�

omputing is thatthe high level semanti
s of abstra
tions introdu
ed (e.g. parallel array obje
ts)are ignored by the C++
ompiler. Classes and overloaded operators are seen asunoptimizable stru
tures and fun
tion
alls. Su
h abstra
tions
an provide forparti
ularly simple development of large s
ale parallel s
ienti�
 software, but thela
k of optimization greatly e�e
ts performan
e and utility. Be
ause C++ la
ks ame
hanism to intera
t with the
ompiler, elaborate me
hanisms are often imple-mented within su
h parallel frameworks to introdu
e
omplex template-basedand/or runtime optimizations (su
h as runtime dependen
e analysis, deferredevaluation, runtime
ode generation, et
.). These approa
hes are however notsatisfa
tory sin
e they either require long
ompile times (hours) or are not suf-�
iently robust.ROSE represents a me
hanism to build prepro
essors that reads the user'sappli
ation sour
e
ode and outputs highly optimized C++
ode. The outputfrom a prepro
essor built from ROSE is itself C++
ode (but transformed usingthe semanti
s of the obje
t-oriented abstra
tions represented within the frame-work). ROSE helps the framework developer de�ne framework spe
i�
 (or ap-pli
ation spe
i�
) grammars (more spe
i�
ally a hierar
hy of grammars), one ormore transformations
an be asso
iated with ea
h grammar. The transformationsassume
omplete knowledge of the serial and parallel semanti
s of the obje
t-oriented abstra
tions and are thus safe by de�nition. Multiple program trees arethen built, one for ea
h grammar. The traversal of the mu
h simpler programtrees represented by the higher level grammars (as opposed to that of the C++program tree) permits the identi�
ation of lo
ations where transformations arethen applied to introdu
e spe
i�
 optimizations. The �nal modi�ed program treeis then unparsed to generate C++ sour
e
ode. The sour
e
ode transformations
an readily exploit knowledge of the ar
hite
ture, parallel
ommuni
ation
har-a
teristi
s, and
a
he ar
hite
ture in the spe
i�
ation of the transformations.Within Overture , a parallel framework, the serial and parallel semanti
s areknown and transformations
an range from serial loop optimizations to parallelmessage passing optimizations, threading
ould alternatively be automated withsu
h transformations (where identi�ed using the framework's parallel semanti
s).We have developed this work as an optional alternative (optional sin
e theframework's semanti
s are in no way modi�ed through the use of the prepro-
essors built with ROSE) to the de�nition of standardized parallel languages.A language is harder to develop, more diÆ
ult to optimize, and diÆ
ult to geta

epted into s
ienti�

omputing.ROSE is implemented using several other tools. We use the EDG C++ front-end and the Sage II sour
e
ode restru
turing tool. ROSE exists as a layer ontop of Sage II (whi
h represents an open interfa
e to the C++ program treeprovided though the EDG front-end), while Sage II exists as a layer on topof the EDG front-end. The EDG front-end is a
ommer
ial C++ front-end,

providing us with an implementation of the full C++ language (as
omplete as isavailable today). By design, we leverage many low level optimizations providedwithin modern
ompilers while fo
using on higher level optimizations largelyout of rea
h be
ause traditional approa
hes
an not leverage the semanti
s ofhigh level abstra
tions. In doing so, we slightly blur the distin
tion between alibrary/framework and a language. Be
ause we leverage several good qualitytools the implementation is greatly simpli�ed.This paper presents our work to automate the
onstru
tion of prepro
essorsspe
i�
 to an arbitrary obje
t-oriented framework, in this
ase the Overtureframework. With su
h a tool the development of prepro
essing me
hanisms toleverage the semanti
s of a framework's abstra
tions
an be handled as part ofthe framework development (by the framework developer or even users). Bothsigni�
ant optimizations (ma
hine dependent
a
he based transformations) andmore readily optimizible abstra
tions
an be de�ned. The e�e
t is to providea readily
ustomizable
ompilation me
hanism that
an leverage existing high-level user de�ned semanti
s (signi�
antly beyond that of the C++ language'srelatively general and low level semanti
s).2 The Overture FrameworkThe Overture framework is a
olle
tion of C++ libraries that provide toolsfor solving partial di�erential equations. Overture
an be used to solve prob-lems in
ompli
ated, moving geometries using the method of overlapping grids(also known as overset or Chimera grids). Overture in
ludes support for ge-ometry, grid generation, di�eren
e operators, boundary
onditions, databasea

ess and graphi
s. More information about Overture
an be found at:www.llnl.gov/
as
/Overture Nothing in Overture is in any way tailoredfor use with a prepro
essor.The main
lass
ategories that make up Overture are as follows:{ Arrays [10℄: des
ribe multidimensional arrays using A++/P++. A++ pro-vides the serial array obje
ts, and P++ provides the distribution and inter-pretation of
ommuni
ation required for their data parallel exe
ution.{ Mappings [5℄: de�ne transformations su
h as
urves, surfa
es, areas, andvolumes. These are used to represent the geometry of the
omputationaldomain.{ Grids [2, 4℄: de�ne a dis
rete representation of a mapping or mappings.These in
lude single grids, and
olle
tions of grids; in parti
ular
ompositeoverlapping grids.{ Grid fun
tions [4℄: storage of solution values, su
h as density, velo
ity,pressure, de�ned at ea
h point on the grid(s). Grid fun
tions are derivedfrom A++/P++ array obje
ts.{ Operators [1, 3℄: provide dis
rete representations of di�erential operatorsand boundary
onditions{ Grid generation [6℄: the Ogen overlapping grid generator automati
ally
onstru
ts an overlapping grid given the
omponent grids.

{ Plotting [7℄: a high-level interfa
e based on OpenGL allows for plottingOverture obje
ts.{ Adaptive mesh re�nement: The AMR++ library is an obje
t-orientedlibrary providing pat
h based adaptive mesh re�nement
apabilities withinOverture .Obje
t-oriented abstra
tions are present at many levels within Overture,but within this paper we fo
us on the lower level array obje
ts and array op-erators. Numerous me
hanisms have been implemented previously to optimizethe performan
e of the A++P++ array
lass library, these me
hanisms havein
luded highly optimized binary operator[21℄, deferred evaluation[15℄, and ex-pression templates[23, 18, 19℄.2.1 Array Abstra
tionsA++ and P++ [10, 21℄ are array
lass libraries for performing array operationsin C++ in serial and parallel environments, respe
tively.A++ is a serial array
lass library similar to FORTRAN 90 in syntax, but notrequiring any modi�
ation to the C++
ompiler or language. A++ provides anobje
t-oriented array abstra
tion spe
i�
ally well suited to large-s
ale numeri
al
omputation. It provides eÆ
ient use of multidimensional array obje
ts whi
hserves to both simplify the development of numeri
al software and provide abasis for the development of parallel array abstra
tions. P++ is the parallelarray
lass library and shares an identi
al interfa
e to A++, e�e
tively allowingA++ serial appli
ations to be re
ompiled using P++ and thus run in parallel.This provides a simple and elegant me
hanism that allows serial
ode to bereused in the parallel environment.P++ provides a data parallel implementation of the array syntax representedby the A++ array
lass library. To this extent it shares a lot of
ommonalitywith FORTRAN 90 array syntax and the HPF programming model. However, in
ontrast to HPF, P++ provides a more general me
hanism for the distributionof arrays and greater
ontrol as required for the multiple grid appli
ations rep-resented by both the overlapping grid model and the adaptive mesh re�nement(AMR) model.Here is a simple example
ode segment that solves Poisson's equation ineither a serial or parallel environment using the A++/P++
lasses. Noti
e howthe Ja
obi iteration for the entire array
an be written in one statement.// Solve u_xx + u_yy = f by a Ja
obi IterationRange R(0,n) // a range of indi
es: 0,1,2,...,nfloatArray u(R,R), f(R,R) // de
lare two two-dimensional arraysf = 1.; u = 0.; h = 1./n; // initialize arrays and parametersRange I(1,n-1), J(1,n-1); // define ranges for the interior// data parallel statementfor(int iteration=0; iteration<100; iteration++)u(I,J) = .25*(u(I+1,J)+u(I-1,J)+u(I,J+1)+u(I,J-1)-f(I,J)*(h*h));

This example shows the array abstra
tions in use, the optimization of thesesorts of statements (and many more
omplex) are a driving interest in the de-velopment of ROSE as an optimization me
hanism. Here, the array obje
ts arede�ned with overloaded operators for +,�,(),�, and =. The resulting exe
utionis pairwise if binary operators are used, and a more eÆ
ient if expression tem-plates are used. But many targets of optimization involve multiple statementswhere the expression template me
hanism only provides for single statement op-timizations. Ca
he based transformations have also been worked out that
an(while
omplex) surpass fortran 77 performan
e by a fa
tor of four! The devel-opment of prepro
essors using ROSE should allow the automated introdu
tionof these mu
h more sophisti
ated transformations. Currently, only less sophis-ti
ated transformations have been automated using prepro
essors built usingROSE.

Fig. 1. Sample 2D and 3D Overture overlapping grids and appli
ations.

2.2 Grid-fun
tion Abstra
tionsThis example demonstrates the power of the Overture framework by showinga basi
ally
omplete
ode that solves the partial di�erential equation (PDE)ut + aux + buy = �(uxx + uyy)on an overlapping grid. This example shows the higher level abstra
tions repre-sented withinOverture (beyond that of the array abstra
tions). The intera
tionof these abstra
tions is what we seek to optimize using the prepro
essors builtfrom ROSE.int main()\{CompositeGrid
g; //
reate a
omposite gridgetFromADataBaseFile(
g,"myGrid.hdf"); // read the grid infloatCompositeGridFun
tion u(
g); //
reate a grid fun
tionu=1.; // assign initial
onditionsCompositeGridOperators op(
g); //
reate operatorsu.setOperators(
g);PlotStuff ps; // make an obje
t for plotting// --- solve a PDE ----float t=0, dt=.005, a=1., b=1., nu=.1;for(int step=0; step<100; step++)\{u+=dt*(-a*u.x()-b*u.y()+nu*(u.xx()+u.yy()));t+=dt;u.interpolate(); // interpolate overlapping boundaries// apply the BC u=0 on all boundariesu.applyBoundaryCondition(0,diri
hlet,allBoundaries,0.);u.finishBoundaryConditions();ps.
ontour(u); // plot
ontours of the solution\}return 0;\} This example solves the time-dependent equation expli
itly. Other
lass li-braries within the Overture framework simplify the solution of ellipti
 andparaboli
 equations, the linear systems generated
an be solved using any ofnumerous numeri
al methods as appropriate in
luding multigrid, and methodsmade available within a number of external dense and sparse linear algebrapa
kages. Figure 1 shows the sorts grids and example appli
ations possible withOverture .The array and grid-fun
tion abstra
tions demonstrated
an be signi�
antlyoptimized over the exe
ution provided by the C++ implementation dire
tly. Asimplemented, via a library, the library
an do little to optimize the exe
utionsin
e it
an not see the
ontext of the full statement (or surrounding statements).Fundamentally, using the semanti
s of these abstra
tions to drive optimiza-tions is easier and more produ
tive than relying upon
lassi
al program analysis

of the mu
h lower level and more general abstra
tions of the C++ languageitself. While the C++ language's abstra
tions are general and
exible to allowgeneral use, an obje
t-oriented framework's abstra
tions
an be made arbitrarilypre
ise. The resulting semanti
 knowledge
an be mu
h greater than that pro-vided through program analysis. In general, it is more likely that a
ombinationof leveraging semanti
s and less sophisti
ated program analysis will provide amore
omplete solution.3 Design of Prepro
essorsTo en
apsulate the semanti
s of an obje
t-oriented framework's abstra
tion intothe
ompilation pro
ess we must identify the uses of the abstra
tion within auser's appli
ation
ode. The naive approa
h to this is:1. traverse the abstra
t syntax tree (AST) represented by an appli
ation,2. sear
h for types,3. put together their use relative to one another.While simple to explain super�
ially, the me
hanism is parti
ularly
omplexdue to the depth of C++ syntax behind whi
h many high-level abstra
tions,and the intera
tions between them, are buried within the AST. The shear sizeof the program tree for realisti
 s
ienti�
 appli
ations further
ompli
ates thisapproa
h.To
larify the representation of high-level abstra
tions, and more importantlytheir intera
tions (whi
h
an be parti
ularly
omplex), we simplify the AST toan intermediate form where both the use of a framework's abstra
tions and theirintera
tions
an be more immediately re
ognized (the simpler the better). Thisintermediate form is
ustomized to a framework's abstra
tions.To represent a framework's abstra
tions in a higher level representation (analternative intermediate form) of the user's appli
ation's program tree (or morespe
i�
ally an alternate AST) we build a grammar spe
i�
 to the framework's ab-stra
tions. This higher-level grammar is then used to parse the base level (C++)AST. The result is an intermediate form tailored to an obje
t-oriented frame-work's abstra
tions and a new AST for a user's appli
ation. The new AST usingthe high-level grammar dramati
ally simpli�es the re
ognition of a framework'sabstra
tions, and the intera
tions between them, within the user's appli
ation.This new higher-level AST
an be more readily traversed and a framework'sabstra
tions and intera
tions between abstra
tions more readily identi�ed.Sin
e the development of the higher level grammars spe
i�
 to an obje
t-oriented framework
ould be rather
omplex we have automated this pro
ess.The development of the parser from the C++ AST to the higher-level grammar'sAST is also automated. The result is a me
hanism that automati
ally generatesthe signi�
ant pie
es required to form a prepro
essor for an arbitrary obje
t-oriented framework.The prepro
essing phase for an appli
ation
ode involves two phases:

1. Re
ognition of \where" to apply transformationsThe details of this phase are the subje
t of this paper.2. What transformation to applyWe show results of the use of a prepro
essor formed using ROSE (in se
tion 5)with a simple transformation to improve the performan
e of the A++P++array
lass library within the Overture framework. This paper does notgo into any details regarding this spe
i�
 transformation whi
h in this
asebasi
ally provides for an automated lowering of the
ode whi
h would exe
utethe C++ obje
t intera
tions (array expressions) to C
ode whi
h is moreeÆ
ient (and more ar
hite
ture spe
i�
).The generation of the prepro
essor involves more steps and is the fo
us ofthis paper. Of the two phases, the diÆ
ult aspe
ts of the prepro
essor are mostlyrelated to the re
ognition phase:1. Building the base level C++ grammar and their obje
t-oriented implemen-tation2. Building the higher level appli
ation spe
i�
 grammars and their obje
t-oriented implementation3. Parsing the C++ appli
ation into the Base level C++ grammar4. Parsing the C++ appli
ation into the higher-level appli
ation spe
i�
 gram-marsA Meta-program level is used to de�ne the prepro
essor, this level is a simpleC++ appli
ation
ode. TheMeta-program de�nes the manipulation of grammarsusing the ROSETTA library. The output of the Meta-program, when it is ex-e
uted, is sour
e
ode (written to �les). The sour
e
ode is
ompiled, with theROSE infrastru
ture, to form a prepro
essor spe
i�
 to a given framework. TheMeta-program
an generate a lot of sour
e
ode, typi
ally 200,000 lines, but it
an be
ompiled in under a minute and on
e built into a prepro
essor need notbe re
ompiled by the user.4 ROSETTAROSETTA is a tool we developed for the manipulation of grammars. It permitsa C++ Meta-program to be de�ned whi
h, when exe
uted, builds tools like SageII. It is not a novel part of this work to have de�ned a me
hanism to generatethe Sage II sour
e, modi�ed or not. It is a novel part of this resear
h work thathigher-level grammars
an be automati
ally generated in addition to the Sage IIsour
e. This important feature is the me
hanism by whi
h
riti
al parts of theprepro
essor are
ustomized for a framework's abstra
tions; and automati
allygenerated.ROSETTA represents a
lass library of terminals and nonterminals used tode�ne a grammar. It is relatively trivial to de�ne the C++ grammar in terms ofterminals and nonterminals and asso
iate with the terminals and nonterminalsappli
ation
ode. We
onsider an implementation of the grammar to be a library

of
lasses representing the di�erent language elements de�ned by a grammar(statements, expressions, types, et
.). We use the Sage II library as a basis forour C++ grammar, but other libraries that implement grammars and form thebasis of di�erent sorts of
ompiler tools exist[11, 8℄.4.1 Generation of the C++ Grammar's ImplementationThe Meta-program for the
onstru
tion of the modi�ed version of Sage II thatwe build is just:// in
lude definitions of grammars, terminals, and non-terminals// (obje
ts within ROSETTA)#in
lude "grammar.h"int main(){// Build the C++ grammar (generate Sage II sour
e)Grammar sageGrammar;// Build the header files and sour
e files// representing the grammar's implementationsageGrammar.buildCode();}Here the example program builds the implementation of the C++ grammar(mostly represented as a
opy of the Sage II sour
e
ode with modi�
ations). Theoutput of this appli
ation is about 70,000 lines of sour
e
ode. With the output�les
ompiled into a prepro
essor and linked with the ROSE infrastru
ture, the�nal prepro
essor parses C++ appli
ations and unparses them to generate C++(identi
al to the input
ode in format as well as synta
ti
ly). Su
h a prepro
essoris of little use for our purposes but forms a trivial example of a prepro
essor builtusing ROSE.4.2 Generation of a High Level Grammar's ImplementationThis se
tion explains the system of
onstraints used to de�ne higher level gram-mars (higher level and more spe
i�
 than the C++ grammar). The prin
iple is toin
lude and ex
lude terminals in an existing grammar (the Base grammar for ourpurposes is the C++ grammar). Terminals are added or removed as desired tode�ne modi�
ations of the C++ grammar. As an example, additional terminals
an be added to de�ne additional types represented by a
lass de�ned within anobje
t-oriented framework. New terminals are added through the spe
i�
ationof an existing C++ terminal plus
onstraints. The form of the
onstraints
anbe varied (and are expressed using C++
ode).As an example, the spe
i�
ation of a
lass name
ould be used to de�ne a newterminal in a new grammar spe
i�
 to a
lass name asso
iated with a framework'sabstra
tion (assuming the abstra
tion is an obje
t). The result is a grammar forwhi
h the framework's abstra
tion is re
ognized as an impli
it type within the

higher-level grammar. The use of the framework's abstra
tion within expressions
an be re
ognized through the addition of expression terminals to the higher-level grammar. Sin
e all elements of the higher-level grammar are built fromterminals of the C++ grammar with an additional
onstraint no modi�
ationsto the C++ language are possible. This is a strength of this me
hanism sin
e wewant to re
ognize a framework's abstra
tions and not formally extend the C++language.To further
ustomize the high-level grammar to a parti
ular framework's ab-stra
tions, the addition of a new type terminal drives the automated introdu
tionof all possible expression terminals with the
onstraint that they are between ob-je
ts of the new added type. The
lasses represented by the new types are furtherinterrogated to de�ne all possible expressions (member fun
tions of the frame-work's abstra
tion) represented by the new type. Similarly statement terminalsare added to represent statements
ontaining expressions in the new type. Sin
ethe addition of new types adds to the number of terminals (and non terminals)in a grammar, the size of the grammar's implementation nearly doubles. Sin
ethis step is fully automated, the amount of additional
ode generated is not im-portant. Within this approa
h, through the design of the higher level grammars,we permit user de�ned types and their expressions and statements to be treatedas impli
it keywords within an user's appli
ation.5 Prepro
essing Overture Appli
ationsThe exe
ution of array statements involves ineÆ
ien
ies stemming from severalsour
es and the problem has been well do
umented, by many resear
hers[23,18,19℄. Having tried all previously
on
eivable approa
hes, our approa
h to perfor-man
e within Overture is to use a prepro
essor to introdu
e optimizing sour
e-to-sour
e transformations. The C++ sour
e-to-sour
e prepro
essor is built usingROSE.The prepro
essor built using ROSE has a few features that stand out:1. A hierar
hy of grammars are spe
i�ed as input to ROSE to build (tailor)the prepro
essor spe
i�
 to a given obje
t-oriented appli
ation, library, orframework. ROSETTA is used to generate an implementation of the gram-mars that are used internally. The hierar
hy of grammars (and their im-plementations) are used to
onstru
t separate program trees internally, oneprogram tree per grammar, ea
h representing the user's appli
ation. Theprogram trees are edited as required to repla
e sele
ted subtrees with othersubtrees representing a spe
i�
 transformation. Quite
omplex
riteria maybe used to identify where transformations may be applied, this me
hanismis superior to pattern-re
ognition of stati
 subtrees within the program treebe
ause it is more general, readily tailored, and far easier to use.2. Transformations are spe
i�ed whi
h are then built into the user appli
ationautomati
ally where appropriate. The me
hanism is designed to permit theautomated introdu
tion of parti
ularly
omplex transformations (su
h as

the
a
he based transformations spe
i�ed in [20℄, spa
e does not permit anelaboration of this.3. To simplify the debugging, the prepro
essor's output (C++
ode) is for-matted identi
al to the input appli
ation
ode (ex
ept for transformationsthat are introdu
ed, whi
h have a default formatting). Numerous optionsare in
luded to tailor the formatting of the output
ode and to simplifyworking with either its view dire
tly within the debugger or its referen
e tothe original appli
ation sour
e within the debugger. Comments and all Cprepro
essor (
pp)
ontrol stru
tures are preserved within the output C++
ode.4. The design of ROSE is simpli�ed by leveraging both Sage II and the EDG[14℄C++ front-end. EDG supplies numerous vendors with the C++ front-endfor their
ompiler and represents the
urrent best implementation of C++.In prin
iple this permits the prepro
essors built by ROSE to address the
omplete C++ language (as implemented by the best available front-end).Modi�
ations have been made to Sage II to permit portability and allow usto ful�ll on a
omplete representation of the language. By design, we lever-age many low-level optimizations provided within modern
ompilers whilefo
using on higher level optimizations largely out of rea
h be
ause tradi-tional approa
hes
an not leverage the semanti
s of high level abstra
tions.In doing so, we slightly blur the distin
tion between a library or framework,a language, and a
ompiler. But, be
ause we leverage several good qualitytools the implementation is greatly simpli�ed.5.1 ResultsWithin our results we
onsider the following trivial �ve-point sten
il:A(I,J) =
 * (B(I-1,J) + B(I+1,J) + B(I,J) + B(I,J+1) + B(I,J+1));In this
ode fragment, A and B are multidimensional array obje
ts (distributeda
ross multiple pro
essors if P++ is used). In this example, I and J are Rangeobje
ts that together spe
ify an index spa
e of the arrays A and B.Figure 2 shows the range of performan
e asso
iated with di�erent size arraysfor the simple �ve point sten
il operator on the Sun Ultra and De
 Alpha ma-
hines. The Sun Ultra was sele
ted be
ause it is a
ommonly available
omputer,the De
 Alpha was sele
ted be
ause its
a
he design is parti
ularly aggressiveand as a result it exempli�es the hardest ma
hine to get good
a
he performan
e.The results are in no way spe
i�
 to this statement, moderate size appli
ationshave been pro
essed using prepro
essors built with ROSE. The results
omparethe ratios of A++ performan
e with and without the use of the ROSE prepro-
essor to that of optimized C
ode. The optimized C
ode takes full advantageof the bases of the arrays being identi
al and the unit strides, the A++ imple-mentation does not, these very general subs
ript
omputations within the array

Grid Size (each axis)
10 100 1000

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
c

e
 t

o
 O

p
ti

m
iz

e
d

 C

0.8
0.9

2

3

4
5
6
7
8
9

20

30

40
50
60
70
80
90

200

1

10

100 A++ without ROSE/C
A++ with ROSE/C

A++ Performance with and without ROSE
(Sun Ultra)

Grid Size (each axis)
10 100 1000

R
el

at
iv

e
P

er
fo

rm
an

ce
 t

o
 O

p
ti

m
iz

ed
 C

0.7
0.8
0.9

2

3

4
5
6
7
8
9

20

30

40
50
60
70
80
90

1

10

100

A++ without ROSE/C
A++ with ROSE/C

A++ Performance with and without ROSE
(DEC Alpha)

Fig. 2. The use of a prepro
essor (built using ROSE)
an over
ome the performan
edegradation asso
iated with binary evaluation of array operands. These results showthe use of ROSE with A++ and how the performan
e mat
hes that of optimized C
ode using the restri
t keyword (ratio = 1). It has been shown previously that this isequal to Fortran 77 performan
e. More sophisti
ated
a
he-based transformations arealso possible.
lass implementation are
ompared to very spe
i�
 and highly optimized sub-s
ript
omputations within the C
ode. This exaggerates the poorer performan
eof the A++ statements, we do this to make
lear that the performan
e of the
ode output from the ROSE prepro
essor is in fa
t highly optimized and is madespe
i�
 to the
ommon bases of the operands (determined at
ompile time) andthe unit stride (determined at runtime). Our results show the relative di�eren
ethat it makes to
ompare su
h results. The resulting performan
e using ROSEis nearly identi
al to that of the optimized C
ode (ratio = 1), this is not sur-prising sin
e the prepro
essor transformation repla
es the array statement withthe equivalent C
ode (highly optimized, and using restri
t pointers where theyare supported).A++ supports expression templates but this data is not presented here, ingeneral the expression template will approa
h the C performan
e within 90% forshort expressions and suÆ
iently large arrays. The
ombination of expressiontemplates with deferred evaluation redu
es this to approx. 70% as reported in[19℄ likely be
ause of the required extra level of indire
tion to the data requiredby the deferred evaluation me
hanism (it is not
lear if this will be �xed)1.An important distinguishing point between the two approa
hes is that withinlarger appli
ations the
ompile times are several orders of magnitude less for theprepro
essor approa
h sin
e expression templates are not used[23℄. In pra
ti
ethe time taken to pre-pro
ess an appli
ation is even mu
h less than the
ompile1 This was the experien
e with expression templates when it was
ombined with thedeferred evaluation me
hanism in A++P++.

time where no templates are used (expression templates or otherwise) (a fewse
onds, and is not noti
eable). This is not surprising sin
e the prepro
essing
onsists of only a few of the steps taken internally within a
ompiler, and ex
ludesthe most time
onsuming ba
k-end optimization (to build the obje
t
ode).6 Con
lusionsOverture is
apable of addressing the
omplexity of numerous diÆ
ult sorts ofsimulations within s
ienti�

omputing. While the abstra
tions presented withinOverture are the prin
iple motivation for its use, the performan
e of Overtureis
riti
al and is dominated by the performan
e of the A++P++ array
lass.Many years of work have gone into the development of optimization te
hniquesfor the array
lass library. The prepro
essor approa
h is by far the most su

essfulso far, however more work remains to make prepro
essors easier to build andmore robust.The approa
h within ROSE is di�erent from other open C++
ompiler ap-proa
hes be
ause it provides a me
hanism for de�ning high level grammars spe-
i�
 to an obje
t-oriented framework and a relatively simple approa
h to thespe
i�
ation of large and
omplex transformations. A requirement for represent-ing the program tree within di�erent user de�ned grammars is to have a

essto the full program tree, this is not possible (as we best understand) within theOpenC++[12℄ resear
h work. By using Sage II and ROSE the entire programtree, represented in ea
h grammar, is made available; this permits more sophis-ti
ated program analysis (when
ombined with the greater semanti
 knowledgeof obje
t-oriented abstra
tions) and more
omplex transformations. We believethat the te
hniques we have developed greatly
omplement the approa
hes repre-sented within OpenC++, in parti
ular the Meta obje
t me
hanism representedwithin that work. That Sage II is in many ways similar to the MPC++[11℄ work,we believe we
ould have alternatively built o� of that tool in pla
e of Sage II(though this is not
lear). However, sin
e Sage II uses the EDG front-end we ex-pe
t this will simplify a

ess to the
omplete C++ language. MPC++ addressesmore of the issues asso
iated with easily introdu
ing some transformations thanSage II, but not of the
omplexity that we require for
a
he based transforma-tions[20℄. Ea
h represent only a single grammar (the C++ grammar) and thisis far too
omplex (we believe) a starting point for the identi�
ation of wheresophisti
ated transformations
an be introdu
ed. The overall
ompile-time op-timization goals are related to ideas put forward by Ian Angus[17℄, but withnumerous distinguishing points:1. We have de
oupled the optimization from the ba
k-end
ompiler to simplifythe design.2. We have developed hierar
hies of grammars to permit arbitrarily high levelabstra
tions to be represented with the greatest simpli
ity within the pro-gram tree. The use of multiple program trees (one for ea
h grammar) servesto organize high level transformations.

3. We provide a simple me
hanism to implement transformations.4. We leverage the semanti
s of the abstra
tions to drive optimizations.5. We have implemented and demonstrated the prepro
essor approa
h on sev-eral large numeri
al appli
ations.Finally, be
ause ROSE is based ultimately (through Sage II) upon the EDGC++ front-end, the full language is made available;
onsistent with the bestof the
ommer
ial vendor C++
ompilers whi
h most often use the same EDGC++ front-end internally. However, some aspe
ts of the
omplete support ofC++ within Sage II are in
omplete (hen
e our modi�
ations to �x these details).This in now way makes the Sage II work any less impressive and we are thankfulfor the use of Sage II.The results we have presented demonstrate the optimization of array
lassstatements. All sizes of arrays bene�t, their pro
essing with ROSE makes ea
hequivalent to the performan
e of optimized C
ode (using restri
t). Previouslyin [22℄ we showed that this is equivalent to FORTRAN 77 performan
e.Expression Templates is an alternative me
hanism that
an be used to op-timize array statements, but the me
hanism is problemati
[23℄. More resear
his required (and being done by others) to address problems within the expres-sion template me
hanism. More work is similarly required to provide improved
ompile-time optimization solutions.Referen
es1. , Classes for �nite volume operators and proje
tion operators, LANL un
las-si�ed report 96-3470, Los Alamos National Laboratory, 1996.2. G. S. Chesshire, Overture : the grid
lasses, LANL un
lassi�ed report 96-3708,Los Alamos National Laboratory, 1996.3. , Finite di�eren
e operators and boundary
onditions for Overture, userguide, version 1.00, LANL un
lassi�ed report 96-3467, Los Alamos National Lab-oratory, 1996.4. , Grid, GridFun
tion and Interpolant
lasses for Overture , AMR++ andCMPGRD, user guide, version 1.00, LANL un
lassi�ed report 96-3464, Los AlamosNational Laboratory, 1996.5. , Mappings for Overture : A des
ription of the mapping
lass and do
umen-tation for many useful mappings, LANL un
lassi�ed report 96-3469, Los AlamosNational Laboratory, 1996.6. , Ogen: an overlapping grid generator for Overture, LANL un
lassi�ed report96-3466, Los Alamos National Laboratory, 1996.7. , PlotStu�: a
lass for plotting stu� from Overture , LANL un
lassi�edreport 96-3893, Los Alamos National Laboratory, 1996.8. Georges-Andre Silber, http://www.ens-lyon.fr/ gsilber/nestor/index.html.9. D. Quinlan, Adaptive Mesh Re�nement for Distributed Parallel Pro
essors, PhDthesis, University of Colorado, Denver, June 1993.10. , A++/P++ manual, LANL Un
lassi�ed Report 95-3273, Los Alamos Na-tional Laboratory, 1995.

11. Ishkawa et. al. Design and Implementation of Metalevel Ar
hite
ture in C++ -MPC++ Approa
h -. In Pro
eeding of Re
e
tion'96 Conferen
e, April 1996 moreinfo available at: http://pdswww.rw
p.or.jp/mp
++/mp
++.html12. Shigeru Chiba Ma
ro Pro
essing in Obje
t-Oriented Languages In Pro
.of Te
hnology of Obje
t-Oriented Languages and Systems (TOOLS Pa-
i�
 '98), Australia, November, IEEE Press, 1998. more info available at:http://www.hlla.is.tsukuba.a
.jp/
hiba/open
++.html13. B. Fran
ois et. al. Sage++: An obje
t-oriented toolkit and
lass library for buildingfortran and
++ restru
turing tools. In Pro
eedings of the Se
ond Annual Obje
t-Oriented Numeri
s Conferen
e, 1994.14. Edison Design Group http://www.edg.
om15. Rebe

a Parsons and Dan Quinlan. A++/P++ array
lasses for ar
hite
ture in-dependent �nite di�eren
e
omputations. In Pro
eedings of the Se
ond AnnualObje
t-Oriented Numeri
s Conferen
e (OONSKI'94), April 1994.16. Dan Quinlan and Rebe

a Parsons. Run-time re
ognition of task parallelism withinthe P++ parallel array
lass library. In Pro
eedings of the Conferen
e on ParallelS
alable Libraries, 1993.17. Ian Angus Appli
ations Demand Class-Spe
i�
 Optimizations: The C++ CompilerCan Do More. In Pro
eedings of the Obje
t-Oriented Numeri
s Conferen
e, (OON-SKI) 199318. Todd Veldhuizen Arrays in Blitz++ In Pro
eeding of the Se
ond InternationalSymposium, ISCOPE 98, Santa Fe, NM De
ember 199819. Karmesin, et al. Array Design and Expression Evaluation in POOMA II. InPro
eeding of the Se
ond International Symposium, ISCOPE 98, Santa Fe, NMDe
ember 199820. Bassetti, F., Davis, K., Quinlan, D. Optimizing Transformations of Sten
il Oper-ations for Parallel Obje
t-Oriented S
ienti�
 Frameworks on Ca
he-Based Ar
hi-te
tures In Pro
eedings of the ISCOPE'98 Conferen
e, Santa Fe, New Mexi
o, De
13-16 199821. Lemke, M., Quinlan, D., P++, a C++ Virtual Shared Grids Based ProgrammingEnvironment for Ar
hite
ture-Independent Development of Stru
tured Grid Appli-
ations In Pro
eedings of the CONPAR/VAPP V, September 1992, Lyon, Fran
e;published in Le
ture Notes in Computer S
ien
e, Springer Verlag, September 1992.22. Bassetti, F., Davis, K., Quinlan, D. Toward FORTRAN 77 Performan
e FromObje
t-Oriented C++ S
ienti�
 Frameworks In Pro
eedings of the HPC'98 Con-feren
e, Boston, Mass. April 5-9, 199823. Bassetti, F., Davis, K., Quinlan, D. A Comparison of Performan
e-enhan
ingStrategies for Parallel Numeri
al Obje
t-Oriented Frameworks In Pro
eedings of the�rst International S
ienti�
 Computing in Obje
t-Oriented Parallel Environments(ISCOPE) Conferen
e, Marina del Rey, California, De
, 1997

