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Abstract

This document describes the capabilities and operations of PT-Scotch

and libScotch, a software package and a software library which compute

parallel static mappings and parallel sparse matrix block orderings of graphs.

It gives brief descriptions of the algorithms, details the input/output formats,

instructions for use, installation procedures, and provides a number of exam-

ples.

PT-Scotch is distributed as free/libre software, and has been designed

such that new partitioning or ordering methods can be added in a straight-

forward manner. It can therefore be used as a testbed for the easy and quick

coding and testing of such new methods, and may also be redistributed, as

a library, along with third-party software that makes use of it, either in its

original or in updated forms.
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1 Introduction

1.1 Static mapping

The efficient execution of a parallel program on a parallel machine requires that

the communicating processes of the program be assigned to the processors of the

machine so as to minimize its overall running time. When processes have a limited

duration and their logical dependencies are accounted for, this optimization problem

is referred to as scheduling. When processes are assumed to coexist simultaneously

for the entire duration of the program, it is referred to as mapping. It amounts to

balancing the computational weight of the processes among the processors of the

machine, while reducing the cost of communication by keeping intensively inter-

communicating processes on nearby processors.

In most cases, the underlying computational structure of the parallel programs

to map can be conveniently modeled as a graph in which vertices correspond to

processes that handle distributed pieces of data, and edges reflect data dependencies.

The mapping problem can then be addressed by assigning processor labels to the

vertices of the graph, so that all processes assigned to some processor are loaded

and run on it. In a SPMD context, this is equivalent to the distribution across

processors of the data structures of parallel programs; in this case, all pieces of data

assigned to some processor are handled by a single process located on this processor.

A mapping is called static if it is computed prior to the execution of the program.

Static mapping is NP-complete in the general case [10]. Therefore, many studies

have been carried out in order to find sub-optimal solutions in reasonable time,

including the development of specific algorithms for common topologies such as the

hypercube [8, 16]. When the target machine is assumed to have a communication

network in the shape of a complete graph, the static mapping problem turns into the

partitioning problem, which has also been intensely studied [3, 17, 25, 26, 41]. How-

ever, when mapping onto parallel machines the communication network of which is

not a bus, not accounting for the topology of the target machine usually leads to

worse running times, because simple cut minimization can induce more expensive

long-distance communication [16, 44]; the static mapping problem is gaining pop-

ularity as most of the newer massively parallel machines have a strongly NUMA

architecture

1.2 Sparse matrix ordering

Many scientific and engineering problems can be modeled by sparse linear systems,

which are solved either by iterative or direct methods. To achieve efficiency with di-

rect methods, one must minimize the fill-in induced by factorization. This fill-in is a

direct consequence of the order in which the unknowns of the linear system are num-

bered, and its effects are critical both in terms of memory and of computation costs.

Because there always exist large problem graphs which cannot fit in the memory

of sequential computers and cost too much to partition, it is necessary to resort to

parallel graph ordering tools. PT-Scotch provides such features.
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1.3 Contents of this document

This document describes the capabilities and operations of PT-Scotch, a software

package devoted to parallel static mapping and sparse matrix block ordering. It is

the parallel extension of Scotch, a sequential software package devoted to static

mapping, graph and mesh partitioning, and sparse matrix block ordering. While

both packages share a significant amount of code, because PT-Scotch transfers

control to the sequential routines of the libScotch library when the subgraphs on

which it operates are located on a single processor, the two sets of routines have

a distinct user’s manual. Readers interested in the sequential features of Scotch

should refer to the Scotch User’s Guide [36].

The rest of this manual is organized as follows. Section 2 presents the goals

of the Scotch project, and section 3 outlines the most important aspects of the

parallel partitioning and ordering algorithms that it implements. Section 4 defines

the formats of the files used in PT-Scotch, section 5 describes the programs of

the PT-Scotch distribution, and section 6 defines the interface and operations of

the parallel routines of the libScotch library. Section 7 explains how to obtain

and install the Scotch distribution. Finally, some practical examples are given in

section 8.

2 The Scotch project

2.1 Description

Scotch is a project carried out at the Laboratoire Bordelais de Recherche en In-

formatique (LaBRI) of the Université Bordeaux I, and now within the ScALApplix

project of INRIA Bordeaux Sud-Ouest. Its goal is to study the applications of graph

theory to scientific computing, using a “divide and conquer” approach.

It focused first on static mapping, and has resulted in the development of the

Dual Recursive Bipartitioning (or DRB) mapping algorithm and in the study of

several graph bipartitioning heuristics [34], all of which have been implemented in

the Scotch software package [38]. Then, it focused on the computation of high-

quality vertex separators for the ordering of sparse matrices by nested dissection, by

extending the work that has been done on graph partitioning in the context of static

mapping [39, 40]. More recently, the ordering capabilities of Scotch have been

extended to native mesh structures, thanks to hypergraph partitioning algorithms.

New graph partitioning methods have also been recently added [6, 35]. Version

5.0 of Scotch was the first one to comprise parallel graph ordering routines [7],

and version 5.1 now offers parallel graph partitioning features, while parallel static

mapping will be available in the next release.

2.2 Availability

Starting from version 4.0, which has been developed at INRIA within the ScAlAp-

plix project, Scotch is available under a dual licensing basis. On the one hand, it

is downloadable from the Scotch web page as free/libre software, to all interested

parties willing to use it as a library or to contribute to it as a testbed for new

partitioning and ordering methods. On the other hand, it can also be distributed,

under other types of licenses and conditions, to parties willing to embed it tightly

into closed, proprietary software.
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The free/libre software license under which Scotch 5.1 is distributed is

the CeCILL-C license [4], which has basically the same features as the GNU

LGPL (“Lesser General Public License”) [29]: ability to link the code as a

library to any free/libre or even proprietary software, ability to modify the

code and to redistribute these modifications. Version 4.0 of Scotch was dis-

tributed under the LGPL itself. This version did not comprise any parallel features.

Please refer to section 7 to see how to obtain the free/libre distribution of

Scotch.

3 Algorithms

3.1 Parallel static mapping by Dual Recursive Bipartitioning

For a detailed description of the sequential implementation of this mapping algo-

rithm and an extensive analysis of its performance, please refer to [33, 37]. In the

next sections, we will only outline the most important aspects of the algorithm.

3.1.1 Static mapping

The parallel program to be mapped onto the target architecture is modeled by a val-

uated unoriented graph S called source graph or process graph, the vertices of which

represent the processes of the parallel program, and the edges of which the commu-

nication channels between communicating processes. Vertex- and edge- valuations

associate with every vertex vS and every edge eS of S integer numbers wS(vS) and

wS(eS) which estimate the computation weight of the corresponding process and

the amount of communication to be transmitted on the channel, respectively.

The target machine onto which is mapped the parallel program is also modeled

by a valuated unoriented graph T called target graph or architecture graph. Vertices

vT and edges eT of T are assigned integer weights wT (vT ) and wT (eT ), which

estimate the computational power of the corresponding processor and the cost of

traversal of the inter-processor link, respectively.

A mapping from S to T consists of two applications τS,T : V (S) −→ V (T ) and

ρS,T : E(S) −→ P(E(T )), where P(E(T )) denotes the set of all simple loopless

paths which can be built from E(T ). τS,T (vS) = vT if process vS of S is mapped

onto processor vT of T , and ρS,T (eS) = {e1
T , e2

T , . . . , en
T } if communication channel

eS of S is routed through communication links e1
T , e2

T , . . . , en
T of T . |ρS,T (eS)|

denotes the dilation of edge eS , that is, the number of edges of E(T ) used to route

eS .

3.1.2 Cost function and performance criteria

The computation of efficient static mappings requires an a priori knowledge of the

dynamic behavior of the target machine with respect to the programs which are

run on it. This knowledge is synthesized in a cost function, the nature of which

determines the characteristics of the desired optimal mappings. The goal of our

mapping algorithm is to minimize some communication cost function, while keeping

the load balance within a specified tolerance. The communication cost function fC

that we have chosen is the sum, for all edges, of their dilation multiplied by their

weight:

fC(τS,T , ρS,T )
def

=
∑

eS∈E(S)

wS(eS) |ρS,T (eS)| .
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This function, which has already been considered by several authors for hypercube

target topologies [8, 16, 20], has several interesting properties: it is easy to compute,

allows incremental updates performed by iterative algorithms, and its minimization

favors the mapping of intensively intercommunicating processes onto nearby pro-

cessors; regardless of the type of routage implemented on the target machine (store-

and-forward or cut-through), it models the traffic on the interconnection network

and thus the risk of congestion.

The strong positive correlation between values of this function and effective

execution times has been experimentally verified by Hammond [16] on the CM-2,

and by Hendrickson and Leland [21] on the nCUBE 2.

The quality of mappings is evaluated with respect to the criteria for quality that

we have chosen: the balance of the computation load across processors, and the

minimization of the interprocessor communication cost modeled by function fC .

These criteria lead to the definition of several parameters, which are described

below.

For load balance, one can define µmap, the average load per computational

power unit (which does not depend on the mapping), and δmap, the load imbalance

ratio, as

µmap
def

=

∑

vS∈V (S)

wS(vS)

∑

vT ∈V (T )

wT (vT )
and

δmap
def

=

∑

vT ∈V (T )

∣

∣

∣

∣

∣

∣

∣







1
wT (vT )

∑

vS ∈ V (S)
τS,T (vS) = vT

wS(vS)






− µmap

∣

∣

∣

∣

∣

∣

∣

∑

vS∈V (S)

wS(vS)
.

However, since the maximum load imbalance ratio is provided by the user in input

of the mapping, the information given by these parameters is of little interest, since

what matters is the minimization of the communication cost function under this

load balance constraint.

For communication, the straightforward parameter to consider is fC . It can be

normalized as µexp, the average edge expansion, which can be compared to µdil,

the average edge dilation; these are defined as

µexp
def

=
fC

∑

eS∈E(S)

wS(eS)
and µdil

def

=

∑

eS∈E(S)

|ρS,T (eS)|

|E(S)|
.

δexp
def

=
µexp

µdil
is smaller than 1 when the mapper succeeds in putting heavily inter-

communicating processes closer to each other than it does for lightly communicating

processes; they are equal if all edges have same weight.

3.1.3 The Dual Recursive Bipartitioning algorithm

Our mapping algorithm uses a divide and conquer approach to recursively allocate

subsets of processes to subsets of processors [33].

It starts by considering a set of processors, also called domain, containing all

the processors of the target machine, and with which is associated the set of all

the processes to map. At each step, the algorithm bipartitions a yet unprocessed

domain into two disjoint subdomains, and calls a graph bipartitioning algorithm to
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split the subset of processes associated with the domain across the two subdomains,

as sketched in the following.

mapping (D, P)
Set_Of_Processors D;
Set_Of_Processes P;
{

Set_Of_Processors D0, D1;
Set_Of_Processes P0, P1;

if (|P| == 0) return; /* If nothing to do. */
if (|D| == 1) { /* If one processor in D */
result (D, P); /* P is mapped onto it. */
return;

}

(D0, D1) = processor_bipartition (D);
(P0, P1) = process_bipartition (P, D0, D1);
mapping (D0, P0); /* Perform recursion. */
mapping (D1, P1);

}

The association of a subdomain with every process defines a partial mapping of

the process graph. As bipartitionings are performed, the subdomain sizes decrease,

up to give a complete mapping when all subdomains are of size one.

The above algorithm lies on the ability to define five main objects:

• a domain structure, which represents a set of processors in the target archi-

tecture;

• a domain bipartitioning function, which, given a domain, bipartitions it in

two disjoint subdomains;

• a domain distance function, which gives, in the target graph, a measure of the

distance between two disjoint domains. Since domains may not be convex nor

connected, this distance may be estimated. However, it must respect certain

homogeneity properties, such as giving more accurate results as domain sizes

decrease. The domain distance function is used by the graph bipartitioning

algorithms to compute the communication function to minimize, since it allows

the mapper to estimate the dilation of the edges that link vertices which belong

to different domains. Using such a distance function amounts to considering

that all routings will use shortest paths on the target architecture, which

is how most parallel machines actually do. We have thus chosen that our

program would not provide routings for the communication channels, leaving

their handling to the communication system of the target machine;

• a process subgraph structure, which represents the subgraph induced by a

subset of the vertex set of the original source graph;

• a process subgraph bipartitioning function, which bipartitions subgraphs in

two disjoint pieces to be mapped onto the two subdomains computed by the

domain bipartitioning function.

All these routines are seen as black boxes by the mapping program, which can thus

accept any kind of target architecture and process bipartitioning functions.
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3.1.4 Partial cost function

The production of efficient complete mappings requires that all graph bipartition-

ings favor the criteria that we have chosen. Therefore, the bipartitioning of a

subgraph S′ of S should maintain load balance within the user-specified tolerance,

and minimize the partial communication cost function f ′
C , defined as

f ′
C(τS,T , ρS,T )

def

=
∑

v ∈ V (S′)

{v, v′} ∈ E(S)

wS({v, v′}) |ρS,T ({v, v′})| ,

which accounts for the dilation of edges internal to subgraph S′ as well as for the

one of edges which belong to the cocycle of S′, as shown in Figure 1. Taking into

account the partial mapping results issued by previous bipartitionings makes it pos-

sible to avoid local choices that might prove globally bad, as explained below. This

amounts to incorporating additional constraints to the standard graph bipartition-

ing problem, turning it into a more general optimization problem termed as skewed

graph partitioning by some authors [23].

D0 D1

D

a. Initial position.

D0 D1

D

b. After one vertex is moved.

Figure 1: Edges accounted for in the partial communication cost function when

bipartitioning the subgraph associated with domain D between the two subdomains

D0 and D1 of D. Dotted edges are of dilation zero, their two ends being mapped

onto the same subdomain. Thin edges are cocycle edges.

3.1.5 Parallel graph bipartitioning methods

The core of our parallel recursive mapping algorithm uses process graph parallel

bipartitioning methods as black boxes. It allows the mapper to run any type of

graph bipartitioning method compatible with our criteria for quality. Bipartitioning

jobs maintain an internal image of the current bipartition, indicating for every vertex

of the job whether it is currently assigned to the first or to the second subdomain. It

is therefore possible to apply several different methods in sequence, each one starting

from the result of the previous one, and to select the methods with respect to the

job characteristics, thus enabling us to define mapping strategies. The currently

implemented graph bipartitioning methods are listed below.

Band

Like the multi-level method which will be described below, the band method

is a meta-algorithm, in the sense that it does not itself compute partitions, but

rather helps other partitioning algorithms perform better. It is a refinement

algorithm which, from a given initial partition, extracts a band graph of given
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width (which only contains graph vertices that are at most at this distance

from the separator), calls a partitioning strategy on this band graph, and

projects back the refined partition on the original graph. This method was

designed to be able to use expensive partitioning heuristics, such as genetic

algorithms, on large graphs, as it dramatically reduces the problem space by

several orders of magnitude. However, it was found that, in a multi-level

context, it also improves partition quality, by coercing partitions in a problem

space that derives from the one which was globally defined at the coarsest

level, thus preventing local optimization refinement algorithms to be trapped

in local optima of the finer graphs [6].

Diffusion

This global optimization method, the sequential formulation of which is pre-

sented in [35], flows two kinds of antagonistic liquids, scotch and anti-scotch,

from two source vertices, and sets the new frontier as the limit between ver-

tices which contain scotch and the ones which contain anti-scotch. In order to

add load-balancing constraints to the algorithm, a constant amount of liquid

disappears from every vertex per unit of time, so that no domain can spread

across more than half of the vertices. Because selecting the source vertices is

essential to the obtainment of useful results, this method has been hard-coded

so that the two source vertices are the two vertices of highest indices, since

in the band method these are the anchor vertices which represent all of the

removed vertices of each part. Therefore, this method must be used on band

graphs only, or on specifically crafted graphs.

Multi-level

This algorithm, which has been studied by several authors [3, 18, 25] and

should be considered as a strategy rather than as a method since it uses other

methods as parameters, repeatedly reduces the size of the graph to bipartition

by finding matchings that collapse vertices and edges, computes a partition for

the coarsest graph obtained, and projects the result back to the original graph,

as shown in Figure 2. The multi-level method, when used in conjunction with

Coarsening
phase

Uncoarsening
phase

Initial partitioning

Projected partition

Refined partition

Figure 2: The multi-level partitioning process. In the uncoarsening phase, the light

and bold lines represent for each level the projected partition obtained from the

coarser graph, and the partition obtained after refinement, respectively.

the banded diffusion method to refine the projected partitions at every level,

usually stabilizes quality irrespective of the number of processors which run

the parallel static mapper.

10



3.1.6 Mapping onto variable-sized architectures

Several constrained graph partitioning problems can be modeled as mapping the

problem graph onto a target architecture, the number of vertices and topology of

which depend dynamically on the structure of the subgraphs to bipartition at each

step.

Variable-sized architectures are supported by the DRB algorithm in the follow-

ing way: at the end of each bipartitioning step, if any of the variable subdomains

is empty (that is, all vertices of the subgraph are mapped only to one of the sub-

domains), then the DRB process stops for both subdomains, and all of the vertices

are assigned to their parent subdomain; else, if a variable subdomain has only one

vertex mapped onto it, the DRB process stops for this subdomain, and the vertex

is assigned to it.

The moment when to stop the DRB process for a specific subgraph can be con-

trolled by defining a bipartitioning strategy that tests for the validity of a criterion

at each bipartitioning step, and maps all of the subgraph vertices to one of the

subdomains when it becomes false.

3.2 Parallel sparse matrix ordering by hybrid incomplete

nested dissection

When solving large sparse linear systems of the form Ax = b, it is common to

precede the numerical factorization by a symmetric reordering. This reordering is

chosen in such a way that pivoting down the diagonal in order on the resulting

permuted matrix PAPT produces much less fill-in and work than computing the

factors of A by pivoting down the diagonal in the original order (the fill-in is the

set of zero entries in A that become non-zero in the factored matrix).

3.2.1 Hybrid incomplete nested dissection

The minimum degree and nested dissection algorithms are the two most popular

reordering schemes used to reduce fill-in and operation count when factoring and

solving sparse matrices.

The minimum degree algorithm [43] is a local heuristic that performs its pivot

selection by iteratively selecting from the graph a node of minimum degree. It is

known to be a very fast and general purpose algorithm, and has received much

attention over the last three decades (see for example [1, 13, 31]). However, the

algorithm is intrinsically sequential, and very little can be theoretically proved

about its efficiency.

The nested dissection algorithm [14] is a global, recursive heuristic algorithm

which computes a vertex set S that separates the graph into two parts A and B, or-

dering S with the highest remaining indices. It then proceeds recursively on parts A

and B until their sizes become smaller than some threshold value. This ordering

guarantees that, at each step, no non zero term can appear in the factorization

process between unknowns of A and unknowns of B.

Many theoretical results have been obtained on nested dissection order-

ing [5, 30], and its divide and conquer nature makes it easily parallelizable.

The main issue of the nested dissection ordering algorithm is thus to find small

vertex separators that balance the remaining subgraphs as evenly as possible.

Provided that good vertex separators are found, the nested dissection algorithm
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produces orderings which, both in terms of fill-in and operation count, compare

favorably [15, 25, 39] to the ones obtained with the minimum degree algorithm [31].

Moreover, the elimination trees induced by nested dissection are broader, shorter,

and better balanced, and therefore exhibit much more concurrency in the con-

text of parallel Cholesky factorization [2, 11, 12, 15, 39, 42, and included references].

Due to their complementary nature, several schemes have been proposed to

hybridize the two methods [24, 27, 39]. Our implementation is based on a tight

coupling of the nested dissection and minimum degree algorithms, that allows each

of them to take advantage of the information computed by the other [40].

However, because we do not provide a parallel implementation of the minimum

degree algorithm, this hybridization scheme can only take place after enough steps

of parallel nested dissection have been performed, such that the subgraphs to be

ordered by minimum degree are centralized on individual processors.

3.2.2 Parallel ordering

The parallel computation of orderings in PT-Scotch involves three different levels

of concurrency, corresponding to three key steps of the nested dissection process:

the nested dissection algorithm itself, the multi-level coarsening algorithm used to

compute separators at each step of the nested dissection process, and the refinement

of the obtained separators. Each of these steps is described below.

Nested dissection As said above, the first level of concurrency relates to the

parallelization of the nested dissection method itself, which is straightforward thanks

to the intrinsically concurrent nature of the algorithm. Starting from the initial

graph, arbitrarily distributed across p processors but preferably balanced in terms

of vertices, the algorithm proceeds as illustrated in Figure 3 : once a separator

has been computed in parallel, by means of a method described below, each of

the p processors participates in the building of the distributed induced subgraph

corresponding to the first separated part (even if some processors do not have any

vertex of it). This induced subgraph is then folded onto the first ⌈p

2⌉ processors, such

that the average number of vertices per processor, which guarantees efficiency as it

allows the shadowing of communications by a subsequent amount of computation,

remains constant. During the folding process, vertices and adjacency lists owned

by the ⌊p
2⌋ sender processors are redistributed to the ⌈p

2⌉ receiver processors so as

to evenly balance their loads.

The same procedure is used to build, on the ⌊p
2⌋ remaining processors, the

folded induced subgraph corresponding to the second part. These two constructions

being completely independent, the computations of the two induced subgraphs and

their folding can be performed in parallel, thanks to the temporary creation of an

extra thread per processor. When the vertices of the separated graph are evenly

distributed across the processors, this feature favors load balancing in the subgraph

building phase, because processors which do not have many vertices of one part

will have the rest of their vertices in the other part, thus yielding the same overall

workload to create both graphs in the same time. This feature can be disabled

when the communication system of the target machine is not thread-safe.

At the end of the folding process, every processor has a folded subgraph fragment

of one of the two folded subgraphs, and the nested dissection process car recursively

proceed independently on each subgroup of p

2 (then p

4 , p

8 , etc.) processors, until

each subgroup is reduced to a single processor. From then on, the nested dissection
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Figure 3: Diagram of a nested dissection step for a (sub-)graph distributed across

four processors. Once the separator is known, the two induced subgraphs are built

and folded (this can be done in parallel for both subgraphs), yielding two subgraphs,

each of them distributed across two processors.

process will go on sequentially on every processor, using the nested dissection rou-

tines of the Scotch library, eventually ending in a coupling with minimum degree

methods [40], as described in the previous section.

Graph coarsening The second level of concurrency concerns the computation

of separators. The approach we have chosen is the now classical multi-level one [3,

22, 27]. It consists in repeatedly computing a set of increasingly coarser albeit

topologically similar versions of the graph to separate, by finding matchings which

collapse vertices and edges, until the coarsest graph obtained is no larger than a

few hundreds of vertices, then computing a separator on this coarsest graph, and

projecting back this separator, from coarser to finer graphs, up to the original graph.

Most often, a local optimization algorithm, such as Kernighan-Lin [28] or Fiduccia-

Mattheyses [9] (FM), is used in the uncoarsening phase to refine the partition that

is projected back at every level, such that the granularity of the solution is the one

of the original graph and not the one of the coarsest graph.

The main features of our implementation are outlined in Figure 4. Once the

matching phase is complete, the coarsened subgraph building phase takes place.

It can be parametrized so as to allow one to choose between two options. Either

all coarsened vertices are kept on their local processors (that is, processors that

hold at least one of the ends of the coarsened edges), as shown in the first steps

of Figure 4, which decreases the number of vertices owned by every processor and

speeds-up future computations, or else coarsened graphs are folded and duplicated,

as shown in the next steps of Figure 4, which increases the number of working copies

of the graph and can thus reduce communication and increase the final quality of

the separators.

As a matter of fact, separator computation algorithms, which are local heuristics,

heavily depend on the quality of the coarsened graphs, and we have observed with

the sequential version of Scotch that taking every time the best partition among

two ones, obtained from two fully independent multi-level runs, usually improved

overall ordering quality. By enabling the folding-with-duplication routine (which

will be referred to as “fold-dup” in the following) in the first coarsening levels, one

can implement this approach in parallel, every subgroup of processors that hold a

working copy of the graph being able to perform an almost-complete independent

multi-level computation, save for the very first level which is shared by all subgroups,

for the second one which is shared by half of the subgroups, and so on.

The problem with the fold-dup approach is that it consumes a lot of memory.
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Figure 4: Diagram of the parallel computation of the separator of a graph dis-

tributed across four processors, by parallel coarsening with folding-with-duplication

in the last stages, multi-sequential computation of initial partitions that are locally

projected back and refined on every processor, and then parallel uncoarsening of

the best partition encountered.

Consequently, a good strategy can be to resort to folding only when the number

of vertices of the graph to be considered reaches some minimum threshold. This

threshold allows one to set a trade off between the level of completeness of the

independent multi-level runs which result from the early stages of the fold-dup

process, which impact partitioning quality, and the amount of memory to be used

in the process.

Once all working copies of the coarsened graphs are folded on individual pro-

cessors, the algorithm enters a multi-sequential phase, illustrated at the bottom of

Figure 4: the routines of the sequential Scotch library are used on every processor

to complete the coarsening process, compute an initial partition, and project it back

up to the largest centralized coarsened graph stored on the processor. Then, the

partitions are projected back in parallel to the finer distributed graphs, selecting the

best partition between the two available when projecting to a level where fold-dup

had been performed. This distributed projection process is repeated until we obtain

a partition of the original graph.

Band refinement The third level of concurrency concerns the refinement heuris-

tics which are used to improve the projected separators. At the coarsest levels of

the multi-level algorithm, when computations are restricted to individual proces-

sors, the sequential FM algorithm of Scotch is used, but this class of algorithms

does not parallelize well.

This problem can be solved in two ways: either by developing scalable and

efficient local optimization algorithms, or by being able to use the existing sequential

FM algorithm on very large graphs. In [6] has been proposed a solution which

enables both approaches, and is based on the following reasoning. Since every

refinement is performed by means of a local algorithm, which perturbs only in a

limited way the position of the projected separator, local refinement algorithms

need only to be passed a subgraph that contains the vertices that are very close to

the projected separator.

The computation and use of distributed band graphs is outlined in Figure 5.

Given a distributed graph and an initial separator, which can be spread across
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P0 P3

Figure 5: Creation of a distributed band graph. Only vertices closest to the sep-

arator are kept. Other vertices are replaced by anchor vertices of equivalent total

weight, linked to band vertices of the last layer. There are two anchor vertices per

processor, to reduce communication. Once the separator has been refined on the

band graph using some local optimization algorithm, the new separator is projected

back to the original distributed graph.

P0 P3

Figure 6: Diagram of the multi-sequential refinement of a separator projected back

from a coarser graph distributed across four processors to its finer distributed graph.

Once the distributed band graph is built from the finer graph, a centralized version

of it is gathered on every participating processor. A sequential FM optimization

can then be run independently on every copy, and the best improved separator is

then distributed back to the finer graph.

several processors, vertices that are closer to separator vertices than some small

user-defined distance are selected by spreading distance information from all of

the separator vertices, using our halo exchange routine. Then, the distributed

band graph is created, by adding on every processor two anchor vertices, which are

connected to the last layers of vertices of each of the parts. The vertex weight of

the anchor vertices is equal to the sum of the vertex weights of all of the vertices

they replace, to preserve the balance of the two band parts. Once the separator of

the band graph has been refined using some local optimization algorithm, the new

separator is projected back to the original distributed graph.

Basing on these band graphs, we have implemented a multi-sequential refine-

ment algorithm, outlined in Figure 6. At every distributed uncoarsening step, a

distributed band graph is created. Centralized copies of this band graph are then

gathered on every participating processor, which serve to run fully independent in-

stances of our sequential FM algorithm. The perturbation of the initial state of the

sequential FM algorithm on every processor allows us to explore slightly different

solution spaces, and thus to improve refinement quality. Finally, the best refined

band separator is projected back to the distributed graph, and the uncoarsening

process goes on.
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3.2.3 Performance criteria

The quality of orderings is evaluated with respect to several criteria. The first

one, NNZ, is the number of non-zero terms in the factored reordered matrix. The

second one, OPC, is the operation count, that is the number of arithmetic operations

required to factor the matrix. The operation count that we have considered takes

into consideration all operations (additions, subtractions, multiplications, divisions)

required by Cholesky factorization, except square roots; it is equal to
∑

c n2
c , where

nc is the number of non-zeros of column c of the factored matrix, diagonal included.

A third criterion for quality is the shape of the elimination tree; concurrency

in parallel solving is all the higher as the elimination tree is broad and short. To

measure its quality, several parameters can be defined: hmin, hmax, and havg denote

the minimum, maximum, and average heights of the tree1, respectively, and hdlt

is the variance, expressed as a percentage of havg. Since small separators result in

small chains in the elimination tree, havg should also indirectly reflect the quality

of separators.

4 Files and data structures

For the sake of portability and readability, all the data files shared by the differ-

ent programs of the Scotch project are coded in plain ASCII text exclusively.

Although we may speak of “lines” when describing file formats, text-formatting

characters such as newlines or tabulations are not mandatory, and are not taken

into account when files are read. They are only used to provide better readabil-

ity and understanding. Whenever numbers are used to label objects, and unless

explicitely stated, numberings always start from zero, not one.

4.1 Distributed graph files

Because even very large graphs are most often stored in the form of centralized

files, the distributed graph loading routine of the PT-Scotch package, as well as

all parallel programs which handle distributed graphs, are able to read centralized

graph files in the Scotch format and to scatter them on the fly across the

available processors (the format of centralized Scotch graph files is described

in the Scotch User’s Guide [36]). However, in order to reduce loading time, a

distributed graph format has been designed, so that the different file fragments

which comprise distributed graph files can be read in parallel and be stored on

local disks on the nodes of a parallel or grid cluster.

Distributed graph files, which usually end in “.dgr”, describe fragments of val-

uated graphs, which can be valuated process graphs to be mapped onto target

architectures, or graphs representing the adjacency structures of matrices to order.

In Scotch, graphs are represented by means of adjacency lists: the definition

of each vertex is accompanied by the list of all of its neighbors, i.e. all of its

adjacent arcs. Therefore, the overall number of edge data is twice the number of

edges. Distributed graphs are stored as a set of files which contain each a subset

of graph vertices and their adjacencies. The purpose of this format is to speed-up

the loading and saving of large graphs when working for some time with the same

number of processors: the distributed graph loading routine will allow each of the

1We do not consider as leaves the disconnected vertices that are present in some meshes, since

they do not participate in the solving process.
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processors to read in parallel from a different file. Consequently, the number of

files must be equal to the number of processors involved in the parallel loading phase.

The first line of a distributed graph file holds the distributed graph file version

number, which is currently 2. The second line holds the number of files across

which the graph data is distributed (referred to as procglbnbr in libScotch; see

for instance Figure 8, page 30, for a detailed example), followed by the number of

this file in the sequence (ranging from 0 to (procglbnbr − 1), and analogous to

proclocnum in Figure 8). The third line holds the global number of graph vertices

(referred to as vertglbnbr), followed by the global number of arcs (inappropriately

called edgeglbnbr, as it is in fact equal to twice the actual number of edges). The

fourth line holds the number of vertices contained in this graph fragment (analogous

to vertlocnbr), followed by its local number of arcs (analogous to edgelocnbr).

The fifth line holds two figures: the graph base index value (baseval) and a numeric

flag.

The graph base index value records the value of the starting index used to

describe the graph; it is usually 0 when the graph has been output by C programs,

and 1 for Fortran programs. Its purpose is to ease the manipulation of graphs within

each of these two environments, while providing compatibility between them.

The numeric flag, similar to the one used by the Chaco graph format [19], is

made of three decimal digits. A non-zero value in the units indicates that vertex

weights are provided. A non-zero value in the tenths indicates that edge weights

are provided. A non-zero value in the hundredths indicates that vertex labels are

provided; if it is the case, vertices can be stored in any order in the file; else, natural

order is assumed, starting from the starting global index of each fragment.

This header data is then followed by as many lines as there are vertices in the

graph fragment, that is, vertlocnbr lines. Each of these lines begins with the vertex

label, if necessary, the vertex load, if necessary, and the vertex degree, followed by

the description of the arcs. An arc is defined by the load of the edge, if necessary,

and by the label of its other end vertex. The arcs of a given vertex can be provided

in any order in its neighbor list. If vertex labels are provided, vertices can also be

stored in any order in the file.

Figure 7 shows the contents of two complementary distributed graph files mod-

eling a cube with unity vertex and edge weights and base 0, distributed across two

processors.

2

2 0

8 24

4 12

0 000

3 4 2 1

3 5 3 0

3 6 0 3

3 7 1 2

2

2 1

8 24

4 12

0 000

3 0 6 5

3 1 7 4

3 2 4 7

3 3 5 6

Figure 7: Two complementary distributed graph files representing a cube dis-

tributed across two processors.
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5 Programs

5.1 Invocation

All of the programs comprised in the Scotch and PT-Scotch distributions have

been designed to run in command-line mode without any interactive prompting,

so that they can be called easily from other programs by means of “system ()”

or “popen ()” system calls, or be piped together on a single shell command line.

In order to facilitate this, whenever a stream name is asked for (either on input

or output), the user may put a single “-” to indicate standard input or output.

Moreover, programs read their input in the same order as stream names are given

in the command line. It allows them to read all their data from a single stream

(usually the standard input), provided that these data are ordered properly.

A brief on-line help is provided with all the programs. To get this help, use the

“-h” option after the program name. The case of option letters is not significant,

except when both the lower and upper cases of a letter have different meanings.

When passing parameters to the programs, only the order of file names is significant;

options can be put anywhere in the command line, in any order. Examples of use

of the different programs of the PT-Scotch project are provided in section 8.

Error messages are standardized, but may not be fully explanatory. However,

most of the errors you may run into should be related to file formats, and located in

“...Load” routines. In this case, compare your data formats with the definitions

given in section 4, and use the dgtst program of the PT-Scotch distribution to

check the consistency of your distributed source graphs.

According to your MPI environment, you may either run the programs directly,

or else have to invoke them by means of a command such as mpirun. Check your

local MPI documentation to see how to specify the number of processors on which

to run them.

5.2 File names

5.2.1 Sequential and parallel file opening

The programs of the PT-Scotch distribution can handle either the classical cen-

tralized Scotch graph files, or the distributed PT-Scotch graph files described

in section 4.1.

In order to tell whether programs should read from, or write to, a single file

located on only one processor, or to multiple instances of the same file on all of

the processors, or else to distinct files on each of the processors, a special grammar

has been designed, which is based on the “%” escape character. Four such escape

sequences are defined, which are interpreted independently on every processor, prior

to file opening. By default, when a filename is provided, it is assumed that the file

is to be opened on only one of the processors, called the root processor, which is

usually process 0 of the communicator within which the program is run. Using any

of the first three escape sequences below will instruct programs to open in parallel

a file of name equal to the interpreted filename, on every processor on which they

are run.

%p Replaced by the number of processes in the global communicator in which the

program is run. Leads to parallel opening.
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%r Replaced on each process running the program by the rank of this process in

the global communicator. Leads to parallel opening.

%- Discarded, but leads to parallel opening. This sequence is mainly used to

instruct programs to open on every processor a file of identical name. The

opened files can be, according whether the given path leads to a shared direc-

tory or to directories that are local to each processor, either to the opening

of multiple instances of the same file, or to the opening of distinct files which

may each have a different content, respectively (but in this latter case it is

much recommended to identify files by means of the “%r” sequence).

%% Replaced by a single “%” character. File names using this escape sequence are

not considered for parallel opening, unless one or several of the three other

escape sequences are also present.

For instance, filename “brol” will lead to the opening of file “brol” on the root

processor only, filename “%-brol” (or even “br%-ol”) will lead to the parallel open-

ing of files called “brol” on every processor, and filename “brol%p-%r” will lead

to the opening of files “brol2-0” and “brol2-1”, respectively, on each of the two

processors on which which would run a program of the PT-Scotch distribution.

5.2.2 Using compressed files

Starting from version 5.0.6, Scotch allows users to provide and retrieve data in

compressed form. Since this feature requires that the compression and decompres-

sion tasks run in the same time as data is read or written, it can only be done

on systems which support multi-threading (Posix threads) or multi-processing (by

means of fork system calls).

To determine if a stream has to be handled in compressed form, Scotch checks

its extension. If it is “.gz” (gzip format), “.bz2” (bzip2 format) or “.lzma” (lzma

format), the stream is assumed to be compressed according to the corresponding

format. A filter task will then be used to process it accordingly if the format is

implemented in Scotch and enabled on your system.

To date, data can be read and written in bzip2 and gzip formats, and can

also be read in the lzma format. Since the compression ratio of lzma on Scotch

graphs is 30% better than the one of gzip and bzip2 (which are almost equivalent

in this case), the lzma format is a very good choice for handling very large graphs.

To see how to enable compressed data handling in Scotch, please refer to Section 7.

When the compressed format allows it, several files can be provided on

the same stream, and be uncompressed on the fly. For instance, the

command “cat brol.grf.gz brol.xyz.gz | gout -.gz -.gz -Mn - brol.iv”

concatenates the topology and geometry data of some graph brol and feed them

as a single compressed stream to the standard input of program gout, hence the

”-.gz” to indicate a compressed standard stream.

5.3 Description

5.3.1 dgmap

Synopsis

dgmap [input graph file [input target file [output mapping file [output log file]]]]

options
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Description

The dgmap program is the parallel static mapper. It uses a static mapping

strategy to compute a mapping of the given source graph to the given target

architecture. The implemented algorithms aim at assigning source graph ver-

tices to target vertices such that every target vertex receives a set of source

vertices of summed weight proportional to the relative weight of the target

vertex in the target architecture, and such that the communication cost func-

tion fC is minimized (see Section 3.1.2 for the definition and rationale of this

cost function).

Since its main purpose is to provide mappings that exhibit high concurrency

for communication minimization in the mapped application, it comprises a

parallel implementation of the dual recursive bipartitioning algorithm [33], as

well as all of the sequential static mapping methods used by its sequential

counterpart gmap, to be used on subgraphs located on single processors.

Static mapping methods can be combined by means of selection, grouping,

and condition operators, so as to define ordering strategies, which can be

passed to the program by means of the -m option.

The input graph file filename can refer either to a centralized or to a dis-

tributed graph, according to the semantics defined in Section 5.2. The map-

ping file must be a centralized file.

Options

Since the program is devoted to experimental studies, it has many optional

parameters, used to test various execution modes. Values set by default will

give best results in most cases.

-h Display the program synopsis.

-mstrat

Apply parallel static mapping strategy strat. The format of parallel

mapping strategies is defined in section 6.3.1.

-rnum

Set the number of the root process which will be used for centralized file

accesses. Set to 0 by default.

-sobj

Mask source edge and vertex weights. This option allows the user to “un-

weight” weighted source graphs by removing weights from edges and ver-

tices at loading time. obj may contain several of the following switches.

e Remove edge weights, if any.

v Remove vertex weights, if any.

-V Print the program version and copyright.

-vverb

Set verbose mode to verb, which may contain several of the following

switches.

s Strategy information. This parameter displays the default mapping

strategy used by gmap.

t Timing information.
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5.3.2 dgord

Synopsis

dgord [input graph file [output ordering file [output log file]]] options

Description

The dgord program is the parallel sparse matrix block orderer. It uses an

ordering strategy to compute block orderings of sparse matrices represented

as source graphs, whose vertex weights indicate the number of DOFs per node

(if this number is non homogeneous) and whose edges are unweighted, in order

to minimize fill-in and operation count.

Since its main purpose is to provide orderings that exhibit high concur-

rency for parallel block factorization, it comprises a parallel nested dissection

method [14], but sequential classical [31] and state-of-the-art [40] minimum

degree algorithms are implemented as well, to be used on subgraphs located

on single processors.

Ordering methods can be combined by means of selection, grouping, and

condition operators, so as to define ordering strategies, which can be passed

to the program by means of the -o option.

The input graph file filename can refer either to a centralized or to a dis-

tributed graph, according to the semantics defined in Section 5.2. The order-

ing file must be a centralized file.

Options

Since the program is devoted to experimental studies, it has many optional

parameters, used to test various execution modes. Values set by default will

give best results in most cases.

-h Display the program synopsis.

-moutput mapping file

Write to output mapping file the mapping of graph vertices to column

blocks. All of the separators and leaves produced by the nested dissection

method are considered as distinct column blocks, which may be in turn

split by the ordering methods that are applied to them. Distinct integer

numbers are associated with each of the column blocks, such that the

number of a block is always greater than the ones of its predecessors

in the elimination process, that is, its descendants in the elimination

tree. The structure of mapping files is described in detail in the relevant

section of the Scotch User’s Guide [36].

When the geometry of the graph is available, this mapping file may be

processed by program gout to display the vertex separators and super-

variable amalgamations that have been computed.

-ostrat

Apply parallel ordering strategy strat. The format of parallel ordering

strategies is defined in section 6.3.3.

-rnum

Set the number of the root process which will be used for centralized file

accesses. Set to 0 by default.
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-toutput tree file

Write to output tree file the structure of the separator tree. The data

that is written resembles much the one of a mapping file: after a first

line that contains the number of lines to follow, there are that many lines

of mapping pairs, which associate an integer number with every graph

vertex index. This integer number is the number of the column block

which is the parent of the column block to which the vertex belongs,

or −1 if the column block to which the vertex belongs is a root of the

separator tree (there can be several roots, if the graph is disconnected).

Combined to the column block mapping data produced by option -m, the

tree structure allows one to rebuild the separator tree.

-V Print the program version and copyright.

-vverb

Set verbose mode to verb, which may contain several of the following

switches.

s Strategy information. This parameter displays the default parallel

ordering strategy used by dgord.

t Timing information.

5.3.3 dgpart

Synopsis

dgpart [number of parts [input graph file [output mapping file [output log

file]]]] options

Description

The dgpart program is the parallel graph partitioner. It is in fact a shortcut

for the dgmap program, where the number of parts is turned into a complete

graph with same number of vertices which is passed to the static mapping

routine.

Save for the number of parts parameter which replaces the input target file,

the parameters of dgpart are identical to the ones of dgmap. Please refer

to its manual page, in Section 5.3.1, for a description of all of the available

options.

5.3.4 dgscat

Synopsis

dgscat [input graph file [output graph file]] options

Description

The dgscat program creates a distributed source graph, in the Scotch dis-

tributed graph format, from the given centralized source graph file.

The input graph file filename should therefore refer to a centralized graph,

while output graph file must refer to a distributed graph, according to the

semantics defined in Section 5.2.
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Options

-c Check the consistency of the distributed graph at the end of the graph

loading phase.

-h Display the program synopsis.

-rnum

Set the number of the root process which will be used for centralized file

accesses. Set to 0 by default.

-V Print the program version and copyright.

5.3.5 dgtst

Synopsis

dgtst [input graph file [output data file]] options

Description

The program dgtst is the source graph tester. It checks the consistency of

the input source graph structure (matching of arcs, number of vertices and

edges, etc.), and gives some statistics regarding edge weights, vertex weights,

and vertex degrees.

It produces the same results as the gtst program of the Scotch sequential

distribution.

Options

-h Display the program synopsis.

-rnum

Set the number of the root process which will be used for centralized file

accesses. Set to 0 by default.

-V Print the program version and copyright.

6 Library

All of the features provided by the programs of the PT-Scotch distribution may

be directly accessed by calling the appropriate functions of the libScotch library,

archived in files ptlibscotch.a and libptscotcherr.a. All of the existing parallel

routines belong to four distinct classes:

• distributed source graph handling routines, which serve to declare, build, load,

save, and check the consistency of distributed source graphs;

• strategy handling routines, which allow the user to declare and build parallel

mapping and ordering strategies;

• parallel graph partitioning and static mapping routines, which allow the user

to declare, compute, and save distributed static mappings of distributed source

graphs;

• parallel ordering routines, which allow the user to declare, compute, and save

distributed orderings of distributed source graphs.
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Error handling is performed using the existing sequential routines of the Scotch

distribution, which are described in the Scotch User’s Guide [36]. Their use is

recalled in Section 6.9.

A ParMeTiS compatibility library, called libptscotchparmetis.a, is also

available. It allows users who were previously using ParMeTiS in their software to

take advantage of the efficieny of PT-Scotch without having to modify their code.

The services provided by this library are described in Section 6.11.

6.1 Calling the routines of libScotch

6.1.1 Calling from C

All of the C routines of the libScotch library are prefixed with “SCOTCH ”. The

remainder of the function names is made of the name of the type of object to which

the functions apply (e.g. “dgraph”, “dorder”, etc.), followed by the type of action

performed on this object: “Init” for the initialization of the object, “Exit” for the

freeing of its internal structures, “Load” for loading the object from one or several

streams, and so on.

Typically, functions that return an error code return zero if the function suc-

ceeds, and a non-zero value in case of error.

For instance, the SCOTCH dgraphInit and SCOTCH dgraphLoad routines, de-

scribed in section 6.4, can be called from C by using the following code.

#include <stdio.h>

#include <mpi.h>

#include "ptscotch.h"

...

SCOTCH_Dgraph grafdat;

FILE * fileptr;

if (SCOTCH_dgraphInit (&grafdat) != 0) {

... /* Error handling */

}

if ((fileptr = fopen ("brol.grf", "r")) == NULL) {

... /* Error handling */

}

if (SCOTCH_dgraphLoad (&grafdat, fileptr, -1, 0) != 0) {

... /* Error handling */

}

...

Since “ptscotch.h” uses several system and communication objects which are

declared in “stdio.h” and “mpi.h”, respectively, these latter files must be included

beforehand in your application code.

Although the “scotch.h” and “ptscotch.h” files may look very similar on

your system, never mistake them, and always use the “ptscotch.h” file as the

right include file for compiling a program which uses the parallel routines of the

libScotch library, whether it also calls sequential routines or not.

6.1.2 Calling from Fortran

The routines of the libScotch library can also be called from Fortran. For any C

function named SCOTCH typeAction() which is documented in this manual, there
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exists a SCOTCHFTYPEACTION () Fortran counterpart, in which the separating

underscore character is replaced by an “F”. In most cases, the Fortran routines

have exactly the same parameters as the C functions, save for an added trailing

INTEGER argument to store the return value yielded by the function when the

return type of the C function is not void.

Since all the data structures used in libScotch are opaque, equivalent declara-

tions for these structures must be provided in Fortran. These structures must there-

fore be defined as arrays of DOUBLEPRECISIONs, of sizes given in file ptscotchf.h,

which must be included whenever necessary.

For routines that read or write data using a FILE * stream in C, the Fortran

counterpart uses an INTEGER parameter which is the numer of the Unix file descrip-

tor corresponding to the logical unit from which to read or write. In most Unix

implementations of Fortran, standard descriptors 0 for standard input (logical unit

5), 1 for standard output (logical unit 6) and 2 for standard error are opened by

default. However, for files that are opened using OPEN statements, an additional

function must be used to obtain the number of the Unix file descriptor from the

number of the logical unit. This function is called FNUM in most Unix implementa-

tions of Fortran.

For instance, the SCOTCH dgraphInit and SCOTCH dgraphLoad routines, de-

scribed in sections 6.4.1 and 6.4.4, respectively, can be called from Fortran by using

the following code.

INCLUDE "ptscotchf.h"

DOUBLEPRECISION GRAFDAT(SCOTCH_DGRAPHDIM)

INTEGER RETVAL

...

CALL SCOTCHFDGRAPHINIT (GRAFDAT (1), RETVAL)

IF (RETVAL .NE. 0) THEN

...

OPEN (10, FILE=’brol.grf’)

CALL SCOTCHFDGRAPHLOAD (GRAFDAT (1), FNUM (10), 1, 0, RETVAL)

CLOSE (10)

IF (RETVAL .NE. 0) THEN

...

Although the “scotchf.h” and “ptscotchf.h” files may look very similar on

your system, never mistake them, and always use the “ptscotchf.h” file as the

include file for compiling a Fortran program that uses the parallel routines of the

libScotch library, whether it also calls sequential routines or not.

All of the Fortran routines of the libScotch library are stubs which call their C

counterpart. While this poses no problem for the usual integer and double precision

data types, some conflicts may occur at compile or run time if your MPI implemen-

tation does not represent the MPI Comm type in the same way in C and in Fortran.

Please check on your platform to see in the mpi.h include file if the MPI Comm data

type is represented as an int. If it is the case, there should be no problem in using

the Fortran routines of the PT-Scotch library.

6.1.3 Compiling and linking

The compilation of C or Fortran routines which use parallel routines of the lib-

Scotch library requires that either ptscotch.h or ptscotchf.h be included, re-

spectively. Since some of the parallel routines of the libScotch library must be
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passed MPI communicators, it is necessary to include MPI files mpi.h or mpif.h,

respectively, before the relevant PT-Scotch include files, such that prototypes of

the parallel libScotch routines are properly defined.

The parallel routines of the libScotch library, along with taylored versions of

the sequential routines, are grouped in a library file called libptscotch.a. Default

error routines that print an error message and exit are provided in the classical

Scotch library file libptscotcherr.a.

Therefore, the linking of applications that make use of the libScotch li-

brary with standard error handling is carried out by using the following options:

“-lptscotch -lptscotcherr -lmpi -lm”. The “-lmpi” option is most often not

necessary, as the MPI library is automatically considered when compiling with com-

mands such as mpicc.

If you want to handle errors by yourself, you should not link with library file

libptscotcherr.a, but rather provide a SCOTCH errorPrint() routine. Please

refer to Section 6.9 for more information on error handling.

6.1.4 Machine word size issues

Graph indices are represented in Scotch as integer values of type SCOTCH

Num. By default, this type is equivalent to the int C type, that is, an integer type

of size equal to the one of the machine word. However, it can represent any other

integer type. To coerce the length of the Scotch integer type to 32 or 64 bits,

one can use the INTSIZE32 or INTSIZE64 flags, respectively, or else the “-DINT=”

definition, at compile time.

This feature can be used to allow Scotch to handle large graphs on 32-bit

architectures. If the SCOTCH Num type is set to represent a 64-bit integer type,

all graph indices will be 64-bit integers, while function return values will still be

traditional 32-bit integers.

This may however pose a problem with MPI, the interface of which is based

on the regular int type. PT-Scotch has been coded such that there will not be

typecast bugs, but overflow errors may result from the conversion of values of a

larger integer type into ints.

One must also be careful when using the Fortran interface of Scotch. In the

manual pages of the libScotch routines, all Fortran prototypes are given with

both graph indices and return values specified as plain INTEGERs. In practice,

when Scotch is compiled to use 64-bit SCOTCH Nums and 32-bit ints, graph indices

should be declared as INTEGER*8, while integer error codes should still be declared

as INTEGER*4 values.

These discrepancies are not a problem if Scotch is compiled such that all ints

are 64-bit integers. In this case, there is no need to use any type coercing definition.

Also, the MeTiS compatibility library provided by Scotch will not work when

SCOTCH Nums are not ints, since the interface of MeTiS uses regular ints to represent

graph indices. In addition to compile-time warnings, an error message will be issued

when one of these routines is called.

6.2 Data formats

All of the data used in the libScotch interface are of integer type SCOTCH Num. To

hide the internals of PT-Scotch to callers, all of the data structures are opaque,

that is, declared within ptscotch.h as dummy arrays of double precision values,
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for the sake of data alignment. Accessor routines, the names of which end in

“Size” and “Data”, allow callers to retrieve information from opaque structures.

In all of the following, whenever arrays are defined, passed, and accessed, it is

assumed that the first element of these arrays is always labeled as baseval, whether

baseval is set to 0 (for C-style arrays) or 1 (for Fortran-style arrays). PT-Scotch

internally manages with base values and array pointers so as to process these arrays

accordingly.

6.2.1 Distributed graph format

In PT-Scotch, distributed source graphs are represented so as to distribute graph

data without any information duplication which could hinder scalability. The only

data which are replicated on every process are of a size linear in the number of pro-

cesses and small. Apart from these, the sum across all processes of all of the vertex

data is in O(v + p), where v is the overall number of vertices in the distributed

graph and p the number of processes, and the sum of all of the edge data is in O(e),

where e is the overall number of arcs (that is, twice the number of edges) in the

distributed graph. When graphs are ill-distributed, the overall halo vertex infor-

mation may also be in o(e) at worst, which makes the distributed graph structure

fully scalable.

Distributed source graphs are described by means of adjacency lists. The de-

scription of a distributed graph requires several SCOTCH Num scalars and arrays, as

shown for instance in Figures 8 and 9. Some of these data are said to be global,

and are duplicated on every process that holds part of the distributed graph; their

names contain the “glb” infix. Others are local, that is, their value may differ for

each process; their names contain the “loc” or “gst” infix. Global data have the

following meaning:

baseval

Base value for all array indexings.

vertglbnbr

Overall number of vertices in the distributed graph.

edgeglbnbr

Overall number of arcs in the distributed graph. Since edges are represented

by both of their ends, the number of edge data in the graph is twice the

number of edges.

procglbnbr

Overall number of processes that share distributed graph data.

proccnttab

Array holding the current number of local vertices borne by every process.

procvrttab

Array holding the global indices from which the vertices of every process are

numbered. For optimization purposes, this array has an extra slot which

stores a number which must be greater than all of the assigned global in-

dices. For each process p, it must be ensured that procvrttab[p + 1] ≥

(procvrttab[p] + proccnttab[p]), that is, that no process can have more

local vertices than allowed by its range of global indices. When the global

numbering of vertices is continuous, for each process p, procvrttab[p +1] =

(procvrttab[p] + proccnttab[p]).
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Local data have the following meaning:

vertlocnbr

Number of local vertices borne by the given process. In fact, on every process

p, vertlocnbr is equal to proccnttab[p].

vertgstnbr

Number of both local and ghost vertices borne by the given process. Ghost

vertices are local images of neighboring vertices located on distant processes.

vertloctab

Array of start indices in edgeloctab and edgegsttab of vertex adjacency

sub-arrays.

vendloctab

Array of after-last indices in edgeloctab and edgegsttab of vertex adja-

cency sub-arrays. For any local vertex i, with baseval ≤ i < (baseval +

vertlocnbr), vendloctab[i]− vertloctab[i] is the degree of vertex i.

When all vertex adjacency lists are stored in order in edgeloctab with-

out any empty space between them, it is possible to save memory by

not allocating the physical memory for vendloctab. In this case, illus-

trated in Figure 8, vertloctab is of size vertlocnbr + 1 and vendloctab

points to vertloctab + 1. For these graphs , called “compact edge array

graphs”, or “compact graphs” for short, vertloctab is sorted in ascend-

ing order, vertloctab[baseval] = baseval and vertloctab[baseval +

vertlocnbr] = (baseval+ edgelocnbr).

Since vertloctab and vendloctab only account for local vertices and not for

ghost vertices, the sum across all processes of the sizes of these arrays does

not depend on the number of ghost vertices; it is equal to (v + p) for compact

graphs and to 2v else.

veloloctab

Optional array, of size vertlocnbr, holding the integer load associated with

every vertex.

edgeloctab

Array, of a size equal at least to (maxi(vendloctab[i]) − baseval), hold-

ing the adjacency array of every local vertex. For any local vertex i, with

baseval ≤ i < (baseval + vertlocnbr), the global indices of the neigh-

bors of i are stored in edgeloctab from edgeloctab[vertloctab[i]] to

edgeloctab[vendloctab[i]− 1], inclusive.

Since ghost vertices do not have adjacency arrays, because only arcs from

local vertices to ghost vertices are recorded and not the opposite, the overall

sum of the sizes of all edgeloctab arrays is e.

edgegsttab

Optional array holding the local and ghost indices of neighbors of local ver-

tices. For any local vertex i, with baseval ≤ i < (baseval + vertlocnbr),

the local and ghost indices of the neighbors of i are stored in edgegsttab from

edgegsttab[vertloctab[i]] to edgegsttab[vendloctab[i]−1], inclusive.

Local vertices are numbered in global vertex order, starting from baseval to

(baseval+ vertlocnbr− 1), inclusive. Ghost vertices are also numbered in
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global vertex order, from (baseval+vertlocnbr) to (baseval+vertgstnbr−

1), inclusive.

Only edgeloctab has to be provided by the user. edgegsttab is internally

computed by PT-Scotch whenever needed, or can be explicitey asked for

by the user by calling function SCOTCH dgraphGhst. This array can serve

to index user-defined arrays of quantities borne by graph vertices, which can

be exchanged between neighboring processes thanks to the SCOTCH dgraph

Halo routine documented in Section 6.4.12.

edloloctab

Optional array, of a size equal at least to (maxi(vendloctab[i]) − baseval),

holding the integer load associated with every arc. Matching arcs should

always have identical loads.

Dynamic graphs can be handled elegantly by using the vendloctab and proc

vrttab arrays. In order to dynamically manage distributed graphs, one just has

to reserve index ranges large enough to create new vertices on each process, and to

allocate vertloctab, vendloctab and edgeloctab arrays that are large enough to

contain all of the expected new vertex and edge data. This can be done by passing

SCOTCH graphBuild a maximum number of local vertices, vertlocmax, greater than

the current number of local vertices, vertlocnbr.

On every process p, vertices are globally labeled starting from procvrttab[p],

and locally labeled from baseval, leaving free space at the end of the local arrays.

To remove some vertex of local index i, one just has to replace vertloctab[i] and

vendloctab[i] with the values of vertloctab[vertlocnbr− 1] and vendloctab

[vertlocnbr−1], respectively, and browse the adjacencies of all neighbors of former

vertex (vertlocnbr − 1) such that all (vertlocnbr − 1) indices are turned into

is. Then, vertlocnbr must be decremented, and SCOTCH dgraphBuild() must be

called to account for the change of topology. If a graph building routine such as

SCOTCH dgraphLoad() or SCOTCH dgraphBuild() had already been called on the

SCOTCH Dgraph structure, SCOTCH dgraphFree() has to be called first in order to

free the internal structures associated with the older version of the graph, else these

data would be lost, which would result in memory leakage.

To add a new vertex, one has to fill vertloctab[vertnbr-1] and vendloctab

[vertnbr-1] with the starting and end indices of the adjacency sub-array of the

new vertex. Then, the adjacencies of its neighbor vertices must also be updated to

account for it. If free space had been reserved at the end of each of the neighbors,

one just has to increment the vendloctab[i] values of every neighbor i, and add

the index of the new vertex at the end of the adjacency sub-array. If the sub-

array cannot be extended, then it has to be copied elsewhere in the edge array,

and both vertloctab[i] and vendloctab[i] must be updated accordingly. With

simple housekeeping of free areas of the edge array, dynamic arrays can be updated

with as little data movement as possible.

6.2.2 Block ordering format

Block orderings associated with distributed graphs are described by means of block

and permutation arrays, made of SCOTCH Nums. In order for all orderings to have

the same structure, irrespective of whether they are centralized or distributed, or

whether they are created from graphs or meshes, all ordering data indices start from

baseval. Consequently, row indices are related to vertex indices in memory in the

29



Duplicated data

Local data 0 1 2

vertglbnbr

vertlocnbr

vendloctab

vertloctab

vertgstnbr

edgelocnbr

edgegsttab

edgeloctab

baseval

edgeglbnbr

proccnttab

procglbnbr

procvrttab
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Figure 8: Sample distributed graph and its description by libScotch arrays using

a continuous numbering and compact edge arrays. Numbers within vertices are

vertex indices. Top graph is a global view of the distributed graph, labeled with

global, continuous, indices. Bottom graphs are local views labeled with local and

ghost indices, where ghost vertices are drawn in black. Since the edge array is

compact, all vertloctab arrays are of size vertlocnbr+1, and vendloctab points

to vertloctab + 1. edgeloctab edge arrays hold global indices of end vertices,

while optional edgegsttab edge arrays hold local and ghost indices. edgelocnbr

is the local number of arcs (that is, twice the number of edges), including arcs

to local vertices as well as to ghost vertices veloloctab and edloloctab are not

represented.
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Duplicated data

Local data 0 1 2

vertglbnbr

procvrttab

vertlocnbr
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edgelocnbr

edgegsttab
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vertloctab
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Figure 9: Adjacency structure of the sample graph of Figure 8 with a disjoint edge

array and a discontinuous ordering. Both vertloctab and vendloctab are of size

vertlocnbr. This allows for the handling of dynamic graphs, the structure of which

can evolve with time.
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Figure 10: Arrays resulting from the ordering by complete nested dissection of a 4

by 3 grid based from 1. Leftmost grid is the original grid, and righmost grid is the

reordered grid, with separators shown and column block indices written in bold.

following way: row i is associated with vertex i of the SCOTCH Dgraph structure as

if the vertex numbering used for the graph was continuous.

Block orderings are made of the following data:

permtab

Array holding the permutation of the reordered matrix. Thus, if k =

permtab[i], then row i of the original matrix is now row k of the reordered

matrix, that is, row i is the kth pivot.

peritab

Inverse permutation of the reordered matrix. Thus, if i = peritab[k], then

row k of the reordered matrix was row i of the original matrix.

cblknbr

Number of column blocks (that is, supervariables) in the block ordering.

rangtab

Array of ranges for the column blocks. Column block c, with baseval ≤

c < (cblknbr + baseval), contains columns with indices ranging from

rangtab[i] to rangtab[i + 1], exclusive, in the reordered matrix. There-

fore, rangtab[baseval] is always equal to baseval, and rangtab[cblknbr

+ baseval] is always equal to vertglbnbr+baseval. In order to avoid mem-

ory errors when column blocks are all single columns, the size of rangtab must

always be one more than the number of columns, that is, vertglbnbr+ 1.

treetab

Array of ascendants of permuted column blocks in the separators tree.

treetab[i] is the index of the father of column block i in the separators

tree, or −1 if column block i is the root of the separators tree. Whenever sep-

arators or leaves of the separators tree are split into subblocks, as the block

splitting, minimum fill or minimum degree methods do, all subblocks of the

same level are linked to the column block of higher index belonging to the

closest separator ancestor. Indices in treetab are based, in the same way as

for the other blocking structures. See Figure 10 for a complete example.

6.3 Strategy strings

The behavior of the static mapping and block ordering routines of the libScotch

library is parametrized by means of strategy strings, which describe how and when

given partitioning or ordering methods should be applied to graphs and subgraphs
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6.3.1 Parallel mapping strategy strings

A parallel mapping strategy is made of one or several parallel mapping methods,

which can be combined by means of strategy operators. The strategy operators

that can be used in mapping strategies are listed below, by increasing precedence.

(strat)

Grouping operator. The strategy enclosed within the parentheses is treated

as a single mapping method.

/cond?strat1 [:strat2];

Condition operator. According to the result of the evaluation of condition

cond, either strat1 or strat2 (if it is present) is applied. The condition applies

to the characteristics of the current mapping task, and can be built from

logical and relational operators. Conditional operators are listed below, by

increasing precedence.

cond1|cond2

Logical or operator. The result of the condition is true if cond1 or cond2

are true, or both.

cond1&cond2

Logical and operator. The result of the condition is true only if both

cond1 and cond2 are true.

!cond

Logical not operator. The result of the condition is true only if cond is

false.

var relop val

Relational operator, where var is a node variable, val is either a node

variable or a constant of the type of variable var, and relop is one of ’<’,

’=’, and ’>’. The node variables are listed below, along with their types.

edge

The global number of arcs of the current subgraph. Integer.

levl

The level of the subgraph in the recursion tree, starting from zero

for the initial graph at the root of the tree. Integer.

load

The overall sum of the vertex loads of the subgraph. It is equal to

vert if the graph has no vertex loads. Integer.

mdeg

The maximum degree of the subgraph. Integer.

proc

The number of processes on which the current subgraph is dis-

tributed at this level of the separators tree. Integer.

rank

The rank of the current process among the group of processes on

which the current subgraph is distributed at this level of the sepa-

rators tree. Integer.

vert

The global number of vertices of the current subgraph. Integer.
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method [{parameters}]

Parallel graph mapping method. Available parallel mapping methods are

listed below.

The currently available parallel mapping methods are the following.

n Dual recursive bipartitioning method. The parameters of the dual recursive

bipartitioning method are given below.

seq=strat

Set the sequential mapping strategy that is used on every centralized

subgraph of the recursion tree, once the dual recursive bipartitioning

process has gone far enough such that the number of processes handling

some subgraph is restricted to one.

sep=strat

Set the parallel graph bipartitioning strategy that is used on every cur-

rent job of the recursion tree. Parallel graph bipartitioning strategies are

described below, in section 6.3.2.

6.3.2 Parallel graph bipartitioning strategy strings

A parallel graph bipartitioning strategy is made of one or several parallel graph

bipartitioning methods, which can be combined by means of strategy operators.

Strategy operators are listed below, by increasing precedence.

strat1|strat2

Selection operator. The result of the selection is the best bipartition of the

two that are obtained by the distinct application of strat1 and strat2 to the

current bipartition.

strat1 strat2

Combination operator. Strategy strat2 is applied to the bipartition resulting

from the application of strategy strat1 to the current bipartition. Typically,

the first method used should compute an initial bipartition from scratch, and

every following method should use the result of the previous one at its starting

point.

(strat)

Grouping operator. The strategy enclosed within the parentheses is treated

as a single bipartitioning method.

/cond?strat1 [:strat2];

Condition operator. According to the result of the evaluation of condition

cond, either strat1 or strat2 (if it is present) is applied. The condition applies

to the characteristics of the current active graph, and can be built from logical

and relational operators. Conditional operators are listed below, by increasing

precedence.

cond1|cond2

Logical or operator. The result of the condition is true if cond1 or cond2

are true, or both.

cond1&cond2

Logical and operator. The result of the condition is true only if both

cond1 and cond2 are true.
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!cond

Logical not operator. The result of the condition is true only if cond is

false.

var relop val

Relational operator, where var is a graph or node variable, val is either

a graph or node variable or a constant of the type of variable var , and

relop is one of ’<’, ’=’, and ’>’. The graph and node variables are listed

below, along with their types.

edge

The global number of edges of the current subgraph. Integer.

levl

The level of the subgraph in the bipartition or multi-level tree, start-

ing from zero for the initial graph at the root of the tree. Integer.

load

The overall sum of the vertex loads of the subgraph. It is equal to

vert if the graph has no vertex loads. Integer.

load0

The vertex load of the first subset of the current bipartition of the

current graph. Integer.

proc

The number of processes on which the current subgraph is dis-

tributed at this level of the nested dissection process. Integer.

rank

The rank of the current process among the group of processes on

which the current subgraph is distributed at this level of the nested

dissection process. Integer.

vert

The number of vertices of the current subgraph. Integer.

The currently available parallel vertex separation methods are the following.

b Band method. Basing on the current distributed graph and on its parti-

tion, this method creates a new distributed graph reduced to the vertices

which are at most at a given distance from the current frontier, runs a

parallel graph bipartitioning strategy on this graph, and projects back

the new bipartition to the current graph. This method is primarily used

to run bipartition refinement methods during the uncoarsening phase of

the multi-level parallel graph bipartitioning method. The parameters of

the band method are listed below.

bnd=strat

Set the parallel graph bipartitioning strategy to be applied to the

band graph.

org=strat

Set the parallel graph bipartitioning strategy to be applied to the

full distributed graph if the band graph could not be extracted.

width=val

Set the maximum distance from the current frontier of vertices to be

kept in the band graph. 0 means that only frontier vertices them-

selves are kept, 1 that immediate neighboring vertices are kept too,

and so on.
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d Parallel diffusion method. This method, presented in its sequential for-

mulation in [35], flows two kinds of antagonistic liquids, scotch and anti-

scotch, from two source vertices, and sets the new frontier as the limit

between vertices which contain scotch and the ones which contain anti-

scotch. Because selecting the source vertices is essential to the obtain-

ment of useful results, this method has been hard-coded so that the two

source vertices are the two vertices of highest indices, since in the band

method these are the anchor vertices which represent all of the removed

vertices of each part. Therefore, this method must be used on band

graphs only, or on specifically crafted graphs. Applying it to any other

graphs is very likely to lead to extremely poor results. The parameters

of the diffusion bipartitioning method are listed below.

dif=rat

Fraction of liquid which is diffused to neighbor vertices at each pass.

To achieve convergence, the sum of the dif and rem parameters must

be equal to 1, but in order to speed-up the diffusion process, other

combinations of higher sum can be tried. In this case, the number of

passes must be kept low, to avoid numerical overflows which would

make the results useless.

pass=nbr

Set the number of diffusion sweeps performed by the algorithm. This

number depends on the width of the band graph to which the diffu-

sion method is applied. Useful values range from 30 to 500 according

to chosen dif and rem coefficients.

rem=rat

Fraction of liquid which remains on vertices at each pass. See above.

m Parallel multi-level method. The parameters of the multi-level method

are listed below.

asc=strat

Set the strategy that is used to refine the distributed bipartition

obtained at ascending levels of the uncoarsening phase by projection

of the bipartition computed for coarser graphs. This strategy is not

applied to the coarsest graph, for which only the low strategy is

used.

dlevl=nbr

Set the minimum level after which duplication is allowed in the fold-

ing process. A value of −1 results in duplication being always per-

formed when folding.

dvert=nbr

Set the average number of vertices per process under which the fold-

ing process is performed during the coarsening phase.

low=strat

Set the strategy that is used to compute the bipartition of the coars-

est distributed graph, at the lowest level of the coarsening process.

rat=rat

Set the threshold maximum coarsening ratio over which graphs are

no longer coarsened. The ratio of any given coarsening cannot be

less that 0.5 (case of a perfect matching), and cannot be greater

than 1.0. Coarsening stops when either the coarsening ratio is above
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the maximum coarsening ratio, or the graph has fewer node vertices

than the minimum number of vertices allowed.

vert=nbr

Set the threshold minimum size under which graphs are no longer

coarsened. Coarsening stops when either the coarsening ratio is

above the maximum coarsening ratio, or the graph has fewer node

vertices than the minimum number of vertices allowed.

q Multi-sequential method. The current distributed graph and its sep-

arator are centralized on every process that holds a part of it, and a

sequential graph bipartitioning method is applied independently to each

of them. Then, the best bipartition found is projected back to the dis-

tributed graph. This method is primarily designed to operate on band

graphs, which are orders of magnitude smaller than their parent graph.

Else, memory bottlenecks are very likely to occur. The parameters of

the multi-sequential method are listed below.

strat=strat

Set the sequential vertex separation strategy that is used to refine

the bipartition of the centralized graph. For a description of all of

the available sequential methods, please refer to the Scotch User’s

Guide [36].

z Zero method. This method moves all of the vertices to the first part,

resulting in an empty frontier. Its main use is to stop the bipartitioning

process whenever some condition is true.

6.3.3 Parallel ordering strategy strings

A parallel ordering strategy is made of one or several parallel ordering methods,

which can be combined by means of strategy operators. The strategy operators

that can be used in ordering strategies are listed below, by increasing precedence.

(strat)

Grouping operator. The strategy enclosed within the parentheses is treated

as a single ordering method.

/cond?strat1 [:strat2];

Condition operator. According to the result of the evaluation of condition

cond, either strat1 or strat2 (if it is present) is applied. The condition applies

to the characteristics of the current node of the separators tree, and can be

built from logical and relational operators. Conditional operators are listed

below, by increasing precedence.

cond1|cond2

Logical or operator. The result of the condition is true if cond1 or cond2

are true, or both.

cond1&cond2

Logical and operator. The result of the condition is true only if both

cond1 and cond2 are true.

!cond

Logical not operator. The result of the condition is true only if cond is

false.
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var relop val

Relational operator, where var is a node variable, val is either a node

variable or a constant of the type of variable var, and relop is one of ’<’,

’=’, and ’>’. The node variables are listed below, along with their types.

edge

The global number of arcs of the current subgraph. Integer.

levl

The level of the subgraph in the separators tree, starting from zero

for the initial graph at the root of the tree. Integer.

load

The overall sum of the vertex loads of the subgraph. It is equal to

vert if the graph has no vertex loads. Integer.

mdeg

The maximum degree of the subgraph. Integer.

proc

The number of processes on which the current subgraph is dis-

tributed at this level of the separators tree. Integer.

rank

The rank of the current process among the group of processes on

which the current subgraph is distributed at this level of the sepa-

rators tree. Integer.

vert

The global number of vertices of the current subgraph. Integer.

method [{parameters}]

Parallel graph ordering method. Available parallel ordering methods are listed

below.

The currently available parallel ordering methods are the following.

n Nested dissection method. The parameters of the nested dissection method

are given below.

ole=strat

Set the parallel ordering strategy that is used on every distributed leaf of

the parallel separators tree if the node separation strategy sep has failed

to separate it further.

ose=strat

Set the parallel ordering strategy that is used on every distributed sep-

arator of the separators tree.

osq=strat

Set the sequential ordering strategy that is used on every centralized sub-

graph of the separators tree, once the nested dissection process has gone

far enough such that the number of processes handling some subgraph is

restricted to one.

sep=strat

Set the parallel node separation strategy that is used on every current

leaf of the separators tree to make it grow. Parallel node separation

strategies are described below, in section 6.3.4.

s Simple method. Vertices are ordered in their natural order. This method is

fast, and should be used to order separators if the number of extra-diagonal

blocks is not relevant
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6.3.4 Parallel node separation strategy strings

A parallel node separation strategy is made of one or several parallel node separation

methods, which can be combined by means of strategy operators. Strategy operators

are listed below, by increasing precedence.

strat1|strat2

Selection operator. The result of the selection is the best vertex separator of

the two that are obtained by the distinct application of strat1 and strat2 to

the current separator.

strat1 strat2

Combination operator. Strategy strat2 is applied to the vertex separator

resulting from the application of strategy strat1 to the current separator.

Typically, the first method used should compute an initial separation from

scratch, and every following method should use the result of the previous one

as a starting point.

(strat)

Grouping operator. The strategy enclosed within the parentheses is treated

as a single separation method.

/cond?strat1 [:strat2];

Condition operator. According to the result of the evaluation of condition

cond, either strat1 or strat2 (if it is present) is applied. The condition applies

to the characteristics of the current subgraph, and can be built from logical

and relational operators. Conditional operators are listed below, by increasing

precedence.

cond1|cond2

Logical or operator. The result of the condition is true if cond1 or cond2

are true, or both.

cond1&cond2

Logical and operator. The result of the condition is true only if both

cond1 and cond2 are true.

!cond

Logical not operator. The result of the condition is true only if cond is

false.

var relop val

Relational operator, where var is a graph or node variable, val is either

a graph or node variable or a constant of the type of variable var , and

relop is one of ’<’, ’=’, and ’>’. The graph and node variables are listed

below, along with their types.

edge

The global number of edges of the current subgraph. Integer.

levl

The level of the subgraph in the separators tree, starting from zero

for the initial graph at the root of the tree. Integer.

load

The overall sum of the vertex loads of the subgraph. It is equal to

vert if the graph has no vertex loads. Integer.
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proc

The number of processes on which the current subgraph is dis-

tributed at this level of the nested dissection process. Integer.

rank

The rank of the current process among the group of processes on

which the current subgraph is distributed at this level of the nested

dissection process. Integer.

vert

The number of vertices of the current subgraph. Integer.

The currently available parallel vertex separation methods are the following.

b Band method. Basing on the current distributed graph and on its parti-

tion, this method creates a new distributed graph reduced to the vertices

which are at most at a given distance from the current separator, runs

a parallel vertex separation strategy on this graph, and projects back

the new separator to the current graph. This method is primarily used

to run separator refinement methods during the uncoarsening phase of

the multi-level parallel graph separation method. The parameters of the

band method are listed below.

strat=strat

Set the parallel vertex separation strategy to be applied to the band

graph.

width=val

Set the maximum distance from the current separator of vertices to

be kept in the band graph. 0 means that only separator vertices

themselves are kept, 1 that immediate neighboring vertices are kept

too, and so on.

m Parallel vertex multi-level method. The parameters of the vertex multi-

level method are listed below.

asc=strat

Set the strategy that is used to refine the distributed vertex separa-

tors obtained at ascending levels of the uncoarsening phase by pro-

jection of the separators computed for coarser graphs. This strategy

is not applied to the coarsest graph, for which only the low strategy

is used.

dlevl=nbr

Set the minimum level after which duplication is allowed in the fold-

ing process. A value of −1 results in duplication being always per-

formed when folding.

dvert=nbr

Set the average number of vertices per process under which the fold-

ing process is performed during the coarsening phase.

low=strat

Set the strategy that is used to compute the vertex separator of

the coarsest distributed graph, at the lowest level of the coarsening

process.

rat=rat

Set the threshold maximum coarsening ratio over which graphs are

no longer coarsened. The ratio of any given coarsening cannot be
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less that 0.5 (case of a perfect matching), and cannot be greater

than 1.0. Coarsening stops when either the coarsening ratio is above

the maximum coarsening ratio, or the graph has fewer node vertices

than the minimum number of vertices allowed.

vert=nbr

Set the threshold minimum size under which graphs are no longer

coarsened. Coarsening stops when either the coarsening ratio is

above the maximum coarsening ratio, or the graph has fewer node

vertices than the minimum number of vertices allowed.

q Multi-sequential method. The current distributed graph and its sep-

arator are centralized on every process that holds a part of it, and a

sequential vertex separation method is applied independently to each

of them. Then, the best separator found is projected back to the dis-

tributed graph. This method is primarily designed to operate on band

graphs, which are orders of magnitude smaller than their parent graph.

Else, memory bottlenecks are very likely to occur. The parameters of

the multi-sequential method are listed below.

strat=strat

Set the sequential vertex separation strategy that is used to refine

the separator of the centralized graph. For a description of all of

the available sequential methods, please refer to the Scotch User’s

Guide [36].

z Zero method. This method moves all of the node vertices to the first part,

resulting in an empty separator. Its main use is to stop the separation

process whenever some condition is true.

6.4 Distributed graph handling routines

6.4.1 SCOTCH dgraphInit

Synopsis

int SCOTCH dgraphInit (SCOTCH Dgraph * grafptr,

MPI Comm comm)

scotchfdgraphinit (doubleprecision (*) grafdat,

integer comm,

integer ierr)

Description

The SCOTCH dgraphInit function initializes a SCOTCH Dgraph structure so

as to make it suitable for future parallel operations. It should be the first

function to be called upon a SCOTCH Dgraph structure. By accessing the

communicator handle which is passed to it, SCOTCH dgraphInit can know

how many processes will be used to manage the distributed graph and can

allocate its private structures accordingly.

SCOTCH dgraphInit does not make a duplicate of the communicator which

is passed to it, but instead keeps a reference to it, so that all future com-

munications needed by libScotch to process this graph will be performed
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using this communicator. Therefore, it is the user’s responsibility, whenever

several libScotch routines might be called in parallel, to create appropriate

duplicates of communicators so as to avoid any potential interferences between

concurrent communications.

When the distributed graph is no longer of use, call function SCOTCH dgraph

Exit to free its internal communication structures.

Return values

SCOTCH dgraphInit returns 0 if the graph structure has been successfully

initialized, and 1 else.

6.4.2 SCOTCH dgraphExit

Synopsis

void SCOTCH dgraphExit (SCOTCH Dgraph * grafptr)

scotchfdgraphexit (doubleprecision (*) grafdat)

Description

The SCOTCH dgraphExit function frees the contents of a SCOTCH Dgraph struc-

ture previously initialized by SCOTCH dgraphInit. All subsequent calls to

SCOTCH dgraph routines other than SCOTCH dgraphInit, using this structure

as parameter, may yield unpredictable results.

6.4.3 SCOTCH dgraphFree

Synopsis

void SCOTCH dgraphFree (SCOTCH Dgraph * grafptr)

scotchfdgraphfree (doubleprecision (*) grafdat)

Description

The SCOTCH dgraphFree function frees the graph data of a SCOTCH Dgraph

structure previously initialized by SCOTCH dgraphInit, but preserves its in-

ternal communication data structures. This call is equivalent to a call to

SCOTCH dgraphExit immediately followed by a call to SCOTCH dgraphInit

with the same communicator as in the previous SCOTCH dgraphInit call. Con-

sequently, the given SCOTCH Dgraph structure remains ready for subsequent

calls to any distributed graph handling routine of the libScotch library.

6.4.4 SCOTCH dgraphLoad

Synopsis
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int SCOTCH dgraphLoad (SCOTCH Dgraph * grafptr,

FILE * stream,

SCOTCH Num baseval,

SCOTCH Num flagval)

scotchfdgraphload (doubleprecision (*) grafdat,

integer fildes,

integer baseval,

integer flagval,

integer ierr)

Description

The SCOTCH dgraphLoad routine fills the SCOTCH Dgraph structure pointed

to by grafptr with the centralized or distributed source graph description

available from one or several streams stream in the Scotch graph formats

(please refer to section 4.1 for a description of the distributed graph format,

and to the Scotch User’s Guide [36] for the centralized graph format).

When only one stream pointer is not null, the associated source graph file

must be a centralized one, the contents of which are spread across all of the

processes. When all stream pointers are non null, they can either refer to

multiple instances of the same centralized graph, or to the distinct fragments

of a distributed graph. In the first case, all processes read all of the contents

of the centralized graph files but keep only the relevant part. In the second

case, every process reads its fragment in parallel.

To ease the handling of source graph files by programs written in C as well as

in Fortran, the base value of the graph to read can be set to 0 or 1, by setting

the baseval parameter to the proper value. A value of -1 indicates that the

graph base should be the same as the one provided in the graph description

that is read from stream.

The flagval value is a combination of the following integer values, that may

be added or bitwise-ored:

0 Keep vertex and edge weights if they are present in the stream data.

1 Remove vertex weights. The graph read will have all of its vertex weights

set to one, regardless of what is specified in the stream data.

2 Remove edge weights. The graph read will have all of its edge weights

set to one, regardless of what is specified in the stream data.

Fortran users must use the FNUM function to obtain the number of the Unix file

descriptor fildes associated with the logical unit of the graph file. Processes

which would pass a NULL stream pointer in C must pass descriptor number -1

in Fortran.

Return values

SCOTCH dgraphLoad returns 0 if the distributed graph structure has been suc-

cessfully allocated and filled with the data read, and 1 else.
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6.4.5 SCOTCH dgraphSave

Synopsis

int SCOTCH dgraphSave (const SCOTCH Dgraph * grafptr,

FILE * stream)

scotchfdgraphsave (doubleprecision (*) grafdat,

integer fildes,

integer ierr)

Description

The SCOTCH dgraphSave routine saves the contents of the SCOTCH Dgraph

structure pointed to by grafptr to streams stream, in the Scotch distributed

graph format (see section 4.1).

Fortran users must use the FNUM function to obtain the number of the Unix

file descriptor fildes associated with the logical unit of the graph file.

Return values

SCOTCH dgraphSave returns 0 if the graph structure has been successfully

written to stream, and 1 else.

6.4.6 SCOTCH dgraphBuild

Synopsis

int SCOTCH dgraphBuild (SCOTCH Dgraph * grafptr,

const SCOTCH Num baseval,

const SCOTCH Num vertlocnbr,

const SCOTCH Num vertlocmax,

const SCOTCH Num * vertloctab,

const SCOTCH Num * vendloctab,

const SCOTCH Num * veloloctab,

const SCOTCH Num * vlblocltab,

const SCOTCH Num edgelocnbr,

const SCOTCH Num edgelocsiz,

const SCOTCH Num * edgeloctab,

const SCOTCH Num * edgegsttab,

const SCOTCH Num * edloloctab)
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scotchfdgraphbuild (doubleprecision (*) grafdat,

integer baseval,

integer vertlocnbr,

integer vertlocmax,

integer (*) vertloctab,

integer (*) vendloctab,

integer (*) veloloctab,

integer (*) vlblloctab,

integer edgelocnbr,

integer edgelocsiz,

integer (*) edgeloctab,

integer (*) edgegsttab,

integer (*) edloloctab,

integer ierr)

Description

The SCOTCH dgraphBuild routine fills the distributed source graph structure

pointed to by grafptr with all of the data that are passed to it.

baseval is the graph base value for index arrays (typically 0 for structures

built from C and 1 for structures built from Fortran). vertlocnbr is the

number of local vertices on the calling process, used to create the proccnttab

array. vertlocmax is the maximum number of local vertices to be created on

the calling process, used to create the procvrttab array of global indices, and

which must be set to vertlocnbr for graphs wihout holes in their global num-

bering. vertloctab is the local adjacency index array, of size (vertlocnbr+1)

if the edge array is compact (that is, if vendloctab equals vertloctab+ 1

or NULL), or of size vertlocnbr else. vendloctab is the adjacency end index

array, of size vertlocnbr if it is disjoint from vertloctab. veloloctab is

the local vertex load array, of size vertlocnbr if it exists. vlblloctab is the

local vertex label array, of size vertlocnbr if it exists. edgelocnbr is the

local number of arcs (that is, twice the number of edges), including arcs to

local vertices as well as to ghost vertices. edgelocsiz is lower-bounded by

the minimum size of the edge array required to encompass all used adjacency

values; it is therefore at least equal to the maximum of the vendloctab en-

tries, over all local vertices, minus baseval; it can be set to edgelocnbr if

the edge array is compact. edgeloctab is the local adjacency array, of size at

least edgelocsiz, which stores the global indices of end vertices. edgegsttab

is the adjacency array, of size at least edgelocsiz, if it exists; if edgegsttab

is given, it is assumed to be a pointer to an empty array to be filled with ghost

vertex data computed by SCOTCH dgraphGhst whenever needed by commu-

nication routines such as SCOTCH dgraphHalo. edloloctab is the arc load

array, of size edgelocsiz if it exists.

The vendloctab, veloloctab, vlblloctab, edloloctab and edgegsttab ar-

rays are optional, and a null pointer can be passed as argument whenever

they are not defined. Since, in Fortran, there is no null reference, passing

the scotchfdgraphbuild routine a reference equal to vertloctab in the

veloloctab or vlblloctab fields makes them be considered as missing ar-

rays. The same holds for edloloctab and edgegsttab when they are passed

a reference equal to edgeloctab. Setting vendloctab to refer to one cell after
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vertloctab yields the same result, as it is the exact semantics of a compact

vertex array.

To limit memory consumption, SCOTCH dgraphBuild does not copy array

data, but instead references them in the SCOTCH Dgraph structure. Therefore,

great care should be taken not to modify the contents of the arrays passed to

SCOTCH dgraphBuild as long as the graph structure is in use. Every update

of the arrays should be preceded by a call to SCOTCH dgraphFree, to free

internal graph structures, and eventually followed by a new call to SCOTCH

dgraphBuild to re-build these internal structures so as to be able to use the

new distributed graph.

To ensure that inconsistencies in user data do not result in an erroneous behav-

ior of the libScotch routines, it is recommended, at least in the development

stage of your application code, to call the SCOTCH dgraphCheck routine on the

newly created SCOTCH Dgraph structure before calling any other libScotch

routine.

Return values

SCOTCH dgraphBuild returns 0 if the graph structure has been successfully

set with all of the input data, and 1 else.

6.4.7 SCOTCH dgraphGather

Synopsis

int SCOTCH dgraphGather (SCOTCH Dgraph * const dgrfptr,

const SCOTCH Graph * const cgrfptr)

scotchfdgraphgather (doubleprecision (*) dgrfdat,

doubleprecision (*) cgrfdat,

integer ierr)

Description

The SCOTCH dgraphGather routine gathers the contents of the distributed

SCOTCH Dgraph structure pointed to by dgrfptr to the centralized SCOTCH

Graph structure(s) pointed to by cgrfptr.

If only one of the processes has a non-null cgrfptr pointer, it is considered

as the root process to which distributed graph data is sent. Else, all of the

processes must provide a valid cgrfptr pointer, and each of them will receive

a copy of the centralized graph.

Return values

SCOTCH dgraphGather returns 0 if the graph structure has been successfully

gathered, and 1 else.

6.4.8 SCOTCH dgraphScatter

Synopsis

46



int SCOTCH dgraphScatter (SCOTCH Dgraph * const dgrfptr,

const SCOTCH Graph * const cgrfptr)

scotchfdgraphscatter (doubleprecision (*) dgrfdat,

doubleprecision (*) cgrfdat,

integer ierr)

Description

The SCOTCH dgraphScatter routine scatters the contents of the centralized

SCOTCH Graph structure pointed to by cgrfptr across the processes of the

distributed SCOTCH Dgraph structure pointed to by dgrfptr.

Only one of the processes should provide a non-null cgrfptr parameter. This

process is considered the root process for the scattering operation. Since,

in Fortran, there is no null reference, processes which are not the root must

indicate it by passing a pointer to the distributed graph structure equal to

the pointer to their centralized graph structure.

The scattering is performed such that graph vertices are evenly spread across

the processes of the communicator associated with the distributed graph, in

ascending order. Every process receives either
⌈

vertglbnbr
procglbnbr

⌉

or
⌊

vertglbnbr
procglbnbr

⌋

vertices, according to its rank: processes of lower ranks are filled first, even-

tually with one more vertex than processes of higher ranks.

Return values

SCOTCH dgraphScatter returns 0 if the graph structure has been successfully

scattered, and 1 else.

6.4.9 SCOTCH dgraphCheck

Synopsis

int SCOTCH dgraphCheck (const SCOTCH Dgraph * grafptr)

scotchfdgraphcheck (doubleprecision (*) grafdat,

integer ierr)

Description

The SCOTCH dgraphCheck routine checks the consistency of the given SCOTCH

Dgraph structure. It can be used in client applications to determine if a graph

which has been created from user-generated data by means of the SCOTCH

dgraphBuild routine is consistent, prior to calling any other routines of the

libScotch library which would otherwise return internal error messages or

crash the program.

Return values

SCOTCH dgraphCheck returns 0 if graph data are consistent, and 1 else.
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6.4.10 SCOTCH dgraphSize

Synopsis

void SCOTCH dgraphSize (const SCOTCH Dgraph * grafptr,

SCOTCH Num * vertglbptr,

SCOTCH Num * vertlocptr,

SCOTCH Num * edgeglbptr,

SCOTCH Num * edgelocptr)

scotchfdgraphsize (doubleprecision (*) grafdat,

integer vertglbnbr,

integer vertlocnbr,

integer edgeglbnbr,

integer edgelocnbr)

Description

The SCOTCH dgraphSize routine fills the four areas of type SCOTCH Num

pointed to by vertglbptr, vertlocptr, edgeglbptr and edgelocptr with

the number of global vertices and arcs (that is, twice the number of edges) of

the given graph pointed to by grafptr, as well as with the number of local

vertices and arcs borne by each of the calling processes.

Any of these pointers can be set to NULL on input if the corresponding infor-

mation is not needed. Else, the reference to a dummy area can be provided,

where all unwanted data will be written.

This routine is useful to get the size of a graph read by means of the SCOTCH

dgraphLoad routine, in order to allocate auxiliary arrays of proper sizes. If the

whole structure of the graph is wanted, function SCOTCH dgraphData should

be preferred.

6.4.11 SCOTCH dgraphData

Synopsis
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void SCOTCH dgraphData (const SCOTCH Graph * grafptr,

SCOTCH Num * baseptr,

SCOTCH Num * vertglbptr,

SCOTCH Num * vertlocptr,

SCOTCH Num * vertlocptz,

SCOTCH Num * vertgstptr,

SCOTCH Num ** vertloctab,

SCOTCH Num ** vendloctab,

SCOTCH Num ** veloloctab,

SCOTCH Num ** vlblloctab,

SCOTCH Num * edgeglbptr,

SCOTCH Num * edgelocptr,

SCOTCH Num * edgelocptz,

SCOTCH Num ** edgeloctab,

SCOTCH Num ** edgegsttab,

SCOTCH Num ** edloloctab,

MPI Comm * comm)

scotchfdgraphdata (doubleprecision (*) grafdat,

integer (*) indxtab,

integer baseval,

integer vertglbnbr,

integer vertlocnbr,

integer vertlocmax,

integer vertgstnbr,

integer vertlocidx,

integer vendlocidx,

integer velolocidx,

integer vlbllocidx,

integer edgeglbnbr,

integer edgelocnbr,

integer edgelocsiz,

integer edgelocidx,

integer edgegstidx,

integer edlolocidx,

integer comm)

Description

The SCOTCH dgraphData routine is the dual of the SCOTCH dgraphBuild rou-

tine. It is a multiple accessor that returns scalar values and array references.

baseptr is the pointer to a location that will hold the graph base value for

index arrays (typically 0 for structures built from C and 1 for structures built

from Fortran). vertglbptr is the pointer to a location that will hold the global

number of vertices. vertlocptr is the pointer to a location that will hold the

number of local vertices. vertlocptz is the pointer to a location that will

hold the maximum allowed number of local vertices, that is, (procvrttab[p+

1]−procvrttab[p]), where p is the rank of the local process. vertgstptr is

the pointer to a location that will hold the number of local and ghost vertices

if it has already been computed by a prior call to SCOTCH dgraphGhst, and

−1 else. vertloctab is the pointer to a location that will hold the reference
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to the adjacency index array, of size *vertlocptr+1 if the adjacency array is

compact, or of size *vertlocptr else. vendloctab is the pointer to a location

that will hold the reference to the adjacency end index array, and is equal

to vertloctab + 1 if the adjacency array is compact. veloloctab is the

pointer to a location that will hold the reference to the vertex load array, of

size *vertlocptr. vlblloctab is the pointer to a location that will hold the

reference to the vertex label array, of size vertlocnbr. edgeglbptr is the

pointer to a location that will hold the global number of arcs (that is, twice

the number of global edges). edgelocptr is the pointer to a location that

will hold the number of local arcs (that is, twice the number of local edges).

edgelocptz is the pointer to a location that will hold the declared size of

the local edge array, which must encompass all used adjacency values; it is

at least equal to *edgelocptr. edgeloctab is the pointer to a location that

will hold the reference to the local adjacency array of global indices, of size

at least *edgelocptz. edgegsttab is the pointer to a location that will hold

the reference to the ghost adjacency array, of size at least *edgelocptz; if it

is non null, its data are valid if vertgstnbr is non-negative. edloloctab is

the pointer to a location that will hold the reference to the arc load array, of

size *edgelocptz. comm is the pointer to a location that will hold the MPI

communicator of the distributed graph.

Any of these pointers can be set to NULL on input if the corresponding infor-

mation is not needed. Else, the reference to a dummy area can be provided,

where all unwanted data will be written.

Since there are no pointers in Fortran, a specific mechanism is used to allow

users to access graph arrays. The scotchfdgraphdata routine is passed an

integer array, the first element of which is used as a base address from which all

other array indices are computed. Therefore, instead of returning references,

the routine returns integers, which represent the starting index of each of the

relevant arrays with respect to the base input array, or vertlocidx, the index

of vertloctab, if they do not exist. For instance, if some base array myarray

(1) is passed as parameter indxtab, then the first cell of array vertloc

tab will be accessible as myarray(vertlocidx). In order for this feature

to behave properly, the indxtab array must be word-aligned with the graph

arrays. This is automatically enforced on most systems, but some care should

be taken on systems that allow to access data that is not word-aligned. On

such systems, declaring the array after a dummy doubleprecision array can

coerce the compiler into enforcing the proper alignment. The integer value

returned in comm is the communicator itself, not its index with respect to

indxtab.

6.4.12 SCOTCH dgraphHalo

Synopsis

int SCOTCH dgraphHalo (SCOTCH Dgraph * const grafptr,

void * datatab,

MPI Datatype typeval)
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scotchfdgraphhalo (doubleprecision (*) grafdat,

doubleprecision (*) datatab,

integer typeval,

integer ierr)

Description

The SCOTCH dgraphHalo routine propagates the data borne by local vertices

to all of the corresponding halo vertices located on neighboring processes. On

every process, datatab should point to a data array of a size sufficient to hold

vertgstnbr elements of the data type to be exchanged, the first vertlocnbr

slots of which must already be filled with the information associated with

the local vertices. On completion, the (vertgstnbr−vertlocnbr) remaining

slots are filled with copies of the corresponding remote data obtained from

the local parts of the data arrays of neighboring processes.

When the MPI data type to be used is not a collection of contiguous en-

tries, great care should be taken in the definition of the upper bound of the

type (by using the MPI UB pseudo-datatype), such that when asking MPI to

send a certain number of elements of the said type located at some address,

contiguous areas in memory will be considered. Please refer to the MPI docu-

mentation regarding the creation of derived datatypes [32, Section 3.12.3] for

more information.

To perform its data exchanges, the SCOTCH dgraphHalo routine requires ghost

vertex management data provided by the SCOTCH dgraphGhst routine. There-

fore, the edgegsttab array returned by the SCOTCH dgraphData routine will

always be valid after a call to SCOTCH dgraphHalo.

Return values

SCOTCH dgraphHalo returns 0 if halo data has been successfully exchanged,

and 1 else.

6.4.13 SCOTCH dgraphGhst

Synopsis

int SCOTCH dgraphGhst (SCOTCH Dgraph * const grafptr)

scotchfdgraphghst (doubleprecision (*) grafdat)

Description

The SCOTCH dgraphGhst routine fills the edgegsttab arrays of the distributed

graph structure pointed to by grafptr with the local and ghost vertex indices

corresponding to the global vertex indices contained in its edgeloctab arrays,

according to the semantics described in Section 6.2.1.

If memory areas had not been previously reserved by the user for the edge

gsttab arrays and linked to the distributed graph structure through a call to

SCOTCH dgraphBuild, they are allocated. Their references can be retrieved

on every process by means of a call to SCOTCH dgraphData, which will also
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return the number of local and ghost vertices, suitable for allocating vertex

data arrays for SCOTCH dgraphHalo.

Return values

SCOTCH dgraphGhst returns 0 if ghost vertex data has been successfully com-

puted, and 1 else.

6.5 Distributed graph mapping and partitioning routines

The first two routines provide high-level functionalities and free the user from the

burden of calling in sequence several of the low-level routines described afterward.

6.5.1 SCOTCH dgraphPart

Synopsis

int SCOTCH dgraphPart (const SCOTCH Dgraph * grafptr,

const SCOTCH Num partnbr,

const SCOTCH Strat * straptr,

SCOTCH Num * partloctab)

scotchfdgraphpart (doubleprecision (*) grafdat,

integer partnbr,

doubleprecision (*) stradat,

integer (*) partloctab,

integer ierr)

Description

The SCOTCH dgraphPart routine computes a partition into partnbr parts

of the distributed source graph structure pointed to by grafptr, using the

graph partitioning strategy pointed to by stratptr, and returns distributed

fragments of the partition data in the array pointed to by partloctab.

The partloctab array should have been previously allocated, of a size suffi-

cient to hold as many SCOTCH Num integers as there are local vertices of the

source graph on each of the processes.

On return, every array cell holds the number of the part to which the corre-

sponding vertex is mapped. Parts are numbered from 0 to partnbr− 1.

Return values

SCOTCH dgraphPart returns 0 if the partition of the graph has been success-

fully computed, and 1 else. In this latter case, the partloctab array may

however have been partially or completely filled, but its content is not signif-

icant.

6.5.2 SCOTCH dgraphMap

Synopsis
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int SCOTCH dgraphMap (const SCOTCH Dgraph * grafptr,

const SCOTCH Arch * archptr,

const SCOTCH Strat * straptr,

SCOTCH Num * partloctab)

scotchfdgraphmap (doubleprecision (*) grafdat,

doubleprecision (*) archdat,

doubleprecision (*) stradat,

integer (*) partloctab,

integer ierr)

Description

The SCOTCH dgraphMap routine computes a mapping of the distributed source

graph structure pointed to by grafptr onto the target architecture pointed

to by archptr, using the mapping strategy pointed to by straptr, and re-

turns distributed fragments of the partition data in the array pointed to by

partloctab.

The partloctab array should have been previously allocated, of a size suffi-

cient to hold as many SCOTCH Num integers as there are local vertices of the

source graph on each of the processes.

On return, every cell of the mapping array holds the number of the target

vertex to which the corresponding source vertex is mapped. The numbering

of target values is not based: target vertices are numbered from 0 to the

number of target vertices minus 1.

Attention: version 5.1 of Scotch does not allow yet to map distributed

graphs onto target architectures which are not complete graphs. This restric-

tion will be removed in the next release.

Return values

SCOTCH dgraphMap returns 0 if the partition of the graph has been successfully

computed, and 1 else. In this last case, the partloctab arrays may however

have been partially or completely filled, but their contents is not significant.

6.5.3 SCOTCH dgraphMapInit

Synopsis

int SCOTCH dgraphMapInit (const SCOTCH Dgraph * grafptr,

SCOTCH Dmapping * mappptr,

const SCOTCH Arch * archptr,

SCOTCH Num * partloctab)

scotchfdgraphmapinit (doubleprecision (*) grafdat,

doubleprecision (*) mappdat,

doubleprecision (*) archdat,

integer (*) partloctab,

integer ierr)

Description
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The SCOTCH dgraphMapInit routine fills the distributed mapping structure

pointed to by mappptr with all of the data that is passed to it. Thus, all sub-

sequent calls to ordering routines such as SCOTCH dgraphMapCompute, using

this mapping structure as parameter, will place mapping results in field part

loctab.

partloctab is the pointer to an array of as many SCOTCH Nums as there are

local vertices in each local fragment of the distributed graph pointed to by

grafptr, and which will receive the indices of the vertices of the target archi-

tecture pointed to by archptr.

It should be the first function to be called upon a SCOTCH Dmapping structure.

When the distributed mapping structure is no longer of use, call function

SCOTCH dgraphMapExit to free its internal structures.

Return values

SCOTCH dgraphMapInit returns 0 if the distributed mapping structure has

been successfully initialized, and 1 else.

6.5.4 SCOTCH dgraphMapExit

Synopsis

void SCOTCH dgraphMapExit (const SCOTCH Dgraph * grafptr,

SCOTCH Dmapping * mappptr)

scotchfdgraphmapexit (doubleprecision (*) grafdat,

doubleprecision (*) mappdat)

Description

The SCOTCH dgraphMapExit function frees the contents of a SCOTCH Dmapping

structure previously initialized by SCOTCH dgraphMapInit. All subsequent

calls to SCOTCH dgraphMap* routines other than SCOTCH dgraphMapInit, us-

ing this structure as parameter, may yield unpredictable results.

6.5.5 SCOTCH dgraphMapSave

Synopsis

int SCOTCH dgraphMapSave (const SCOTCH Dgraph * grafptr,

const SCOTCH Dmapping * mappptr,

FILE * stream)

scotchfdgraphmapsave (doubleprecision (*) grafdat,

doubleprecision (*) mappdat,

integer fildes,

integer ierr)

Description
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The SCOTCH dgraphMapSave routine saves the contents of the SCOTCH

Dmapping structure pointed to by mappptr to stream stream, in the Scotch

mapping format. Please refer to the Scotch User’s Guide [36] for more

information about this format.

Since the mapping format is centralized, only one process should provide a

valid output stream; other processes must pass a null pointer.

Fortran users must use the FNUM function to obtain the number of the Unix

file descriptor fildes associated with the logical unit of the mapping file.

Return values

SCOTCH dgraphMapSave returns 0 if the mapping structure has been success-

fully written to stream, and 1 else.

6.5.6 SCOTCH dgraphMapCompute

Synopsis

int SCOTCH dgraphMapCompute (const SCOTCH Dgraph * grafptr,

SCOTCH Dmapping * mappptr,

const SCOTCH Strat * straptr)

scotchfdgraphmapcompute (doubleprecision (*) grafdat,

doubleprecision (*) mappdat,

doubleprecision (*) stradat,

integer ierr)

Description

The SCOTCH dgraphMapCompute routine computes a mapping on the given

SCOTCH Dmapping structure pointed to by mappptr using the parallel mapping

strategy pointed to by stratptr.

On return, every cell of the distributed mapping array (see section 6.5.3) holds

the number of the target vertex to which the corresponding source vertex is

mapped. The numbering of target values is not based: target vertices are

numbered from 0 to the number of target vertices, minus 1.

Attention: version 5.1 of Scotch does not allow yet to map distributed

graphs onto target architectures which are not complete graphs. This restric-

tion will be removed in the next release.

Return values

SCOTCH dgraphMapCompute returns 0 if the mapping has been successfully

computed, and 1 else. In this latter case, the local mapping arrays may

however have been partially or completely filled, but their contents is not

significant.

55



6.6 Distributed graph ordering routines

6.6.1 SCOTCH dgraphOrderInit

Synopsis

int SCOTCH dgraphOrderInit (const SCOTCH Dgraph * grafptr,

SCOTCH Dordering * ordeptr)

scotchfdgraphorderinit (doubleprecision (*) grafdat,

doubleprecision (*) ordedat,

integer ierr)

Description

The SCOTCH dgraphOrderInit routine initializes the distributed ordering

structure pointed to by ordeptr so that it can be used to store the results of

the parallel ordering of the associated distributed graph, to be computed by

means of the SCOTCH dgraphOrderCompute routine.

The SCOTCH dgraphOrderInit routine should be the first function to be called

upon a SCOTCH Dordering structure for ordering distributed graphs. When

the ordering structure is no longer of use, the SCOTCH dgraphOrderExit func-

tion must be called, in order to to free its internal structures.

Return values

SCOTCH dgraphOrderInit returns 0 if the distributed ordering structure has

been successfully initialized, and 1 else.

6.6.2 SCOTCH dgraphOrderExit

Synopsis

void SCOTCH dgraphOrderExit (const SCOTCH Dgraph * grafptr,

SCOTCH Dordering * ordeptr)

scotchfgraphdorderexit (doubleprecision (*) grafdat,

doubleprecision (*) ordedat)

Description

The SCOTCH dgraphOrderExit function frees the contents of a SCOTCH

Dordering structure previously initialized by SCOTCH dgraphOrderInit. All

subsequent calls to SCOTCH dgraphOrder* routines other than SCOTCH dgraph

OrderInit, using this structure as parameter, may yield unpredictable results.

6.6.3 SCOTCH dgraphOrderSave

Synopsis
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int SCOTCH dgraphOrderSave (const SCOTCH Dgraph * grafptr,

const SCOTCH Dordering * ordeptr,

FILE * stream)

scotchfdgraphordersave (doubleprecision (*) grafdat,

doubleprecision (*) ordedat,

integer fildes,

integer ierr)

Description

The SCOTCH dgraphOrderSave routine saves the contents of the SCOTCH

Dordering structure pointed to by ordeptr to stream stream, in the Scotch

ordering format. Please refer to the Scotch User’s Guide [36] for more in-

formation about this format.

Since the ordering format is centralized, only one process should provide a

valid output stream; other processes must pass a null pointer.

Fortran users must use the FNUM function to obtain the number of the Unix

file descriptor fildes associated with the logical unit of the ordering file.

Processes which would pass a NULL stream pointer in C must pass descriptor

number -1 in Fortran.

Return values

SCOTCH dgraphOrderSave returns 0 if the ordering structure has been suc-

cessfully written to stream, and 1 else.

6.6.4 SCOTCH dgraphOrderSaveMap

Synopsis

int SCOTCH dgraphOrderSaveMap (const SCOTCH Dgraph * grafptr,

const SCOTCH Dordering * ordeptr,

FILE * stream)

scotchfgraphdordersavemap (doubleprecision (*) grafdat,

doubleprecision (*) ordedat,

integer fildes,

integer ierr)

Description

The SCOTCH dgraphOrderSaveMap routine saves the block partitioning data

associated with the SCOTCH Dordering structure pointed to by ordeptr to

stream stream, in the Scotch mapping format. A target domain number

is associated with every block, such that all node vertices belonging to the

same block are shown as belonging to the same target vertex. The resulting

mapping file can be used by the gout program to produce pictures showing

the different separators and blocks. Please refer to the Scotch User’s Guide

for more information on the Scotch mapping format and on gout.
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Since the block partitioning format is centralized, only one process should

provide a valid output stream; other processes must pass a null pointer.

Fortran users must use the FNUM function to obtain the number of the Unix

file descriptor fildes associated with the logical unit of the ordering file.

Processes which would pass a NULL stream pointer in C must pass descriptor

number -1 in Fortran.

Return values

SCOTCH dgraphOrderSaveMap returns 0 if the ordering structure has been suc-

cessfully written to stream, and 1 else.

6.6.5 SCOTCH dgraphOrderSaveTree

Synopsis

int SCOTCH dgraphOrderSaveTree (const SCOTCH Dgraph * grafptr,

const SCOTCH Dordering * ordeptr,

FILE * stream)

scotchfdgraphordersavetree (doubleprecision (*) grafdat,

doubleprecision (*) ordedat,

integer fildes,

integer ierr)

Description

The SCOTCH dgraphOrderSaveTree routine saves the tree hierarchy informa-

tion associated with the SCOTCH Dordering structure pointed to by ordeptr

to stream stream.

The format of the tree output file resembles the one of a mapping or ordering

file: it is made up of as many lines as there are vertices in the ordering. Each

of these lines holds two integer numbers. The first one is the index or the

label of the vertex, and the second one is the index of its parent node in the

separators tree, or −1 if the vertex belongs to a root node.

Since the tree hierarchy format is centralized, only one process should provide

a valid output stream; other processes must pass a null pointer.

Fortran users must use the FNUM function to obtain the number of the Unix

file descriptor fildes associated with the logical unit of the ordering file.

Processes which would pass a NULL stream pointer in C must pass descriptor

number -1 in Fortran.

Return values

SCOTCH dgraphOrderSaveTree returns 0 if the ordering structure has been

successfully written to stream, and 1 else.

6.6.6 SCOTCH dgraphOrderCompute

Synopsis
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int SCOTCH dgraphOrderCompute (const SCOTCH Dgraph * grafptr,

SCOTCH Dordering * ordeptr,

const SCOTCH Strat * straptr)

scotchfdgraphordercompute (doubleprecision (*) grafdat,

doubleprecision (*) ordedat,

doubleprecision (*) stradat,

integer ierr)

Description

The SCOTCH dgraphOrderCompute routine computes in parallel a distributed

block ordering of the distributed graph structure pointed to by grafptr, using

the distributed ordering strategy pointed to by stratptr, and stores its result

in the distributed ordering structure pointed to by ordeptr.

Return values

SCOTCH dgraphOrderCompute returns 0 if the ordering has been successfully

computed, and 1 else. In this latter case, the ordering arrays may however

have been partially or completely filled, but their contents are not significant.

6.6.7 SCOTCH dgraphOrderPerm

Synopsis

int SCOTCH dgraphOrderPerm (const SCOTCH Dgraph * grafptr,

SCOTCH Dordering * ordeptr,

SCOTCH Num * permloctab)

scotchfdgraphorderperm (doubleprecision (*) grafdat,

doubleprecision (*) ordedat,

integer (*) permloctab,

integer ierr)

Description

The SCOTCH dgraphOrderPerm routine fills the distributed direct permutation

array permloctab according to the ordering provided by the given distributed

ordering pointed to by ordeptr. Each permloctab local array should be of

size vertlocnbr.

Return values

SCOTCH dgraphOrderPerm returns 0 if the distributed permutation has been

successfully computed, and 1 else.

6.6.8 SCOTCH dgraphOrderCblkDist

Synopsis

SCOTCH Num SCOTCH dgraphOrderCblkDist (const SCOTCH Dgraph * grafptr,

SCOTCH Dordering * ordeptr)
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scotchfdgraphordercblkdist (doubleprecision (*) grafdat,

doubleprecision (*) ordedat,

integer cblkglbnbr)

Description

The SCOTCH dgraphOrderCblkDist routine returns on all processes the global

number of distributed elimination tree (super-)nodes possessed by the given

distributed ordering. Distributed elimination tree nodes are produced for in-

stance by parallel nested dissection, before the ordering process goes sequen-

tial. Subsequent sequential nodes generated locally afterwards on individual

processes are not accounted for in this figure.

This routine is used to allocate space for the tree structure arrays to be filled

by the SCOTCH dgraphOrderTreeDist routine.

Return values

SCOTCH dgraphOrderCblkDist returns a positive number if the number of

distributed elimination tree nodes has been successfully computed, and a neg-

ative value else.

6.6.9 SCOTCH dgraphOrderTreeDist

Synopsis

int SCOTCH dgraphOrderTreeDist (const SCOTCH Dgraph * grafptr,

SCOTCH Dordering * ordeptr,

SCOTCH Num * treeglbtab

SCOTCH Num * sizeglbtab)

scotchfdgraphordertreedist (doubleprecision (*) grafdat,

doubleprecision (*) ordedat,

integer (*) treeglbtab,

integer (*) sizeglbtab,

integer ierr)

Description

The SCOTCH dgraphOrderTreeDist routine fills on all processes the arrays

representing the distributed part of the elimination tree structure associated

with the given distributed ordering. This structure describes the sizes and

relations between all distributed elimination tree (super-)nodes. These nodes

are mainly the result of parallel nested dissection, before the ordering process

goes sequential. Sequential nodes generated locally on individual processes

are not represented in this structure.

A node can either be a leaf column block, which has no descendants, or a

nested dissection node, which has most often three sons: its two separated

sub-parts and the separator. A nested dissection node may have two sons

only if the separator is empty; it cannot have only one son. Sons are indexed

such that the separator of a block, if any, is always the son of highest index.
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Hence, the order of the indices of the two sub-parts matches the one of the

direct permutation of the unknowns.

For any column block i, treeglbtab[i] holds the index of the father of node i

in the elimination tree, or −1 if i is the root of the tree. All node indices start

from baseval. sizeglbtab[i] holds the number of graph vertices possessed

by node i, plus the ones of all of its descendants if it is not a leaf of the tree.

Therefore, the sizeglbtab value of the root vertex is always equal to the

number of vertices in the distributed graph.

Each of the treeglbtab and sizeglbtab arrays must be large enough to

hold a number of SCOTCH Nums equal to the number of distributed elimination

tree nodes and column blocks, as returned by the SCOTCH dgraphOrderCblk

Dist routine.

Return values

SCOTCH dgraphOrderTreeDist returns 0 if the arrays describing the dis-

tributed part of the distributed tree structure have been successfully filled,

and 1 else.

6.7 Centralized ordering handling routines

Since distributed ordering structures maintain scattered information which cannot

be easily collated, the only practical way to access this information is to centralize it

in a sequential SCOTCH Ordering structure. Several routines are provided to create

and destroy sequential orderings attached to a distributed graph, and to gather

the information contained in a distributed ordering on such a sequential ordering

structure.

Since the arrays which represent centralized ordering must be of a size equal to

the global number of vertices, these routines are not scalable and may require much

memory for very large graphs.

6.7.1 SCOTCH dgraphCorderInit

Synopsis

int SCOTCH dgraphCorderInit (const SCOTCH Dgraph * grafptr,

SCOTCH Ordering * cordptr,

SCOTCH Num * permtab,

SCOTCH Num * peritab,

SCOTCH Num * cblkptr,

SCOTCH Num * rangtab,

SCOTCH Num * treetab)

scotchfdgraphcorderinit (doubleprecision (*) grafdat,

doubleprecision (*) corddat,

integer (*) permtab,

integer (*) peritab,

integer cblknbr,

integer (*) rangtab,

integer (*) treetab,

integer ierr)
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Description

The SCOTCH dgraphCorderInit routine fills the centralized ordering structure

pointed to by cordptr with all of the data that are passed to it. This routine

is the equivalent of the SCOTCH graphOrderInit routine of the Scotch se-

quential library, except that it takes a distributed graph as input. It is used to

initialize a centralized ordering structure on which a distributed ordering will

be centralized by means of the SCOTCH dgraphOrderGather routine. Only the

process on which distributed ordering data is to be centralized has to handle

a centralized ordering structure.

permtab is the ordering permutation array, of size vertglbnbr, peritab is

the inverse ordering permutation array, of size vertglbnbr, cblkptr is the

pointer to a SCOTCH Num that will receive the number of produced column

blocks, rangtab is the array that holds the column block span information,

of size vertglbnbr + 1, and treetab is the array holding the structure of

the separators tree, of size vertglbnbr. Please refer to Section 6.2.2 for an

explanation of their semantics. Any of these five output fields can be set to

NULL if the corresponding information is not needed. Since, in Fortran, there

is no null reference, passing a reference to grafptr will have the same effect.

The SCOTCH dgraphCorderInit routine should be the first function to be

called upon a SCOTCH Ordering structure to be used for gathering distributed

ordering data. When the centralized ordering structure is no longer of use,

the SCOTCH dgraphCorderExit function must be called, in order to to free its

internal structures.

Return values

SCOTCH dgraphCorderInit returns 0 if the ordering structure has been suc-

cessfully initialized, and 1 else.

6.7.2 SCOTCH dgraphCorderExit

Synopsis

void SCOTCH dgraphCorderExit (const SCOTCH Dgraph * grafptr,

SCOTCH Ordering * cordptr)

scotchfdgraphcorderexit (doubleprecision (*) grafdat,

doubleprecision (*) corddat)

Description

The SCOTCH dgraphCorderExit function frees the contents of a centralized

SCOTCH Ordering structure previously initialized by SCOTCH dgraphCorder

Init.

6.7.3 SCOTCH dgraphOrderGather

Synopsis
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int SCOTCH dgraphOrderGather (const SCOTCH Dgraph * grafptr,

SCOTCH Dordering * cordptr,

SCOTCH Ordering * cordptr)

scotchfdgraphordergather (doubleprecision (*) grafdat,

doubleprecision (*) dorddat,

doubleprecision (*) corddat,

integer ierr)

Description

The SCOTCH dgraphOrderGather routine gathers the distributed ordering

data borne by dordptr to the centralized ordering structure pointed to by

cordptr.

Return values

SCOTCH dgraphOrderGather returns 0 if the centralized ordering structure

has been successfully updated, and 1 else.

6.8 Strategy handling routines

This section presents basic strategy handling routines which are also described in

the Scotch User’s Guide but which are duplicated here for the sake of readability,

as well as a strategy declaration routine which is specific to the PT-Scotch library.

6.8.1 SCOTCH stratInit

Synopsis

int SCOTCH stratInit (SCOTCH Strat * straptr)

scotchfstratinit (doubleprecision (*) stradat,

integer ierr)

Description

The SCOTCH stratInit function initializes a SCOTCH Strat structure so as to

make it suitable for future operations. It should be the first function to be

called upon a SCOTCH Strat structure. When the strategy data is no longer

of use, call function SCOTCH stratExit to free its internal structures.

Return values

SCOTCH stratInit returns 0 if the strategy structure has been successfully

initialized, and 1 else.

6.8.2 SCOTCH stratExit

Synopsis

void SCOTCH stratExit (SCOTCH Strat * archptr)

scotchfstratexit (doubleprecision (*) stradat)
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Description

The SCOTCH stratExit function frees the contents of a SCOTCH Strat struc-

ture previously initialized by SCOTCH stratInit. All subsequent calls to

SCOTCH strat routines other than SCOTCH stratInit, using this structure

as parameter, may yield unpredictable results.

6.8.3 SCOTCH stratSave

Synopsis

int SCOTCH stratSave (const SCOTCH Strat * straptr,

FILE * stream)

scotchfstratsave (doubleprecision (*) stradat,

integer fildes,

integer ierr)

Description

The SCOTCH stratSave routine saves the contents of the SCOTCH Strat struc-

ture pointed to by straptr to stream stream, in the form of a text string.

The methods and parameters of the strategy string depend on the type of the

strategy, that is, whether it is a bipartitioning, mapping, or ordering strategy,

and to which structure it applies, that is, graphs or meshes.

Fortran users must use the FNUM function to obtain the number of the Unix

file descriptor fildes associated with the logical unit of the output file.

Return values

SCOTCH stratSave returns 0 if the strategy string has been successfully writ-

ten to stream, and 1 else.

6.8.4 SCOTCH stratDgraphMap

Synopsis

int SCOTCH stratDgraphMap (SCOTCH Strat * straptr,

const char * string)

scotchfstratdgraphmap (doubleprecision (*) stradat,

character (*) string,

integer ierr)

Description

The SCOTCH stratDgraphMap routine fills the strategy structure pointed to

by straptr with the distributed graph mapping strategy string pointed to by

string. The format of this strategy string is described in Section 6.3.1. From

this point, strategy strat can only be used as a distributed graph mapping
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strategy, to be used by functions SCOTCH dgraphPart, SCOTCH dgraphMap or

SCOTCH dgraphMapCompute. This routine must be called on every process

with the same strategy string.

When using the C interface, the array of characters pointed to by string

must be null-terminated.

Return values

SCOTCH stratDgraphMap returns 0 if the strategy string has been successfully

set, and 1 else.

6.8.5 SCOTCH stratDgraphOrder

Synopsis

int SCOTCH stratDgraphOrder (SCOTCH Strat * straptr,

const char * string)

scotchfstratdgraphorder (doubleprecision (*) stradat,

character (*) string,

integer ierr)

Description

The SCOTCH stratDgraphOrder routine fills the strategy structure pointed to

by straptr with the distributed graph ordering strategy string pointed to by

string. The format of this strategy string is described in Section 6.3.3. From

this point, strategy strat can only be used as a distributed graph ordering

strategy, to be used by function SCOTCH dgraphOrderCompute. This routine

must be called on every process with the same strategy string.

When using the C interface, the array of characters pointed to by string

must be null-terminated.

Return values

SCOTCH stratDgraphOrder returns 0 if the strategy string has been success-

fully set, and 1 else.

6.9 Error handling routines

The handling of errors that occur within library routines is often difficult, because

library routines should be able to issue error messages that help the application

programmer to find the error, while being compatible with the way the application

handles its own errors.

To match these two requirements, all the error and warning messages pro-

duced by the routines of the libScotch library are issued using the user-definable

variable-length argument routines SCOTCH errorPrint and SCOTCH errorPrintW.

Thus, one can redirect these error messages to his own error handling routines, and

can choose if he wants his program to terminate on error or to resume execution

after the erroneous function has returned.

In order to free the user from the burden of writing a basic error handler from

scratch, the libptscotcherr.a library provides error routines that print error
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messages on the standard error stream stderr and return control to the appli-

cation. Application programmers who want to take advantage of them have to

add -lptscotcherr to the list of arguments of the linker, after the -lptscotch

argument.

6.9.1 SCOTCH errorPrint

Synopsis

void SCOTCH errorPrint (const char * const errstr, ... )

Description

The SCOTCH errorPrint function is designed to output a variable-length ar-

gument error string to some stream.

6.9.2 SCOTCH errorPrintW

Synopsis

void SCOTCH errorPrintW (const char * const errstr, ...)

Description

The SCOTCH errorPrintW function is designed to output a variable-length

argument warning string to some stream.

6.9.3 SCOTCH errorProg

Synopsis

void SCOTCH errorProg (const char * progstr)

Description

The SCOTCH errorProg function is designed to be called at the beginning of a

program or of a portion of code to identify the place where subsequent errors

take place. This routine is not reentrant, as it is only a minor help function.

It is defined in libscotcherr.a and is used by the standalone programs of

the Scotch distribution.

6.10 Miscellaneous routines

6.10.1 SCOTCH randomReset

Synopsis
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void SCOTCH randomReset (void)

scotchfrandomreset ()

Description

The SCOTCH randomReset routine resets the seed of the pseudo-random gen-

erator used by the graph partitioning routines of the libScotch library. Two

consecutive calls to the same libScotch partitioning routines, and separated

by a call to SCOTCH randomReset, will always yield the same results, as if the

equivalent standalone Scotch programs were used twice, independently, to

compute the results.

6.11 ParMeTiS compatibility library

The ParMeTiS compatibility library provides stubs which redirect some calls to

ParMeTiS routines to the corresponding PT-Scotch counterparts. In order to

use this feature, the only thing to do is to re-link the existing software with the lib

ptscotchparmetis library, and eventually with the original ParMeTiS library if

the software uses ParMeTiS routines which do not need to have PT-Scotch equiv-

alents, such as graph transformation routines. In that latter case, the “-lptscotch

parmetis” argument must be placed before the “-lparmetis” one (and of course

before the “-lptscotch” one too), so that routines that are redefined by PT-

Scotch are chosen instead of their ParMeTiS counterpart. Routines of ParMeTiS

which are not redefined by PT-Scotch may also require that the sequential MeTiS

library be linked too. When no other ParMeTiS routines than the ones redefined by

PT-Scotch are used, the “-lparmetis” argument can be omitted. See Section 8

for an example.

6.11.1 ParMETIS V3 NodeND

Synopsis

void ParMETIS V3 NodeND (const int * const vtxdist,

const int * const xadj,

const int * const adjncy,

const int * const numflag,

const int * const options,

int * const order,

int * const sizes,

MPI Comm * comm)

parmetis v3 nodend (integer (*) vtxdist,

integer (*) xadj,

integer (*) adjncy,

integer numflag,

integer (*) options,

integer (*) order,

integer (*) sizes,

integer comm)
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Description

The ParMETIS V3 NodeND function performs a nested dissection ordering of

the distributed graph passed as arrays vtxdist, xadj and adjncy, using the

default PT-Scotch ordering strategy. Unlike for ParMeTiS, this routine

will compute an ordering even when the number of processors on which it is

run is not a power of two. The options array is not used. When the number

of processors is a power of two, the contents of the sizes array is equivalent to

the one returned by the original ParMETIS V3 NodeND routine, else it is filled

with −1 values.

Users willing to get the tree structure of orderings computed on numbers of

processors which are not power of two should use the native PT-Scotch

ordering routine, and extract the relevant information from the distributed

ordering with the SCOTCH dgraphOrderCblkDist and SCOTCH dgraphOrder

TreeDist routines.

Similarly, as there is no ParMETIS V3 NodeWND routine in ParMeTiS, users

willing to order distributed graphs with node weights should directly call the

PT-Scotch routines.

6.11.2 ParMETIS V3 PartGeomKway

Synopsis

void ParMETIS V3 PartGeomKway (const int * const vtxdist,

const int * const xadj,

const int * const adjncy,

const int * const vwgt,

const int * const adjwgt,

const int * const wgtflag,

const int * const numflag,

const int * const ndims,

const float * const xyz,

const int * const ncon,

const int * const nparts,

const float * const tpwgts,

const float * const ubvec,

const int * const options,

int * const edgecut,

int * const part,

MPI Comm * comm)
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parmetis v3 partgeomkway (integer (*) vtxdist,

integer (*) xadj,

integer (*) adjncy,

integer (*) vwgt,

integer (*) adjwgt,

integer wgtflag,

integer numflag,

integer ndims,

float (*) xyz,

integer ncon,

integer nparts,

float (*) tpwgts,

float (*) ubvec,

integer (*) options,

integer edgecut,

integer (*) part,

integer comm)

Description

The ParMETIS V3 PartGeomKway function computes a partition into nparts

parts of the distributed graph passed as arrays vtxdist, xadj and adjncy,

using the default PT-Scotch mapping strategy. The partition is returned in

the form of the distributed vector part, which holds the indices of the parts

to which every vertex belongs, from 0 to (nparts− 1).

Since Scotch does not handle geometry, the ndims and xyz arrays are not

used, and this routine directly calls the ParMETIS V3 PartKway stub.

6.11.3 ParMETIS V3 PartKway

Synopsis

void ParMETIS V3 PartKway (const int * const vtxdist,

const int * const xadj,

const int * const adjncy,

const int * const vwgt,

const int * const adjwgt,

const int * const wgtflag,

const int * const numflag,

const int * const ncon,

const int * const nparts,

const float * const tpwgts,

const float * const ubvec,

const int * const options,

int * const edgecut,

int * const part,

MPI Comm * comm)
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parmetis v3 partkway (integer (*) vtxdist,

integer (*) xadj,

integer (*) adjncy,

integer (*) vwgt,

integer (*) adjwgt,

integer wgtflag,

integer numflag,

integer ncon,

integer nparts,

float (*) tpwgts,

float (*) ubvec,

integer (*) options,

integer edgecut,

integer (*) part,

integer comm)

Description

The ParMETIS V3 PartKway function computes a partition into nparts parts

of the distributed graph passed as arrays vtxdist, xadj and adjncy, using

the default PT-Scotch mapping strategy. The partition is returned in the

form of the distributed vector part, which holds the indices of the parts to

which every vertex belongs, from 0 to (nparts− 1).

Since Scotch does not handle multiple constraints, only the first constraint is

taken into account to define the respective weights of the parts. Consequently,

only the first nparts cells of the tpwgts array are considered. The ncon, ubvec

and options parameters are not used.

7 Installation

Version 5.1 of the Scotch software package, which contains the PT-Scotch

routines, is distributed as free/libre software under the CeCILL-C free/libre

software license [4], which is very similar to the GNU LGPL license. There-

fore, it is not distributed as a set of binaries, but instead in the form of a

source distribution, which can be downloaded from the Scotch web page at

http://www.labri.fr/~pelegrin/scotch/ .

The extraction process will create a scotch 5.1 directory, containing several

subdirectories and files. Please refer to the files called LICENSE EN.txt or LICENCE

FR.txt, as well as file INSTALL EN.txt, to see under which conditions your

distribution of Scotch is licensed and how to install it.

To enable the use of POSIX threads in some routines, the SCOTCH PTHREAD flag

must be set. If your MPI implementation is not thread-safe, make sure this flag is

not defined at compile time.

To enable on-the-fly compression and decompression of various formats, the

relevant flags must be defined. These flags are COMMON FILE COMPRESS BZ2 for

bzip2 (de)compression, COMMON FILE COMPRESS GZ for gzip (de)compression, and
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COMMON FILE COMPRESS LZMA for lzma decompression. Note that the correspond-

ing development libraries must be installed on your system before compile time,

and that compressed file handling can take place only on systems which support

multi-threading or multi-processing. In the first case, you must set the SCOTCH

PTHREAD flag in order to take advantage of these features.

On Linux systems, the development libraries to install are libbzip2 1-

devel for the bzip2 format, zlib1-devel for the gzip format, and liblzma0-

devel for the lzma format. The names of the libraries may vary according to

operating systems and library versions. Ask your system engineer in case of trouble.

The integer values handled by Scotch are based by default on the int C type,

corresponding to the INTEGER Fortran type, both of which being of the size of a

machine word. To coerce the length of the Scotch integer type to 32 or 64 bits,

one can use the INTSIZE32 or INTSIZE64 flags, respectively, or else the “-DINT=”

definition, at compile time. For instance, adding “-DINT=long” to the CFLAGS

variable in the Makefile.inc file to be placed at the root of the source tree will

make all SCOTCH Num integers become long C integers.

Whenever doing so, make sure to use integer types of equivalent length to

declare variables passed to Scotch routines from caller C and Fortran procedures.

Also, because of API conflicts, the MeTiS compatibility library will not be usable.

It is usually safer and cleaner to tune your C and Fortran compilers to make

them interpret int and INTEGER types as 32 or 64 bit values, than to use the

aforementioned flags and coerce type lengths in your own code.

All Scotch users are welcome to send a mail to the author so that they can be

added to the Scotch mailing list, and be automatically informed of new releases

and publications.

8 Examples

This section contains chosen examples destined to show how the programs of the

PT-Scotch project interoperate and can be combined. It is assumed that parallel

programs are launched by means of the mpirun command, which comprises a -np

option to set the number of processes on which to run them. Character “%” in

bold represents the shell prompt.

• Create a distributed source graph file of 7 fragments from the centralized

source graph file brol.grf stored in the current directory of process 0 of the

MPI environment, and stores the resulting fragments in files labeled with the

proper number of processors and processor ranks.

% mpirun -np 7 dgscat brol.grf brol-%p-%r.dgr

• Compute on 3 processors the ordering of graph brol.grf, to be saved in a

file called brol.ord written by process 0 of the MPI environment.

% mpirun -np 7 dgord brol.grf brol.ord

• Compute on 4 processors the first three levels of nested dissection of graph

brol.grf, and create an Open Inventor file called brol.iv to show the

resulting separators and leaves.
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% mpirun -np 4 dgord brol.grf /dev/null ’-On{sep=/(levl<3)?m{

asc=b{strat=q{strat=f}},low=q{strat=h},seq=q{strat=m{low=h,asc=

b{strat=f}}}};,ole=s,ose=s,osq=n{sep=/(levl<3)?m{asc=b{strat=f},

low=h};}}’ -mbrol.map

% gout brol.grf brol.xyz brol.map brol.iv

• Compute on 4 processors an ordering of the compressed graph brol.grf.

gz, and output the resulting ordering on compressed form.

% mpirun -np 4 dgord brol.grf.gz brol.ord.gz

• Recompile a program that used ParMeTiS so that it uses PT-Scotch

instead.

% mpicc brol.c -o brol -I${parmetisdir} -lptscotchparmetis

-lptscotch -lptscotcherr -lparmetis -lmetis -lm

Note that the “-lptscotchparmetis” option must be placed before the

“-lparmetis” one, so that routines that are redefined by PT-Scotch are

selected instead of their ParMeTiS counterpart. When no other ParMeTiS

routines than the ones redefined by PT-Scotch are used, the “-lparmetis

-lmetis” options can be omitted. The “-I${parmetisdir} option may be

necessary to provide the path to the original parmetis.h include file, which

contains the prototypes of all of the ParMeTiS routines.
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solveur de type dissections embôıtées. Numerische Mathematik, 55:463–476,

1989.

[6] C. Chevalier and F. Pellegrini. Improvement of the efficiency of genetic algo-

rithms for scalable parallel graph partitioning in a multi-level framework. In

Proc. EuroPar, Dresden, LNCS 4128, pages 243–252, September 2006.

[7] C. Chevalier and F. Pellegrini. PT-Scotch: A tool for efficient parallel graph

ordering. Parallel Computing, jan 2008. http://www.labri.fr/~pelegrin/

papers/scotch parallelordering parcomp.pdf.

[8] F. Ercal, J. Ramanujam, and P. Sadayappan. Task allocation onto a hyper-

cube by recursive mincut bipartitionning. Journal of Parallel and Distributed

Computing, 10:35–44, 1990.

[9] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving

network partitions. In Proceedings of the 19th Design Automation Conference,

pages 175–181. IEEE, 1982.

[10] M. R. Garey and D. S. Johnson. Computers and Intractablility: A Guide to

the Theory of NP-completeness. W. H. Freeman, San Francisco, 1979.

[11] G. A. Geist and E. G.-Y. Ng. Task scheduling for parallel sparse Cholesky

factorization. International Journal of Parallel Programming, 18(4):291–314,

1989.

[12] A. George, M. T. Heath, J. W.-H. Liu, and E. G.-Y. Ng. Sparse Cholesky

factorization on a local memory multiprocessor. SIAM Journal on Scientific

and Statistical Computing, 9:327–340, 1988.

[13] A. George and J. W.-H. Liu. The evolution of the minimum degree ordering

algorithm. SIAM Review, 31:1–19, 1989.

[14] J. A. George and J. W.-H. Liu. Computer solution of large sparse positive

definite systems. Prentice Hall, 1981.

[15] A. Gupta, G. Karypis, and V. Kumar. Scalable parallel algorithms for sparse

linear systems. In Proc. Stratagem’96, Sophia-Antipolis, pages 97–110. INRIA,

July 1996.

[16] S. W. Hammond. Mapping unstructured grid computations to massively parallel

computers. PhD thesis, Rensselaer Polytechnic Institute, Troy, New-York,

February 1992.

[17] B. Hendrickson and R. Leland. Multidimensional spectral load balancing. Tech-

nical Report SAND93–0074, Sandia National Laboratories, January 1993.

[18] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.

Technical Report SAND93–1301, Sandia National Laboratories, June 1993.

[19] B. Hendrickson and R. Leland. The Chaco user’s guide. Technical Report

SAND93–2339, Sandia National Laboratories, November 1993.

[20] B. Hendrickson and R. Leland. The chaco user’s guide – version 2.0. Technical

Report SAND94–2692, Sandia National Laboratories, 1994.

73



[21] B. Hendrickson and R. Leland. An empirical study of static load balancing

algorithms. In Proc. SHPCC’94, Knoxville, pages 682–685. IEEE, May 1994.

[22] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.

In Proceedings of Supercomputing, 1995.

[23] B. Hendrickson, R. Leland, and R. Van Driessche. Skewed graph partitioning.

In Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific

Computing. IEEE, March 1997.

[24] B. Hendrickson and E. Rothberg. Improving the runtime and quality of nested

dissection ordering. SIAM J. Sci. Comput., 20(2):468–489, 1998.

[25] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for par-

titioning irregular graphs. Technical Report 95-035, University of Minnesota,

June 1995.

[26] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular

graphs. Technical Report 95-064, University of Minnesota, August 1995.

[27] G. Karypis and V. Kumar. MeTiS – A Software Package for Partitioning

Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Or-

derings of Sparse Matrices – Version 4.0. University of Minnesota, September

1998.

[28] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitionning

graphs. BELL System Technical Journal, pages 291–307, February 1970.

[29] GNU Lesser General Public License. Available from http://www.gnu.org/

copyleft/lesser.html.

[30] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection.

SIAM Journal of Numerical Analysis, 16(2):346–358, April 1979.

[31] J. W.-H. Liu. Modification of the minimum-degree algorithm by multiple elim-

ination. ACM Trans. Math. Software, 11(2):141–153, 1985.

[32] MPI: A Message Passing Interface Standard, version 1.1, jun 1995. Available

from http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html.

[33] F. Pellegrini. Bounds for the bandwidth of the d-ary De Bruijn graph. Parallel

Processing Letters – Special Number on Interconnection Networks, 3(4):431–

443, 1994.

[34] F. Pellegrini. Static mapping by dual recursive bipartitioning of process and

architecture graphs. In Proc. SHPCC’94, Knoxville, pages 486–493. IEEE,

May 1994.

[35] F. Pellegrini. A parallelisable multi-level banded diffusion scheme for comput-

ing balanced partitions with smooth boundaries. In Proc. EuroPar, Rennes,

LNCS 4641, pages 191–200, August 2007.

[36] F. Pellegrini. Scotch 5.1 User’s Guide. Technical report, LaBRI, Université
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