The Specification of Source-To-Source
Transformations for the Compile-Time
Optimization of Parallel Object-Oriented
Scientific Applications

Daniel J. Quinlan', Markus Schordan’,
Bobby Philip', and Markus Kowarschik?

! Center for Applied Scientific Computing
Lawrence Livermore National Laboratory, Livermore, CA, USA

2 System Simulation Group, Department of Computer Science
University of Erlangen-Nuremberg, Germany

Abstract. The performance of object-oriented applications in scientific
computing often suffers from the inefficient use of high-level abstrac-
tions provided by underlying libraries. Since these library abstractions
are user-defined and not part of the programming language itself there is
no compiler mechanism to respect their semantics and thus to perform
appropriate optimizations.

In this paper we outline the design of ROSE and focus on the discussion of
two approaches for specifying and processing complex source code trans-
formations. These techniques are intended to be as easy and intuitive as
possible for potential ROSE users; i.e., for designers of object-oriented
scientific libraries, people most often with no compiler expertise.

1 Introduction

The future of scientific computing depends upon the development of more
sophisticated application codes. The original use of Fortran represented
higher-level abstractions than the assembly instructions that preceded it,
but exhibited performance problems that took years to overcome. How-
ever, the abstractions represented in Fortran were standardized within
the language; today’s much higher-level object-oriented abstractions are
more difficult to optimize because they are user-defined.

The introduction of parallelism greatly exacerbates the compile-time
optimization problem. While serial languages serve well for parallel pro-
gramming, they know only the semantics of the serial language. As a result
a serial compiler cannot introduce scalable parallel optimizations. Signif-
icant potential for optimization of parallel applications is lost as a result.

There is a significant opportunity to capitalize upon the parallel seman-
tics of the object-oriented framework and drive significant optimizations
specific to both shared memory and distributed memory applications.

We present a preprocessor based mechanism, called ROSFE, that op-
timizes parallel object-oriented scientific application codes that use high-
level abstractions provided by object-oriented libraries. In contrast to
compile-time optimization of basic language abstractions (loops, oper-
ators, etc.), the optimization of the use of library abstractions within
applications has received far less attention. With ROSE, library develop-
ers define customized optimizations and build specialized preprocessors.
Source-to-source transformations are then used to provide an efficient
mechanism for introducing such custom optimizations into user applica-
tions. A significant advantage of our approach is that preprocessors can
be built which are tailored to user-defined high-level abstractions, while
vendor supplied C++ compilers know only the lower-level abstractions
of the C++ language they support. So far, our research has focused on
applications and libraries written in C++.

This approach permits us to leverage existing vendor C++ compil-
ers for architecture specific back-end optimizations. Significant improve-
ments in performance associated with source-to-source transformations
have already been demonstrated in recent work, underscoring the need
for further research in this direction.

[Statement /GridSize|5x5 [25x25]100x100]]
w=1 3.0| 1.8 1.3
w=u 3.0 1.9 1.3

w=u*2+v*3+u 13.0{ 5.0 2.4
indirect addressing [44.0| 41.0 | 32.5
where statements (23.0(5.0 3.0

9pt stencil 77.0] 14.0 5.6

Table 1. Speedups associated with optimizing source-to-source transformations of ab-
stractions within Overture applications. Results are presented for 2D array objects
u,v,w.

Table 1 shows some of these improvements for the use of optimizing
source-to-source transformations within the OVERTURFE framework [4].
Speedups are listed for several common types of statements, the values
are the ratios of execution times without and with the optimizing source-
to-source transformations. In each case the optimizing transformation

results in better performance. The degree of improvement depends upon
the abstraction being optimized within the application code and the prob-
lem size. For example, in the case of indirect addressing the performance
improvement for 100x 100 size problems is 3250%, showing the rich po-
tential for indirect addressing optimizations. We can expect that ROSE
will duplicate these results through the fully automated introduction of
such optimizing transformations into application codes.

Other work exists which is related to our own research. Internally
within ROSE a substantially modified version of the SAGE II [7] AST
restructuring tool is used. Nestor [9] is a similar AST restructuring tool
for Fortran 77, Fortran 90, and HPF2.0, which, however, does not attempt
to recognize and optimize high-level user-defined abstractions. Work on
MPC++ [10,11] has led to the development of a C++ tool similar to
SAGE, but with some additional capabilities for optimization. However,
it does not attempt to address the sophisticated scale of abstractions that
we target or the transformations we are attempting to introduce.

Related work on telescoping languages [8] shares some of the same
goals as our research work and we look forward to tracking its progress in
the coming years. Other approaches we know of are based on the definition
of library-specific annotation languages to guide optimizing source code
transformations [12] and on the specification of both high-level languages
and corresponding sets of axioms defining code optimizations [13].

Work at University of Tennessee has lead to the development of Au-
tomatically Tuned Linear Algebra Software (ATLAS) [5]. Within this ap-
proach numerous transformations are written to define a search space and
the performance of a given architecture is evaluated. The parameters as-
sociated with the best performing transformation are thus identified. Our
work is related to this in the sense that this is one possible mechanism for
the identification of optimizing transformations that could be used within
preprocessors built using ROSE to optimize application codes. Our ap-
proach to the specification of transformations in this paper is consistent
with the source code generation techniques used to generate transforma-
tions within ATLAS.

The remainder of this paper is organized as follows. In section 2 we
give a survey on the ROSE infrastructure; we describe the process of
automatically generating library-specific preprocessors and explain their
source-to-source transformation mechanisms. The main focus of this pa-
per is on the specification of these source-to-source transformations by
the developer of the library. We will thus discuss two alternative specifi-

cation approaches and an AST query mechanism in section 3. In section 4
we finally summarize our work.

2 ROSE Overview

We have developed ROSE as a preprocessor mechanism because our focus
is on optimizing the use of user-defined high-level abstractions and not
on lower-level optimizations associated with back-end code generation for
specific platforms. Our approach permits ROSE to work as a preprocessor
independent of any specific C++ compiler.

In the following we will briefly describe the internal structure of a
preprocessor which has been automatically generated using ROSE; par-
ticularly the recognition of high-level abstractions (section 2.1), the over-
all preprocessor design (section 2.2), and finally the specification of the
transformations (section 3), which is the main focus of this paper.

2.1 Recognition of Abstractions

We recognize abstractions within a user’s application much the same way
a compiler recognizes the syntax of its base language. To recognize high-
level abstractions we build a hierarchy of high-level abstract grammars
and the corresponding high-level ASTs using ROSE. This hierarchy is
what provides for a relationship to telescoping languages [8].

These high-level abstract grammars are very similar to the base lan-
guage abstract grammar in our case an abstract C++ grammar. They
are modified forms of the base language abstract grammar with added
terminals and non-terminals associated with the abstractions we want to
recognize. They cannot be modified in any way to introduce new key-
words or new syntax, so clearly there are some restrictions. However, we
can still leverage the lower-level compiler infrastructure; the parser that
builds the base language AST. New terminals and nonterminals added to
the base language abstract grammar might represent specific user-defined
functions, data-structures, user-defined types, etc. More detail about the
recognition of high-level abstractions can be found in [3]

2.2 Preprocessor Design

Figure 1 shows how the individual ASTs are connected in a sequence
of steps; automatically generated translators generate higher level ASTs
from lower level ASTs. The following describes these steps:

| Unoptimized C++ Source Code |

EDG Front-end ‘

{

SAGE C++ AST

(ROSETTA C++ AST Restructuring Tool)

Recognition of High-Level Abstractions
Construction of Hierarchy of ASTs

ROSETTA C++ High-Level AST Restructuring g Tool

0=

AST Transformation

g

ROSE Unparser

Preprocessor Built Using ROSE

g

Optimized C++ Source Code

Fig. 1. Source-to-source C++ transformation with preprocessors using the ROSE in-
frastructure.

1. The first step generates the Edison Design Group (EDG) AST. This
AST has a proprietary interface and is translated in the second step
to form the abstract C++ grammar’s AST.

2. The C++ AST restructuring tool is generated by ROSETTA [1] and
is essentially comformant with the SAGE II implementation. This
second step is representative of what SAGE II provides and presents
the AST in a form where it can be modified with a non-proprietary
public interface. At this second step the original EDG AST is deleted
and afterwards is unavailable.

3. The third step is the most interesting since at this step the abstract
C++ Grammar’s AST is translated into higher level ASTs. Each par-
ent AST (associated with a lower level abstract grammar) is translated
into all of its child ASTs so that the hierarchy of abstract grammars
is represented by a corresponding hierarchy of ASTs (one for each
abstract grammar). Transformations can be applied at any stage of
this third step and modify the parent AST recursively until the AST

associated with the original abstract C++ grammar is modified. At
the end of this third step all transformations have been applied.

4. The fourth step is to traverse the C++ AST and generate optimized
C++ source code (unparsing). This completes the source-to-source
preprocessing.

An obvious next and final step is to compile the resulting optimized
C++ source code using a vendor’s C++4 compiler.

3 Specification of Transformations

This paper is primarily about the specification of transformations for use
within preprocessors built using ROSE. The purpose of any transforma-
tion is to locally rewrite a statement or collection of statements — the
target using the semantics of the high-level abstractions being opti-
mized and the context of their use within the application.

All transformations share a common set of requirements. Internally,
the application has been parsed to build the corresponding AST within
the AST hierarchy, using either the abstract C++ grammar or a higher-
level abstract grammar. This forms the starting point for the internal
processing. The ending point is the AST which has been modified ac-
cording to the specification of the transformation. Since at this point all
fragments of the AST where transformations will be applied have been
identified in the recognition phase, we can associate transformations with
specific terminals of the high-level abstract grammar. This approach per-
mits the transformations to be performed within a single traversal of the
AST at each node corresponding to a specific terminal of the abstract
grammar.

The definition of the interface for the specification of transformations
is straightforward. Inputs are fragments of the application’s AST repre-
senting C++ code to be optimized. Qutputs are the new AST fragments
representing the transformed code. The actual transformation phase is the
substitution of the input AST fragment with the output AST fragment
within the larger AST representing the application code.

It is the responsibility of the transformation to reproduce the seman-
tics of the statement or collection of statements being substituted. Ulti-
mately, it is the responsibility of the library developer to correctly specify
the transformation which represents the semantics of the high-level ab-
straction being optimized.

Our recent research has been focusing on two fundamentally different
methodologies for specifying the transformations to be applied; a first

approach based on direct (manual) AST construction and a more sophis-
ticated second approach leveraging the compiler front-end to generate the
required output AST fragment. An orthogonal query mechanism allows
either AST fragment construction mechanism to perform queries on the
input AST fragment. This query mechanism permits the output AST
fragment to be tailored to the context of the input AST fragment.

3.1 Mechanism for the Query of AST Fragments

list<char*> globalQueryCharStarListInitializerFunction (void)
{
// This function returns a value used to initialize variables of the return type
list<char*> returnList = 0;
return returnList;

}

list<char*> globalQueryGetListOperandCharStarFunction (SgNode* astNode)
{
// This function returns a single element list of variable names at the astNode
list<char*> variableNamelist;

SgVarRefExp* varRefExp = isSgVarRefExp(astNode);
if (varRefExp != NULL)
{
SgVariableSymbol* variableSymbol = varRefExp->get_symbol();
SgInitializedName* initializedName = variableSymbol->get_declaration();
SgName variableName = initializedName->get_name();
char* name = strdup(variableName.str());
variableNameList.push_back (name);
}

return variableNamelList;

}

list<char*> globalQueryAssemblyCharStarListFunction
(list<char*> inputX, list<char*> inputY)
{
// This function adds one list to the other and returns the result
inputX.merge (inputY);
return inputX;

}

Fig. 2. Example of functions used in the templated query interface for a query of vari-
able names in AST fragments (e.g., expression statements) using synthesized attributes.
Function pointers are used as inputs to the templated Query class. The templated STL
list<> class forms an argument to the templated Query class.

Figures 2 and 3 show an example of the query specification mech-
anism using synthesized attributes. This mechanism permits the use of

// Build a query operator (using STL and primative types as template arguments)
Query< int, list<char*>, int >
localQueryOperator (globalQueryCharStarListInitializerFunction,
globalQueryGetListOperandCharStarFunction,
globalQueryAssemblyCharStarListFunction);

// now ask the question
list<char*> operandNameList = localQueryOperator.traverse(astNode);

Fig. 3. Example source code fragment specifying the query of variable names (e.g., in
expression statements) using synthesized attributes.

inherited and synthesized attributes and accumulators in the develop-
ment of queries upon any fragment of the AST. The mechanism is backed
up by an automatically generated tree traversal mechanism generated by
ROSETTA as part of the AST restructuring tool associated with each
level of an abstract grammar in the hierarchy.

3.2 Direct Construction of AST Fragments

From the perspective of the compiler, at the start of the optimization
phase the user’s application is already parsed and represented by an AST.
Any optimization must modify this representation. Evidently, the sim-
plest approach is to modify the AST directly. Numerous specialized tools
are based around techniques that directly manipulate the internal forms
used within compilers. The AST and the source code are semantically
equivalent in the sense that they represent the same code. However, the
AST is more complex for users to manipulate as a tree, at least partly
because programmers are used to manipulating source code as text.

Figure 4 shows an example of code required to construct a for loop
within Sage++ [7] (predecessor to Sage II and our modified version of Sage
IT). Debugging the code generated from this AST fragment, requires a
level of indirection which makes the specification of larger transformations
particularly difficult.

figure 5 shows the code generated from the specification of the AST
fragment in figure 4. Within this approach, and specifically in this ex-
ample, there is a dramatic difference in the amount of code required to
specify the AST fragment (figure 4) and the source code unparsed from
the AST fragment (figure 5). Specific to this example there is a factor of
12 expansion in complexity as measured in the number of lines of code.
It is also immediately obvious that the final code representation (figure
5) is easier to understand. The source code building the AST fragment

(figure 4) additionally assumes a working knowledge of a particular AST
restructuring tool (in this case Sage++).

However, conventional methods for the specification of transforma-
tions which we have found in the literature are characterized by
the direct construction or alteration of AST fragments (e.g., declaration
statement objects, for loop statement objects, etc.). Alternative com-
piler tools (Nestor [9], Sage [7], etc.) are similarly limited to such direct
transformation approaches and, as a result, are most appropriate for sim-
ple transformations. These direct approaches also assume a high degree
of compiler expertise which additionally limit their applicability within
scientific computing.

3.3 Source-String Based Construction of AST Fragments

Since scientific library writers represent our target audience, we cannot
assume any compiler expertise or familiarity with ASTs. Additionally, it is
our experience that transformations for cache-based optimizations, which
we are particularly interested in, are complex [14, 15]. Implementing these
kinds of transformations using the approach of direct AST construction
is rather tedious, if not impractical. We therefore require a more compact
representation of the transformation. Clearly, from the user’s perspec-
tive, the transformation would be best represented as source code in the
application’s programming language, even if this representation cannot
immediately be substituted into the AST.

Our more sophisticated second approach is therefore based on the
source code representation of the transformations and leveraging the com-
piler front-end in order to generate the equivalent AST fragment to be
substituted into the application’s AST. There are several advantages of
this transformation mechanism:

— The source code represents the most compact representation of the
equivalent AST and is familiar to the programmer.

— The source code representing the transformation can be most easily
examined for correctness by the user.

— Since the source code can be extracted from files, transformations can
be built from working versions of the code representing the transfor-
mations. This approach thus allows test codes representing the trans-
formations to be built separately and introduced as optimizing trans-
formations into applications. We expect this approach will permit an
interface to optimization tools such as ATLAS.

— The transformation source code can be parsed directly by the internal
compiler infrastructure to generate the AST fragment required. Thus
the process of generating the AST fragment for insertion into the AST
at compile-time can be automated.

With sufficient exercise of the query mechanism the source-string can
be tailored (programmed) to build most source code transformations.
Figure 6 shows the source code and function call required to generate the
identical AST fragment as in figure 4.

We consider the manipulation of strings, as an alternative way to spec-
ify the AST transformation at compile time, to be an added approach es-
pecially useful for larger transformations. This approach is direct from the
user’s point of view, since the source-to-source transformation is specified
using source code. But our approach should be considered indirect from
the compiler’s point of view, since the AST fragment is subsequently gen-
erated from source-strings and it (the AST fragment) is what is needed
at compile-time.

The optimization of object-oriented array class libraries can form an
interesting example problem. The array statements elegantly represent
mathematical expressions because of the operator overloading made pos-
sible within the C++ language. We consider “A(I)= (B(I-1)+B(I+1))*0.5;”
as a sample array statement from the A++/P++ array class library [16,
17]. This library permits the specification of serial and parallel array
objects and their manipulation using overloaded operators. The library
permits the evaluation of expressions using pair-wise operator or expres-
sion template mechanisms. Both of these approaches have performance
problems. The pair-wise evaluation of expressions within a statement is
not cache friendly and results in a loss of performance (factor of 1-6) [17,
14]. While the expression templates have long compile times and limits
on their application [14].

Figure 8 shows the semantically equivalent transformation generated
from the above A++/P++ target (figure 7). In this case the optimiz-
ing transformation removes all array class overhead and provides the
same performance as C or Fortran 77, since the data is accessed through
restrict pointers. More sophisticated transformations could provide fu-
sion between statements to provide improved temporal locality of array
statement expressions (providing larger internal loops).

4 Conclusions

ROSE is a library to simplify the construction of optimizing preproces-
sors. The specification of the transformation is done within the program
that is compiled to be the preprocessor. This program leverages both the
ROSE library for internal infrastructure and the source code generated by
ROSETTA (part of ROSE). Source code generated by ROSETTA imple-
ments AST restructuring tools corresponding to abstract grammars and
higher-level abstractions, this source code is compiled to build the pre-
processor. Infrastructure within ROSE permits the specification of trans-
formations, either directly modifying the AST or indirectly through the
specification of source-strings which are processed to form AST fragments
which are used to modify the AST.

We have presented the ROSE infrastructure to automatically gener-
ate library-specific source-to-source compilers (preprocessors). These pre-
processors can be used to optimize the use of high-level abstractions in
parallel object-oriented applications.

We have presented two basic approaches for specifying transforma-
tions. While our first approach of direct AST construction turned out to
be tedious (especially for complex cache-based transformations), our sec-
ond approach, which leverages the compiler front-end instead, provides
an elegant and comfortable alternative.

References

1. Quinlan, D.; Philip, B., "ROSETTA: The Compile-Time Recognition Of Object-
Oriented Library Abstractions And Their Use Within Applications”, Proceedings
of the PDPTA’2001 Conference, Las Vegas, Nevada, June 24-27 2001

2. Quinlan, D.,”ROSE: Compiler Support for Object-Oriented Frameworks”, Parallel
Processing Letters, Vol. 10, also Proceedings of Conference on Parallel Compilers
(CPC2000), Aussois, France, January 2000.

3. Quinlan, D. Schordan, M. Philip, B. Kowarschik, M. ”Parallel Object-Oriented
Framework Optimization”, (submitted to) Special Issue of Concurrency: Prac-
tice and Experience, also in Proceedings of Conference on Parallel Compilers
(CPC2001), Edinburgh, Scotland, June 2001.

4. Brown, D., Henshaw, W., Quinlan, D., ’OVERTURE: A Framework for Complex
Geometries”, Proceedings of the ISCOPE’99 Conference, San Francisco, CA, Dec
7-10 1999.

5. ATLAS homepage, http://www.netlib.org/atlas.

6. Edison Design Group, http://wuw.edg.com.

7. Bodin, F. et. al., ”Sage++: An object-oriented toolkit and class library for building
fortran and C++ restructuring tools”, Proceedings of the Second Annual Object-
Oriented Numerics Conference, 1994.

10.

11.

12.

13.

14.

15.

16.

17.

Broom, B., Cooper, K., Dongarra, J., Fowler, R., Gannon, D., Johnsson, L.,
Kennedy, K., Mellor-Crummey, J., Torczon, L., ” Telescoping Languages: A Strat-
egy for Automatic Generation of Scientific Problem-Solving Systems from Anno-
tated Libraries”, Journal of Parallel and Distributed Computing, 2000.

Silber, G.-A., http://www.ens-1lyon.fr/~gsilber/nestor.

Ishikawa, Y., et. al.;, "Design and Implementation of Metalevel Architecture in
C++ MPC++ Approach 7, Proceedings of Reflection’96 Conference, April
1996, more info available at: http://pdswww.rwcp.or. jp/mpc++/mpc++.html.
Chiba, S., ”"Macro Processing in Object-Oriented Languages”, Proc. of
Technology of Object-Oriented Languages and Systems (TOOLS Pacific
'98), Australia, November, IEEE Press, 1998, more info available at:
http://www.hlla.is.tsukuba.ac.jp/~chiba/openc++.html.

Guyer, S.Z., Lin, C., ” An Annotation Language for Optimizing Software Libraries”,
Proceedings of the Second Conference on Domain-Specific Languages, October
1999.

Menon, V., Pingali, K., ”High-Level Semantic Optimization of Numerical Codes”,
Proceedings of the ACM/IEEE Supercomputing 1999 Conference (SC99), Port-
land, OR, 1999.

Bassetti, F., Davis, K., Quinlan, D.; ” Optimizing Transformations of Stencil Op-
erations for Parallel Object-Oriented Scientific Frameworks on Cache-Based Ar-
chitectures” Proceedings of the ISCOPE’98 Conference, Santa Fe, NM, 1998.
Weif}, C., Karl, W., Kowarschik, M., Riide, U., ”Memory Characteristics of Itera-
tive Methods”, Proceedings of the ACM/IEEE Supercomputing 1999 Conference
(SC99), Portland, OR, 1999.

Lemke, M., Quinlan, D., ”P++, a C++ Virtual Shared Grids Based Programming
Environment for Architecture-Independent Development of Structured Grid Appli-
cations”, published as part of CONPAR/VAPP V, September 1992, Lyon, France;
also published in Lecture Notes in Computer Science, Springer Verlag, September
1992.

Parsons, R., Quinlan, D., "A++/P++ Array Classes for Architecture Indepen-
dent Finite Difference Computations”, Proceedings of the Second Annual Object-
Oriented Numerics Conference, pages 408-418, Sunriver, OR, April 1994.

SgExpression *Expression = CExpressionStatement->expr()->1hs();

SgSymbol *Argument = (Expression->lhs()->symbol() == NULL) 7
Expression->1hs()->1lhs()->symbol() : Expression->1lhs()->symbol();

SgExpression dimen_call(RECORD_REF);

dimen_call.setLhs(SgVarRefExp(*TemporaryArrayPtr));

SgSymbol #*FieldSymbol = FindFieldWName("redim", TemporaryArrayPtr);

SgFunctionCallExp dimen_func (*FieldSymbol);

dimen_func.addArg(SgVarRefExp (*Argument)) ;

dimen_call.setRhs(dimen_func);

SgCExpStmt RedimMemberFunction (dimen_call);

SgExpression *Expression = getRootExpression (Statement);

SgVariableSymb *TemporaryArrayPtr = new SgVariableSymb ("xxx_dA_T");
TemporaryArrayPtr->declareTheSymbol(*(StatementPtr->controlParent()));
SgExpression *le = Expression->lhs();

SgDerivedType *dtp = NULL;

SgSymbol *vsb = le->symbol();

TemporaryArrayPtr->setType (vsb->type());

SgExpression *Expression = getRootExpression (Statement);

SgVariableSymb *TemporaryArrayPtr = new SgVariableSymb ("xxx_dB");
TemporaryArrayPtr->declareTheSymbol(*(StatementPtr->controlParent()));
SgExpression *le = Expression->lhs();

SgDerivedType *dtp = NULL;

SgSymbol *vsb = le->symbol();

TemporaryArrayPtr->setType (vsb->type());

SgVariableSymb *LoopInductionVariable = new SgVariableSymb ("i_loopxx");
LoopInductionVariable->setType(SgTypeInt());
LoopInductionVariable->declareTheSymbol(*(StatementPtr->controlParent()));
SgCExpStmt *AssignmentExpression =
new SgCExpStmt (SgAssignOp(*LhsExpression , SgVarRefExp(*TemporaryArrayPtr)));
SgBasicBlock* LoopBody = new SgBasicBlock ();
LoopBody.insert (AssignmentExpression);
int upperBound = 100;
SgForStmt *ForStatementPtr =
new SgForStmt (SgAssignOp(SgVarRefExp(*LoopInductionVariable),SgValueExp(0)),
SgVarRefExp (*LoopInductionVariable) < SgValueExp(upperBound),
SgUnaryExp (PLUSPLUS_OP,1,SgVarRefExp(*LoopInductionVariable)),
SgCExpStmt (*LoopBody)) ;

Fig. 4. Code required to build an AST fragment for the for loop shown in figure 5.

A.redim(size);
for (i_loopxx = 0; i_loopxx < 100; i_loopxx++)
{
xxx_dA_T[i_loopxx] = xxx_dB[i_loopxx];
}

Fig. 5. Unparsed source code from the AST formed in figure 4.

buildAST_Fragment (

"A.redim(size); \n for (i_loopxx = 0; i_loopxx < 100; i_loopxx++) \n \
{ \n xxx_dA_T[i_loopxx] = xxx_dB[i_loopxx]; }");

Fig. 6. Function call using a source-string to create an AST representing the source
code in figure 5.

//
//

//

A and B are declared as array objects (not shown)
and used in an array statement
A(I) = (B(I-1) + B(I+1)) * 0.5;

Fig. 7. Target of optimizing transformation (transformation shown in figure 8).

Transformation Target: A(I) = (B(I-1) + B(I+1)) * 0.5;
int rose_index [8];

int rose_stride[8];

int rose_base [8];

int rose_bound [8];

double restrict* B_rose_pointer = B.getDataPointer();
double restrict* A_rose_pointer = A.getDataPointer();
rose_base[0] = (B.getBase) (0);

rose_bound[0] (B.getBound) (0) ;

rose_stride[0] = (B.getStride)(0);

for (int i = rose_base[0]; i <= rose_bound[0]; i += rose_stride[0])

{

A_rose_pointer[i] = (B_rose_pointer[i-1] + B_rose_pointer[i+1]) * 0.5;

}

Fig. 8. Unparsed source code represented by an AST of the transformed target code
(figure 7). The specification uses the internal ROSE infrastructure (not shown). A
source-string is processed to generate an AST fragment and then unparsed to form the
text.

