
The Spe
i�
ation of Sour
e-To-Sour
eTransformations for the Compile-TimeOptimization of Parallel Obje
t-OrientedS
ienti�
 Appli
ationsDaniel J. Quinlan1, Markus S
hordan1,Bobby Philip1, and Markus Kowars
hik21 Center for Applied S
ienti�
 ComputingLawren
e Livermore National Laboratory, Livermore, CA, USA2 System Simulation Group, Department of Computer S
ien
eUniversity of Erlangen-Nuremberg, GermanyAbstra
t. The performan
e of obje
t-oriented appli
ations in s
ienti�

omputing often su�ers from the ineÆ
ient use of high-level abstra
-tions provided by underlying libraries. Sin
e these library abstra
tionsare user-de�ned and not part of the programming language itself there isno
ompiler me
hanism to respe
t their semanti
s and thus to performappropriate optimizations.In this paper we outline the design of ROSE and fo
us on the dis
ussion oftwo approa
hes for spe
ifying and pro
essing
omplex sour
e
ode trans-formations. These te
hniques are intended to be as easy and intuitive aspossible for potential ROSE users; i.e., for designers of obje
t-orienteds
ienti�
 libraries, people most often with no
ompiler expertise.1 Introdu
tionThe future of s
ienti�

omputing depends upon the development of moresophisti
ated appli
ation
odes. The original use of Fortran representedhigher-level abstra
tions than the assembly instru
tions that pre
eded it,but exhibited performan
e problems that took years to over
ome. How-ever, the abstra
tions represented in Fortran were standardized withinthe language; today's mu
h higher-level obje
t-oriented abstra
tions aremore diÆ
ult to optimize be
ause they are user-de�ned.The introdu
tion of parallelism greatly exa
erbates the
ompile-timeoptimization problem. While serial languages serve well for parallel pro-gramming, they know only the semanti
s of the serial language. As a resulta serial
ompiler
annot introdu
e s
alable parallel optimizations. Signif-i
ant potential for optimization of parallel appli
ations is lost as a result.

There is a signi�
ant opportunity to
apitalize upon the parallel seman-ti
s of the obje
t-oriented framework and drive signi�
ant optimizationsspe
i�
 to both shared memory and distributed memory appli
ations.We present a prepro
essor based me
hanism,
alled ROSE, that op-timizes parallel obje
t-oriented s
ienti�
 appli
ation
odes that use high-level abstra
tions provided by obje
t-oriented libraries. In
ontrast to
ompile-time optimization of basi
 language abstra
tions (loops, oper-ators, et
.), the optimization of the use of library abstra
tions withinappli
ations has re
eived far less attention. With ROSE, library develop-ers de�ne
ustomized optimizations and build spe
ialized prepro
essors.Sour
e-to-sour
e transformations are then used to provide an eÆ
ientme
hanism for introdu
ing su
h
ustom optimizations into user appli
a-tions. A signi�
ant advantage of our approa
h is that prepro
essors
anbe built whi
h are tailored to user-de�ned high-level abstra
tions, whilevendor supplied C++
ompilers know only the lower-level abstra
tionsof the C++ language they support. So far, our resear
h has fo
used onappli
ations and libraries written in C++.This approa
h permits us to leverage existing vendor C++
ompil-ers for ar
hite
ture spe
i�
 ba
k-end optimizations. Signi�
ant improve-ments in performan
e asso
iated with sour
e-to-sour
e transformationshave already been demonstrated in re
ent work, unders
oring the needfor further resear
h in this dire
tion.Statement/GridSize 5x5 25x25 100x100w=1 3.0 1.8 1.3w=u 3.0 1.9 1.3w=u*2+v*3+u 13.0 5.0 2.4indire
t addressing 44.0 41.0 32.5where statements 23.0 5.0 3.09pt sten
il 77.0 14.0 5.6Table 1. Speedups asso
iated with optimizing sour
e-to-sour
e transformations of ab-stra
tions within Overture appli
ations. Results are presented for 2D array obje
tsu,v,w.Table 1 shows some of these improvements for the use of optimizingsour
e-to-sour
e transformations within the OVERTURE framework [4℄.Speedups are listed for several
ommon types of statements, the valuesare the ratios of exe
ution times without and with the optimizing sour
e-to-sour
e transformations. In ea
h
ase the optimizing transformation

results in better performan
e. The degree of improvement depends uponthe abstra
tion being optimized within the appli
ation
ode and the prob-lem size. For example, in the
ase of indire
t addressing the performan
eimprovement for 100�100 size problems is 3250%, showing the ri
h po-tential for indire
t addressing optimizations. We
an expe
t that ROSEwill dupli
ate these results through the fully automated introdu
tion ofsu
h optimizing transformations into appli
ation
odes.Other work exists whi
h is related to our own resear
h. Internallywithin ROSE a substantially modi�ed version of the SAGE II [7℄ ASTrestru
turing tool is used. Nestor [9℄ is a similar AST restru
turing toolfor Fortran 77, Fortran 90, and HPF2.0, whi
h, however, does not attemptto re
ognize and optimize high-level user-de�ned abstra
tions. Work onMPC++ [10, 11℄ has led to the development of a C++ tool similar toSAGE, but with some additional
apabilities for optimization. However,it does not attempt to address the sophisti
ated s
ale of abstra
tions thatwe target or the transformations we are attempting to introdu
e.Related work on teles
oping languages [8℄ shares some of the samegoals as our resear
h work and we look forward to tra
king its progress inthe
oming years. Other approa
hes we know of are based on the de�nitionof library-spe
i�
 annotation languages to guide optimizing sour
e
odetransformations [12℄ and on the spe
i�
ation of both high-level languagesand
orresponding sets of axioms de�ning
ode optimizations [13℄.Work at University of Tennessee has lead to the development of Au-tomati
ally Tuned Linear Algebra Software (ATLAS) [5℄. Within this ap-proa
h numerous transformations are written to de�ne a sear
h spa
e andthe performan
e of a given ar
hite
ture is evaluated. The parameters as-so
iated with the best performing transformation are thus identi�ed. Ourwork is related to this in the sense that this is one possible me
hanism forthe identi�
ation of optimizing transformations that
ould be used withinprepro
essors built using ROSE to optimize appli
ation
odes. Our ap-proa
h to the spe
i�
ation of transformations in this paper is
onsistentwith the sour
e
ode generation te
hniques used to generate transforma-tions within ATLAS.The remainder of this paper is organized as follows. In se
tion 2 wegive a survey on the ROSE infrastru
ture; we des
ribe the pro
ess ofautomati
ally generating library-spe
i�
 prepro
essors and explain theirsour
e-to-sour
e transformation me
hanisms. The main fo
us of this pa-per is on the spe
i�
ation of these sour
e-to-sour
e transformations bythe developer of the library. We will thus dis
uss two alternative spe
i�-

ation approa
hes and an AST query me
hanism in se
tion 3. In se
tion 4we �nally summarize our work.2 ROSE OverviewWe have developed ROSE as a prepro
essor me
hanism be
ause our fo
usis on optimizing the use of user-de�ned high-level abstra
tions and noton lower-level optimizations asso
iated with ba
k-end
ode generation forspe
i�
 platforms. Our approa
h permits ROSE to work as a prepro
essorindependent of any spe
i�
 C++
ompiler.In the following we will brie
y des
ribe the internal stru
ture of aprepro
essor whi
h has been automati
ally generated using ROSE; par-ti
ularly the re
ognition of high-level abstra
tions (se
tion 2.1), the over-all prepro
essor design (se
tion 2.2), and �nally the spe
i�
ation of thetransformations (se
tion 3), whi
h is the main fo
us of this paper.2.1 Re
ognition of Abstra
tionsWe re
ognize abstra
tions within a user's appli
ation mu
h the same waya
ompiler re
ognizes the syntax of its base language. To re
ognize high-level abstra
tions we build a hierar
hy of high-level abstra
t grammarsand the
orresponding high-level ASTs using ROSE. This hierar
hy iswhat provides for a relationship to teles
oping languages [8℄.These high-level abstra
t grammars are very similar to the base lan-guage abstra
t grammar | in our
ase an abstra
t C++ grammar. Theyare modi�ed forms of the base language abstra
t grammar with addedterminals and non-terminals asso
iated with the abstra
tions we want tore
ognize. They
annot be modi�ed in any way to introdu
e new key-words or new syntax, so
learly there are some restri
tions. However, we
an still leverage the lower-level
ompiler infrastru
ture; the parser thatbuilds the base language AST. New terminals and nonterminals added tothe base language abstra
t grammar might represent spe
i�
 user-de�nedfun
tions, data-stru
tures, user-de�ned types, et
. More detail about there
ognition of high-level abstra
tions
an be found in [3℄2.2 Prepro
essor DesignFigure 1 shows how the individual ASTs are
onne
ted in a sequen
eof steps; automati
ally generated translators generate higher level ASTsfrom lower level ASTs. The following des
ribes these steps:

Unoptimized C++ Source Code

EDG Front-end

SAGE C++ AST
(ROSETTA C++ AST Restructuring Tool)

AST Transformation

ROSE Unparser

Optimized C++ Source Code

Recognition of High-Level Abstractions
Construction of Hierarchy of ASTs

ROSETTA C++ High-Level AST Restructuring Tool

P
re

pr
oc

es
so

r
B

ui
lt

U
si

ng
 R

O
S

E

Fig. 1. Sour
e-to-sour
e C++ transformation with prepro
essors using the ROSE in-frastru
ture.1. The �rst step generates the Edison Design Group (EDG) AST. ThisAST has a proprietary interfa
e and is translated in the se
ond stepto form the abstra
t C++ grammar's AST.2. The C++ AST restru
turing tool is generated by ROSETTA [1℄ andis essentially
omformant with the SAGE II implementation. Thisse
ond step is representative of what SAGE II provides and presentsthe AST in a form where it
an be modi�ed with a non-proprietarypubli
 interfa
e. At this se
ond step the original EDG AST is deletedand afterwards is unavailable.3. The third step is the most interesting sin
e at this step the abstra
tC++ Grammar's AST is translated into higher level ASTs. Ea
h par-ent AST (asso
iated with a lower level abstra
t grammar) is translatedinto all of its
hild ASTs so that the hierar
hy of abstra
t grammarsis represented by a
orresponding hierar
hy of ASTs (one for ea
habstra
t grammar). Transformations
an be applied at any stage ofthis third step and modify the parent AST re
ursively until the AST

asso
iated with the original abstra
t C++ grammar is modi�ed. Atthe end of this third step all transformations have been applied.4. The fourth step is to traverse the C++ AST and generate optimizedC++ sour
e
ode (unparsing). This
ompletes the sour
e-to-sour
eprepro
essing.An obvious next and �nal step is to
ompile the resulting optimizedC++ sour
e
ode using a vendor's C++
ompiler.3 Spe
i�
ation of TransformationsThis paper is primarily about the spe
i�
ation of transformations for usewithin prepro
essors built using ROSE. The purpose of any transforma-tion is to lo
ally rewrite a statement or
olle
tion of statements | thetarget | using the semanti
s of the high-level abstra
tions being opti-mized and the
ontext of their use within the appli
ation.All transformations share a
ommon set of requirements. Internally,the appli
ation has been parsed to build the
orresponding AST withinthe AST hierar
hy, using either the abstra
t C++ grammar or a higher-level abstra
t grammar. This forms the starting point for the internalpro
essing. The ending point is the AST whi
h has been modi�ed a
-
ording to the spe
i�
ation of the transformation. Sin
e at this point allfragments of the AST where transformations will be applied have beenidenti�ed in the re
ognition phase, we
an asso
iate transformations withspe
i�
 terminals of the high-level abstra
t grammar. This approa
h per-mits the transformations to be performed within a single traversal of theAST at ea
h node
orresponding to a spe
i�
 terminal of the abstra
tgrammar.The de�nition of the interfa
e for the spe
i�
ation of transformationsis straightforward. Inputs are fragments of the appli
ation's AST repre-senting C++
ode to be optimized. Outputs are the new AST fragmentsrepresenting the transformed
ode. The a
tual transformation phase is thesubstitution of the input AST fragment with the output AST fragmentwithin the larger AST representing the appli
ation
ode.It is the responsibility of the transformation to reprodu
e the seman-ti
s of the statement or
olle
tion of statements being substituted. Ulti-mately, it is the responsibility of the library developer to
orre
tly spe
ifythe transformation whi
h represents the semanti
s of the high-level ab-stra
tion being optimized.Our re
ent resear
h has been fo
using on two fundamentally di�erentmethodologies for spe
ifying the transformations to be applied; a �rst

approa
h based on dire
t (manual) AST
onstru
tion and a more sophis-ti
ated se
ond approa
h leveraging the
ompiler front-end to generate therequired output AST fragment. An orthogonal query me
hanism allowseither AST fragment
onstru
tion me
hanism to perform queries on theinput AST fragment. This query me
hanism permits the output ASTfragment to be tailored to the
ontext of the input AST fragment.3.1 Me
hanism for the Query of AST Fragmentslist<
har*> globalQueryCharStarListInitializerFun
tion (void){// This fun
tion returns a value used to initialize variables of the return typelist<
har*> returnList = 0;return returnList;}list<
har*> globalQueryGetListOperandCharStarFun
tion (SgNode* astNode){// This fun
tion returns a single element list of variable names at the astNodelist<
har*> variableNameList;SgVarRefExp* varRefExp = isSgVarRefExp(astNode);if (varRefExp != NULL){ SgVariableSymbol* variableSymbol = varRefExp->get_symbol();SgInitializedName* initializedName = variableSymbol->get_de
laration();SgName variableName = initializedName->get_name();
har* name = strdup(variableName.str());variableNameList.push_ba
k (name);}return variableNameList;}list<
har*> globalQueryAssemblyCharStarListFun
tion(list<
har*> inputX, list<
har*> inputY){// This fun
tion adds one list to the other and returns the resultinputX.merge(inputY);return inputX;}Fig. 2. Example of fun
tions used in the templated query interfa
e for a query of vari-able names in AST fragments (e.g., expression statements) using synthesized attributes.Fun
tion pointers are used as inputs to the templated Query
lass. The templated STLlist<>
lass forms an argument to the templated Query
lass.Figures 2 and 3 show an example of the query spe
i�
ation me
h-anism using synthesized attributes. This me
hanism permits the use of

// Build a query operator (using STL and primative types as template arguments)Query< int, list<
har*>, int >lo
alQueryOperator (globalQueryCharStarListInitializerFun
tion,globalQueryGetListOperandCharStarFun
tion,globalQueryAssemblyCharStarListFun
tion);// now ask the questionlist<
har*> operandNameList = lo
alQueryOperator.traverse(astNode);Fig. 3. Example sour
e
ode fragment spe
ifying the query of variable names (e.g., inexpression statements) using synthesized attributes.inherited and synthesized attributes and a

umulators in the develop-ment of queries upon any fragment of the AST. The me
hanism is ba
kedup by an automati
ally generated tree traversal me
hanism generated byROSETTA as part of the AST restru
turing tool asso
iated with ea
hlevel of an abstra
t grammar in the hierar
hy.3.2 Dire
t Constru
tion of AST FragmentsFrom the perspe
tive of the
ompiler, at the start of the optimizationphase the user's appli
ation is already parsed and represented by an AST.Any optimization must modify this representation. Evidently, the sim-plest approa
h is to modify the AST dire
tly. Numerous spe
ialized toolsare based around te
hniques that dire
tly manipulate the internal formsused within
ompilers. The AST and the sour
e
ode are semanti
allyequivalent in the sense that they represent the same
ode. However, theAST is more
omplex for users to manipulate as a tree, at least partlybe
ause programmers are used to manipulating sour
e
ode as text.Figure 4 shows an example of
ode required to
onstru
t a for loopwithin Sage++ [7℄ (prede
essor to Sage II and ourmodi�ed version of SageII). Debugging the
ode generated from this AST fragment, requires alevel of indire
tion whi
h makes the spe
i�
ation of larger transformationsparti
ularly diÆ
ult.�gure 5 shows the
ode generated from the spe
i�
ation of the ASTfragment in �gure 4. Within this approa
h, and spe
i�
ally in this ex-ample, there is a dramati
 di�eren
e in the amount of
ode required tospe
ify the AST fragment (�gure 4) and the sour
e
ode unparsed fromthe AST fragment (�gure 5). Spe
i�
 to this example there is a fa
tor of12 expansion in
omplexity as measured in the number of lines of
ode.It is also immediately obvious that the �nal
ode representation (�gure5) is easier to understand. The sour
e
ode building the AST fragment

(�gure 4) additionally assumes a working knowledge of a parti
ular ASTrestru
turing tool (in this
ase Sage++).However,
onventional methods for the spe
i�
ation of transforma-tions | whi
h we have found in the literature | are
hara
terized bythe dire
t
onstru
tion or alteration of AST fragments (e.g., de
larationstatement obje
ts, for loop statement obje
ts, et
.). Alternative
om-piler tools (Nestor [9℄, Sage [7℄, et
.) are similarly limited to su
h dire
ttransformation approa
hes and, as a result, are most appropriate for sim-ple transformations. These dire
t approa
hes also assume a high degreeof
ompiler expertise whi
h additionally limit their appli
ability withins
ienti�

omputing.3.3 Sour
e-String Based Constru
tion of AST FragmentsSin
e s
ienti�
 library writers represent our target audien
e, we
annotassume any
ompiler expertise or familiarity with ASTs. Additionally, it isour experien
e that transformations for
a
he-based optimizations, whi
hwe are parti
ularly interested in, are
omplex [14, 15℄. Implementing thesekinds of transformations using the approa
h of dire
t AST
onstru
tionis rather tedious, if not impra
ti
al. We therefore require a more
ompa
trepresentation of the transformation. Clearly, from the user's perspe
-tive, the transformation would be best represented as sour
e
ode in theappli
ation's programming language, even if this representation
annotimmediately be substituted into the AST.Our more sophisti
ated se
ond approa
h is therefore based on thesour
e
ode representation of the transformations and leveraging the
om-piler front-end in order to generate the equivalent AST fragment to besubstituted into the appli
ation's AST. There are several advantages ofthis transformation me
hanism:{ The sour
e
ode represents the most
ompa
t representation of theequivalent AST and is familiar to the programmer.{ The sour
e
ode representing the transformation
an be most easilyexamined for
orre
tness by the user.{ Sin
e the sour
e
ode
an be extra
ted from �les, transformations
anbe built from working versions of the
ode representing the transfor-mations. This approa
h thus allows test
odes representing the trans-formations to be built separately and introdu
ed as optimizing trans-formations into appli
ations. We expe
t this approa
h will permit aninterfa
e to optimization tools su
h as ATLAS.

{ The transformation sour
e
ode
an be parsed dire
tly by the internal
ompiler infrastru
ture to generate the AST fragment required. Thusthe pro
ess of generating the AST fragment for insertion into the ASTat
ompile-time
an be automated.With suÆ
ient exer
ise of the query me
hanism the sour
e-string
anbe tailored (programmed) to build most sour
e
ode transformations.Figure 6 shows the sour
e
ode and fun
tion
all required to generate theidenti
al AST fragment as in �gure 4.We
onsider the manipulation of strings, as an alternative way to spe
-ify the AST transformation at
ompile time, to be an added approa
h es-pe
ially useful for larger transformations. This approa
h is dire
t from theuser's point of view, sin
e the sour
e-to-sour
e transformation is spe
i�edusing sour
e
ode. But our approa
h should be
onsidered indire
t fromthe
ompiler's point of view, sin
e the AST fragment is subsequently gen-erated from sour
e-strings and it (the AST fragment) is what is neededat
ompile-time.The optimization of obje
t-oriented array
lass libraries
an form aninteresting example problem. The array statements elegantly representmathemati
al expressions be
ause of the operator overloading made pos-sible within the C++ language. We
onsider \A(I)= (B(I-1)+B(I+1))*0.5;"as a sample array statement from the A++/P++ array
lass library [16,17℄. This library permits the spe
i�
ation of serial and parallel arrayobje
ts and their manipulation using overloaded operators. The librarypermits the evaluation of expressions using pair-wise operator or expres-sion template me
hanisms. Both of these approa
hes have performan
eproblems. The pair-wise evaluation of expressions within a statement isnot
a
he friendly and results in a loss of performan
e (fa
tor of 1-6) [17,14℄. While the expression templates have long
ompile times and limitson their appli
ation [14℄.Figure 8 shows the semanti
ally equivalent transformation generatedfrom the above A++/P++ target (�gure 7). In this
ase the optimiz-ing transformation removes all array
lass overhead and provides thesame performan
e as C or Fortran 77, sin
e the data is a

essed throughrestri
t pointers. More sophisti
ated transformations
ould provide fu-sion between statements to provide improved temporal lo
ality of arraystatement expressions (providing larger internal loops).

4 Con
lusionsROSE is a library to simplify the
onstru
tion of optimizing prepro
es-sors. The spe
i�
ation of the transformation is done within the programthat is
ompiled to be the prepro
essor. This program leverages both theROSE library for internal infrastru
ture and the sour
e
ode generated byROSETTA (part of ROSE). Sour
e
ode generated by ROSETTA imple-ments AST restru
turing tools
orresponding to abstra
t grammars andhigher-level abstra
tions, this sour
e
ode is
ompiled to build the pre-pro
essor. Infrastru
ture within ROSE permits the spe
i�
ation of trans-formations, either dire
tly modifying the AST or indire
tly through thespe
i�
ation of sour
e-strings whi
h are pro
essed to form AST fragmentswhi
h are used to modify the AST.We have presented the ROSE infrastru
ture to automati
ally gener-ate library-spe
i�
 sour
e-to-sour
e
ompilers (prepro
essors). These pre-pro
essors
an be used to optimize the use of high-level abstra
tions inparallel obje
t-oriented appli
ations.We have presented two basi
 approa
hes for spe
ifying transforma-tions. While our �rst approa
h of dire
t AST
onstru
tion turned out tobe tedious (espe
ially for
omplex
a
he-based transformations), our se
-ond approa
h, whi
h leverages the
ompiler front-end instead, providesan elegant and
omfortable alternative.Referen
es1. Quinlan, D., Philip, B., "ROSETTA: The Compile-Time Re
ognition Of Obje
t-Oriented Library Abstra
tions And Their Use Within Appli
ations", Pro
eedingsof the PDPTA'2001 Conferen
e, Las Vegas, Nevada, June 24-27 20012. Quinlan, D., "ROSE: Compiler Support for Obje
t-Oriented Frameworks", ParallelPro
essing Letters, Vol. 10, also Pro
eedings of Conferen
e on Parallel Compilers(CPC2000), Aussois, Fran
e, January 2000.3. Quinlan, D. S
hordan, M. Philip, B. Kowars
hik, M. "Parallel Obje
t-OrientedFramework Optimization", (submitted to) Spe
ial Issue of Con
urren
y: Pra
-ti
e and Experien
e, also in Pro
eedings of Conferen
e on Parallel Compilers(CPC2001), Edinburgh, S
otland, June 2001.4. Brown, D., Henshaw, W., Quinlan, D., "OVERTURE: A Framework for ComplexGeometries", Pro
eedings of the ISCOPE'99 Conferen
e, San Fran
is
o, CA, De
7-10 1999.5. ATLAS homepage, http://www.netlib.org/atlas.6. Edison Design Group, http://www.edg.
om.7. Bodin, F. et. al., "Sage++: An obje
t-oriented toolkit and
lass library for buildingfortran and C++ restru
turing tools", Pro
eedings of the Se
ond Annual Obje
t-Oriented Numeri
s Conferen
e, 1994.

8. Broom, B., Cooper, K., Dongarra, J., Fowler, R., Gannon, D., Johnsson, L.,Kennedy, K., Mellor-Crummey, J., Tor
zon, L., "Teles
oping Languages: A Strat-egy for Automati
 Generation of S
ienti�
 Problem-Solving Systems from Anno-tated Libraries", Journal of Parallel and Distributed Computing, 2000.9. Silber, G.-A., http://www.ens-lyon.fr/�gsilber/nestor.10. Ishikawa, Y., et. al., "Design and Implementation of Metalevel Ar
hite
ture inC++ | MPC++ Approa
h |", Pro
eedings of Re
e
tion'96 Conferen
e, April1996, more info available at: http://pdswww.rw
p.or.jp/mp
++/mp
++.html.11. Chiba, S., "Ma
ro Pro
essing in Obje
t-Oriented Languages", Pro
. ofTe
hnology of Obje
t-Oriented Languages and Systems (TOOLS Pa
i�
'98), Australia, November, IEEE Press, 1998, more info available at:http://www.hlla.is.tsukuba.a
.jp/�
hiba/open
++.html.12. Guyer, S.Z., Lin, C., "An Annotation Language for Optimizing Software Libraries",Pro
eedings of the Se
ond Conferen
e on Domain-Spe
i�
 Languages, O
tober1999.13. Menon, V., Pingali, K., "High-Level Semanti
 Optimization of Numeri
al Codes",Pro
eedings of the ACM/IEEE Super
omputing 1999 Conferen
e (SC99), Port-land, OR, 1999.14. Bassetti, F., Davis, K., Quinlan, D., "Optimizing Transformations of Sten
il Op-erations for Parallel Obje
t-Oriented S
ienti�
 Frameworks on Ca
he-Based Ar-
hite
tures" Pro
eedings of the ISCOPE'98 Conferen
e, Santa Fe, NM, 1998.15. Wei�, C., Karl, W., Kowars
hik, M., R�ude, U., "Memory Chara
teristi
s of Itera-tive Methods", Pro
eedings of the ACM/IEEE Super
omputing 1999 Conferen
e(SC99), Portland, OR, 1999.16. Lemke, M., Quinlan, D., "P++, a C++ Virtual Shared Grids Based ProgrammingEnvironment for Ar
hite
ture-Independent Development of Stru
tured Grid Appli-
ations", published as part of CONPAR/VAPP V, September 1992, Lyon, Fran
e;also published in Le
ture Notes in Computer S
ien
e, Springer Verlag, September1992.17. Parsons, R., Quinlan, D., "A++/P++ Array Classes for Ar
hite
ture Indepen-dent Finite Di�eren
e Computations", Pro
eedings of the Se
ond Annual Obje
t-Oriented Numeri
s Conferen
e, pages 408-418, Sunriver, OR, April 1994.

SgExpression *Expression = CExpressionStatement->expr()->lhs();SgSymbol *Argument = (Expression->lhs()->symbol() == NULL) ?Expression->lhs()->lhs()->symbol() : Expression->lhs()->symbol();SgExpression dimen_
all(RECORD_REF);dimen_
all.setLhs(SgVarRefExp(*TemporaryArrayPtr));SgSymbol *FieldSymbol = FindFieldWName("redim", TemporaryArrayPtr);SgFun
tionCallExp dimen_fun
 (*FieldSymbol);dimen_fun
.addArg(SgVarRefExp(*Argument));dimen_
all.setRhs(dimen_fun
);SgCExpStmt RedimMemberFun
tion (dimen_
all);SgExpression *Expression = getRootExpression (Statement);SgVariableSymb *TemporaryArrayPtr = new SgVariableSymb ("xxx_dA_T");TemporaryArrayPtr->de
lareTheSymbol(*(StatementPtr->
ontrolParent()));SgExpression *le = Expression->lhs();SgDerivedType *dtp = NULL;SgSymbol *vsb = le->symbol();TemporaryArrayPtr->setType(vsb->type());SgExpression *Expression = getRootExpression (Statement);SgVariableSymb *TemporaryArrayPtr = new SgVariableSymb ("xxx_dB");TemporaryArrayPtr->de
lareTheSymbol(*(StatementPtr->
ontrolParent()));SgExpression *le = Expression->lhs();SgDerivedType *dtp = NULL;SgSymbol *vsb = le->symbol();TemporaryArrayPtr->setType(vsb->type());SgVariableSymb *LoopIndu
tionVariable = new SgVariableSymb ("i_loopxx");LoopIndu
tionVariable->setType(SgTypeInt());LoopIndu
tionVariable->de
lareTheSymbol(*(StatementPtr->
ontrolParent()));SgCExpStmt *AssignmentExpression =new SgCExpStmt (SgAssignOp(*LhsExpression , SgVarRefExp(*TemporaryArrayPtr)));SgBasi
Blo
k* LoopBody = new SgBasi
Blo
k ();LoopBody.insert(AssignmentExpression);int upperBound = 100;SgForStmt *ForStatementPtr =new SgForStmt (SgAssignOp(SgVarRefExp(*LoopIndu
tionVariable),SgValueExp(0)),SgVarRefExp(*LoopIndu
tionVariable) < SgValueExp(upperBound),SgUnaryExp(PLUSPLUS_OP,1,SgVarRefExp(*LoopIndu
tionVariable)),SgCExpStmt(*LoopBody));Fig. 4. Code required to build an AST fragment for the for loop shown in �gure 5.A.redim(size);for (i_loopxx = 0; i_loopxx < 100; i_loopxx++){ xxx_dA_T[i_loopxx℄ = xxx_dB[i_loopxx℄;} Fig. 5. Unparsed sour
e
ode from the AST formed in �gure 4.

buildAST_Fragment ("A.redim(size); \n for (i_loopxx = 0; i_loopxx < 100; i_loopxx++) \n \{ \n xxx_dA_T[i_loopxx℄ = xxx_dB[i_loopxx℄; }");Fig. 6. Fun
tion
all using a sour
e-string to
reate an AST representing the sour
e
ode in �gure 5.
// A and B are de
lared as array obje
ts (not shown)// and used in an array statementA(I) = (B(I-1) + B(I+1)) * 0.5;Fig. 7. Target of optimizing transformation (transformation shown in �gure 8).
// Transformation Target: A(I) = (B(I-1) + B(I+1)) * 0.5;int rose_index [8℄;int rose_stride[8℄;int rose_base [8℄;int rose_bound [8℄;double restri
t* B_rose_pointer = B.getDataPointer();double restri
t* A_rose_pointer = A.getDataPointer();rose_base[0℄ = (B.getBase)(0);rose_bound[0℄ = (B.getBound)(0);rose_stride[0℄ = (B.getStride)(0);for (int i = rose_base[0℄; i <= rose_bound[0℄; i += rose_stride[0℄){ A_rose_pointer[i℄ = (B_rose_pointer[i-1℄ + B_rose_pointer[i+1℄) * 0.5;}Fig. 8. Unparsed sour
e
ode represented by an AST of the transformed target
ode(�gure 7). The spe
i�
ation uses the internal ROSE infrastru
ture (not shown). Asour
e-string is pro
essed to generate an AST fragment and then unparsed to form thetext.

