ROSE: Compiler Support for
Object-Oriented Frameworks

Dan Quinlan!

Lawrence Livermore National Laboratory, Livermore, CA, USA,
dquinlan@llnl.gov,
WWW home page: http://www.11lnl.gov/CASC/people/quinlan/

Abstract. ROSE is a preprocessor generation tool for the support
of compile time performance optimizations of general object-oriented
frameworks. Within this work ROSE is being applied first to Overture,
a serial/parallel object-oriented framework for solving partial differen-
tial equations in two and three space dimensions. The optimization of
the interactions between objects within Overture is of particular inter-
est since the Overture applications can be computationally large (many
millions of mesh points and iterating over thousands of time-steps). Un-
fortunately, optimizations that might be obvious to the framework devel-
oper or application developer (e.g. cache based optimizations), due to the
precise semantics of the framework’s abstractions, are often lost through
the C++ compiler’s inability to recognize or leverage such semantics.
Preprocessing steps can be used to introduce transformations using the
semantics of a framework’s abstractions, but the development of such a
preprocessor tool is particularly complicated for a general object-oriented
language such as C++. This paper shows how such framework specific
preprocessors can be automatically generated.

In this paper we briefly present Overture with some examples, and
present our approach toward optimizing the performance for Overture
and the A++4+P++ array class abstractions upon which Overture de-
pends. The results we present show that the semantics of the abstractions
represented within Overture and the A++P++ array class library can
be used to generate a preprocessor using ROSE. The results demonstrate
the performance of an Overture application with and without such a
preprocessing step, the final performance with preprocessing is equiva-
lent to that of optimized C and Fortran 77. By design, ROSE is general
in its application to any object-oriented framework or application and is
in no way specific to Overture .

1 Introduction

ROSE is a programmable source-to-source transformation tool for the optimiza-
tion of C++ object-oriented frameworks. In our work we target the Overture
Framework specifically (www.llnl.gov/casc/Overture), a parallel object-oriented
C++ framework for solving partial differential equations associated with com-
putational fluid dynamics applications within complex moving geometries. Work

on the Overture framework represents our research in the modeling of diesel
engine combustion. While we have specific goals for this work within Overture,
ROSE applies equally well to any other object-oriented framework.

A common problem within object-oriented C++ scientific computing is that
the high level semantics of abstractions introduced (e.g. parallel array objects)
are ignored by the C++ compiler. Classes and overloaded operators are seen as
unoptimizable structures and function calls. Such abstractions can provide for
particularly simple development of large scale parallel scientific software, but the
lack of optimization greatly effects performance and utility. Because C++ lacks a
mechanism to interact with the compiler, elaborate mechanisms are often imple-
mented within such parallel frameworks to introduce complex template-based
and/or runtime optimizations (such as runtime dependence analysis, deferred
evaluation, runtime code generation, etc.). These approaches are however not
satisfactory since they either require long compile times (hours) or are not suf-
ficiently robust.

ROSE represents a mechanism to build preprocessors that reads the user’s
application source code and outputs highly optimized C++ code. The output
from a preprocessor built from ROSE is itself C++ code (but transformed using
the semantics of the object-oriented abstractions represented within the frame-
work). ROSE helps the framework developer define framework specific (or ap-
plication specific) grammars (more specifically a hierarchy of grammars), one or
more transformations can be associated with each grammar. The transformations
assume complete knowledge of the serial and parallel semantics of the object-
oriented abstractions and are thus safe by definition. Multiple program trees are
then built, one for each grammar. The traversal of the much simpler program
trees represented by the higher level grammars (as opposed to that of the C++
program tree) permits the identification of locations where transformations are
then applied to introduce specific optimizations. The final modified program tree
is then unparsed to generate C++ source code. The source code transformations
can readily exploit knowledge of the architecture, parallel communication char-
acteristics, and cache architecture in the specification of the transformations.
Within Overture , a parallel framework, the serial and parallel semantics are
known and transformations can range from serial loop optimizations to parallel
message passing optimizations, threading could alternatively be automated with
such transformations (where identified using the framework’s parallel semantics).

We have developed this work as an optional alternative (optional since the
framework’s semantics are in no way modified through the use of the prepro-
cessors built with ROSE) to the definition of standardized parallel languages.
A language is harder to develop, more difficult to optimize, and difficult to get
accepted into scientific computing.

ROSE is implemented using several other tools. We use the EDG C++ front-
end and the Sage II source code restructuring tool. ROSE exists as a layer on
top of Sage Il (which represents an open interface to the C++ program tree
provided though the EDG front-end), while Sage II exists as a layer on top
of the EDG front-end. The EDG front-end is a commercial C++ front-end,

providing us with an implementation of the full C++ language (as complete as is
available today). By design, we leverage many low level optimizations provided
within modern compilers while focusing on higher level optimizations largely
out of reach because traditional approaches can not leverage the semantics of
high level abstractions. In doing so, we slightly blur the distinction between a
library /framework and a language. Because we leverage several good quality
tools the implementation is greatly simplified.

This paper presents our work to automate the construction of preprocessors
specific to an arbitrary object-oriented framework, in this case the Overture
framework. With such a tool the development of preprocessing mechanisms to
leverage the semantics of a framework’s abstractions can be handled as part of
the framework development (by the framework developer or even users). Both
significant optimizations (machine dependent cache based transformations) and
more readily optimizible abstractions can be defined. The effect is to provide
a readily customizable compilation mechanism that can leverage existing high-
level user defined semantics (significantly beyond that of the C++ language’s
relatively general and low level semantics).

2 The Overture Framework

The Overture framework is a collection of C++ libraries that provide tools
for solving partial differential equations. Overture can be used to solve prob-
lems in complicated, moving geometries using the method of overlapping grids
(also known as overset or Chimera grids). Overture includes support for ge-
ometry, grid generation, difference operators, boundary conditions, database
access and graphics. More information about Overture can be found at:
www.1llnl.gov/casc/Overture Nothing in Overture is in any way tailored
for use with a preprocessor.
The main class categories that make up Overture are as follows:

— Arrays [10]: describe multidimensional arrays using A++/P++. A++ pro-
vides the serial array objects, and P++ provides the distribution and inter-
pretation of communication required for their data parallel execution.

— Mappings [5]: define transformations such as curves, surfaces, areas, and
volumes. These are used to represent the geometry of the computational
domain.

— Grids [2,4]: define a discrete representation of a mapping or mappings.
These include single grids, and collections of grids; in particular composite
overlapping grids.

— Grid functions [4]: storage of solution values, such as density, velocity,
pressure, defined at each point on the grid(s). Grid functions are derived
from A++/P++ array objects.

— Operators [1,3]: provide discrete representations of differential operators
and boundary conditions

— Grid generation [6]: the Ogen overlapping grid generator automatically
constructs an overlapping grid given the component grids.

— Plotting [7]: a high-level interface based on OpenGL allows for plotting
Overture objects.

— Adaptive mesh refinement: The AMR++ library is an object-oriented
library providing patch based adaptive mesh refinement capabilities within
Overture .

Object-oriented abstractions are present at many levels within Overture,
but within this paper we focus on the lower level array objects and array op-
erators. Numerous mechanisms have been implemented previously to optimize
the performance of the A++P++ array class library, these mechanisms have
included highly optimized binary operator[21], deferred evaluation[15], and ex-
pression templates[23, 18, 19].

2.1 Array Abstractions

A++ and P++ [10,21] are array class libraries for performing array operations
in C++ in serial and parallel environments, respectively.

A++ is a serial array class library similar to FORTRAN 90 in syntax, but not
requiring any modification to the C++ compiler or language. A++ provides an
object-oriented array abstraction specifically well suited to large-scale numerical
computation. It provides efficient use of multidimensional array objects which
serves to both simplify the development of numerical software and provide a
basis for the development of parallel array abstractions. P++ is the parallel
array class library and shares an identical interface to A4+, effectively allowing
A++ serial applications to be recompiled using P++ and thus run in parallel.
This provides a simple and elegant mechanism that allows serial code to be
reused in the parallel environment.

P++ provides a data parallel implementation of the array syntax represented
by the A++ array class library. To this extent it shares a lot of commonality
with FORTRAN 90 array syntax and the HPF programming model. However, in
contrast to HPF, P++ provides a more general mechanism for the distribution
of arrays and greater control as required for the multiple grid applications rep-
resented by both the overlapping grid model and the adaptive mesh refinement
(AMR) model.

Here is a simple example code segment that solves Poisson’s equation in
either a serial or parallel environment using the A++ /P++ classes. Notice how
the Jacobi iteration for the entire array can be written in one statement.

// Solve u_xx + u_yy = f by a Jacobi Iteration

Range R(0,n) // a range of indices: 0,1,2,...,n
floatArray u(R,R), f(R,R) // declare two two-dimensional arrays
f=1.; u=20.; h=1./n; // initialize arrays and parameters
Range I(1,n-1), J(1,n-1); // define ranges for the interior

// data parallel statement
for(int iteration=0; iteration<100; iteration++)
u(Il,J) = .25%(u(I+1,J)+u(I-1,T)+u(I,J+1)+u(I,J-1)-£f(I,J)*(h*h));

This example shows the array abstractions in use, the optimization of these
sorts of statements (and many more complex) are a driving interest in the de-
velopment of ROSE as an optimization mechanism. Here, the array objects are
defined with overloaded operators for +,—,(),*, and =. The resulting execution
is pairwise if binary operators are used, and a more efficient if expression tem-
plates are used. But many targets of optimization involve multiple statements
where the expression template mechanism only provides for single statement op-
timizations. Cache based transformations have also been worked out that can
(while complex) surpass fortran 77 performance by a factor of four! The devel-
opment, of preprocessors using ROSE should allow the automated introduction
of these much more sophisticated transformations. Currently, only less sophis-
ticated transformations have been automated using preprocessors built using
ROSE.

incompressible NS: 1=2.50e-01, v
di=8.7e~04, nu=10e-02

1.00 =

0297

—

—0.08

o518

o824

-1.00 -

-1.50 —0a41

—0gs0

-2.00
-200 -150 -1.00 -050 Q00 050 100 50 200 5, 150 100 -050 000 050 100

—1.059

Incompressible NS, nu=2.500000e-02 w
t= 0.000, dt=0.00e+00
— o
ren
o5

0008

= oo

J7

— —ooss

— —oas

—0121

=
NG
e -
-
N
I
N
.
8
hid
[
I
[
=
[—

B Do BT

Fig. 1. Sample 2D and 3D Overture overlapping grids and applications.

2.2 Grid-function Abstractions

This example demonstrates the power of the Overture framework by showing
a basically complete code that solves the partial differential equation (PDE)

Ut + aty + by = v(Ugy + Uyy)

on an overlapping grid. This example shows the higher level abstractions repre-
sented within Overture (beyond that of the array abstractions). The interaction

of these abstractions is what we seek to optimize using the preprocessors built
from ROSE.

int main()

\{
CompositeGrid cg; // create a composite grid
getFromADataBaseFile(cg,"myGrid.hdf") ; // read the grid in
floatCompositeGridFunction u(cg); // create a grid function
u=1.; // assign initial conditions
CompositeGridOperators op(cg); // create operators
u.setOperators(cg) ;
PlotStuff ps; // make an object for plotting
// --- solve a PDE ----

float t=0, dt=.005, a=1., b=1., nu=.1;
for(int step=0; step<100; stept++)

\{
ut=dt*(-a*u.x()-b*u.y()+nu*(u.xxOD+u.yy());
t+=dt;
u.interpolate(); // interpolate overlapping boundaries

// apply the BC u=0 on all boundaries
u.applyBoundaryCondition(0,dirichlet,allBoundaries,0.);
u.finishBoundaryConditions();

ps.contour (u) ; // plot contours of the solution

\}
return 0;

\}

This example solves the time-dependent equation explicitly. Other class li-
braries within the Overture framework simplify the solution of elliptic and
parabolic equations, the linear systems generated can be solved using any of
numerous numerical methods as appropriate including multigrid, and methods
made available within a number of external dense and sparse linear algebra
packages. Figure 1 shows the sorts grids and example applications possible with
Overture .

The array and grid-function abstractions demonstrated can be significantly
optimized over the execution provided by the C++ implementation directly. As
implemented, via a library, the library can do little to optimize the execution
since it can not see the context of the full statement (or surrounding statements).

Fundamentally, using the semantics of these abstractions to drive optimiza-
tions is easier and more productive than relying upon classical program analysis

of the much lower level and more general abstractions of the C++ language
itself. While the C++ language’s abstractions are general and flexible to allow
general use, an object-oriented framework’s abstractions can be made arbitrarily
precise. The resulting semantic knowledge can be much greater than that pro-
vided through program analysis. In general, it is more likely that a combination
of leveraging semantics and less sophisticated program analysis will provide a
more complete solution.

3 Design of Preprocessors

To encapsulate the semantics of an object-oriented framework’s abstraction into
the compilation process we must identify the uses of the abstraction within a
user’s application code. The naive approach to this is:

1. traverse the abstract syntax tree (AST) represented by an application,
2. search for types,
3. put together their use relative to one another.

While simple to explain superficially, the mechanism is particularly complex
due to the depth of C++ syntax behind which many high-level abstractions,
and the interactions between them, are buried within the AST. The shear size
of the program tree for realistic scientific applications further complicates this
approach.

To clarify the representation of high-level abstractions, and more importantly
their interactions (which can be particularly complex), we simplify the AST to
an intermediate form where both the use of a framework’s abstractions and their
interactions can be more immediately recognized (the simpler the better). This
intermediate form is customized to a framework’s abstractions.

To represent a framework’s abstractions in a higher level representation (an
alternative intermediate form) of the user’s application’s program tree (or more
specifically an alternate AST) we build a grammar specific to the framework’s ab-
stractions. This higher-level grammar is then used to parse the base level (C++)
AST. The result is an intermediate form tailored to an object-oriented frame-
work’s abstractions and a new AST for a user’s application. The new AST using
the high-level grammar dramatically simplifies the recognition of a framework’s
abstractions, and the interactions between them, within the user’s application.
This new higher-level AST can be more readily traversed and a framework’s
abstractions and interactions between abstractions more readily identified.

Since the development of the higher level grammars specific to an object-
oriented framework could be rather complex we have automated this process.
The development of the parser from the C++ AST to the higher-level grammar’s
AST is also automated. The result is a mechanism that automatically generates
the significant pieces required to form a preprocessor for an arbitrary object-
oriented framework.

The preprocessing phase for an application code involves two phases:

1. Recognition of “where” to apply transformations
The details of this phase are the subject of this paper.

2. What transformation to apply
We show results of the use of a preprocessor formed using ROSE (in section 5)
with a simple transformation to improve the performance of the A++P++
array class library within the Overture framework. This paper does not
go into any details regarding this specific transformation which in this case
basically provides for an automated lowering of the code which would execute
the C++ object interactions (array expressions) to C code which is more
efficient (and more architecture specific).

The generation of the preprocessor involves more steps and is the focus of
this paper. Of the two phases, the difficult aspects of the preprocessor are mostly
related to the recognition phase:

1. Building the base level C++ grammar and their object-oriented implemen-
tation

2. Building the higher level application specific grammars and their object-
oriented implementation

3. Parsing the C++ application into the Base level C++ grammar

4. Parsing the C++ application into the higher-level application specific gram-
mars

A Meta-program level is used to define the preprocessor, this level is a simple
C++ application code. The Meta-program defines the manipulation of grammars
using the ROSETTA library. The output of the Meta-program, when it is ex-
ecuted, is source code (written to files). The source code is compiled, with the
ROSE infrastructure, to form a preprocessor specific to a given framework. The
Meta-program can generate a lot of source code, typically 200,000 lines, but it
can be compiled in under a minute and once built into a preprocessor need not,
be recompiled by the user.

4 ROSETTA

ROSETTA is a tool we developed for the manipulation of grammars. It permits
a C++ Meta-program to be defined which, when executed, builds tools like Sage
IT. Tt is not a novel part of this work to have defined a mechanism to generate
the Sage II source, modified or not. It is a novel part of this research work that
higher-level grammars can be automatically generated in addition to the Sage II
source. This important feature is the mechanism by which critical parts of the
preprocessor are customized for a framework’s abstractions; and automatically
generated.

ROSETTA represents a class library of terminals and nonterminals used to
define a grammar. It is relatively trivial to define the C++ grammar in terms of
terminals and nonterminals and associate with the terminals and nonterminals
application code. We consider an implementation of the grammar to be a library

of classes representing the different language elements defined by a grammar
(statements, expressions, types, etc.). We use the Sage II library as a basis for
our C++ grammar, but other libraries that implement grammars and form the
basis of different sorts of compiler tools exist[11, 8].

4.1 Generation of the C++4 Grammar’s Implementation

The Meta-program for the construction of the modified version of Sage II that
we build is just:

// include definitions of grammars, terminals, and non-terminals
// (objects within ROSETTA)
#include "grammar.h"

int main()
{
// Build the C++ grammar (generate Sage II source)
Grammar sageGrammar;

// Build the header files and source files
// representing the grammar’s implementation
sageGrammar .buildCode () ;

}

Here the example program builds the implementation of the C++ grammar
(mostly represented as a copy of the Sage II source code with modifications). The
output of this application is about 70,000 lines of source code. With the output
files compiled into a preprocessor and linked with the ROSE infrastructure, the
final preprocessor parses C++ applications and unparses them to generate C++
(identical to the input code in format as well as syntacticly). Such a preprocessor
is of little use for our purposes but forms a trivial example of a preprocessor built
using ROSE.

4.2 Generation of a High Level Grammar’s Implementation

This section explains the system of constraints used to define higher level gram-
mars (higher level and more specific than the C++ grammar). The principle is to
include and exclude terminals in an existing grammar (the Base grammar for our
purposes is the C++ grammar). Terminals are added or removed as desired to
define modifications of the C++ grammar. As an example, additional terminals
can be added to define additional types represented by a class defined within an
object-oriented framework. New terminals are added through the specification
of an existing C++ terminal plus constraints. The form of the constraints can
be varied (and are expressed using C++ code).

As an example, the specification of a class name could be used to define a new
terminal in a new grammar specific to a class name associated with a framework’s
abstraction (assuming the abstraction is an object). The result is a grammar for
which the framework’s abstraction is recognized as an implicit type within the

higher-level grammar. The use of the framework’s abstraction within expressions
can be recognized through the addition of expression terminals to the higher-
level grammar. Since all elements of the higher-level grammar are built from
terminals of the C+4 grammar with an additional constraint no modifications
to the C++ language are possible. This is a strength of this mechanism since we
want to recognize a framework’s abstractions and not formally extend the C++
language.

To further customize the high-level grammar to a particular framework’s ab-
stractions, the addition of a new type terminal drives the automated introduction
of all possible expression terminals with the constraint that they are between ob-
jects of the new added type. The classes represented by the new types are further
interrogated to define all possible expressions (member functions of the frame-
work’s abstraction) represented by the new type. Similarly statement terminals
are added to represent statements containing expressions in the new type. Since
the addition of new types adds to the number of terminals (and non terminals)
in a grammar, the size of the grammar’s implementation nearly doubles. Since
this step is fully automated, the amount of additional code generated is not im-
portant. Within this approach, through the design of the higher level grammars,
we permit user defined types and their expressions and statements to be treated
as implicit keywords within an user’s application.

5 Preprocessing Overture Applications

The execution of array statements involves inefficiencies stemming from several
sources and the problem has been well documented, by many researchers[23,18,
19]. Having tried all previously conceivable approaches, our approach to perfor-
mance within Overture is to use a preprocessor to introduce optimizing source-
to-source transformations. The C++ source-to-source preprocessor is built using
ROSE.

The preprocessor built using ROSE has a few features that stand out:

1. A hierarchy of grammars are specified as input to ROSE to build (tailor)
the preprocessor specific to a given object-oriented application, library, or
framework. ROSETTA is used to generate an implementation of the gram-
mars that are used internally. The hierarchy of grammars (and their im-
plementations) are used to construct separate program trees internally, one
program tree per grammar, each representing the user’s application. The
program trees are edited as required to replace selected subtrees with other
subtrees representing a specific transformation. Quite complex criteria may
be used to identify where transformations may be applied, this mechanism
is superior to pattern-recognition of static subtrees within the program tree
because it is more general, readily tailored, and far easier to use.

2. Transformations are specified which are then built into the user application
automatically where appropriate. The mechanism is designed to permit the
automated introduction of particularly complex transformations (such as

the cache based transformations specified in [20], space does not permit an
elaboration of this.

3. To simplify the debugging, the preprocessor’s output (C++ code) is for-
matted identical to the input application code (except for transformations
that are introduced, which have a default formatting). Numerous options
are included to tailor the formatting of the output code and to simplify
working with either its view directly within the debugger or its reference to
the original application source within the debugger. Comments and all C
preprocessor (cpp) control structures are preserved within the output C++
code.

4. The design of ROSE is simplified by leveraging both Sage IT and the EDG[14]
C++ front-end. EDG supplies numerous vendors with the C++ front-end
for their compiler and represents the current best implementation of C++.
In principle this permits the preprocessors built by ROSE to address the
complete C++ language (as implemented by the best available front-end).
Modifications have been made to Sage II to permit portability and allow us
to fulfill on a complete representation of the language. By design, we lever-
age many low-level optimizations provided within modern compilers while
focusing on higher level optimizations largely out of reach because tradi-
tional approaches can not leverage the semantics of high level abstractions.
In doing so, we slightly blur the distinction between a library or framework,
a language, and a compiler. But, because we leverage several good quality
tools the implementation is greatly simplified.

5.1 Results
Within our results we consider the following trivial five-point stencil:

ACI,J) = c¢ * (B(I-1,J) + B(I+1,J) + B(I,J) + B(I,J+1) + B(I,J+1));

In this code fragment, A and B are multidimensional array objects (distributed
across multiple processors if P++ is used). In this example, I and J are Range
objects that together specify an index space of the arrays A and B.

Figure 2 shows the range of performance associated with different size arrays
for the simple five point stencil operator on the Sun Ultra and Dec Alpha ma-
chines. The Sun Ultra was selected because it is a commonly available computer,
the Dec Alpha was selected because its cache design is particularly aggressive
and as a result it exemplifies the hardest machine to get good cache performance.
The results are in no way specific to this statement, moderate size applications
have been processed using preprocessors built with ROSE. The results compare
the ratios of A++ performance with and without the use of the ROSE prepro-
cessor to that of optimized C code. The optimized C code takes full advantage
of the bases of the arrays being identical and the unit strides, the A++ imple-
mentation does not, these very general subscript computations within the array

A++ Performance with and without ROSE A++ Performance with and without ROSE
(Sun Ultra) (DEC Alpha)

_— 108

Ul%ﬁ A++ without ROSE/C 8
L \ A++ with ROSE/C o

L

A++ without ROSE/C |
A++ with ROSE/C

Relative Performance to Optimized C
=
Relative Performance to Optimized C
N

% g
- 8
H i o H K
6 i o : H i
j : \ 4 — AW W
3 3
2
2 H
A A~
8 N £ BN VY
10 100 1000 10 100 1000
Grid Size (each axis) Grid Size (each axis)

Fig. 2. The use of a preprocessor (built using ROSE) can overcome the performance
degradation associated with binary evaluation of array operands. These results show
the use of ROSE with A++ and how the performance matches that of optimized C
code using the restrict keyword (ratio = 1). It has been shown previously that this is
equal to Fortran 77 performance. More sophisticated cache-based transformations are
also possible.

class implementation are compared to very specific and highly optimized sub-
script computations within the C code. This exaggerates the poorer performance
of the A++ statements, we do this to make clear that the performance of the
code output from the ROSE preprocessor is in fact highly optimized and is made
specific to the common bases of the operands (determined at compile time) and
the unit stride (determined at runtime). Our results show the relative difference
that it makes to compare such results. The resulting performance using ROSE
is nearly identical to that of the optimized C code (ratio = 1), this is not sur-
prising since the preprocessor transformation replaces the array statement with
the equivalent C code (highly optimized, and using restrict pointers where they
are supported).

A++ supports expression templates but this data is not presented here, in
general the expression template will approach the C performance within 90% for
short expressions and sufficiently large arrays. The combination of expression
templates with deferred evaluation reduces this to approx. 70% as reported in
[19] likely because of the required extra level of indirection to the data required
by the deferred evaluation mechanism (it is not clear if this will be fixed)'.

An important distinguishing point between the two approaches is that within
larger applications the compile times are several orders of magnitude less for the
preprocessor approach since expression templates are not used[23]. In practice
the time taken to pre-process an application is even much less than the compile

! This was the experience with expression templates when it was combined with the
deferred evaluation mechanism in A++P++.

time where no templates are used (expression templates or otherwise) (a few
seconds, and is not noticeable). This is not surprising since the preprocessing
consists of only a few of the steps taken internally within a compiler, and excludes
the most time consuming back-end optimization (to build the object code).

6 Conclusions

Overture is capable of addressing the complexity of numerous difficult sorts of
simulations within scientific computing. While the abstractions presented within
Overture are the principle motivation for its use, the performance of Overture
is critical and is dominated by the performance of the A++P++ array class.
Many years of work have gone into the development of optimization techniques
for the array class library. The preprocessor approach is by far the most successful
so far, however more work remains to make preprocessors easier to build and
more robust.

The approach within ROSE is different from other open C++ compiler ap-
proaches because it provides a mechanism for defining high level grammars spe-
cific to an object-oriented framework and a relatively simple approach to the
specification of large and complex transformations. A requirement for represent-
ing the program tree within different user defined grammars is to have access
to the full program tree, this is not possible (as we best understand) within the
OpenC++[12] research work. By using Sage II and ROSE the entire program
tree, represented in each grammar, is made available; this permits more sophis-
ticated program analysis (when combined with the greater semantic knowledge
of object-oriented abstractions) and more complex transformations. We believe
that the techniques we have developed greatly complement the approaches repre-
sented within OpenC++, in particular the Meta object mechanism represented
within that work. That Sage II is in many ways similar to the MPC++[11] work,
we believe we could have alternatively built off of that tool in place of Sage II
(though this is not clear). However, since Sage II uses the EDG front-end we ex-
pect this will simplify access to the complete C++ language. MPC++ addresses
more of the issues associated with easily introducing some transformations than
Sage II, but not of the complexity that we require for cache based transforma-
tions[20]. Each represent ounly a single grammar (the C++ grammar) and this
is far too complex (we believe) a starting point for the identification of where
sophisticated transformations can be introduced. The overall compile-time op-
timization goals are related to ideas put forward by Ian Angus[17], but with
numerous distinguishing points:

1. We have decoupled the optimization from the back-end compiler to simplify
the design.

2. We have developed hierarchies of grammars to permit arbitrarily high level
abstractions to be represented with the greatest simplicity within the pro-
gram tree. The use of multiple program trees (one for each grammar) serves
to organize high level transformations.

3. We provide a simple mechanism to implement transformations.

4. We leverage the semantics of the abstractions to drive optimizations.

5. We have implemented and demonstrated the preprocessor approach on sev-
eral large numerical applications.

Finally, because ROSE is based ultimately (through Sage II) upon the EDG
C++ front-end, the full language is made available; consistent with the best
of the commercial vendor C++ compilers which most often use the same EDG
C++ front-end internally. However, some aspects of the complete support of
C-++ within Sage IT are incomplete (hence our modifications to fix these details).
This in now way makes the Sage II work any less impressive and we are thankful
for the use of Sage II.

The results we have presented demonstrate the optimization of array class
statements. All sizes of arrays benefit, their processing with ROSE makes each
equivalent to the performance of optimized C code (using restrict). Previously
in [22] we showed that this is equivalent to FORTRAN 77 performance.

Expression Templates is an alternative mechanism that can be used to op-
timize array statements, but the mechanism is problematic[23]. More research
is required (and being done by others) to address problems within the expres-
sion template mechanism. More work is similarly required to provide improved
compile-time optimization solutions.

References

1. ——, Classes for finite volume operators and projection operators, LANL unclas-
sified report 96-3470, Los Alamos National Laboratory, 1996.

2. G. S. Chesshire, Overture : the grid classes, LANL unclassified report 96-3708,
Los Alamos National Laboratory, 1996.

3. ——, Finite difference operators and boundary conditions for Ouverture, user
guide, version 1.00, LANL unclassified report 96-3467, Los Alamos National Lab-
oratory, 1996.

4. — Grid, GridFunction and Interpolant classes for Overture , AMR++ and
CMPGRD, user guide, version 1.00, LANL unclassified report 96-3464, Los Alamos
National Laboratory, 1996.

, Mappings for Overture : A description of the mapping class and documen-
tation for many useful mappings, LANL unclassified report 96-3469, Los Alamos
National Laboratory, 1996.

6. ——, Ogen: an overlapping grid generator for Overture, LANL unclassified report
96-3466, Los Alamos National Laboratory, 1996.

, PlotStuff: a class for plotting stuff from Overture , LANL unclassified
report 96-3893, Los Alamos National Laboratory, 1996.

8. Georges-Andre Silber, http://www.ens-1yon.fr/ gsilber/nestor/index.html.

9. D. Quinlan, Adaptive Mesh Refinement for Distributed Parallel Processors, PhD
thesis, University of Colorado, Denver, June 1993.

, A++/P++ manual, LANL Unclassified Report 95-3273, Los Alamos Na-

tional Laboratory, 1995.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

Ishkawa et. al. Design and Implementation of Metalevel Architecture in C++ -
MPC++ Approach -. In Proceeding of Reflection’96 Conference, April 1996 more
info available at: http://pdswww.rwcp.or.jp/mpc++/mpc+-+.html

Shigeru Chiba Macro Processing in Object-Oriented Languages In Proc.
of Technology of Object-Oriented Languages and Systems (TOOLS Pa-
cific '98), Australia, November, IEEE Press, 1998. more info available at:
http://www.hlla.is.tsukuba.ac.jp/ chiba/openc++.html

B. Francois et. al. Sage++: An object-oriented toolkit and class library for building
fortran and c++ restructuring tools. In Proceedings of the Second Annual Object-
Oriented Numerics Conference, 1994.

Edison Design Group http://www.edg.com

Rebecca Parsons and Dan Quinlan. A++/P++ array classes for architecture in-
dependent finite difference computations. In Proceedings of the Second Annual
Object-Oriented Numerics Conference (OONSKI’94), April 1994.

Dan Quinlan and Rebecca Parsons. Run-time recognition of task parallelism within
the P++ parallel array class library. In Proceedings of the Conference on Parallel
Scalable Libraries, 1993.

Tan Angus Applications Demand Class-Specific Optimizations: The C++ Compiler
Can Do More. In Proceedings of the Object-Oriented Numerics Conference, (OON-
SKI) 1993

Todd Veldhuizen Arrays in Blitz++ In Proceeding of the Second International
Symposium, ISCOPE 98, Santa Fe, NM December 1998

Karmesin, et al. Array Design and Ezpression Ewvaluation in POOMA II. In
Proceeding of the Second International Symposium, ISCOPE 98, Santa Fe, NM
December 1998

Bassetti, F., Davis, K., Quinlan, D. Optimizing Transformations of Stencil Oper-
ations for Parallel Object-Oriented Scientific Frameworks on Cache-Based Archi-
tectures In Proceedings of the ISCOPE’98 Conference, Santa Fe, New Mexico, Dec
13-16 1998

Lemke, M., Quinlan, D.;, P++, a C++ Virtual Shared Grids Based Programming
Enwvironment for Architecture-Independent Development of Structured Grid Appli-
cations In Proceedings of the CONPAR/VAPP V, September 1992, Lyon, France;
published in Lecture Notes in Computer Science, Springer Verlag, September 1992.
Bassetti, F., Davis, K., Quinlan, D. Toward FORTRAN 77 Performance From
Object-Oriented C++ Scientific Frameworks In Proceedings of the HPC’98 Con-
ference, Boston, Mass. April 5-9, 1998

Bassetti, F., Davis, K., Quinlan, D. A Comparison of Performance-enhancing
Strategies for Parallel Numerical Object-Oriented Frameworks In Proceedings of the
first International Scientific Computing in Object-Oriented Parallel Environments
(ISCOPE) Conference, Marina del Rey, California, Dec, 1997

