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Abstract. Although automated empirical performance optimization and
tuning is well-studied for kernels and domain-specific libraries, a current
research grand challenge is how to extend these methodologies and tools
to significantly larger sequential and parallel applications. In this con-
text, we present the ROSE source-to-source outliner, which addresses the
problem of extracting tunable kernels out of whole programs, thereby
helping to convert the challenging whole-program tuning problem into a
set of more manageable kernel tuning tasks. Our outliner aims to handle
large scale C/C++, Fortran and OpenMP applications. A set of program
analysis and transformation techniques are utilized to enhance the porta-
bility, scalability, and interoperability of source-to-source outlining. More
importantly, the generated kernels preserve performance characteristics
of tuning targets and can be easily handled by other tools. Preliminary
evaluations have shown that the ROSE outliner serves as a key compo-
nent within an end-to-end empirical optimization system and enables a
wide range of sequential and parallel optimization opportunities.

1 Introduction

Empirical optimization refers to a process of selecting an optimal code opti-
mization out of numerous choices based their runtime performance feedback on
a given target system. It is being widely used to build highly tuned domain-
specific libraries [1, 2] and iterative, feedback-directed compilers [3, 4]. Several
more recent studies [5–7] have also tried to extend empirical tuning to optimize
whole applications from various domains.

However, it is still a research grand challenge to extend empirical tuning
methodologies and tools to automatically optimize large scale sequential and
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parallel applications. Besides the enormously vast search space associated with
whole application tuning, a wide range of compiler and software tools have to
work seamlessly to carry out different tasks during the life cycle of empirical
tuning of large scale applications. Although implementation details can vary
dramatically, a representative end-to-end empirical tuning system, such as the
PERI autotuning system [8] which we are involved in, may include compilers
and tools for the following key phases: collecting performance metrics, identify-
ing problematic code portions to be tuned, extracting code portions to generate
tunable kernels (commonly known as kernel extraction or outlining), suggesting
optimization choices and their configurations to form a search space, generating
multiple variants of the kernels, preparing execution drivers, and finally, evalu-
ating each variant by executing it on a given platform.

By extracting tunable kernels out of large scale applications, a kernel ex-
traction tool (also called outliner) serves as a key component to automatically
convert the challenging whole program tuning problem into a set of more man-
ageable kernel tuning tasks. As shown in Fig. 1 and Fig. 2, an outliner typically
extracts a code segment (one or several consecutive statements) from a function,
referred to as a host function, to create a new function, which in turn is called the
outlined function. It then replaces the original code segment with a call to the
outlined function. However, previous outlining work can often handle only serial
programs in C or Fortran. Little work has targeted modern object-oriented C++
applications. Moreover, the commonly used outlining algorithm [5, 9] passes mod-
ified variables (i,j,error, etc. in Fig. 2) in C/C++ by references (e.g. &i) and
introduces excessive pointer dereferences (e.g. ∗i) in the outlined function. The
use of pointers might severely change performance characteristics of the outlined
code segment and pose significant difficulties to other tools, especially the kernel
variant generation tools, for further analysis and optimization. For example, the
function parameters of pointer types may force compilers to make conservative
assumptions about variable aliasing and disable a wide range of optimizations.
Finally, there are no freely available, standalone outlining tools that can easily
interact with other tools to support the life cycle of whole program empirical
optimization.

1 int n ,m;
2 double u [MSIZE ] [ MSIZE ] , f [MSIZE ] [ MSIZE ] , uold [MSIZE ] [ MSIZE ] ;
3 void main ( )
4 {
5 int i , j ;
6 double omega , er ror , r e s id , ax , ay , b ;
7 // i n i t i a l i z a t i o n c o d e o m i t t e d h e r e
8 // . . .
9 for ( i =1; i <(n−1); i++)

10 for ( j =1; j <(m−1); j++)
11 {
12 r e s i d = ( ax ∗ ( uold [ i −1][ j ] + uold [ i +1] [ j ] )\
13 + ay ∗ ( uold [ i ] [ j −1] + uold [ i ] [ j +1])\
14 + b ∗ uold [ i ] [ j ] − f [ i ] [ j ] ) / b ;
15 u [ i ] [ j ] = uold [ i ] [ j ] − omega ∗ r e s i d ;
16 e r r o r = e r r o r + r e s i d ∗ r e s i d ;
17 }
18 e r r o r = sqr t ( e r r o r )/( n∗m) ;
19 // v e r i f i c a t i o n c o d e o m i t t e d h e r e
20 // . . .
21 }

Fig. 1. A Jacobi program with a loop computation kernel



1 // . . . . some c o d e i s o m i t t e d
2 void OUT 1 4027 ( int ∗ i p , int ∗ j p , double omega , double ∗ e r r o rp ,
3 double ∗ r e s i dp , double ax , double ay , double b ) ;
4 void main ( )
5 {
6 int i , j ;
7 double omega , er ror , r e s id , ax , ay , b ;
8
9 // . . .

10 OUT 1 4027 (&i ,& j , omega,& error ,& res id , ax , ay , b ) ;
11 e r r o r = sqr t ( e r r o r )/( n∗m) ;
12 // . . .
13 }
14 void OUT 1 4027 ( int ∗ i p , int ∗ j p , double omega , double ∗ e r r o rp ,
15 double ∗ r e s i dp , double ax , double ay , double b)
16 {
17 for (∗ i p =1;∗ i p <(n−1);(∗ i p )++)
18 for (∗ j p =1;∗ j p <(m−1);(∗ j p )++)
19 {
20 ∗ r e s i d p = ( ax ∗ ( uold [∗ i p −1][∗ j p ] + uold [∗ i p +1][∗ j p ] )\
21 + ay ∗ ( uold [∗ i p ] [ ∗ j p −1] + uold [∗ i p ] [ ∗ j p +1])\
22 + b ∗ uold [∗ i p ] [ ∗ j p ] − f [∗ i p ] [ ∗ j p ] ) / b ;
23 u [∗ i p ] [ ∗ j p ] = uold [∗ i p ] [ ∗ j p ] − omega ∗ (∗ r e s i d p ) ;
24 ∗ e r r o r p = ∗ e r r o r p + (∗ r e s i d p ) ∗ (∗ r e s i d p ) ;
25 }
26 }

Fig. 2. Outlining the Jacobi kernel using a classic algorithm

In this paper, we present an effective and interoperable source-to-source out-
liner based on the ROSE compiler infrastructure [10] to support whole program
empirical optimization. The ROSE outliner aims to handle large scale C/C++
and Fortran applications, including those using OpenMP, to broaden the ap-
plicability of empirical tuning. The kernels generated by our outliner preserve
performance characteristics of tuning targets as much as possible and can be eas-
ily optimized by other compilers and tools. Preliminary evaluations have shown
that the ROSE outliner serves as a key component within the PERI autotuning
system and enables a wide range of sequential and parallel optimization oppor-
tunities.

2 The PERI Autotuning System

The Performance Engineering Research Institute (PERI) project [8] aims to
enable performance portability of DOE (US Department Of Energy) applications
through cutting-edge research in performance modeling and automated empirical
tuning (autotuning). The project’s initial strategy for autotuning can be found
elsewhere [8]. A set of compilers and tools from multiple institutions are being
developed and integrated to define the interactions among different types of tools
and to support automated empirical tuning of large scale whole applications. We
only give a high-level description of the project below since its implementation
details are constantly evolving.

The current PERI autotuning system (shown in Fig. 3) consists of several
phases: preparation, code triage, code transformation, and empirical tuning. The
preparation phase uses a performance tool (HPCToolkit [11] or gprof) to collect
performance metrics of an input application. The code triage and transforma-
tion phase relies on a set of ROSE-based tools (the ROSE-HPCT interface)
to find code segments with performance problems (automatic or user-directed



code triage), and extract (by the ROSE outliner) the segments to generate dy-
namically loadable kernels. The original application is also transformed accord-
ingly to support calling the kernels using dlopen(), performance measuring, and
to save the context before calling the kernels using the API of a checkpoint-
ing/restarting library [12]. The final empirical tuning is done by a search engine
(GCO [13] or Active Harmony[14]), a parameterized code transformation tool
(loopProcessor [15], POET [16] or CHiLL [17]) generating kernel variants, and
the checkpointing/restarting library. Based on performance analysis on the tun-
ing target, a search space representing potentially beneficial transformations and
their configurations is prepared (manually for now) and passed to the search en-
gine. The search engine in turn directs (via a shell script) the parameterized code
transformation tool to generate kernel variants, compiles them into dynamically
loadable libraries, and executes the application to evaluate each kernel variant.
The evaluation time can be shortened via a partial execution by restarting the
application from a previously saved checkpointing context.
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Fig. 3. The PERI autotuning system

3 A Source-to-Source Outliner

It is obvious that the ROSE outliner plays an indispensable role to the success of
the PERI autotuning system targeting whole applications. By generating more
manageable kernels out of large scale applications, the outliner serves as a bridge
between whole applications and existing empirical tuning methods and tools
suitable for handling kernels. In the meantime, the outliner has to be scalable,
interoperable and effective. It should correctly handle large scale applications
in multiple languages to broaden the applicability of empirical tuning. It needs
flexible interfaces so users or other tools can invoke it to support user-directed
and automated empirical tuning. The generated kernels should preserve their
original performance characteristics and be easily processed by multiple param-
eterized translation tools. Otherwise the later empirical tuning would become
irrelevant or even impossible.

We have designed and implemented our outliner based the ROSE compiler
infrastructure [10], which is a source-to-source compiler framework that enables



building program transformation and analysis tools for large scale C/C++, For-
tran, OpenMP and UPC applications. ROSE presents a common object-oriented,
open source IR (intermediate representation) for multiple languages. The IR in-
cludes an abstract syntax tree (AST), symbol tables, a control flow graph, etc.
Both generic and custom program analyses and transformations can be built on
top of the ROSE IR.

3.1 The Algorithm

The ROSE outliner uses an algorithm with the following steps:

– A. Collect code segments (outlining targets) specified by user or tool inter-
faces.

– B. Perform side-effect and liveness analysis on host functions.
– C. Bottom up traverse the ROSE AST and process each target.

1. Check the eligibility of a target. Skip it if it cannot be outlined.
2. Preprocess the target if it has a complex control flow structure.
3. Decide on the outlined function’s parameters and create a function skele-

ton (with an empty body).
4. Add statements into the outlined function body to implement parameter

unwrapping, type casting, and value restoring, if necessary.
5. Move the target statements into the function body.
6. Replace variable references within the outlined function with references

to their new corresponding variables.
7. Insert necessary forward prototypes for the outlined function.
8. Replace the target statements with a call to the outlined function.

A bottom-up traversal (Step C) is used to uniformly handle lexically nested
outlining targets. In contrast, a top-down traversal would have to keep track of
the outlining targets if they have nested outlining targets to be processed later
on. The eligibility check phase (Step C.1) excludes some outlining targets to
maintain semantics correctness and avoid unnecessary implementation complex-
ity. For example, a variable declaration statement such as int i ; is not allowed.
Another example is a code segment containing a call to va start (). The existence
of va start () means that the host function has variable number of arguments.
Outlining such code segment will introduce unnecessary complexity to handle
the arguments.

We also support outlining targets with complex control flow, such as return,
goto and break statements. The basic idea is to use an additional control pa-
rameter to pass in (for multiple entry points) and out (for multiple exit points)
the jump targets of the outlined function. Code transformation used to direct
control flow based on the value of the control parameter is done within the pre-
processing phase (Step C.2) to ease the handling of actual outlining. Please see
other similar work [9] for details of handling complex data flow during outlining
since it is not the focus of this paper.



In addition to generating one function parameter for each variable to be
passed in or out of the outlined function (Step C.3), the ROSE outliner sup-
ports wrapping all parameters into a single array parameter that contains their
addresses as void ∗ pointers. The reason for this is that the allowed number
of function parameters for a given compiler implementation is always limited.
For instance, ANSI C only recommends implementations to translate at least
31 parameters per function definition. Depending on the semantics of pass-by-
reference or pass-by-value, the array parameter’s elements can be restored (un-
wrapped) to variables of pointer types or base types within the outlined function.
We present more details about the ROSE outliner in the following subsections.

3.2 User and Tool Interfaces

Several user and tool interfaces are provided by the ROSE outliner to flexibly
support different usage by both users and other tools. They include a compiler
pragma to directly indicate outlining targets in the source code, a programming
API for any ROSE-based translator, as well as a standalone ROSE outliner pro-
gram. In particular, users can pass a text string (we refer to it as an abstract
handle) to the ROSE outliner to indicate an outlining target. The abstract han-
dles are designed to enhance interoperability among any software tools. They
provide unique identifiers for statements, loops, functions and other language
constructs in source code. A set of construct types is predefined to indicate
the types of language constructs. They include SourceFile, FunctionDeclaration,
ForStatement, and so on. Different ways of specifying a construct are supported
via specifiers and their combinations, as defined below.

– a name specifier: used for a language construct with a name within a context,
such as a file, function definition and namespace.

– a numbering specifier: used to locate a construct based on its relative order-
ing within a context.

– a source file position specifier: used to locate a construct by its line and/or
column number information.

– a label specifier: used for named constructs in Fortran, numbered labels in
Fortran, and statement labels in C and C++, etc.

Some example abstract handles using various specifiers are given below:
//an abstract handle specifying a source file use a name specifier
SourceFile<name,/path/file1.c>

//combined name and numbering specifiers to denote the first for loop within a file.
SourceFile<name,/path/file2.cpp>::ForStatement<numbering,1>

//indicates a function at line 13 in a file using a position specifier
SourceFile<name,"/path/file1.c">::FunctionDeclaration<position,13>

3.3 Creating an Outlined Function

In this subsection, we discuss the creation of an outlined function, including the
decisions about its scope, parameters, and language linkage.



For C programs, we generate outlined functions in the global scope for bet-
ter portability. The C language standard only permits the global scope for a
function, although some implementations (such as GNU GCC) allow nested C
functions. C++ gives more options for the scope of an outlining target within
a class member function. One option is to add the outlined function as a new
class member function. While this choice eases the handling of class member
accesses, the generated class member function, quite often a non-static mem-
ber function, cannot be easily handled by other tools relying on functions with
C bindings, such as dlopen() for dynamic loading. We chose to outline targets
within a member function to a globally scoped function with C linkage to maxi-
mize interoperability with other tools. This outlined function has to be declared
as a friend within the host class so its class members can be legally accessed by
the outlined function (as shown in Fig. 4).

1 extern ”C” void OUT 1 5057 ( int a , void ∗ t h i s p t r p ) ;
2 c lass B {
3 public :
4 friend void : : OUT 1 5057 ( int a , void ∗ t h i s p t r p ) ;
5 private :
6 int b ;
7 void setB ( int a ){
8 // o u t l i n i n g t a r g e t i s : b=a ;
9 OUT 1 5057 (a , this ) ;

10 }
11 } ;
12
13 extern ”C” void OUT 1 5057 ( int a , void ∗ t h i s p t r p ){
14 c lass B ∗ t h i s p t r = ( c lass B ∗ ) t h i s p t r p ;
15 t h i s p t r −> b = a ;
16 }

Fig. 4. Outlining a C++ statement within a member function

Another task during outlining is to find out which variables should be passed
as parameters to the outlined function in order to preserve an application’s
original semantics. As few parameters as possible should be passed, to ease the
translation and minimize overhead. As mentioned earlier, if complex control
flow exists in the target, a control parameter is needed to pass in and out jump
targets within a jump table. For data parameters, the following formulas are
used to identify the variables to be passed:

Parameters = ((AllV ars− InnerV ars−GlobalV ars−NamespaceV ars

−ClassV ars) ∩ (LiveInV ars ∪ LiveOutV ars)) ∪ ClassPointers

PassByRefParameters = Parameters ∩ ((ModifiedV ars ∩ LiveOutV ars) ∪ArrayV ars

∪ ClassV ars)

All variables (AllV ars) accessed by an outlining target are collected as pa-
rameter candidates at first. There is no need to pass variables declared locally
within the target (InnerV ars) and global variables(GlobalV ars) since they are vis-
ible to the outlined function by default. Variables declared within namespaces
(NamespaceV ars) are similar to global variables, but name qualifiers have to be
made explicit in the outlined function if they do not appear in the original code.



Accesses to a class’s members are counted as accesses to the class object. Instead
of passing all class variables (ClassV ars) one by one, only a pointer (ClassPointers)
to the class object needs to be passed to reduce outlining overhead (as shown
in Fig. 4). Finally, only candidates which are either live-in or live-out to the
outlining target are worth being passed as parameters.

The identified function parameters can be passed either by reference or by
value. The rules for using pass-by-reference are simple and well known, as shown
in the formulas above. Please note that modified variables that are live-out need
to be saved via pass-by-reference. Arrays are always passed by reference. Param-
eters of class (or structure) types are also passed by reference (constant reference
if read-only) to avoid copying big objects. The remaining parameters are passed
by value.

3.4 Eliminating Pointer Dereferences

As shown in Fig. 2, the classic outlining algorithm generates outlined C/C++
functions with many pointer dereferences for variables passed by reference. We
use a novel method to eliminate unnecessary pointer dereferences during outlin-
ing so the outlined kernels can preserve their original performance characteristics
as much as possible. The kernels with less pointer usage can also facilitate other
tools and compilers to perform further analyses and optimizations.

The method is based on usage of a variable that is passed by reference and
accessed via pointer-dereferencing. Such a variable is used either by value or by
address within an outlining target. For the C language, using such a variable by
address occurs when the address operator is used with the variable (e.g. &X).
C++ introduces one more way of using the variable by address: associating the
variable with a reference type (TYPE & Y = X; or using the variable as an ar-
gument for a function’s parameter of a reference type). If the variable is not used
by its address, a temporary clone variable of the same type (using TYPE clone;)
can be introduced to substitute its uses within the outlined function. We use the
following formulas to introduce variable clones during outlining.

CloneCandidates = PassByRefParameters ∩ PointerDereferencedV ars

CloneV ars = (CloneCandidates− UseByAddressV ars) ∩AssignableV ars

CloneV arsToInit = CloneV ars ∩ LiveInV ars

CloneV arsToSave = CloneV ars ∩ LiveOutV ars

Based on the formulas, the ROSE outliner selects candidates to be cloned
from the variables passed as function parameters by reference and accessed via
pointer dereferences within an outlined function. A candidate is cloned if it is
used by value only in the original outlining target and is assignable. The value
of a clone has to be initialized properly (using clone = ∗ parameter;) before the
clone participates in computation, if the original variable is live-in. After the
computation, the original variable must be set to the clone’s final value (using
∗parameter = clone), if the original variable is live-out. By doing this, many
pointer dereferences introduced by the classic algorithm can be avoided.



Fig. 5 shows the outlining result using variable clones for the input code given
in Fig. 1. Compared to the classic outlining result (shown in Fig. 2), the new
outlined function does not have any pointer dereferences within the computation
loop and can be easily handled by other tools for further optimization.

1 void OUT 1 5058 (double omega , double ∗ e r r o rp , double ax ,
2 double ay , double b)
3 {
4 int i , j ; /∗ d e c l a r a t i o n f o r v a r i a b l e s t h a t a r e n e i t h e r l i v e −i n no r l i v e −o u t ∗/
5 double r e s i d ; /∗ n e i t h e r l i v e −i n no r l i v e −o u t ∗/
6 double e r r o r ; /∗ c l o n e f o r a l i v e −i n and l i v e −o u t p a r am e t e r ∗/
7 e r r o r = ∗ e r r o r p ; /∗ I n i t i a l i z e t h e c l o n e ∗/
8 for ( i = 1 ; i < (n − 1) ; i++)
9 for ( j = 1 ; j < (m − 1) ; j ++) {

10 r e s i d = ( ax ∗ ( uold [ i − 1 ] [ j ] + uold [ i + 1 ] [ j ] ) +
11 ay ∗ ( uold [ i ] [ j − 1] + uold [ i ] [ j + 1]) +
12 b ∗ uold [ i ] [ j ] − f [ i ] [ j ] ) / b ;
13 u [ i ] [ j ] = uold [ i ] [ j ] − omega ∗ r e s i d ;
14 e r r o r = e r r o r + r e s i d ∗ r e s i d ;
15 }
16 ∗ e r r o r p = e r r o r ; /∗ Sa v e v a l u e o f t h e c l o n e ∗/
17 }

Fig. 5. Jacobi kernel outlined using variable clones

3.5 Separating to a New File

The ROSE outliner supports outputting an outlined function into an indepen-
dent new source file so that other tools only need to focus on a single file when
analyzing and optimizing a tuning target. The new source file contains only sys-
tem headers to ease the compilation of the target. All dependent user-defined
types used by an outlining target are also copied into the new file.

The outliner uses a recursive phase to collect all user-defined types refer-
enced by an outlining target. Recursion is used because if a user-defined class
(or union and structure) type is used by a target, any user-defined types of this
type’s members can be indirectly used by a target. The same is true for super
classes of a user-defined class. Similarly, types defined by typedef declarations
are also collected recursively to grab a possible chain of typedef declarations.
The outliner saves all the directly and indirectly used user-defined type decla-
rations into a list. Then, it uses a pre-order traversal of the AST to obtain the
original appearance order of the declarations in the source code. Finally, those
declarations are inserted into the new source file using their original order to
provide all necessary user-defined types for the outlining target.

A self-contained and compilable source file storing an outlined function can
be easily built into a dynamically linkable library. With help from dlopen()
and dlsym(), the ROSE outliner also transforms the original program to use a
function pointer to invoke an outlined function stored in an executable object
file. This gives freedom to other tools to use different versions of the library using
the same executable driver of a host program.

3.6 Supporting OpenMP

Outlining targets within an OpenMP application is useful to support empirical
tuning of OpenMP related parameters, such as the number of threads of an



OpenMP parallel region, the scheduling policy of an OpenMP loop and the as-
sociated chunk size, and thread-processor mapping strategies, etc. The method
to outline a parallel region, a loop construct, or a combined OpenMP parallel
for loop is straightforward. For example, we move the associated OpenMP di-
rectives while moving an OpenMP target into the function body. Variable clones
are used to avoid introducing loop variables of illegal pointer types for OpenMP
loops. The cloned variables use the same name as the original ones to avoid
unnecessary renaming for variables used within OpenMP directives.

However, outlining an omp for loop that is lexically nested within an omp
parallel region needs special attention. As shown in Fig. 6, illegal OpenMP code
can be generated if a reduction variable (sum) is näıvely handled. The OpenMP
specification requires that a reduction variable must be shared within its asso-
ciated parallel region. The variable clone of sum is a locally declared variable
within the outlined function and it is actually private within its parallel region.
Our solution for this problem is to promote non-global scope reduction variables
to the global scope, with optional renaming if name collision occurs. As a result,
those global scope reduction variables will not be passed as function parameters
and used via their clones. Their original shared semantics are preserved after
outlining.

1 void OUT 1 8997 ( long ∗ sump )
2 {
3 int i ;
4 long sum = ∗sump ;
5 #pragma omp for reduction (+: sum)
6 for ( i = 0 ; i < 100; i ++) {
7 sum = (sum + ( i ) ) ;
8 }
9 ∗sump = sum ;

10 }

Fig. 6. Illegal code after näıve outlining an OpenMP loop with reduction

4 Preliminary Evaluation

As on-going work, we give a preliminary evaluation of the ROSE outliner below.
First, we evaluate the performance impact of different outlining methods. Sec-
ondly, we describe an application of the outliner in an empirical tuning system.

4.1 Performance Impact

A simple Jacobi iteration program (shown in Fig. 1) was used to evaluate the
performance impact of different outlining methods. The performance of four
versions of the program were compared: the original C program, an outlined C
version using the classic algorithm relying on pointers, an outlined C++ version
using reference types for modified variables, and an outlined C version using
variable clones. All versions were compiled using the Intel C++ compiler (version
9.1.045) with three different optimization levels (O0, O2, and O3) and were run
on a Dell Precision T5400 workstation with dual processors and 8 GB of memory.
Each of the processors is a 3.16 GHz quad-core Intel Xeon X5460 processor.



 10

 15

 20

 25

 30

 35

 40

O3O2O0

Ex
ec

ut
io

n 
tim

e 
in

 s
ec

on
ds

Original and outlined Jacobi (data size:500x500)

V1: Original
V2: Pointer

V3: CppReference
V4: VariableClone

Fig. 7. Performance Impact of outlining

Fig. 7 shows the execution time in seconds for all the versions at different
optimization levels. As we can see, the outlined version using pointers (V2) and
the version using C++ reference types (V3) took significantly longer execution
time for all optimization levels than the original program (V1). Using C++
reference types is essentially identical to using pointers in terms of performance
impact since most compilers use pointers to implement reference types internally.
For all compiler optimization levels, the original program (V1) and its outlined
version using variable clones (V4) had comparable performance. V2 and V3’s
inferior performance at the O0 level is caused by their näıve memory load and
store accesses to each variable using pointer references, while the original version
and the variable clone version use much more efficient register accesses to scalar
variables. For the O2 and O3 optimization levels, V2 and V3’s performance is
hurt by the excessive use of pointers, impeding advanced compiler optimizations.
In summary, outlining using variable clones outperforms outlining which uses
either pointer dereferences or C++ reference types, in terms of preserving the
original program’s performance characteristics.

4.2 Use in Empirical Tuning

We used the PERI autotuning system to optimize a representative DOE bench-
mark named SMG2000 [18] (Semicoarsening Multigrid Solver). The benchmark
performs iterative solves of linear systems and has more than 28k lines of C
code. Using HPCToolkit [11], we identified the most time consuming kernel (ac-
counting for 35% to 55% of the total execution time depending on compilers).
As shown in Fig. 8, the kernel performs a stencil computation by sweeping the
same array data (accessed using the inner i,j,k indices) multiple times for each
stencil element (the outermost si index). Thus it lacks data reuse and causes
excessive cache misses.

The ROSE outliner was able to successfully extract the kernel to a self-
contained compilable C source file, with all dependent structure and typedef



declarations preserved and without introducing excessive pointer dereferencing.
All other tools (loopProcessor, the ROSE parallelizer [19], POET and CHiLL)
were able to analyze the generated kernel for further optimizations. As a com-
parison, none of the tools could optimize a kernel generated by a classic outlining
algorithm due to pointer references.

1 for ( s i = 0 ; s i < s t e n c i l s i z e ; s i++)
2 for ( k = 0 ; k < hypre mz ; k++)
3 for ( j = 0 ; j < hypre my ; j++)
4 for ( i = 0 ; i < hypre mx ; i++)
5 rp [ r i + i + j ∗ hypre sy3 + k ∗ hypre sz3 ] −=
6 Ap 0 [ i + j ∗ hypre sy1 + k ∗ hypre sz1 + A−>da t a i nd i c e s [m] [ s i ] ] ∗
7 xp 0 [ i + j ∗ hypre sy2 + k ∗ hypre sz2 + dxp s [ s i ] ] ;

Fig. 8. The outlined SMG2000’s kernel

Several standard loop optimizations (shown in the left column of Table 1)
were manually chosen to improve the cache reuse of the kernel. They are, in
the actual order applied, loop tiling on i, j and k levels (each level has a same
tiling size from 0 to 55 and a stride of 5), loop interchange of i, j, k and si levels
(with a lexicographical permutation order ranging from 0 to 4! -1), and finally
loop unrolling on the innermost loop only. For all optimizations, a parameter
value of 0 means no such optimization is applied. So the total search space has
14400 (12∗4!∗50) points. With the help from the checkpointing/restarting library
and a counter to limit the number of calls (set to 1600 times before stopping the
execution) to the kernel, an exhaustive search using GCO became feasible within
40 hours for an input data size of 120 ∗ 120 ∗ 120. As shown in the 3rd column of
Table 2, the best performance was achieved at point (0,8,0), which means loop
interchange using the lexicographical number 8 (corresponding to an order of
[k, j, si, i]) improved the performance while tiling and unrolling did not help at
all. The best searched point achieved a 1.43x speedup for the kernel (1.18 for
the whole benchmark) when compared to the execution time using Intel C/C++
compiler v. 9.1.045 with option -O2 on the Dell T5400 workstation.

Sequential OpenMP

tiling size [ 0, 55, 5 ] #thread [ 1, 8, 1 ]

interchange [ 0, 23, 1 ] schedule policy [ 0, 3, 1 ]

unrolling factor [ 0, 49, 1 ] chunk size [ 0, 60, 2 ]

Table 1. Search space specification

We further applied the ROSE parallelizer to the kernel and it automatically
recognized that all loop levels except for the si level could be parallelized using
OpenMP. A set of parameters (shown in the right column of Table 1) were used to
search for the best OpenMP execution configuration for the benchmark. They
include the number of OpenMP threads, the schedule policy (none-specified,
static, dynamic, and guided), and chunk sizes if applicable. Again, a value of 0
means no such parameter (also dependent parameters) is specified at all. The



search space has less than 992 points (8x4x31) since not all points are valid.
The 4th column of Table 2 shows the search results using an exhaustive search,
which took less than 3 hours. The best performance was achieved at the point
(6,0,0), which means using 6 threads and the default scheduling policy was the
best OpenMP execution configuration. We saw a 5.55x speedup of the kernel
(1.76 for the entire application) at this point. Adding more threads did not help
due to the limitation of Amdahl’s law and the overhead of parallelization. Also,
the loop has no load-imbalance issue and sophisticated scheduling methods only
cause more scheduling overhead.

icc -O2 Sequential(0,8,0) OpenMP(6,0,0)

Kernel only 18.6 13.02 3.35

Kernel speedup N/A 1.43 5.55

Whole application 35.11 29.71 19.90

Total speedup N/A 1.18 1.76

Table 2. Execution time (in seconds) and speedup for input data size 120x120x120

Other optimization opportunities exist for the kernel, such as hoisting the
loop invariant computation and performing scalar replacement. But we don’t
yet support them in our existing tools. Additional search policies could also be
used and compared but it is out of the scope of this paper.

5 Related Work

There have been some papers discussing outlining or kernel extraction. Early
work [20] presented a transformation for decomposing large functions into small
functions by splitting statements and folding them into a new function. They es-
sentially used reaching definition analysis to identify parameters that are passed
between the new call site and the new procedure. But their work focused on
Fortran 77 only. Some other work [21] explored techniques to transform non-
contiguous statements to contiguous, well-structured code block that is suitable
for outlining while preserving the original semantics. Zhao et al. [9] proposed a
framework for function outlining and partial inlining. In their work, cold code
segments in a hot function are outlined to reduce the size of the hot function and
enable more inlining optimization. Although they used a similar variable clone
technology at the call sites of an outlined function to reduce register spilling,
pointer dereferencing was still used within the outlined function. Their work
focused on C code only.

Several projects addressed the similar problem of using code partitioning in
order to tune whole programs. The PEAK system [7] partitions a program into
a set of tunable sections and finds the best combination of compiler optimization
flags for each section. Their code partitioning happens at procedure level to sep-
arate important procedures which are called many times into compilable source
files. Manual partitioning of loop bodies (equivalent to outlining) is needed if an



important procedure containing loops is called only a few times. Lee and Hall [5]
described a code isolator to support performance tuning. Their work focused
on providing an executable version of a code segment with representative input
data. Compiler analyses and transformations were explored to capture and re-
store data environment and machine states relevant to an outlined code segment.
The classic outlining algorithm was used for the actual code isolating.

Jin et. al. [22] analyzed an earlier version of the SMG2000 benchmark. They
used hand-tuned transformations to enhance temporal data reuse of the bench-
mark. In contrast, we use the benchmark to demonstrate the use of the ROSE
outliner to enable automated, standard code transformations improving data
reuse within an end-to-end empirical tuning system.

6 Conclusions and Future Work

In this paper, we have presented an effective and interoperable source-to-source
outliner based on the ROSE compiler infrastructure to support automated whole
program empirical optimization. The outliner aims to handle large scale se-
quential and parallel applications written in multiple languages. It also pre-
serves the performance characteristics of outlining targets and facilitates other
tools for further analysis and optimization. Initial evaluation has shown that
the ROSE outliner has become an enabling component within the PERI au-
totuning system. We also found that our outliner is very useful for other pur-
poses as well, such as code refactoring and test case generation. Our work is
released as part of the ROSE distribution and is available for downloading at
http://www.rosecompiler.org/.

In the future, we will use alias analysis to further improve the quality of out-
lining. Accurate alias information can help the outliner to discover opportunities
of using the restrict qualifier for parameters of pointer types. We will continue
to use ROSE to enrich the tool set supporting whole program tuning, including
automated code triage to suggest search space. Using context sensitive perfor-
mance metrics is also very interesting to have fine-grain control of autotuning.
More parameterized optimization tools will be developed with ROSE, such as
tools for loop-invariant computation hoisting and scalar replacement of array
references.
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