[2] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. PETSc Web page. See http://www.mcs.anl.gov/petsc.
[3] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient management of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163--202. Birkhauser Press, 1997.
[4] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. PETSc 2.0 users manual. Technical Report ANL-95/11 - Revision 2.1.0, Argonne National Laboratory, Apr 2001.
[5] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. SIAM, Philadelphia, Pennsylvania, 2000.
[6] R. W. Cottle. Nonlinear programs with positively bounded Jacobians. PhD thesis, Department of Mathematics, University of California, Berkeley, California, 1964.
[7] T. De Luca, F. Facchinei, and C. Kanzow. A semismooth equation approach to the solution of nonlinear complementarity problems. Mathematical Programming, 75:407--439, 1996.
[8] F. Facchinei, A. Fischer, and C. Kanzow. A semismooth Newton method for variational inequalities: The case of box constraints. In M. C. Ferris and J. S. Pang, editors, Complementarity and Variational Problems: State of the Art, pages 76--90, Philadelphia, Pennsylvania, 1997. SIAM Publications.
[9] M. C. Ferris and J. S. Pang. Engineering and economic applications of complementarity problems. SIAM Review, 39:669--713, 1997.
[10] A. Fischer. A special Newton--type optimization method. Optimization, 24:269--284, 1992.
[11] L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search technique for Newton's method. SIAM Journal on Numerical Analysis, 23:707--716, 1986.
[12] William Gropp and Ewing Lusk. MPICH Web page. http://www.mcs.anl.gov/mpi/mpich.
[13] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Programming with the Message Passing Interface. MIT Press, 1994.
[14] J. Huang and J. S. Pang. Option pricing and linear complementarity. Journal of Computational Finance, 2:31--60, 1998.
[15] Mark T. Jones and Paul E. Plassmann. BlockSolve95 users manual: Scalable library software for the parallel solution of sparse linear systems. Technical Report ANL-95/48, Argonne National Laboratory, December 1995.
[16] W. Karush. Minima of functions of several variables with inequalities as side conditions. Master's thesis, Department of Mathematics, University of Chicago, 1939.
[17] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In J. Neyman, editor, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pages 481--492. University of California Press, Berkeley and Los Angeles, 1951.
[18] C.-J. Lin and J. J. Moré. Newton's method for large bound-constrained optimization problems. SIOPT, 9(4):1100--1127, 1999.
[19] R. Mifflin. Semismooth and semiconvex functions in constrained optimization. SIAM Journal on Control and Optimization, 15:957--972, 1977.
[20] Jorge J. Moré and G. Toraldo. On the solution of large quadratic programming problems with bound constraints. SIOPT, 1:93--113, 1991.
[21] MPI: A message-passing interface standard. International J. Supercomputing Applications, 8(3/4), 1994.
[22] T. S. Munson, F. Facchinei, M. C. Ferris, A. Fischer, and C. Kanzow. The semismooth algorithm for large scale complementarity problems. INFORMS Journal on Computing, forthcoming, 2001.
[23] J. F. Nash. Equilibrium points in N--person games. Proceedings of the National Academy of Sciences, 36:48--49, 1950.
[24] J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal, 7:308--313, 1965.
[25] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer-Verlag, New York, 1999.
[26] L. Qi. Convergence analysis of some algorithms for solving nonsmooth equations. Mathematics of Operations Research, 18:227--244, 1993.
[27] L. Qi and J. Sun. A nonsmooth version of Newton's method. Mathematical Programming, 58:353--368, 1993.