
Semanti
-Driven Parallelization of LoopsOperating on User-De�ned ContainersDan Quinlan, Markus S
hordan, Qing Yi, and Bronis R. de SupinskiLawren
e Livermore National Laboratory, USAfdquinlan, s
hordan1, yi4, bronisg�llnl.govAbstra
t. We des
ribe ROSE, a C++ infrastru
ture for sour
e-to-sour
etranslation, that provides an interfa
e for programmers to easily writetheir own translators for optimizing user-de�ned high-level abstra
tions.Utilizing the semanti
s of these high-level abstra
tions, we demonstratethe automati
 parallelization of loops that iterate over user-de�ned
on-tainers that have interfa
es similar to the lists, ve
tors and sets in theStandard Template Library (STL). The parallelization is realized in twophases. First, we insert OpenMP dire
tives into a serial program, drivenby the re
ognition of the high-level abstra
tions,
ontainers, that arethread-safe. Then, we translate the OpenMP dire
tives into library rou-tines that expli
itly
reate and manage parallelism. By providing an in-terfa
e for the programmer to
lassify the semanti
s of their abstra
tions,we are able to automati
ally parallelize operations on
ontainers, su
h aslinked-lists, without resorting to
omplex loop dependen
e analysis te
h-niques. Our approa
h is
onsistent with general goals within teles
opinglanguages.1 Introdu
tionIn obje
t-oriented languages su
h as C++, abstra
tions are a key aspe
t oflibrary design, sharing aspe
ts of language design, whi
h aims to provide theappli
ation developer with an eÆ
ient and
onvenient interfa
e. For example,the C++ Standard Template Library (STL), parts of whi
h are standardizedwithin the C++ standard libraries, in
ludes a
olle
tion of template
lasses that
an be used as
ontainers for user-de�ned
onstru
ts. Some STL
ontainers,su
h as ve
tors, provide random a

ess to their elements using an integer index,while other
ontainers su
h as lists and sets provide other means to a

ess theirelements. Nevertheless, all STL
ontainers provide sequential element a

essesand thus all of them
an be used in the
ode fragment in Figure 1. This designstrategy permits all
ontainers to be used inter
hangeably in algorithms thatpro
ess a sequen
e of elements.At this level, library design greatly resembles language design, but withoutin
reasing the
omplexity of the
ompiler. The term teles
oping languages was
oined by Kennedy [1℄ in 2000. Within teles
oping languages, a base languageis
hosen and domain-spe
i�
 types are
onstru
ted entirely within the baselanguage with no language extension. The iterative progression of a library to a

2higher-level language
omes only with
ompile-time support for its user-de�nedtypes. The teles
oping aspe
t relates to the optional use of the
ompile-timeoptimizations, be
ause the abstra
tions are de�ned fundamentally as a library
ompletely within the base language. The idea of higher-level languages drivingthe generation of lower-level C++
ode was originally dis
ussed by Stroustrupin 1994 [2℄ (page 204). The te
hniques presented in this paper are a spe
ial
aseof
ompiler support for high-level abstra
tions su
h as those de�ned in the STL.Spe
i�
ally in this paper we utilize the semanti
s of the high-level abstra
tionsand generate low-level C++
ode.MyContainer myContainer;MyContainer::iterator p;for (p = myContainer.begin(); p != myContainer.end(); ++p) {foo(*p);} Fig. 1. Example: a
ode fragment pro
essing a user-de�ned
ontainerDue to the in
reasing popularity of the STL library, more and more librariesprovide
ontainers that
onform to the STL interfa
e. Sin
e the library devel-oper knows the semanti
s of the library's
ontainers and of ea
h element in the
ontainers, he
an write a sour
e-to-sour
e translator that optimizes the perfor-man
e of every program that uses his library. For example, in Figure 1, if thelibrary writer knows that none of the elements in MyContainer
an be aliasedand that the fun
tion foo is side-e�e
t free (i.e., it does not modify any globalvariables), he
an safely parallelize the surrounding loop and thus a
hieve betterperforman
e for the user's appli
ation. Due to the unde
idability of pre
ise aliasand
ontrol-
ow analysis, it
ould be impossible for a
ompiler to automati
ally�gure out this semanti
 information. Thus, our approa
h
an better optimizeany appli
ation
ode that uses the library sin
e we allow the library developerto
ommuni
ate this semanti
 information to the sour
e-to-sour
e translator.The appli
ation developer sees only an automated pro
ess.We present ROSE, a C++ sour
e-to-sour
e infrastru
ture espe
ially for thispurpose [3, 4℄. In addition to being a general sour
e-to-sour
e
ompiler infrastru
-ture, ROSE provides several me
hanisms, in
luding a very high level Abstra
tSyntax Tree (AST) that maintains the original stru
ture of the user program,traversal fa
ilities for modifying the AST, and a string interfa
e for insertingnew C++
ode fragments (whi
h are represented as strings) into the AST di-re
tly. Sin
e we have not only the syntax of the original program but also itsfull type resolution within the ROSE AST, we
an use spe
i�
 user-de�ned typeinformation as a basis for optimizing an appli
ation. Thus, the
ompiler hasfundamentally more information, enabling greater levels of optimization. In the
ase of parallelizing user-de�ned
ontainers, for example, we
an automate theintrodu
tion of OpenMP dire
tives into otherwise serial
ode be
ause the librarywriter guarantees the required semanti
s. Based on the additional semanti
s of

3user-de�ned abstra
tions, this approa
h permits parallel exe
ution of appropri-ate fundamentally serial
ode. Se
tion 2 presents the ROSE infrastru
ture inmore detail.Using the ROSE approa
h for pro
essing user-de�ned abstra
tions, we presenta sour
e-to-sour
e translator that automati
ally introdu
es OpenMP dire
tivesin loop
omputations on STL-like
ontainer
lasses su
h as the one in Figure 1.The only additional information that needs to be provided by the library pro-grammer is the set of
ontainer
lasses that disallow aliased elements and theside-e�e
ts of library fun
tions. We then invoke another translator within ROSEto re
ognize spe
i�
 OpenMP pragma dire
tives and to translate these dire
-tives (along with their asso
iated
ode fragments). The �nal result is a parallelprogram that expli
itly
reates and manages parallelism.2 Infrastru
tureThe ROSE infrastru
ture o�ers several
omponents to build a sour
e-to-sour
etranslator. A
omplete C++ frontend is available that generates an obje
t-oriented annotated abstra
t syntax tree (AST) as an intermediate representa-tion. Several di�erent
omponents
an be used to build the midend of a translatorthat operates on the AST to implement transformations: a prede�ned traversalme
hanism; a restru
turing me
hanism; and an attribute evaluation me
hanism.Other features in
lude parsing of OpenMP dire
tives and integrating these di-re
tives into the AST. A C++ ba
kend
an be used to unparse the AST andgenerate C++
ode (see Figure 2).
frontend midend backend

unparsed AST fragment

ASTC++ source AST C++ source

attribute evaluation

restructure operators

AST

AST(completed) source fragment

Fig. 2. ROSE Sour
e-To-Sour
e infrastru
ture with frontend/ba
kend reinvo
ation2.1 FrontendWe use the Edison Design Group C++ frontend (EDG) [5℄ to parse C++ pro-grams. The EDG frontend performs a full type evaluation of the C++ programand then generates an AST, whi
h is represented as a C data stru
ture. Wetranslate this data stru
ture into an obje
t-oriented abstra
t syntax tree (AST)whi
h is used by the midend as an intermediate representation. We use Sage III

4as an intermediate representation, whi
h we have developed as a revision of theSage II [6℄ AST restru
turing tool.2.2 MidendThe midend supports restru
turing of the AST. The programmer
an add
odeto the AST by spe
ifying a sour
e string using C++ syntax, or by
onstru
tingsubtrees node by node. A program transformation
onsists of a series of ASTrestru
turing operations, ea
h of whi
h spe
i�es a lo
ation in the AST where a
ode fragment (spe
i�ed as a C++ sour
e string or as an AST subtree). shouldbe inserted, deleted, or repla
ed.The order of the restru
turing operations is based on a pre-de�ned traversal.A transformation traverses the AST and invokes multiple restru
turing oper-ations on the AST. To address the problem of restru
turing the AST whiletraversing it, we make restru
turing operations side-e�e
t free fun
tions that de-�ne a mapping from one subtree of the AST to another subtree. The new subtreeis not inserted until after the
omplete traversal of the original subtree. We pro-vide interfa
es for invoking restru
turing operations that bu�er these operationsto ensure that no subtrees are repla
ed while they are being traversed.The midend also provides an attribute evaluation me
hanism that allowsthe
omputation of arbitrary attribute values for AST nodes. During traver-sal,
ontext information
an be passed down the AST as inherited attributes,and results of transforming a subtree
an be passed up the tree as synthesizedattributes. Examples for inherited and synthesized attributes in
lude the typeinformation of obje
ts, the sizes of arrays, the nesting levels of loops and thes
opes of asso
iated pragma statements. These attributes
an then be used to
ompute
onstraints on transformations | for example, to de
ide whether toapply a restru
turing operation on a parti
ular AST node.Our infrastru
ture supports the use of C++ sour
e strings to de�ne
odefragments. Any sour
e string that represents a valid de
laration, statement list,or expression
an spe
ify a
ode pattern to be inserted into the AST. The transla-tion of a sour
e
ode string, s, into an AST fragment, is performed by reinvokingthe frontend. Our system extends s to form a
omplete program, whi
h it thenparses into an AST by reinvoking the frontend. From this AST, it �nally extra
tsthe AST fragment that
orresponds to s. This AST fragment is inserted into theAST of the original program.Further, we provide an abstra
t C++ grammar whi
h
overs all of C++and de�nes the set of all abstra
t syntax trees. We have integrated an attributegrammar tool whi
h allows the spe
i�
ation of attribute evaluations on the ab-stra
t C++ grammar. The grammar is abstra
t with respe
t to the
on
reteC++ grammar and does not
ontain any C++ syntax. Similar to our traversalme
hanism, sour
e-strings and restru
ture operators
an be used in the semanti
a
tions of the attribute grammar. In se
tion 3.3 we show how a transformation
an be spe
i�ed using the abstra
t grammar, sour
e-strings, and AST restru
tureoperations.

52.3 Ba
kendThe ba
kend unparses the AST and generates C++ sour
e
ode. It
an eitherunparse all in
luded (header) �les or the sour
e �le(s) spe
i�ed on the
ommandline only. This feature is important when transforming user-de�ned data types,for example, when adding
ompiler-generated methods. Using this feature pre-serves all C prepro
essor (
pp)
ontrol stru
tures (in
luding
omments). Output
ode from the ba
kend appears nearly indistinguishable from input
ode, ex
eptfor transformations, to simplify a

eptan
e by users.The ba
kend
an also be invoked during a transformation, to obtain thesour
e
ode string that
orresponds to a subtree of the AST. Su
h a string
anbe
ombined with new
ode (also represented as a sour
e string) and insertedinto the AST.Both phases, the introdu
tion of OpenMP dire
tives and the translation ofOpenMP dire
tives,
an be automated using the above me
hanisms, as des
ribedin the following se
tions.3 Parallelizing User-De�ned Containers Using OpenMPMost modern ma
hines have a parallel ar
hite
ture that requires appli
ationsto be eÆ
iently parallelized in order to a
hieve high performan
e. The OpenMPstandard provides a
onvenient me
hanism to parallelize appli
ations. It extendsthe traditional sequential languages Fortran, C and C++ to introdu
e paral-lelism without requiring the programmer to manage threads or
ommuni
ationsexpli
itly. However, introdu
ing OpenMP dire
tives into a sequential programstill requires a signi�
ant amount of work, although substantially less than usingdistributed memory programming models like MPI.In addition,
urrent use of distributed memory programming models onlyextends to a subset of the number of pro
essors available on IBM ma
hines atLLNL. Spe
i�
ally, the limit on the number of MPI tasks requires a hybrid pro-gramming model that
ombines message passing and shared memory program-ming in order to use all of the ma
hine's pro
essors. These hybrid programmingmodels signi�
antly in
rease the
omplexity of the already diÆ
ult task of de-veloping s
ienti�
 appli
ations that in
lude advan
ed numeri
al algorithms andphysi
s, and non-trivial geometri
s domains. Thus, our approa
h is parti
ularlyuseful in extending existing distributed memory appli
ations to use these mod-ern
omputer ar
hite
tures e�e
tively. The automated/simpli�ed introdu
tionof parallelism to leverage the shared memory nodes and, thus, a larger part ofthese ma
hines
an signi�
antly improve programmer produ
tivity. The use ofdual shared memory and distributed memory programming models is a moregeneral issue within
luster
omputing (using a
onne
ted set of shared memorynodes).Most C++ programs, in
luding many s
ienti�
 appli
ations, use high-levelabstra
tions that tailor the user-environment to a spe
i�
 appli
ation domain.

6Thus, obje
t-oriented design
reates a programming environment that is essen-tially a programming language that is more domain-spe
i�
 than a general pur-pose language
ould allow, thereby improving programmer produ
tivity.The ROSE infrastru
ture provides support for generating sour
e-to-sour
etranslators that essentially a
t as
ompilers for these domain-spe
i�
 languages.The designer of the high-level abstra
tions
aptures the semanti
s of those ab-stra
tions so that the sour
e-to-sour
e translators
an generate high performan
e
ode for the user of the domain-spe
i�
 language. Generally, the designer of theabstra
tions will be a library writer, although nothing prevents the end userfrom designing
lean interfa
es and
apturing the semanti
s for his spe
i�
 ab-stra
tions.In this se
tion, we present a me
hanism to automati
ally introdu
e OpenMPdire
tives for user-de�ned STL-like
ontainers, whi
h is one of the most
om-monly used user-de�ned abstra
tions in obje
t-oriented programming.3.1 User-De�ned ContainersS
ienti�
 appli
ations are in
reasingly using STL, but at present with no pathavailable toward automated shared memory parallelization. Clearly our goal inaddressing the optimization (parallelization) of user-de�ned
ontainer
lassesin
ludes eventually pro
essing STL
ontainers. Su
h work would have broadimpa
t on how STL
ould be used within s
ienti�
 programming.At present, the ROSE infrastru
ture does not handle templates suÆ
ientlywell to address STL optimization dire
tly. Figure 3 presents a
ompromise, anexample
ontainer
lass that is similar to the STL list
lass. It has an identi-
al iterator interfa
e, but does not use templates. The example list
lass a

u-rately reprodu
es the same iterator interfa
e as is used in STL and more generaluser-de�ned
ontainers. The exa
t details of the iterator interfa
e are not par-ti
ularly important; our approa
h
ould be used to parallelize alternative meth-ods of traversing the elements of
ontainers. Further, the easy
onstru
tion of
ompile-time transformations with ROSE
ould use even more pre
ise semanti
sof domain-spe
i�

ontainers if ne
essary.Figure 4 de�nes a
lass to support the automated transformation of iter-ation on user-de�ned
ontainers. The automated transformation pro
ess in-trodu
es new
ode that uses this supporting
lass into the appli
ation. TheSupportingOmpContainer list
lass builds an array of �xed size, internally,
ontaining pointers to the
ontainer's elements. Using this array the
lass pro-vides indexed a

ess for the OpenMP parallel for loop.3.2 Safety of ParallelizationOur goal is to parallelize loops that iterate over user-de�ned
ontainers. Givena
andidate loop, we must ensure that it is safe to parallelize, that is, depen-den
es must not exist between di�erent iterations of the loop body [7℄. Figure 5

7

lass list {// List
lass defined similarly to STL List
lass (but without templates)publi
:// fixed element type for list
lass (to avoid templates)typedef int elementType;prote
ted:stru
t list_node {list_node* next;list_node* prev;elementType data;};typedef elementType* pointer;typedef elementType& referen
e;typedef list_node* link_type;typedef size_t size_type;prote
ted:link_type first;link_type last;size_type length;publi
:
lass iterator{ friend
lass list;prote
ted:link_type node;iterator(link_type x);publi
:iterator();bool operator==(
onst iterator& x)
onst;bool operator!=(
onst iterator& x)
onst;referen
e operator*()
onst;iterator& operator++();iterator operator++(int);};list();iterator begin();iterator end();unsigned int size();void push_ba
k(
onst referen
e x);}; Fig. 3. Example: Code fragment showing list
lass using iterators.

8
lass SupportingOmpContainer_list {// This
lass is used to support the transformation of iterations over STL//
ontainers to a form with whi
h we
an use OpenMP to parallelize the exe
ution.publi
:typedef list::elementType elementType;list::elementType** dataPointer;unsigned int length;publi
:SupportingOmpContainer_list(list & l) {length = l.size();dataPointer = new list::elementType* [length℄;assert (dataPointer != NULL);list::iterator p;int i = 0;for (p = l.begin(); p != l.end(); p++) {dataPointer[i++℄ = &(*p);}}unsigned int size() { return length; }elementType& operator[℄(int i) {return *dataPointer[i℄;}};Fig. 4. Example: Code fragment showing the implementation of supporting abstra
tionfor OpenMP translation.presents our algorithm for this analysis, where TestParallelLoop is the top-level fun
tion, and fun
tion get modified vars is invoked to
ompute the setof variables modi�ed by a list of arbitrary statements.Our algorithm is di�erent from traditional dependen
e-based approa
hes inthat the library developer supplies domain-spe
i�
 information to drive the anal-ysis. This information allows us to re
ognize opportunities of loop parallelizationwithout having to perform aliasing or interpro
edural dependen
e analysis. InFigure 5, this information is represented as the userSpe
 input parameter, whi
h
ontains the following information from pre-spe
i�ed inputs by the library de-veloper.{ known
ontainers(userSpe
) A set of user-de�ned
ontainers for whi
h thelibrary writer guarantees element uniqueness, i.e., the instan
es of the
on-tainer
lass do not in
lude dupli
ated elements. All of these
ontainers musthave an iterator interfa
e that is similar to Figure 1. Sin
e the elements
an-not be aliased to ea
h other, our analysis
an safely
on
lude that it is safeto parallelize a loop that iterates over the
ontainer if the loop body doesnot
ontain
ross-iteration dependen
es.{ known fun
tions(userSpe
) A set of user-de�ned fun
tions whose side ef-fe
ts are known to the library writer. These fun
tions
an in
lude both globalfun
tions and the member fun
tions of user-de�ned abstra
tions.{ side effe
ts(f; userSpe
) 8f 2 known fun
tions(userSpe
) The side ef-fe
ts of ea
h fun
tion f de�ned in userSpe
. Spe
i�
ally, for ea
h fun
tion

9TestParallelLoop(l; userSpe
)l: loop to be parallelized;userSpe
: info. from programmerreturn: whether loop l
an be parallelizedheader = get loop header(l)body = get loop body(l)if (header iterates over a
ontainer
 and
 2known
ontainers(userSpe
))
ur elem = get
urrent element(
)lo
al vars = get lo
al de�ned vars(body)mod = get modi�ed vars(body; userSpe
)if (mod ==UNKNOWN) return false;for (ea
h variable var 2 mod)if (var 62 lo
al vars and var 6=
ur elem)return false;return true;return false;

get modi�ed vars(body, userSpe
)body: statements to be examined;userSpe
: info. from programmerreturn: variables modi�ed by bodyF = get fun
tion
alls(body);modV ars = ;;for (ea
h fun
tion
all f 2 F)if (f 2known fun
tions(userSpe
))modV ars = modV ars[side e�e
t(f; userSpe
);else return UNKNOWNmodV ars = modV ars[get lo
al mod vars(body);return modV arsFig. 5. Algorithm for safety analysis of parallelizationf 2 known fun
tions(userSpe
), it de�nes whi
h parameters and globalvariables
an be modi�ed by f . This information allows us to
ompute theset of variables modi�ed by an arbitrary statement without resorting tointer-pro
edural side e�e
t analysis.In Figure 5, the fun
tion get modified vars uses the semanti
 informationof user-de�ned fun
tions to help determine the side e�e
ts at ea
h iteration ofthe loop body: for ea
h statement within the loop body and for ea
h fun
tioninvo
ation f within the statement, if the fun
tion does not belong to the knownfun
tions in userSpe
, we assume that the fun
tion
ould indu
e unknown sidee�e
ts and thus
onservatively disallow the loop parallelization. In addition,the variables lo
ally modi�ed by ea
h statement is also returned as part of the
omplete side e�e
t of the loop body.The fun
tion TestParallelLoop uses both the known
ontainers and knownfun
tions from userSpe
 to identify opportunities of loop parallelization. First,we examine the
andidate loop to see if it iterates over a
ontainer that is knownto be safe to be parallelized. We then invoke get modified vars to summarizethe
omplete side e�e
t of the loop body. To determine the dependen
e pattern ofthe loop body, for every variable var modi�ed by the loop body, if var is exa
tlythe element of the
ontainer being a

essed by the
urrent iteration, or if var is alo
al variable de�ned within the loop body, we know that the variable is privateto the
urrent iteration and thus
annot introdu
e
ross-iteration dependen
es;otherwise, we assume that the variable
ould be aliased to a global variable anddisallow the parallelization.Note that although the algorithm in Figure 5 is more
onservative than tra-ditional dependen
e-based approa
hes, it provides a way to utilize user-de�nedsemanti
 information that might not be available to the other systems. For ex-

10ample, even the most aggressive parallelizing
ompilers may not be able to �gureout that the elements of a user-de�ned pointer-
ontainer
an never be aliased. By
on�guring our system with general, user-de�ned type information, we thereforeare able to optimize user-de�ned obje
ts more e�e
tively in various
ases.3.3 OpenMP TransformationOpenMP transformations are spe
i�ed as sour
e-to-sour
e translations. The in-put program is a sequential C++ program in whi
h we introdu
e OpenMPpragmas and transform parts of the program into a
anoni
al OpenMP formif ne
essary.A transformation is spe
i�ed as semanti
 a
tions of an abstra
t C++ gram-mar. The grammar is abstra
t with respe
t to the
on
rete C++ grammar anddoes not in
lude any
on
rete C++ syntax. The abstra
t grammar de�nes theset of all abstra
t syntax trees (ASTs) and
overs full C++. Computations on theabstra
t grammar
an be spe
i�ed as attribute evaluations. Attributes
an be ofarbitrary type, in
luding sour
e strings. The sour
e-strings spe
ify new programfragments for whi
h the
orresponding AST fragment
an always be obtainedand inserted into an existing AST. To allow semanti
s based transformations,whi
h require the full type information of a given program, we make the typeinformation of the program available as annotations of the AST. The availabilityof the full type information is
ru
ial to allow semanti
s based transformationsas we shall demonstrate in the following example.The abstra
t grammar des
ribes the set of all ASTs. Be
ause we do notuse multiple inheritan
e, the
lass hierar
hy of the obje
t-oriented AST forms atree. The abstra
t grammar is designed su
h that it dire
tly
orresponds to the
lass hierar
hy and the su

essor information of AST nodes. Inner nodes of the
lass hierar
hy tree
orrespond to non-terminals in the grammar whereas outernodes (leafs)
orrespond to terminals in the grammar. The
orresponden
e ismade expli
it by using the
lass names as names for terminals and non-terminalsrespe
tively.Our present version of the default abstra
t grammar for full C++ has 165rules. All annotated AST information gathered by the frontend at ea
h AST nodeis available through a variable astNode. The variable always holds a pointer tothe
orresponding AST node of a parsed terminal. Information available is typeinformation for every expression and de
laration, line and
olumn informationof the original program, et
.In the following example we show how the attribute grammar in
ombinationwith the use of sour
e-strings and AST repla
ement operations, allows to spe
ifythe introdu
tion of OpenMP pragmas and the transformation of for-loops to
onform to the required
anoni
al form of an omp parallel for.In the example sour
e in �g. 6 we show an iteration on a user-de�ned
on-tainer with an iterator. This pattern is frequently used in appli
ations usingC++98 standard
ontainer
lasses. The obje
t f is an instan
e of the user-de�ned
lass Foo. The transformation we present takes into a

ount the semanti
s of the

11Before transformationFoo f; list l;...for (list::iterator i = l.begin(); i != l.end(); i++) {f.foo(*i);}After transformationFoo f; list l;...// Build the supporting
ontainerSupportingOmpContainer_list l2 (l);#pragma omp parallel forfor (int i = 0; i < l2.size(); i++) {f.foobar(l2[i℄);}Fig. 6. An iteration on a user-de�ned
ontainer l that provides an iterator interfa
e.The obje
t f is an instan
e of the user-de�ned
lass Foo. Obje
t l is of type list. Inthe optimization the iterator is repla
ed by
ode
onforming to the required
anoni
alform of an OpenMP parallel for.type Foo and the semanti
s of
lass list. The transformation is therefore spe
i�
to these
lasses and its semanti
s.For the type listwe know that the type iterator de�ned in the
lass followsthe iterator pattern as used in the STL. For the type Foo we know that themethod f is thread safe. We show the
ore of a transformation to transform the
ode into the
anoni
al form of a for-loop as required by the OpenMP standard.We also introdu
e the OpenMP pragma dire
tive. Note that the variable i inthe transformed
ode is impli
itly private a

ording to the OpenMP standard2.0 .The test, isUserDefIteratorForStatement, to determine whether the trans-formation
an be applied, is
onservative. It might not always allow to performthe optimization although it would be
orre
t but it is never applied when we
annot ensure that the transformed
ode would be
orre
t.In the example in �g. 7 the grammar rule of SgS
opeStatement is shown. Theterminal SgForStatement in the example
orresponds to the
lass SgForStatement.The semanti
 a
tions asso
iated with this rule are exe
uted whenever a node oftype SgForStatement is parsed. The variable astNode is a pointer to the respe
-tive AST node of the terminal and assigned by our supporting system when thes
anner a

esses the token stream. Note that every terminal in the grammar
orresponds to a node in the AST, ex
ept the parentheses.Methods of the obje
t subst allow to insert new sour
e
ode and delete sub-trees in the AST. The substitution obje
t subst bu�ers pairs of target lo
ationand string. The substitution is not performed before the semanti
 a
tions ofall subtrees of the target lo
ation node have been performed. This me
hanismallows to
he
k whether substitutions would operate on overlapping subtrees of

12the AST (in the same attribute evaluation). In
ase of overlapping subtrees anerror is reported.The obje
t query is of type AstQuery and provides frequently used methodsfor obtaining information stored in annotations of the AST. These methods arealso implemented as attribute evaluations.SgS
opeStatement<bool isOmpFor>= SgForStatement(.isOmpFor= ompTransUtil.isUserDefIteratorForStatement(astNode,isOmpFor);.)"(" SgForInitStatementNT<isOmpFor> SgExpressionRootNTSgExpressionRootNT SgBasi
Blo
kNT<isOmpFor>")"(.if(isOmpFor) {string iVarName = query.iteratorVariableName(astNode);string iContName = query.iteratorContainerName(astNode);string iContType = query.iteratorContainerType(astNode);string parTypeName = ompTransUtil.supportingParType(astNode,iContType);string parContName = ompTransUtil.uniqueVarName(astNode,iContName);string modifiedBodyString= ompTransUtil.derefToIndexBody(astNode,iVarName,iContName);string support = parTypeName+" "+parContName+"("+iContName+");\n";string beforeForStmt= "#pragma omp parallel for\n";string newForStmt = "for(int "+iVarName+"=0;"+ iVarName+"<"+parContName+".size();"+ iVarName+"++) "+modifiedBodyString;subst.repla
e(astNode,support + beforeForStmt + newForStmt);}.)| ...Fig. 7. A part of the grammar rule of SgS
opeStatement of the abstra
t C++ grammarwith the semanti
 a
tion spe
ifying the transformation of a SgForStatement.The inherited attribute isOmpFor is used to handle the nesting of for-loops.It depends on how an OpenMP
ompiler supports nested parallelism whetherwe want to parallelize inner for statements or only the outer for statement. Infuture this de
ision will be made more spe
i�
 to OpenMP
ompilers on di�erentplatforms and the boolean attribute will be repla
ed by an obje
t to provide moreinformation about the
ontext of OpenMP for-loops.The obje
t query of type AstQuery o�ers methods to provide informationon subtrees that have been proven to be useful in di�erent transformations. Inthe example we use it to obtain variable names and type names. The exampleshows how we
an de
ompose di�erent aspe
ts of a transformation into separateattribute evaluations. The methods of the query obje
t are implemented by usingthe attribute evaluation.After a prepro
essing step of the grammar �le, we use a su

essor of Co
o/R[8℄, the C/C++ version ported by Frankie Arzu to generate the parser
ode.Co
o/R is a
ompiler generator whi
h allows to spe
ify a s
anner and a parser

13in EBNF for
ontext free languages. The grammar has to be LL(1). We use thistool to operate on the token stream of AST nodes. Therefore we do not use thes
anner generator
apabilities of Co
o/R and implemented a s
anner to operateon the token stream of AST nodes. The stream is de�ned by a �xed traversal onthe AST. The integration of this parsing tool allowed us to leverage the attributeevaluation
apabilities of parsing tools.In �g. 6 the generated
ode is shown. The a

ess uses the notation for randoma

ess iterators. The SupportingOmpContainer list
lass is used to generatean array of pointers to all elements of the list to a
hieve a
omplexity of O(1)for the element a

ess. The list of pointers is generated when the supporting
ontainer l2 is
reated. When the generated
ode is
ompiled with an OpenMP
ompiler the body is exe
uted in parallel.Note that the generated sour
e
ode
an have a slightly di�erent format-ting be
ause the format of the sour
e
ode is a beauti�ed version of the sour
e
orresponding to the transformed AST.4 Translation of OpenMP Dire
tivesTo generate
ode that expli
itly manages parallelism, we use ROSE to build aspe
ialized sour
e-to-sour
e translator that transforms OpenMP parallel fordire
tives into expli
it
alls to an OpenMP runtime library [9℄. For our work, wehave sele
ted the Nanos OpenMP runtime library [10℄. We are in the pro
ess ofadding support for additional OpenMP
onstru
ts to our infrastru
ture. Alter-natively, we
an unparse the original sour
e
ode with OpenMP dire
tives anduse the resulting sour
e
ode as input to a
ommer
ial OpenMP C++
ompilerto generate parallel
ode [11{14℄.5 Related WorkThe resear
h
ommunity has developed many automati
 parallelizing
ompilers.Examples of these resear
h
ompilers in
lude the DSystem [15℄, the Fx
om-piler [16℄, the Vienna Fortran Compiler [17℄, the Paradigm
ompiler [18℄, thePolaris
ompiler [19℄, and the SUIF
ompiler [20℄. However, ex
ept for SUIF,whi
h has frontends for Fortran, C, and C++; the others listed above optimizeonly Fortran appli
ations. By providing a C++ frontend for automati
 paral-lelization, we
omplement previous resear
h in providing support for higher-level obje
t-oriented languages. In addition, we extend previous te
hniques byutilizing the semanti
 information of user-de�ned
ontainers and thus allowinguser-de�ned abstra
tions to be treated as part of a domain-spe
i�
 language.As more and more programmers are using OpenMP to express parallelism,many OpenMP supporting
ompilers were developed, in
luding both resear
hproje
ts [10, 21{23℄ and
ommer
ial
ompilers [11{14℄. In addition to OpenMP-dire
tive translation, many resear
h
ompiler infrastru
tures also investigatete
hniques to automati
ally generate OpenMP dire
tives and to optimize theparallel exe
ution of OpenMP appli
ations. However, these resear
h
ompilers

14only support appli
ations written in C or FORTRAN, while existing
ommer
ialC++
ompilers target only spe
i�
 ma
hine ar
hite
tures and do not provide anopen sour
e-to-sour
e transformation interfa
e to the outside world. By provid-ing a
exible sour
e-to-sour
e translator, we
omplement previous resear
h bypresenting an open resear
h infrastru
ture for optimizing C++
onstru
ts andOpenMP dire
tives.6 Con
lusions and Future WorkThis paper presents a C++ infrastru
ture for semanti
-driven parallelization of
omputations that operate on user-de�ned
ontainers that have an a

ess inter-fa
e similar to that provided by the Standard Template Library in C++. First,we provide an interfa
e for library developers to inform our
ompiler about thesemanti
s of their
ontainers and the side-e�e
ts of their library fun
tions. Then,we use this information to parallelize loops that iterate over these
ontainers au-tomati
ally when it is safe to do so.Our analysis algorithm
onservatively disallows the parallelization of loopsthat modify non-lo
al memory lo
ations, that is, memory lo
ations that are notelements of the user-de�ned
ontainer and are de�ned outside of the loop. In thefuture, we will extend our algorithm to be more pre
ise by in
orporating globalalias analysis and array dependen
e analysis te
hniques [7℄. This more sophisti-
ated algorithm will be as pre
ise as those used by other automati
 parallelizing
ompilers [15{20℄, while still being more aggressive for user-de�ned abstra
tionsby optimizing them as part of a domain-spe
i�
 language.Referen
es1. Cooper K. Dongarra J. Fowler R. Gannon D. Johnsson L. Kennedy K. Mellor-Crummey J. Tor
zon L. Broom, B. Teles
oping languages: A strategy for automati
generation of s
ienti�
 problem-solving systems from annotated libraries. Journalof Parallel and Distributed Computing, 2000.2. Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.3. Daniel Quinlan, Brian Miller, Bobby Philip, and Markus S
hordan. Treating auser-de�ned parallel library as a domain-spe
i�
 language. In 16th InternationalParallel and Distributed Pro
essing Symposium (IPDPS, IPPS, SPDP), pages 105{114. IEEE, April 2002.4. Daniel Quinlan, Markus S
hordan, Brian Miller, and Markus Kowars
hik. Parallelobje
t-oriented framework optimization. Spe
ial Issue of Con
urren
y: Pra
ti
eand Experien
e, 2003, to appear.5. Edison Design Group. http://www.edg.
om.6. Fran
ois Bodin, Peter Be
kman, Dennis Gannon, Ja
ob Gotwals, SrinivasNarayana, Suresh Srinivas, and Beata Winni
ka. Sage++: An obje
t-orientedtoolkit and
lass library for building fortran and C++ restru
turing tools. InPro
eedings. OONSKI '94, Oregon, 1994.7. R. Allen and Ken Kennedy. Optimizing Compilers for Modern Ar
hite
tures. Mor-gan Kaufmann, San Fran
is
o, O
tober 2001.

158. Hanspeter Moessenboe
k. Co
o/R - A generator for produ
tion quality
ompilers.In LNCS477, Springer, 1991.9. Daniel Quinlan, Markus S
hordan, Qing Yi, and Bronis de Supinski. A C++infrastru
ture for automati
 introdu
tion and translation of OpenMP dire
tives.In WOMPAT'03: OpenMP Shared Memory Parallel Programming, InternationalWorkshop on OpenMP Appli
ations and Tools, volume 2716 of Le
ture Notes inComputer S
ien
e, pages 13{25. Springer Verlag, June 2003.10. Eduard Ayguade, Mar
 Gonzalez, and Jesus Labarta. Nanos
ompiler: A resear
hplatform for openMP extensions. In European Workshop on OpenMP, September1999.11. Sili
an Graphi
s In
. Optimizing Compilers for High-Performan
e Computing.www.sgi.
om/developers/devtools/languages/mipspro.html.12. IBM. VisualAge C++ Professional for AIX V6.0. www-1.ibm.
om/servers/eserver/e
atalog/us/software/6146.html.13. Xinmin Tian, Aart Bik, Milind Girkar, Paul Grey, Hideki Saito, and Ernesto Su.Intel openMP C++/Fortran
ompiler for hyper-threading te
hnology: Implemen-tation and performan
e. Intel Te
hnology Journal, 6(1):36{46, 2002.14. Fujitsu. Fortran & C Pa
kages for SPARC Solaris.www.fr.fse.fujitsu.
om/devuk/solaris.shtml.15. V. Adve, G. Jin, J. Mellor-Crummey, and Q. Yi. High performan
e fortran
om-pilation te
hniques for parallelizing s
ienti�

odes. In Pro
eedings of SC98: HighPerforman
e Computing and Networking, Nov 1998.16. J. Subhlok, J. Sti
hnoth, D. O'Hallaron, and T. Gross. Exploiting task and dataparallelism on a multi
omputer. In Pro
. of the Sixth ACM SIGPLAN Symposiumon Prin
iples and Pra
ti
e of Parallel Programming (PPoPP), San Diego, May1993.17. S. Benkner. Vf
: The vienna fortran
ompiler.18. P. Banerjee, J. A. Chandy, M. Gupta, J. G. Holm, A. Lain, D. J. Palermo, S. Ra-maswamy, and E. Su. The paradigm
ompiler for distributed-memory messagepassing multi
omputers. In in Pro
eedings of the First International Workshop onParallel Pro
essing, Bangalore,India, De
 1994.19. D. Padua, R. Eigenmann, J. Hoe
inger, P. Petersen, P. Tu, S. Weatherford, andK. Faigin". Polaris: A new-generation parallelizing
ompiler for mpp's. Te
hni
alReport 1306, Univ. of Illinois at Urbana-Champaign, Center for Super
omputingRes. and Dev., june 1993.20. M. S. Lam S. P. Amarasinghe, J. M. Anderson and C. W. Tseng. The suif
ompilerfor s
alable parallel ma
hines. In in Pro
eedings of the Seventh SIAM Conferen
eon Parallel Pro
essing for S
ienti�
 Computing, Feb 1995.21. Christian Bruns
hen and Mats Brorsson. OdinMP/CCp - a portable implementa-tion of openMP for
. In European Workshop on OpenMP, September 1999.22. Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka. Designof openMP
ompiler for an SMP
luster. In European Workshop on OpenMP,September 1999.23. Seung Jai Min, Seon Wook Kim, Mi
hael Voss, Sang Ik Lee, and Rudolf Eighmann.Portable
ompilers for openMP. In Workshop on OpenMP Appli
ations and Tools,July 2001.

