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omputing reliesin
reasingly on high-level large-s
ale obje
t-oriented software frameworks to manage both al-gorithmi
 
omplexity and the 
omplexities of par-allelism: distributed data management, pro
essmanagement, inter-pro
ess 
ommuni
ation, andload balan
ing. This en
apsulation of data man-agement, together with the pres
ribed semanti
-s of a typi
al fundamental 
omponent of su
hobje
t-oriented frameworks|a parallel or serialarray-
lass library|provides an opportunity forin
reasingly sophisti
ated 
ompile-time optimiza-tion te
hniques. This paper des
ribes ROSE,a programmable sour
e-to-sour
e transformationtool for the optimization of C++ obje
t-orientedframeworks. Be
ause it is programmable, expli
-it knowledge of framework semanti
s may be ex-ploited; in 
ontrast the potential 
apability ofa general-purpose 
ompiler is limited by 
om-putable semanti
 inferen
e. Sin
e ROSE is pro-grammable, additional spe
ialized program anal-ysis is possible using impli
it knowledge of theworkings of the framework, for example, depen-den
e analysis at the level of the framework's ab-stra
tions. This enables far greater optimizationthan is even theoreti
ally possible by a general-purpose 
ompiler. ROSE spe
i�
ally responds to

the realization that to a
hieve a

eptable perfor-man
e, in general it is insuÆ
ient to optimize aframework; its use must also be optimized.1 Introdu
tionThe development of obje
t-oriented frameworksrepresents the 
entralization of expertise and itsreuse by numerous people, resear
h groups, in-stitutions, and industries. The expertise embod-ied by obje
t-oriented frameworks ranges widely,and of interest to us in
ludes support for 
om-plex geometries and grid generation, the en
od-ing of advan
ed numeri
al algorithms (su
h asadaptive mesh re�nement), and the en
apsula-tion of parallelism on advan
ed 
omputer ar
hi-te
tures. Lawren
e Livermore National Labora-tory's (LLNL) Overture [2℄ framework has beenapplied within several dis
iplines in
luding 
om-putational biology at UC Davis, modeling and de-sign of sails for the Ameri
a's Cup Ya
ht Ra
ingat Doyle, and the design of diesel engine simu-lations at LLNL in 
ollaboration with Caterpil-lar In
. Other frameworks have likely also re-
eived broad use spanning multiple resear
h andindustrial dis
iplines. The remarkable breadth ofdi�erent areas of expertise represented by indi-vidual obje
t-oriented frameworks has not been



entirely o�set by the performan
e issues asso
i-ated with high performan
e 
omputing, parti
-ularly at national laboratories where high per-forman
e within 
omputational simulations is ofgreat 
on
ern (and the parallel 
omputer ar
hi-te
tures more spe
ialized, 
omplex, and obs
ure).Be
ause the ri
h semanti
s of obje
t-orienteds
ienti�
 frameworks are implemented in therelatively primitive and un
onstrained languageC++, the problem of `deep' program optimiza-tions are intra
table, un
omputable, or impra
-ti
al (this lattermost in part be
ause of the sep-arate 
ompilation problem). The use of expres-sion templates [12℄ has demonstrated the useof the C++ template me
hanism to introdu
estatement-level transformations, in parti
ular forarray-
lass libraries. Su
h optimizations 
an beuseful but are fundamentally limited be
ause they
annot en
ode program analysis. The more 
las-si
 use of binary operators for the separate pair-wise evaluation of expressions has similar 
an en-
ode run-time, but not 
ompile-time, analysis ofa limited sort [9℄.As a very simple example, without optimiza-tion the expression A=B+C+D+E denoting the ad-dition of four arrays and assignment of the resultentails the 
reation and destru
tion of three inter-mediate arrays and 
opying to the fourth, and atleast four major loops. Not only is this ineÆ
ien-t in itself, but for 
a
he-based ar
hite
tures thee�e
t on performan
e 
an be disastrous. In 
on-trast, it has been demostrated that transforma-tions to exploit 
a
he 
an result in performan
e3-4 times greater than straightforward implemen-tation in FORTRAN 77 or C [1, 7, 6℄. This ex-ample also makes 
lear that it is not suÆ
ient tooptimize the framework or library itself; its usemust also be optimized: while some 
a
he op-timization 
ould 
on
eivably be en
oded in theframework, it is the 
ontext of the obje
ts thatmust be analyzed ot make general 
a
he-basedtransformations possible and worthwhile.ROSE was 
on
eived as a general me
hanis-m for implementing program transformations toremove su
h sour
es of ineÆ
ien
y. Its strengthis its 
omplete programmability. In pra
ti
e the
on
eptual tradeo� is to forego deep programanalysis in favor of more shallow analysis andsome en
oding of the semanti
s of the targetframework.Serial optimizations are only the �rst step for

parallel ar
hite
tures. Parallel optimizations arealso possible (for example, s
heduling of 
ommu-ni
ation), but not by a 
ompiler for an inherentlysequential language su
h as C++. ROSE pro-vides a me
hanism for performing parallel opti-mizations in this 
ontext.1.1 S
opeAt its simplest ROSE is a tool for performingarbitrary sour
e-level transformations to C++programs. In pra
ti
e ROSE provides fun
tion-ality to greatly simplify the implementation oftransformations within appli
ations using obje
t-oriented abstra
tions implemented by an obje
t-oriented framework. Our primary work has beenon optimizations for A++/P++ array 
lasseswithin the Overture framework, but this has beenshown to be readily appli
able to other array 
lasslibraries. Current target optimizations in
lude:� loop fusion of (multiple) binary operators;� loop fusion a
ross statement (requiring de-penden
e analysis);� 
a
he-based optimizations;� temporal lo
ality optimizations;� introdu
tion of performan
e-gathering op-tions and metri
s.More spe
i�
ally, the targeted obje
t-orientedframeworks/libraries are� A++/P++ (in OVERTURE, from LLNL)[8℄;� POOMA (from LANL) [4℄;� Blitz (from University of Waterloo) [11℄;� GNU SSL (from the Free Software Founda-tion) [5℄;� ValArray (from the C++ Standard Library)[10℄;� a `least 
ommon denominator' array 
lass li-brary.OVERTURE and POOMA 
omprise 
onsider-ably more than an array 
lass library; it is thearray-
lass library subsets that are of interest; forPOOMA it is the temporal-lo
ality and 
a
he-based optimizations that are relevant.



2 How ROSE WorksROSE is a prepro
essor, it does not introdu
e anylanguage features, it a

epts C++ sour
e 
odeand outputs C++ 
ode. Its use is by design op-tional so as not to allow 
riti
al dependen
e onthe optimization step.ROSE is built on the Sage II sour
e 
ode re-stru
turing tool from University of Indiana andISI [3℄. Sage II uses the Edison Design Group(EDG) C++ front end, and provides a publi
 in-terfa
e to the internal (private) EDG representa-tion. Essentially, Sage II implements the C++grammar as an obje
t-oriented interfa
e (ea
hnonterminal is an obje
t), the user's C++ appli-
ation is then internally represented as a programtree (a
tually a graph).By way of running example, in the followingwe will 
onsider only a single transformation of asimple 1D array statement. The spe
i�
ation ofa transformation 
onsists of two parts:1. the spe
i�
ation of where it 
an be intro-du
ed, and2. the spe
i�
ation of the transformation itself.2.1 Spe
i�
ation of where to intro-du
e optimizationsRe
ognition of syntax subje
t to transformationis automati
, that is, program annotations (su
has pragmas) are not used. ex
ept as a me
ha-nism for disabling transformation in spe
i�
 seg-ments of 
ode for evaluation purposes. Su
h syn-tax is spe
i�ed using a formal grammar using 
on-ventional extended BNF notation, augmented bytype information. This is en
oded in tabular formto make extension and modi�
ation of the gram-mar simple.2.2 How the grammar is de�nedIn the example of a transformation of array as-signment statements two grammars will be de-�ned. The �rst is a grammar de�ned for the array
lass. Spa
e does not permit the presentation ofthis grammar it its entirety (it will be made avail-able at the OvertureWWW site)|Figure 1 showsa subset of the grammar de�ning the A++/P++array 
lass library syntax (the array grammar).

Higher level grammars spe
i�
 to ea
h transfor-mation 
an be de�ned in terms of the array gram-mar. Figure 2 shows the array assignment gram-mar. More 
omplex transformations (for sten-
il operations, for example) use yet higher levelgrammars de�ned in terms of the array assign-ment grammar.Grammar::NonTerminal ArrayExpression =ArrayNumeri
Expression| ArrayRelationalExpression| ArrayLogi
alExpression| C_Expression| ArrayOperand;Figure 1: Example of produ
t rule for nonterminalsof the array grammar using the me
hanisms for de�n-ing grammars within ROSE.2.3 How the grammar is usedWithin ROSE the spe
i�
ation of the grammaris suÆ
ient to generate 
ode that ROSE then us-es internally to build the parser and the obje
t-based implementation of the grammar used torepresent a program tree using the asso
iatedgrammar. For large grammars this me
hanismobviates the need for hand 
oding many thou-sands of lines of 
ode that would be requiredto represent the implementation of the grammar.Su
h large grammars 
an be expe
ted for sophis-ti
ated obje
t-oriented frameworks (though sub-sets of a framework 
an be targeted to redu
ethe size of the grammar). The user interfa
e ofROSE permits 
ustomization of the behavior ofthese implementations of the grammar, allowinguser-de�ned 
ode to be inserted into the imple-mentations of the grammars. One goal of thisresear
h is to automate as mu
h as possible thegeneration of the grammars.The use of grammars provides a me
hanism todi�erentiate the appli
ation 
ode. As a rule, if asub-tree of the program tree provided by Sage II
an be re
ognized using a grammar then the pro-gram tree has a derivation from that grammar.The array grammar is used to re
ognize array op-erations (statements, expressions, types, et
.). Itis simpler to use a multi-stage approa
h: su

es-sively re�ning the re
ognition pro
ess by using asequen
e of grammars|formally this amounts to



Grammar::NonTerminal arrayOperator = arrayBinaryOperator;Grammar::NonTerminal assignmentOperator = arrayAssignmentOperator;Grammar::NonTerminal transformableExpression;transformable_expression =transformableExpression & operator & transformableExpression |arrayOperand arrayOperator arrayOperand |arrayOperand;Grammar::NonTerminal lhs_operand = arrayOperand;Grammar::NonTerminal rhs_operand = transformable_expression;Grammar::NonTerminal transform_statement =lhs_operand & assignmentOperator & rhs_operand;Figure 2: The array assignment grammarsu

essive interse
tion operations. The spe
i�
a-tion of the se
ond grammar is used to identify ar-ray assignment statements, for example. The useof yet another grammar 
an be used to furtherre�ne (�lter) the 
olle
tion of array assignmen-t statements, for example to identify sten
il-likeoperations targeted for 
a
he-based transforma-tions.2.4 Spe
i�
ation of a Transforma-tionThe spe
i�
ation of a transformation 
ompletesthe pro
ess of de�ning an optimization. The spe
-i�
ation of the transformation must be represent-ed in multiple parts and these parts must be as-sembled a

ording to the the 
ontext of the o-riginal statement (in the 
ase of an array assign-ment optimization the 
ontext may in
lude thedimension, number of operands, et
., if this in-formation is not represented in the grammar di-re
tly). The transformation of the program treeo

urs as a transformation of the program treeasso
iated with a later grammar into a programtree asso
iated with an earlier one. For example,for an array-assignment statement the transfor-mation 
onsists of a transformation of the syntaxtree asso
iated with the array-assignment gram-mar into a tree asso
iated with the array gram-mar, then to a tree asso
iated with the arraygrammar.For ea
h element of the grammar a transformfun
tion is de�ned (automati
 generation of thesefun
tions from the de�nition of the grammar di-re
tly from the spe
i�
ation of the transformationrules is planned). This transformation is de�nedby a map of the elements of the higher level gram-

mar into the lower level grammar.There are two ways to spe
ify the transforma-tion of a terminal or non-terminal in a higher levelgrammar into a lower level grammar.1. Hard 
oded: The transformation is expli
it-ly de�ned by supplementing the de�nition ofthat element of the grammar. Spa
e limita-tions pre
ludes an example, but required el-emets are assembled expli
itly from the C++grammar de�ned by the Sage II obje
ts.2. By pattern The transformation is separatedinto pie
es and how the pie
es are �t togetheris de�ned expli
itly.More me
hanisms may be de�ned as automationis improved.Transform fun
tions are mutually re
ursive ina pattern parallel to that of the 
orrespondinggrammar.2.5 Transformation rulesThe transformation of the representation of apie
e of syntax in one grammar to its representa-tion in another (as a syntax tree) is de�ned by aset of transformation rules. These rules dependonly on the de�nitions of the two grammars. Cur-rently these rules are generated by hand; resear
his underway to automate their generation.Figure 3 shows the spe
i�
ation of the elementsof the transformation; spa
e limitations pre
ludethe presentation of the 
ode fragement that showshow the elements representing the transformationare assembled.As a �nal example we present two tiny 
odes,one using the array 
lass dire
tly, and the other



FUNCTION_DEFINITION UNIQUE_PART_OF_TRANSFORMATION () {// This 
ode is required on
e for all the operands in the same s
opeint INDEX = 0;}FUNCTION_DEFINITION LHS_PART_OF_TRANSFORMATION () {// This is 
ode that is required on
e for the lhs operanddouble* RESTRICT LHS_ARRAY_DATA_POINTER = LHS_ARRAY.getDataPointer();}FUNCTION_DEFINITION RHS_PART_OF_TRANSFORMATION(int numberOfRhsOperands) {LOOP(numberOfRhsOperands) {// This is 
ode that is required on
e for ea
h rhs operanddouble* RESTRICT RHS_ARRAY_DATA_POINTER = RHS_ARRAY.getDataPointer();}}FUNCTION_DEFINITION LOOP_PART_OF_TRANSFORMATION () {// This 
ode is required only on
e for this transformation
onst int base_1D_0 = LHS_ARRAY.getBase (0);
onst int bound_1D_0 = LHS_ARRAY.getBound (0);
onst int stride_1D_0 = LHS_ARRAY.getStride(0);for (INDEX = base_1D_0; INDEX <= bound_1D_0; INDEX++) {TRANSFORMED_STATEMENT();}} Figure 3: Array assignment transformation rules.being the output of ROSE. These are shown inFigures 4 and 5. Current work on the unparsingof the C++ program tree (built by Sage II) pro-vides various options to 
ontrol the formatting ofROSE output.#in
lude "A++.h"int main() {int size = 10;double gamma = 2.0;doubleArray A(size);doubleArray B(size);Range I(1, size-2);Range J(1, size-2);A(I) = ( B(I+1) + B(I-1) ) * 2.0;printf ("Program Terminated Normally! \n");return 0;}Figure 4: Example A++ 
ode before pro
essing us-ing ROSE.2.6 SummaryFigure 6 shows a 
ow
hart of the use of ROSEand the pie
es that build the ROSE prepro
essor

itself. The use of the prepro
essor is shown to beoptional with the appli
ation 
ode being the onlyinput required if no optimization is performed. Ifoptimization is required then the optimizing pre-pro
essor spe
i�
 to that framework is used. Theprepro
essor spe
i�
 to a given framework is buildfrom the spe
i�
ation of a hierar
hy of grammarsand asso
iated transformation de�nitions, togeth-er with the ROSE infrastru
ture.
Target re
ognition is via an arbitrary sequen
eof grammars; target transformation is via trans-formation rules de�ned in terms of these gram-mars. Use of su
h hierar
hies is for pra
ti
al rea-sons: the total size of multiple grammars is mu
hless than would be single one, and the resultingfa
toring leads to reuse. The example presentedin this paper shows parts of how an array gram-mar may be spe
i�ed and how a grammar spe
if-i
 to the optimization of array assignment state-ments (the array assignment grammar) is de�nedusing that array grammar.



#in
lude <A++.h>#4 "test2.C"int main() {auto int size=10;auto double gamma=2;auto doubleArray A(size);#9 "test2.C"auto doubleArray B(size);#10 "test2.C"auto Range I(1,size - 2);#11 "test2.C"auto Range J(1,size - 2);#13 "test2.C"{ // Transformation for: A(I) = B(I-1) + B(I+1);int rose_index=0;double * restri
t A_rose_pointer = (A . getDataPointer)();double * restri
t B_rose_pointer = (B . getDataPointer)();
onst int base_1D_0 = (I . getBase)();
onst int bound_1D_0 = (I . getBound)();
onst int rose_stride = (A . getStride)(0);
onst int rose_base = (B . getBase)(0);for (rose_index=base_1D_0; rose_index<=bound_1D_0; rose_index++) {A_rose_pointer[rose_index℄ =(B_rose_pointer[(rose_index + 1)℄ +B_rose_pointer[(rose_index - 1)℄) * 2;}}#249 "/usr/in
lude/stdio.h"printf(((
onst 
har * )"Program Terminated Normally! \n"));#49 "test2.C"return 0;} Figure 5: Example of output from pro
essing of A++ 
ode using ROSE.3 Con
lusionROSE is a fully programmable tool that providesthe 
apability of arbitrary transformation of C++
ode. The intention is that su
h transformationsbe semanti
s-preserving so that its use is alwaysoptional, and our goal is aggressive program opti-mization and the introdu
tion of parallelism withthe abstra
tions introdu
ed by high-level s
ien-ti�
 frameworks as the targets. ROSE spe
i�
al-ly addresses the realization that to a
hieve a
-
eptable performan
e from C++ obje
t-orientedframeworks their use, not just the frameworksthemselves, must be optimized.The interfa
e to ROSE is parti
ularly simpleand takes advantage of standard 
ompiler te
h-nology. ROSE a
ts like a prepro
essor, sin
e ittakes as input and produ
es as output standard

C++1. Its use is always optional sin
e it is not in-tended to 
hange the denotational semanti
s (asopposed to the operational or resour
e-usage se-manti
s). It 
annot be used to introdu
e any newlanguage features or syntax. Importantly, sin
eROSE generates C++ 
ode, its use does not pre-
lude the use of other tools or me
hanisms thatwould work with an appli
ation sour
e 
ode (in-
luding 
lass template me
hanisms).A driving goal in the development of ROSEis to provide a simple 
oherent me
hanism thatmakes the task of implementing a parti
ular op-timization just a few hours' work. Sin
e di�erentframeworks fo
us on di�erent features and opti-mizations, often greatly 
ompli
ating their imple-1ISO/IEC 14882:1998 C++ standard as implementedby the Edison Design Group
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Figure 6: Flow
hart showing how the design and use of ROSE prepro
essor infrastru
ture.mentation; this work will essentially make opti-mizations available more universally independen-t of the pe
uluarities of the framework. By re-moving mu
h of the optimization from being im-plemented within the framework, through 
om-plex runtime me
hanisms, obje
t-oriented frame-works 
an be greatly simpli�ed and fo
used uponthe important abstra
tions (e.g. grid generation,moving grids, parti
les, adaptive mesh re�nemen-t (AMR), equation solvers, parallel distributionme
hanisms, load balan
ing, et
.). Additionally,ROSE will permit simpli�ed 
ommuni
ation withtalented resear
hers from 
ompiler optimization�elds to address highly spe
ialized optimization-s. It is hoped that ROSE will e�e
tively levelthe playing �eld between di�erent obje
t-orientedframeworks and allow them to fo
us upon theneeds of their spe
i�
 users more readily.
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