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1. The quick version. If you're like us, there's no chance you'll read this fulldocument before you start using Chaco1. So here are the basics. If you know a fairamount about graph partitioning and are experienced with computers, this should beenough to get you going. If you don't know what we're talking about, you probablyneed to grit your teeth and read the introduction (x2) and the section on methods(x3) before you go much further. You'll also have to read the section on input andoutput (x5) before you can progress beyond using the sample graphs we've providedand address your own problems. Once you're oriented you may want to return to thissection, as it has some useful tips for the savvy user.WhileChaco has been used in many di�erent settings, it was developed in a parallelcomputing context, and readers will notice a clear bias towards this application in thefollowing documentation.1.1. Overview. Many problems which arise in scienti�c computing have a com-binatorial nature which can be conveniently described in the language of graphs. Inthese settings a recurring theme is the need to partition a graph into subgraphs that arein some measure as disjoint as possible. This is the case in, for example, divide{and{conquer algorithms for devising e�cient circuit layouts or constructing nested dissectionorderings for sparse matrix factorizations. It is also a fundamental problem in parallelcomputing, where large data structures must be decomposed and mapped to processors.Broadly speaking, Chaco addresses three classes of problems. First and foremost,it partitions graphs using a variety of approaches with di�erent properties. Discussionof these methods and the tools to control them comprise the bulk of this document.Second, Chaco knows how to intelligently embed the partitions it generates into severaldi�erent topologies. The topologies the code knows about are those matching thecommon architectures of parallel machines, namely hypercubes and meshes (see x6.7).Third, Chaco can use spectral methods to sequence graphs in a manner that preserveslocality, as described in x4.1. This capability has been used, for example, in data baseorganization, sparse matrix envelope reduction and DNA sequencing.1.2. Obtaining the code. Chaco is available under license from Sandia NationalLaboratories. The source code is distributed along with technical documentation andsample input �les via the internet. If you are interested in obtaining a copy, you shouldcontact us at the addresses given on the cover page of this report.1.3. Installing the code. Chaco is designed to be run on UNIX systems. Tounpackage it, save the mailing in a �le Chaco.shar.Z.UU and remove any mail headerinformation.1 Chaco is named in honor of Chaco Canyon, the site of extensive Anasazi ruins in what is presentlynorthwestern New Mexico. Between 1000 and 1100 AD a great society, considered the most complexand sophisticated on the continent north of Mexico, 
ourished there.4



Then execute the following commands:uudecode Chaco.shar.Z.UUuncompress Chaco.shar.Zchmod +x Chaco.sharsh Chaco.sharAssuming things have gone well, you may now delete the �les \Chaco.shar.Z.UU"and \Chaco.shar", and follow the README �le instructions to compile and run the code.We have tried to make Chaco completely portable and we have compiled and runthe code successfully on machines built by Sun, SGI, HP, IBM, DEC and Cray. If youare using an ANSI standard compiler, then Chaco should compile correctly, and itshould do �ne on many non{standard compilers as well. If you are having di�cultiesgetting the code working on a new machine, we can suggest several possible sources ofdi�culty:� Chaco uses several machine and compiler dependent parameters that are de-�ned within the ANSI standard. If these values aren't de�ned, thenChaco triesto compute them, but this is di�cult to do in a machine independent way. Onething the user can do to improve robustness with a non{standard compiler is tode�ne appropriate values for three parameters in the �le \code/util/machine params.c".These parameters are DBL EPSILON the machine precision, DBL MAX a large dou-ble precision value, and RAND MAX the largest value returned by the systemrandom number generator `rand'. You can examine the values the code com-putes for these parameters by turning on the DEBUG MACH PARAMS 
ag describedin x6.9.� The timing subroutine invokes a system routine called `getrusage' which isn'tsupported by all compilers. We provide a second timing routine which is cur-rently commented out in the code. You can replace the �rst timer routine withthe second if necessary. The second routine uses a system routine that wrapsaround after about 36 minutes, which is why we prefer the �rst if it is available.Both routines are in the �le \code/util/seconds.c".� Compiler 
ags vary greatly from machine to machine. You may need to modifythe compilation command in \code/Make�le" to makeChaco compile and linkproperly.� Chaco makes extensive use of the random number generator `rand' which isde�ned in ANSI C. If your compiler doesn't have this routine, you'll need toprovide a random number generator that produces integers between 0 and max.You should then modify \code/util/randomize.c" to make the appropriate newcall, and \code/util/machine params.c" to return max in its third argument.1.4. Some more things to watch out for.� The routine \func3d.c" takes a long time to compile with optimization. Itdoesn't account for a signi�cant fraction of the execution time, so if, for somereason, you are recompiling the code often, you may wish to compile this routine5



without optimization.� Use of the Lanczos{based eigensolvers on very large problems may cause thecode to run out of memory on your system. The code will recover by computingthe best approximation it can given the available memory, but if this happensit may be advisable to switch to the RQI/Symmlq eigensolver or the inertialor multilevel{KL partitioning methods. See x3.3, x3.2 and x3.6.� It can be di�cult to choose the eigentolerance for spectral methods appro-priately. We've chosen a reasonable default, and Chaco tries hard to deliverthe accuracy requested, but can't help much if that request is unwise. If youchoose a very tight (small) tolerance, things will slow down considerably andyou may run into memory trouble. If you choose a very loose (big) tolerance,your results will generally degrade and become erratic due to poor accuracy ormisconvergence. See x3.3 and x6.2.� The eigensolvers and the Kernighan{Lin heuristic make use of randomizationtechniques, so results generated using these methods are strictly reproducibleonly if the program is used in a way that generates the same sequence of randomnumbers.� If you apply terminal propagation with spectral partitioning, several trickyprecedence relations between the eigensolvers and partitioning dimensionalitynecessarily come into play. Refer to x4.2.1.5. Implementation details.� Version 2.0 of Chaco is written entirely in ANSI standard C and is about30,000 lines long.� In order to maximize the size of graphs which can be partitioned, memory isallocated dynamically when needed and released as soon as possible withoutseriously degrading e�ciency.� C performs 
oating point computations in double precision (8 byte) format,and Chaco stores the results in double precision format (except in a few caseswhere precision is clearly not an issue).� Chaco can be run in a stand{alone mode or called as a subroutine from eitherC or Fortran programs as described in x7.1.6. Partitioning. The �ve classes of partitioning algorithms currently imple-mented in Chaco are simple (x3.1), inertial (x3.2), spectral (x3.3), Kernighan{Lin (KL)x3.5, and multilevel{KL (x3.6). Each of these algorithms can work on graphs with edgeand/or vertex weights and each can be used to partition into two, four or eight setsat each stage of a recursive decomposition. We consider KL to be a local re�nementtechnique, while the other methods are global partitioning methods. Chaco allows theoutput of any of the global methods to be fed into a local method. It also allows apartition to be read from a �le (x4.4) and re�ned with a local method or one of thevarious post{processing methods described in x4.3.You can combine local and global partitioning methods by choosing from the menuin an obvious way. We encourage you to experiment with the sample graphs provided6



with the code.In addition to the basic partitioning algorithms, Chaco includes a host of more so-phisticated capabilities. Several of the methods can be invoked with a technique knownas terminal propagation x4.2 which improves data locality by allowing consideration ofhow the sets are mapped to processors. These include KL, multilevel-KL and spectral(in bisection mode only). Another way to improve the mapping to processors is to in-voke a post{processing algorithm devised speci�cally for this purpose which is discussedin x4.3.3. The partition itself can also be improved with a post{processing phase thatapplies KL to all pairs of sets with edges between them (x4.3.1). And, in some parallelcomputing settings it may be possible to overlap communication with the computationassociated with vertices that need no external information; Chaco has the ability toincrease the number of these internal vertices (x4.3.2). In addition, Chaco can be usedto compute and sort the Fiedler vector of a graph, which is useful in many settings inwhich data locality is desirable.1.7. Input and output. Input to Chaco consists of one or more �les and theanswers to several interactive queries. The format of the input �le describing the graphcan be found in x5.1, and examples are provided with the code. If you select inertialpartitioning you will also need to provide a �le with geometric coordinates as describedin x5.2.Output from the code includes a variety of metrics of partition quality. The detailwith which these metrics are reported is controlled by the OUTPUT METRICS parameter(x6.1). This information can be copied to a �le by setting the parameter ECHO (x6.1)appropriately. The partition will be copied to a �le if the OUTPUT ASSIGN parameter isset to TRUE (nonzero) (x6.1).It may be clear by now that much of the functionality in Chaco is controlled by afairly large set of parameters. We ship the code with default values that seem reasonableto us, but may not be optimal for your problems. You can either change the defaultvalues in the �le \code/main/user params.c" and recompile, or you can change anyvalue at runtime, as described in x6.10.
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2. Introduction. Many problems which arise in the course of scienti�c comput-ing have a combinatorial nature which can be conveniently described in the languageof graphs. In these settings a recurring theme is the need to partition a graph into sub-graphs that are in some measure as disjoint as possible. This is the case in, for exam-ple, divide{and{conquer algorithms for devising e�cient circuit layouts or constructingnested dissection orderings for sparse matrix factorizations. It is also a fundamentalproblem in parallel computing, where large data structures must be decomposed andmapped to processors.Chaco addresses three classes of problems. First and foremost, it partitions graphsusing a variety of approaches with di�erent properties. Discussion of these methodsand tools to control them comprise the bulk of this document. Second, Chaco knowshow to intelligently embed the partitions it generates into several di�erent topologies.The topologies the code knows about are those matching the common architectures ofparallel machines, namely hypercubes and meshes (refer to x6.7). Third, Chaco canuse spectral methods to sequence graphs in a manner that preserves locality, see x4.1.This capability has been used in, for example, data base organization, sparse matrixenvelope reduction and DNA sequencing.To make things more speci�c, let's assume we want to solve a partial di�erentialequation on a distributed memory parallel computer2. We're given a computationalgrid which we need to partition across processors. If we're using a �nite di�erencetechnique and an explicit solver, then at each stage in the calculation a grid valuemust be updated by a function of its neighbor's values. On a serial computer this datatransfer is accomplished by writing to and reading from memory. However, when wemap this computational grid to a parallel computer, two vertices joined by an edgeand not owned by the same processor must communicate to exchange values. If, as istypically the case, communication is expensive relative to computation, a mapping thatminimizes it is desirable. Of course, we could assign the entire grid to a single processorand have no communication at all, but that wouldn't be an e�ective use of the parallelmachine since one processor would do all the work while the others remained idle. Wemust therefore also observe the important constraint that each processor should beassigned about the same amount of work and therefore (in the simplest case) the samenumber of vertices. Hence we say informally that the objective of Chaco in this contextis to produce balanced sets with low communication overhead.Not all problems have such a convenient correspondence between the computationalgrid and the mapping requirements of the application program. For instance in a �niteelement calculation, a more appropriate approach may be to consider each elementas a vertex with some associated update work. We would then construct connectingedges corresponding to each face or corner in the discretization mesh since these edgescorrespond to the non{zero pattern in the global sti�ness matrix. The most appropriategraph will depend upon the application and its determination is necessarily left to theuser.2 While Chaco has been used in many di�erent settings, it was developed in a parallel computingcontext, and readers will notice a clear bias towards this application in the following documentation.8



Furthermore, all vertices are not necessarily of equal signi�cance. For example, avertex encoding a computation on the boundary may have less work associated withit than a vertex in the interior of a domain. Chaco therefore allows weights to beassociated with each vertex. The weight is supposed to correspond to the amount ofwork associated with the vertex. Similarly, edges may correspond to varying amountsof communication. For example, two �nite elements touching at a corner may need toexchange less information than two sharing a face. Chaco also allows the use of edgeweights.The problem of interest can now be described more precisely. Given a graph Gwith n weighted vertices and m weighted edges, divide the vertices into p sets in such away that the sum of the vertex weights in each set is as close as possible, and the sumof the weights of edges crossing between sets is minimized. Unfortunately, even in thesimple case where p = 2 and the edge and vertex weights are uniform, this graph parti-tioning problem is NP{complete[7]. Hence there is no known e�cient algorithm to solvethe problem generally, and it seems unlikely that such an algorithm exists. We musttherefore resort to heuristic solutions in which balance may be partially compromisedor (more typically) the minimization is approximate.A variety of heuristic partitioning methods with di�erent cost/quality tradeo�s havebeen previously studied. Chaco includes methods based on several of these as well asseveral substantially new methods. The algorithms in Chaco are based on inertial,spectral, Kernighan{Lin (KL), and multilevel principles in addition to several simplerstrategies. The methods are categorized as either local (currently just KL) or global(everything else). Chaco allows for the combination of global and local methods, andwe have found that this leads to signi�cant improvements in both performance androbustness. Another advantage of Chaco's design philosophy is that it o�ers 
exibility.This is important because we believe that, given the complexity of the partitioningproblem, no single method will always work well. Chaco provides a fall{back optionwhen your favorite method works poorly or has an inappropriate cost/quality ratio for agiven problem. It also facilitates investigation into the relative strengths and weaknessof a wide variety of methods.Having set the basic context, we should raise some �ner but nevertheless importantissues. One such issue is the dimensionality of the partitioning scheme. Most graphpartitioning codes rely on recursive bisection. That is, the graph is partitioned into twopieces, each of these pieces is partitioned into two more, etc. until a desired numberof sets is reached. This strategy is simple and convenient, but may be somewhat lim-iting. Graphs can be constructed for which any bisection algorithm must necessarilyperform poorly, and in practice we observe that bisection algorithms often choose sepa-rators which look very good at one stage of recursion but not so good with the bene�tof hindsight. All the partitioning algorithms implemented in Chaco are capable ofpartitioning graphs into two, four or eight sets at each stage of recursion3. We haveaccumulated some empirical evidence that the quadrisection and octasection algorithmsdo perform better in some respects than their bisection counterparts. But we have also3 Currently the spectral terminal propagation technique can be applied in bisection mode only.9



found bisection algorithms preferable in some situations.A basic di�culty in choosing the appropriate partitioning dimensionality is thatthe correct representation of costs in the graph model is often ambiguous. Assumingfor simplicity that the graph is unweighted, most graph partitioning schemes work tosuppress the total number of edges crossing between sets without regard to the identityof the sets. We say these methods try to minimize the total number of cuts. But incontexts like parallel computing and circuit placement, the identity of the sets matters.The partitions may need to be mapped to processors or regions of an integrated circuitin a manner that minimizes the number of connections between architecturally distantsets. Several of the multidimensional schemes we have developed can take into accountthe identity of the sets an edge crosses between and work to minimize the architecturaldistance between these sets. We say they try to minimize the total number of hops.Sadly, the question of the correct graph metric is more complicated still. Forexample, in the parallel computing context, when the communicated messages are shortenough, the total communication time will correlate best with message startups. Inthe graph metric this measure corresponds to the number of neighboring sets eachset has. We have also included methods designed to deal with this contingency bysuppressing the maximum number of neighbors any set has. Another graph metricwhich is important in some common situations is boundary vertices. This is the numberof vertices which have an incident edge (they may have several) connecting them to avertex in another set. When these are weighted by the architectural distance betweensets we arrive at yet another metric, boundary vertex hops. These last two metrics areoften relevant in accurate modeling of the execution time of parallel sparse matrix{vector multiplication.Because applications of graph partitioning are so diverse and because even for themuch studied case of parallel computing the appropriate model is uncertain, Chacotracks a variety of potentially relevant metrics and provides methods designed to min-imize them. This document describes the capabilities of the code and how to exploitthem. Because the questions it addresses are fundamental and pervasive, we hope thatChaco will prove to be a valuable tool in a wide variety of applications.3. Partitioning algorithms. The �ve classes of partitioning algorithms currentlyimplemented inChaco are simple, spectral, inertial, Kernighan{Lin (KL)4 and multilevel{KL. Each of these algorithms can be used to partition into two, four or eight sets at eachstage of a recursive decomposition. We consider KL to be a local re�nement technique,while the other methods are global partitioning methods. Chaco allows the outputof any of the global methods to be fed into a local method. It also allows a partitionto be read from a �le (x4.4) and re�ned with a local method or one of the variouspost-processing methods described in x4.3.3.1. Simple partitioning methods. For completeness and in order to facilitatecomparisons, Chaco includes three very simple partitioning schemes. In the linear4 This algorithm is often referred to as Fiduccia{Mattheyses (FM) or KL/FM in recognition of theimportant contributions of those authors. 10



scheme, vertices are assigned in order to processors in accord with their numbering inthe original graph. For an unweighted graph with n vertices being divided into p sets,the �rst n=p vertices would be assigned to set 0, the next n=p to set 1, etc. This oftenproduces surprisingly good results because data locality is often implicit in the vertexnumbering. In the random scheme, vertices are assigned randomly to sets in a way thatpreserves balance. In the scattered method, vertices are handed out in order, with thenext vertex going to whichever set is smallest. In the unweighted case this reduces todealing out the vertices in card fashion. In our experience the random ordering producespartitions with quality between that of the linear and scattered partitioners. The runtime of these simple schemes is negligible.3.2. The inertial method. The inertial method is a relatively simple and fastpartitioner that uses geometric information. In addition to a graph, it requires geometriccoordinates for each vertex in one, two or three dimensions. The code then considers thevertices as point masses with mass values set equal to the vertex weights. The principleaxis of this structure, which is likely to be a direction in which the graph is elongated, iscomputed. The vertices are then divided into sets of equal mass by plane(s) orthogonalto the principle axis. Descriptions of this method can be found in [24, 28].Chaco allows inertial partitioning into two, four or eight sets at once by usingone, three or seven planes, orthogonal to the principle axis. Partitions generated byinertial quadrisection or octasection will appear to be banded, with parallel planesdividing the sets. This \striping" will typically lead to a fairly large surface-to-volumeratio, implying a large volume of communication. However, each set only has a smallnumber of neighboring sets which helps reduce the number of message startups eachprocessor must perform. If the cost of initiating messages is important, then partitionsusing inertial quadrisection or octasection may lead to shorter application executiontimes than those generated with inertial bisection. Furthermore, the multidimensionalinertial methods are somewhat faster than inertial bisection since fewer inertial axesmust be computed, and some overhead due to recursion is avoided. The four or eightsets are assigned in such a way that communication is predominantly between adjacentprocessors.In our experience inertial methods are quite fast but give partitions of fairly lowquality in comparison with spectral methods. In particular, the partitions are oftenof poor quality in local detail. However, when coupled with the Kernighan{Lin localoptimization method described below, the results signi�cantly improve. Our experi-ments indicate that inertial{KL usually produces better partitions than pure spectralpartitioning, whereas spectral coupled with KL does better than inertial paired withKL. For very large problems in which coordinates are available and the emphasis ismore on low partitioning time rather than high partitioning quality, we are inclined torecommend the inertial{KL method [18].3.3. Spectral partitioning. Spectral methods use eigenvectors of a matrix con-structed from the graph to decide how to partition the graph. A full accounting of thissurprising connection between eigenvectors and partitions is too involved to present11



here, but the articles mentioned below explain the method in detail.The simplest spectral method in Chaco is a weighted version of spectral bisection.A description of the unweighted algorithm is given in [22, 24], and the extension to useboth edge and vertex weights is described in [12]. This method uses the second lowesteigenvector of the Laplacian matrix of the graph to divide the graph into two pieces.This eigenvector is known as the Fiedler vector in recognition of the pioneering work ofMiroslav Fiedler [5, 6].The spectral quadrisection algorithm divides a graph into four pieces at once usingthe second and third lowest eigenvectors of the Laplacian matrix. Similarly, spectraloctasection uses the second, third and fourth eigenvectors to divide into eight pieces.These multidimensional spectral methods were introduced in [11, 12], where they wereshown to have certain advantages over spectral bisection.In particular, spectral quadrisection and octasection try to minimize communica-tion cost in a more complex metric. Suppose the partitioned sets are numbered from 0to 3 for quadrisection or 0 to 7 for octasection. Spectral bisection would try to minimizethe total weight of edges crossing between di�erent sets, whereas the multidimensionalmethods would use a metric in which the cost of an edge crossing between two sets is theedge weight multiplied by the number of bits that are di�erent in a binary representationof the two sets.Although this hops metric may seem odd at �rst, it has a nice interpretation inthe context of parallel computing. In a parallel computer consisting of four processorsconnected in a square and numbered in typographic order, a message traveling betweenprocessors 0 and 3 must travel over two wires, whereas one between processors 0 and1 need only traverse a single wire. This number of wires is exactly the weightingimplicit in spectral quadrisection. Similarly, spectral octasection counts wires used ona three-dimensional mesh architectures, and both quadrisection and octasection applyto hypercubes.One might suppose that this correspondence between cost metric and wires usedwas irrelevant given the advent of cut{through routing in which the delay associatedwith a message is nearly independent of the number of links it traverses. In fact thisindependence only holds for isolated messages in which there is no competition for thelinks in the communication network. In a great many computations, and most scienti�capplications, communication occurs in the form of bursts of messages during whichthere is very signi�cant competition for the network. Hence, when network congestionis important, weighting messages by the number of wires they consume should lead tobetter problem mappings. Empirical evidence supporting this and further discussion ofthe issue can be found in [9].The computational kernel of spectral methods is the calculation of a small num-ber of eigenvectors. We have implemented a variety of eigen solvers with di�erentspeed/robustness tradeo�s. Roughly in order of increasing speed, these are Lanczoswith full orthogonalization, Lanczos with selective orthogonalization, and a multilevelmethod combining Rayleigh Quotient Iteration [8] and the linear solver Symmlq [19].We have also implemented a specialized version of Lanczos capable of solving extended12



eigen problems of the form Au = �u+ g which arise when terminal propagation is used(x4.2). Several of the issues governing the choice between these methods are dealt within the next section. Section 3.4 can be skipped by the typical user, who will simplyencounter a choice between the default Lanczos procedure (selective orthogonalization)which is designed for small and medium sized graphs and the RQI/Symmlq methodwhich is designed for larger graphs (of say more than several thousand vertices).Spectral methods are usually quite good at �nding the right general area of thegraph in which to cut. However, they often do poorly in the �ne details. Consequently,we have found that it is advantageous to apply a local re�nement to the spectral output.The procedure we use is a generalized version of an algorithm due to Kernighan andLin, and is described in x3.5 and in more detail in [13]. The actual improvement dueto this clean{up phase is problem dependent, but is typically 10{30%. The cost of thisclean{up is generally a small fraction of the total partitioning cost, typically less than10% on large graphs.3.4. Choosing an eigen solver. This section, which may be skipped withoutloss of continuity, describes the characteristics of the eigen solvers in Chaco. Theinput menu will indicate a choice between two methods only, a Lanczos based solverand the multilevel RQI/Symmlq solver. We recommend the Lanczos method for smalland medium size problems and the RQI/Symmlq solver for larger problems. (We say,rather arbitrarily, that larger graphs are those of order 10,000 vertices or more; youshould investigate this for yourself if run time is very critical.) There may be occasions,however, when the sophisticated user will want to change the type of Lanczos algorithmby modifying the LANCZOS TYPE 
ag or may wish to alter one of the eigen solver controlparameters. See x6 for details on how to make these changes.Finally, while we do express some clear opinions in what follows, it should becarefully noted that our conclusions about the relative merits of the di�erent eigensolvers are based on limited testing with the particular class of matrices arising in ourapplications, and may not be applicable to any other domain. These are all iterativemethods!In our experience, full orthogonalization Lanczos is the most robust method forproblems of order up to a few hundred. The requirement of saving all the Lanczosvectors for orthogonalization is not that burdensome since the problems are small andwe use them anyway in assembling the eigenvectors. The weak point of this method isthat for larger problems the orthogonalization work becomes prohibitively expensive.The inverse operator full orthogonalization Lanczos method replaces the matrixvector multiply in the basic Lanczos iteration with a linear solve using Symmlq. Itis generally less accurate and robust than direct Lanczos with full orthogonalizationand is often slower as well because the total number of matrix vector multiplies (whichare hidden within Symmlq) may be signi�cantly higher. In addition it introduces thetricky problem of how to tune the inner/outer loop combination. Thus the only reasonto recommend this method is that it requires much less memory since it converges inmany fewer Lanczos iterations.Our implementation of selective orthogonalization is based on the original paper by13



Parlett and Scott [20], with the main di�erences being that the Ritz spectrum is moni-tored directly to assess the need for orthogonalization and that this orthogonalization isperformed against the left end of the spectrum only. Various heuristics governing whichRitz pairs to monitor are used to keep this overhead small. The Ritz pairs are computedusing the classic bisection algorithm on the Sturm sequence [27] or the standard QLalgorithm for tridiagonal matrices [8, 23], whichever is expected to be cheaper basedon a simple complexity model. There are rare circumstances under which each of thesealgorithms can fail, so the code monitors for these and switches to the other algorithmif a problem is detected. Orthogonalizing at the left end only generally produces moreaccurate eigen pairs in substantially less time than the standard technique of orthogo-nalizing against both ends of the spectrum. With proper tuning this algorithm seems,for our purposes, essentially as accurate as full orthogonalization and is our method ofchoice for small and medium sized systems.This version of Lanczos does however have one drawback. Since all the Lanczosvectors must be saved for the contingency that the iterate must be orthogonalizedagainst a convergent Ritz vector, this method can cause the program to run out ofmemory on very large problems. This di�culty can be avoided by employing a restartingscheme or by giving up on maintaining orthogonality in the Lanczos basis. Thesealternatives, however, have their own undesirable attributes. Restarting schemes exhibitslower convergence, and schemes such as [21] which do not orthogonalize and hence donot need to save the Lanczos vectors must run through the entire Lanczos recurrencea second time (or use inverse iteration) in order to compute the desired eigenvector.Furthermore, if the desired eigenvector is not the �rst to converge signi�cantly, non-orthogonalizing schemes may fail badly. Convergence usually is led by the Fiedler vectorin the spectral bisection application, but there is no guarantee of this. So for robustness,and because we often need to compute higher eigenvectors to perform quadrisection oroctasection, we chose selective orthogonalization. If memory is exhausted, each Lanczosroutine computes the best available approximation to the required eigenvectors usingthe existing Lanczos basis. This approach represents a decision to optimize over thelikely range of application and an assumption that for problems in which memory wouldbe a problem a partitioning method designed for larger problems (e.g. the RQI/Symmlqmethod) will be employed.For partitioning very large graphs using the spectral method, we recommend themultilevelRQI/Symmlq eigen solver. This is based on the method developed by Barnardand Simon [1], with the main di�erence being that we have used an edge contractioncoarsening scheme described in [13]. This contraction scheme preserves the low modesof the operator su�ciently well that we need only perform RQI re�nement periodicallyas we work back through the grid hierarchy. We have also modi�ed the Symmlq it-eration to terminate when the norm of the iterate reaches a preset limit. We do thisbecause RQI relies essentially on inverse iteration in which a large iterate indicates con-vergence. The resulting method may be several times faster than Lanczos with selectiveorthogonalization for solving large problems to the same accuracy, and also requires farless memory. A drawback is that the method seems more prone to misconvergence14



than Lanczos. Experience indicates, however, that for large graphs, eigenvectors otherthan the Fiedler vector usually give partitions of similar quality to those generated withthe Fiedler vector (occasionally better!). So slight misconvergence is not that serious aproblem, especially if you are applying a local re�nement method. Another drawbackof the RQI/Symmlq algorithm is that its run time is essentially proportional to thenumber of eigenvectors solved for. This erodes its speed advantage when used as theeigen solver for one of the multidimensional spectral partitioning schemes.When the terminal propagation method is applied (x4.2), the solution vector u ofthe extended eigen problem Au = �u + g must be computed. We have developed avariant of Lanczos for this which follows that of Van Driessche and Roose [26]. Themain di�erence is that we have incorporated selective orthogonalization and some (butnot all) of the safety features previously described.A critical issue in the proper use of iterative eigen solvers is the choice of thetolerance on the eigen residual. This is treated in some detail later during the discussionof the various code parameters in x6.2, but it is appropriate to mention here that all ofthe eigen solvers have direct residual checks to determine whether the requested eigentolerance has been achieved. In addition, the selective orthogonalization schemes havesafety checks to monitor the e�ectiveness of the orthogonalization, and the multilevelRQI/Symmlq code incorporates a heuristic to detect misconvergence. From time to timeand depending upon how the error and warning condition 
ags are set, one or more ofthese conditions will be noted by Chaco. In most cases these are not show-stoppers:the desired safety standards have not been met, but the computation will proceed andgenerate reasonable partitions. If certain error or warning conditions occur chronically,you may need to choose di�erent tuning parameters. (Or, of course, there may be aproblem with the code.)3.5. Kernighan{Lin. One of the most popular methods for partitioning graphsdates back to work done in the early 70's by Kernighan and Lin [17]. Various extensionsand improvements of the original idea have been proposed through the years, includingthe important linear time implementation due to Fiduccia and Mattheyses [4], who areoften jointly credited with the algorithm. At its heart, Kernighan{Lin (KL) is simplya greedy, local optimization strategy. Vertices are moved between sets in an e�ort toreduce the number of edges cut by the partition. Although the original algorithm wasdesigned for graph bisection, Suaris and Kedem [25] showed how to extend it to thequadrisection case. We have generalized this idea so that our code works on an arbitrarynumber of sets at once, and also works with edge and vertex weights [13]. Unfortunately,the runtime of the algorithm and its memory requirements increase with the partitioningdimension, so in practice we use only bisection, quadrisection and octasection to matchthe other methods in Chaco.In our experience KL does not �nd very good partitions of large graphs unless itis given a good initial partition. Hence we �nd its value to be greatest when used inconjunction with one of the global partitioners. If you are interested in verifying thisby testing KL essentially on its own, we recommend that you invoke the simple randommethod to provide an initial partition. 15



Typically, Chaco tries to generate partitions which are as balanced as possible.In some applications, it is preferable to allow a bit of imbalance if the edges crossingbetween sets can be reduced. Chaco allows KL (and Multilevel{KL described below)to look for unbalanced partitions. If this functionality is of interest to you, you shouldset the KL IMBALANCE parameter described in x6.4 to something larger than its defaultof zero.3.6. Multilevel{KL. Our method of choice for large problems in which high qual-ity partitions are sought is the multilevel{KL5 algorithm described in [13]. This methodis very similar in approach to the method of Bui and Jones described in [2, 15]. It worksby creating a sequence of increasingly smaller graphs approximating the original graph,partitioning the smallest graph, and projecting this partition back through the inter-mediate levels. Kernighan{Lin is invoked every few levels of projection to re�ne thepartition. We use a spectral method to partition the smallest graph, but this does notseem to be critical.The algorithm for constructing smaller approximations to the graph relies upon�nding a maximal matching in the graph, and then contracting edges in the matching.This generates a new graph with typically about half as many vertices as the originalgraph. Edge contraction is intuitively attractive because it largely preserves the graphtopology. When edges are contracted, a single vertex is created out of the two endpointswith weight given by the sum of the weights of the endpoints. In addition, any edgeswhich become coincident have their weights summed and become a single edge. Theseoperations have the e�ect of preserving the essential properties of a partition as it ismoved between graphs in the hierarchy. The number of vertices in the smallest graphis an input option (we typically use a value between 50 and 500), and the frequencywith which to invoke KL is controlled by the COARSE NLEVEL KL and COARSE KL BOTTOMparameters described in x6.5.The method of Bui and Jones does not use edge and vertex weights, but is otherwiseequivalent to ours. Chaco allows the user to turn o� edge and/or vertex weights in thecoarsening process by setting the COARSEN EWGTS and/or COARSEN VWGTS parameters toFALSE as discussed in x6.5. This allows for application of Bui and Jones' method as wellas algorithms intermediate between ours and theirs. In our experience, the di�erencebetween the methods is small with neither method being consistently superior.Our experience indicates that the multilevel{KL method gives very high qualityanswers in moderate time. It is not as quick as the inertial method plus KL, but itgenerally produces better partitions. In most cases it produces partitions which are5 Some confusion has arisen in the past regarding the naming of this algorithm. We have referred to itin writing as the multilevel{FM algorithm because our implementation of the Kernighan{Lin algorithmis based on that advocated by Fiduccia and Mattheyses [4]. We have also referred to it simply as themultilevel algorithm because we believe the power of the algorithm derives essentially from its strategyof applying local re�nement on multiple scales and that re�nement schemes other than the one we havechosen would also work well. Finally, there has been confusion regarding the algorithm's relationshipto the multilevel RQI/Symmlq algorithm used for computing the eigenvector(s) needed in spectralpartitioning methods. These are entirely di�erent partitioning algorithms, although they do happento share the same graph coarsening scheme in our implementation.16



better than those generated by spectral coupled with KL and runs signi�cantly fasterthan any of the spectral methods. More on the workings and performance of thismultilevel{KL method can be found in [13].4. Additional functionality.4.1. Spectral sequencing. Spectral graph algorithms are becoming increasinglypopular for a variety of applications. Often the key computation in these algorithmsis the generation of the Fiedler vector. Unfortunately, calculation of eigenvectors oflarge matrices can be di�cult, and the scarcity of robust, e�cient tools well tunedfor these graph applications has impeded development of spectral graph algorithms.To address this problem we provide easy access to the Fiedler vector computed byChaco. Although a full exposition on this topic is beyond the scope of this user's guide,the ordering of vertices produced by their values in the Fiedler vector has some niceproperties. In particular, vertices connected by an edge will tend to be assigned numbersthat are close to each other. This property has already been successfully exploitedin a number of applications including chromosomal mapping, matrix reordering anddatabase organization applications. We expect many more uses will be found.If the SEQUENCE parameter described in x6.8 is TRUE (or nonzero), the Fiedlervector will be sorted and written to the �le whose name is speci�ed by the param-eter SEQ FILENAME. These parameters set up an alternate execution path that doesn'tperform any partitioning. The code uses whichever eigensolver would be used by aspectral partitioning algorithm. That is, if you select a spectral method and theRQI/Symmlq eigensolver, that will be used; otherwise, the Lanczos solver speci�edby the LANCZOS TYPE parameter (x6.2) will be used.Since spectral methods break down if the graph is disconnected, the spectral se-quencing code works on the connected components of the graph in turn. The pertur-bation of the matrix associated with the PERTURB parameter in x6.3 is unnecessary andhence is disabled. The code sorts the vertices in each connected component by theirvalue in the Fiedler vector and prints them in sorted order. Each line in the output �lecontains the vertex number followed by its value in the Fiedler vector. A change to anew connected component is signaled by a switch from a positive value for the Fiedlercomponent to a negative one, since values for each component must be nondecreasing.If a connected component consists of a single isolated vertex, this vertex is assigned avalue 0 in the returned vector.4.2. Terminal propagation to improve the mapping. Terminal propagationis an algorithmic insight proposed by Dunlop and Kernighan [3] to improve the place-ment of circuit elements on a chip by adding additional constraints to a Kernighan{Linalgorithm. Van Driessche and Roose [26] have recently shown that these same con-straints can be encoded into a spectral method, signi�cantly extending the applicabilityof the original idea.Terminal propagation isn't a new partitioning method but rather a modi�cation ofsome of the methods discussed above. It is essentially a method for coupling the map-ping to sets with the partitioning in an e�ort to improve locality. In the circuit context17



it is undesirable to have long wires criss{crossing the chip since they use up valuablespace. In parallel computing, messages traveling between architecturally distant pro-cessors should be minimized since they tie up many communication links. Terminalpropagation allows these considerations to be factored into the partitioning.To understand how terminal propagation works, �rst consider partitioning with-out terminal propagation. After each step in a recursive decomposition the pieces aredecoupled and interact no further. An edge crossing between two sets does not a�ectthe later partitioning of either set. Consequently, there is nothing preventing the twoadjacent vertices from being assigned to sets that are quite far from each other.Terminal propagation ameliorates this by including information about the outgoingedges (or terminals) in the recursive partitioning. Details about how this is accomplishedare given in references [3, 26, 14]. Chaco includes code for terminal propagation in thebisection mode of the spectral partitioner, and for an arbitrary number of sets forKL and multilevel{KL. (If you are using multilevel{KL in quadrisection or octasectionmode, the spectral method at the bottom cannot perform terminal propagation, butall the invocations of KL can.) Terminal propagation is switched on by setting theTERM PROP parameter to TRUE (or nonzero) as described in x6.8. We also note thatterminal propagation comes into play only when there are edges to other sets, so it hasno e�ect on the �rst step of bisection. If the quality of the mapping to sets is importantfor your application, you should also consider the post{processing method describedin x4.3.3.When terminal propagation is applied, the necessary modi�cations to KL (andhence multilevel{KL) are fairly minor, but the spectral formulation is signi�cantly com-plicated. We must solve an extended eigenproblem of form Au = �u+ g for u such thatuTu = �2 where � is a constant. We could do this conceptually by choosing a � nearthe corresponding eigenvalue of A, solving the resulting linear system and checking thenorm constraint. By adjusting � correctly and iterating we can converge to the solution(�; u) reliably in the bisection case. This, however, is unacceptably expensive for largesystems. The trick is to transform the � iteration into Lanczos space where it is per-formed on small tridiagonal systems. A detailed formulation of this for edge and vertexweighted graphs is presented in [14, 26]. We have extended this to include selectiveorthogonalization in our implementation.In our experience, the terminal propagation variant of the multilevel{KL algorithmconsistently improves mappings, while the spectral algorithm seems less consistent.4.3. Post{processing to improve the partition and mapping. Chaco in-cludes several techniques that accept an existing decomposition and modify the partitionor the mapping of sets to processors. These can be used to improve the quality of outputgenerated either by Chaco or, if you read a partition from a �le as described in x4.4,by other partitioning software.4.3.1. Re�ning the partition. In the recursive generation of a decomposition,some information is lost with each recursion level. For example, a local re�nement isperformed between only a fraction of the total number of adjacent sets. If requested,18



Chaco can perform a local re�nement between all pairs of sets. First the weight ofedges crossing between each pair of sets is determined. Kernighan{Lin re�nement isthen performed between each pair with a nonzero boundary, in order from the pair withthe largest boundary to that with the smallest. Terminal propagation may be usedto incorporate considerations of the quality of the mapping to sets. The parameterREFINE PARTITION (x6.6) indicates how many cycles of re�nement will be performed.Its default value is zero since a full re�nement is fairly expensive. In our experience thisoption can signi�cantly reduce the number of edges cut in the partition, but it generallyincreases the number of pairs of sets with some boundary between them.4.3.2. Increasing the number of internal vertices. In some applications itis desirable to increase the number of vertices that have no edges connecting them toother sets. For instance, in parallel computing applications such vertices require onlylocal data. This may allow for overlap of communication and computation since thecomputation associated with an internal vertex can be performed while waiting for datafrom other processors to arrive. If the INTERNAL VERTICES parameter (x6.6) is TRUE,Chaco will try to increase the number of internal vertices in sets with a small numberof them. To accomplish this the code �rst determines the number of internal verticesin each set. Then the set with the fewest internal vertices steals vertices from othersets to make some of its own vertices become internal, and trades back other vertices topreserve balance. The default value for INTERNAL VERTICES is FALSE since this fairlyspecialized functionality is probably not required for most applications. If the partitionis of low quality this option can be quite time consuming.4.3.3. Improving the mapping to processors. AlthoughChaco tries to assignsets to processors in a way that preserves locality, this mapping can often be improved.Chaco contains code to greedily renumber sets to improve the mappings to hypercubeand mesh architectures. Note that this doesn't change the composition of the sets,just which processor each set is assigned to. To perform this re�nement, the codedetermines how the mapping would change if it 
ipped the two sets connected bya wire in the parallel machine. The 
ip which maximally improves the mapping isperformed and the process repeated until no further improvement is possible. Thisfunctionality is activated by setting the REFINE MAP parameter (x6.6) to TRUE. SinceChaco is used for many applications other than parallel computing, the default for thisparameter is FALSE. But if you are really interested in the quality of your assignmentto processors, you should try this option. You should also familiarize yourself withterminal propagation as described in x4.2.4.4. Working with existing partitions. As mentioned in x3, Chaco has theability to read an existing partition from a �le with one of the formats described in x5.3and modify or evaluate it in several ways. This option is speci�ed in the menu as anadditional global partitioning option. Any of the post{processing operations describedin x4.3 can then be activated to improve the partition and/or the mapping to processors.Evaluation of the partition can also be performed as described in x5.5.Since an existing partition is considered a global partition, you can invoke KL as19



a local re�nement. There are a few necessary restrictions on the use of this capability.You can use KL only if the existing partition has 2, 4 or 8 sets, and you request bisection,quadrisection or octasection respectively. The restriction to a small number of sets isnecessary to avoid ambiguities about how to recurse. Also, the architecture you specifymust have the same number of sets as the partition.5. Input and output formats. Input to Chaco consists of one or more �les,and the response to several interactive queries. Files are used to describe the graph,and if necessary to give geometric coordinates or an existing partition. The interactiveinput speci�es the partitioning method and the number of sets you require. An addi-tional optional �le can be used to modify the values of various parameters that controlalgorithmic choices and output options. This functionality is discussed in x6.10.5.1. Format of graph input �les. The standard Chaco input is a graph, whichis read from a �le. Leading lines in this �le that begin with the character `%' or `#' areconsidered comments and ignored. At its simplest a correct input �le contains n + 1uncommented lines, where n is the number of vertices in the graph. The �rst of theselines contains two required integers and may have a third. The �rst integer is the numberof vertices in the graph, and the second is the number of edges. (Note that the numberof edges is half of the sum of the number of neighbors of each vertex.) The remainingn lines contain neighbor lists for each vertex from 1 to n in order. These lists are justsets of integers which are separated by spaces and contain all the neighbors of a givenvertex. The neighbors may be listed in any order. Note that vertices are numberedfrom 1 to n, not from 0 to n � 1. Sample graph �les can be found in subdirectory\exec" under �le names ending with \.graph".Chaco also accepts graphs with weights on vertices and/or edges. A third param-eter on the �rst line of the input �le controls input of weighted graphs. This numbermay have up to three digits. If the 1's digit is nonzero, edge weights will be read. Ifthe 10's digit is nonzero, vertex weights will be read. And if the 100's digit is nonzerothen vertex numbers will be read, as described below.Vertex weights should have small integer values. (To be conservative, the sum ofall vertex weights should be representable as a standard integer.) If any vertex has aweight, then weights must be given for all of them. Vertex weights appear immediatelybefore the corresponding neighbor list.Edge weights can be any positive 
oating point value, but you are encouraged tomake them small integers. Kernighan{Lin and multilevel{KL will not work properly ifedge weights are not integers. If any edge is weighted, they all must be. Edge weightsare included in the graph �le immediately after the corresponding entry in the neighborlist. If you have some vertices with many neighbors, it may be inconvenient to write theentire vertex data on a single line of the graph input �le. You can split the data acrossmultiple lines by using vertex numbers. The vertex number is the �rst value on a linecontaining data for that vertex. If you specify a vertex number for any vertex you mustspecify one for all of them, and vertices must still be entered in increasing order.20



The most general form of the graph input �le is illustrated below. The di�erenttypes of optional entries are indicated by di�erent styles of parenthesis. The digit onthe �rst line which controls each type of optional entry is indicated by the same styleof parenthesis.% This is the format of the graph input fileNumber-of-vertices Number-of-edges f1g[1](1)fVertex-numberg [Vertex-weight] neighbor1 (edge-weight1) � � �...There is one exception to this general graph format. If you are using the inertialmethod or one of the simple methods without Kernighan{Lin, then it is not necessary toprovide a graph since the partitioner does not make any use of connectivity information.A graph �le is still needed to read the number of vertices, but the remaining linesdescribing the edge lists can be skipped. Note however that the code will be unable toevaluate the quality of a partition or perform any of the post{processing options withoutedge information. Normally several measures of the partition quality are computed andprinted, but this is skipped if the graph is not present.5.2. Format of coordinate input �les. If you are using the inertial method,you will need to provide geometric coordinates for all vertices. These are placed ina di�erent �le, examples of which can be found in subdirectory \exec" with namesending with \.coords". These geometry �les must have n uncommented lines, with linei containing the coordinates of vertex i. Each line must have 1, 2 or 3 real values,corresponding to a one-, two- or three-dimensional geometry. Chaco determines thedimensionality by looking at the number of values on the �rst line. Any number ofcomment lines can appear at the front of this �le beginning with `%' or `#'.5.3. Format of assignment input �les. As discussed in x4.4, Chaco can takean existing partition and modify or evaluate it in several di�erent ways. The existingpartition is read from a �le using one of two possible formats. In the standard format,the top of the �le has an arbitrary number of comment lines indicated by a leading `%'or `#'. There follow as many lines in the �le as vertices in the graph. Uncommentedline i contains a single integer which is the set to which vertex i is assigned. Note thatset assignment numbers start at zero.The standard format can be inconvenient for parallel computing applications sincethe vertices owned by a particular processor can be scattered throughout the �le. It canbe useful to invert the standard format, having all the vertices assigned to processor 0�rst, followed by all the vertices assigned to processor 1, etc. This input format can beselected by setting the parameter IN ASSIGN INV to be TRUE (nonzero), as described inx6.1. With this format, the �le again begins with an arbitrary number of comment linesbeginning with `%' or `#'. The next line contains a single value n0 which is the numberof vertices in set 0. The following n0 lines list the vertices in set 0. This is followed bya line containing n1, the number of vertices in set 1, and so on.21



5.4. Operating the code. To operate the code you must answer a sequence ofquestions. With a basic understanding of the code structure and the methods describedin x3, these questions should be mostly self{explanatory. A brief outline and a few notesare, however, in order.First you will be asked to provide the name of the graph input �le. If the OUTPUT ASSIGNor ECHO parameters from x6.1 are set appropriately, you will also be asked for the namesof output �les. (If the text output �le controlled by OUTPUT ASSIGN already exists, thenew output is appended to the existing �le.) You will then select global and localpartitioning methods from those described in x3. (Since multilevel{KL automaticallyperforms KL, you aren't asked to specify a local method with this global option.) Theglobal method options are (1) Multilevel{KL, (2) Spectral, (3) Inertial, (4) Linear, (5)Random, (6) Scattered and (7) Read{from{�le. Option (7) is discussed in detail in x4.4.The local method options are currently (1) Kernighan{Lin and (2) None.Depending upon your method selections, you may need to answer a few additionalquestions. If you choose a spectral method you will need to choose between the multi-level RQI/Symmlq eigensolver and Lanczos. If you select the inertial method you willneed to specify the name of a coordinate input �le. And if you ask for multilevel{KLor the multilevel eigensolver you will need to say how many vertices you want in thecoarsest graph. (We generally use values in the range 50 to 500 for this parameter.)Note that because quadrisection and octasection make use of higher frequency informa-tion, they may need a slightly larger coarsest graph to resolve things as well as bisectiondoes.Chaco will then ask you for the size of the parallel machine for which you arepartitioning and compute the appropriate number of sets. Chaco knows about thetopology of hypercube and mesh parallel machines; you select between them by usingthe ARCHITECTURE parameter discussed in x6.7. The code makes an e�ort to assign setsto processors in a way that improves data locality on the selected architecture. Althoughthe mapping to processors will be best for the architectures the code understands, itis important to note that Chaco generates partitions that are appropriate for anyapplication. If mapping isn't important in your application, you can use ARCHITECTUREto specify a one-dimensional mesh and simply enter the number of sets you require.Finally you will choose whether to apply the partitioning method in bisection,quadrisection or octasection form. Note that if you choose quadrisection or octasectionand an integral number of steps will not produce the speci�ed total number of sets,Chaco will automatically change to either quadrisection or bisection at the end of therecursion so as to generate the required number of sets.Chaco will now go o� and do the requested calculation, printing results to thescreen and/or �les. Afterwards, it will ask you whether you wish to run another problem.5.5. Output formats. Chaco has various output options which are controlled byparameters described in x6.1 and x6.9. As the values of these parameters are increased,more detailed information is printed. If they are all set to zero, no output is producedunder normal circumstances. There are, however, a few unrecoverable error messageswhich have authority to override this. The parameter OUTPUT METRICS controls the22



calculation and printing of several partition metrics. These metrics can be displayed ina summary form with maximum, minimum and total number indicated, or they maybe displayed in a detailed, set by set manner. The metrics of partition quality recordedare:Set Size: The total weight of the vertices in a set. In a balanced decomposition thesevalues should be as close as possible.Edge Cuts: The weight of edges which connect a vertex in a set to vertices in adi�erent set.Hypercube Hops: Ameasure in which each cut edge is multiplied by the architecturaldistance between the two processors owning the end vertices. This metric oftenmodels communication time better than cuts does because it takes into accountnetwork congestion.Boundary Vertices: The weight of vertices which have edges connecting them to adi�erent set. For example, if an unweighted vertex in set 1 has three edgesconnecting it to set 4, its contribution to the boundary vertices total is one. Ifit also had an edge to set 7, its contribution would be two. This is useful inmodeling applications like parallel matrix{vector multiplication in which thevalue associated with a vertex may be communicated to another set just onceand used multiple times.Boundary Vertex Hops: Boundary vertices weighted by the number of wires a mes-sage must traverse between corresponding processors. This adjusts the bound-ary vertices metric to account for congestion.Adjacent Sets: The vertices in a particular set will have edges connecting them tosome number of other sets. This metric counts the number of those other sets.This value corresponds to the number of messages the corresponding processorwill have to send.Internal Vertices: The total weight of all the vertices in a set which have no edgesconnecting them to vertices in other sets. As discussed in x6.6, the presense ofsuch vertices may allow for overlapping communication with computation.Assorted timing information is displayed under control of OUTPUT TIME. This infor-mation, along with the input values and the settings for all the relevant parameters canbe written to either the screen or both the screen and a designated �le under control ofthe ECHO parameter.Normally Chaco asks questions interactively, but if you are piping a �le as input,you may want to switch the prompts o�. You can do so by setting the PROMPT parameterto FALSE.Chaco can also write an output �le containing the partition assignments. Whetheror not a �le is generated is controlled by the parameter OUTPUT ASSIGN, as discussed inx6.1. There are two assignment �le formats which are the same as the input formatsdescribed above in x5.3. In the standard output format, line i contains a single numberindicating the set to which vertex i is assigned. (The set numbers begin at zero.) Inthe inverted format, the �rst line of the �le contains n0, the number of vertices in set0. The following n0 lines contain the vertices assigned to set 0. The next line has n1,23



the number of vertices assigned to set 1, and so on. This inverted format can be usefulin parallel computing applications because the vertices owned by a particular processorcan be read without having to scan the entire assignment �le. If you prefer this invertedformat, set the parameter OUT ASSIGN INV to TRUE (nonzero) as discussed in x6.1.6. User{modi�able parameters. We have collected most of the internal param-eters which control the operation of Chaco into the �le \user params.c" in the directory\code/main". If you wish to modify some of these parameters you have two options.You can edit the �le \user params.c" and recompile the code, e�ectively changing thedefault values6. Alternately, you can modify the values at run time as described inx6.10.There are three basic types of parameters, those that control output type and quan-tity, those that select among di�erent algorithmic variants and those which turn on ando� additional functionality. The default values for the debugging parameters generate aminimal amount of output. This can be increased or in some cases decreased as desired.The defaults for the execution parameters were selected to provide a reasonable balancebetween run time and quality of the solution, but we make no claim to having selectedthem optimally for your problem. The default setting for the extended functionalityparameters is o�. The parameters and their functions are described in the sectionsbelow.6.1. Input and output control parameters.CHECK INPUT If TRUE (nonzero), the graph and input parameters are checked for errors.Although checking the graph can take a few seconds for large problems, thisfeature should probably be left active (the default) for robustness. (The timespent checking will be printed out if you set the parameter OUTPUT TIME to begreater than zero.)ECHO This parameter controls the printing of the input values and parameters, aswell as whether to copy these values to a �le. A value of 0 induces no echoing.If ECHO is 1 (or �1), the input selections will be echoed to the screen. If itis 2 (or �2), then the relevant user parameters will also be echoed. If thevalue is less than zero, you will be asked for the name of a �le in which torecord the results of a run. This �le will contain the same input selectionsand parameters that are copied to the screen, along with partition metrics(controlled by OUTPUT METRICS), a run time breakdown a run time breakdown(controlled by OUTPUT TIME) and any warning or error messages generated bythe code. Saving these results in a �le can be useful if you are doing a sequenceof runs for later analysis. The default value is 2.OUTPUT METRICS This parameter controls how much information about the quality ofthe partition will be computed and printed out. A zero value means thatno evaluation will be performed or printed. A negative value generates outputabout each set instead of just a summary of minimumand maximumvalues over6 It might be prudent to save a copy of the original �le so that you can return to the \factorysettings" easily. The default values quoted in the text assume no changes have been made to this �le.24



all sets. A value of 1 (or �1) produces information about the �nal partition.If you are partitioning for a hypercube, a value of 2 (or �2) generates dataabout all the intermediate partitions for smaller hypercubes that were implicitlygenerated in the process. The meanings of the various output metrics aredescribed in x5.5. The default value is 2.OUTPUT TIME This value determines how much information gets printed about the run-time of Chaco. A value of 0 means that nothing is printed, and values of 1 or2 allow for increasingly detailed timing output. The default value is 2.OUTPUT ASSIGN If this value is TRUE, you will be prompted for the name of a �le inwhich the vertex assignment will be printed. A description of the format ofthis output �le can be found in x5.5. The default for this parameter is FALSE(zero).OUT ASSIGN INV If OUTPUT ASSIGN is TRUE so you are writing an assignment �le, thenthis parameter controls the format of that �le. In the standard output format,line i of the �le contains the set to which vertex i is assigned. In some settingsit is preferable to use an inverted format in which all the vertices in set 0 come�rst, followed by all those in set 1, etc. If you prefer this inverted format, youshould set OUT ASSIGN INV to be TRUE, in which case the assignment will beprinted in the format described at the end of x5.5. The default value is FALSE,corresponding to the standard format.IN ASSIGN INV If you are reading an assignment from a �le, then the �le should bein one of the two formats described in x5.3. In the standard format, the ithuncommented line contains the set to which vertex i is assigned. In the invertedformat, all the vertices in set 0 are speci�ed �rst, followed by those in set 1,and so on. If IN ASSIGN INV is FALSE (the default) then the standard formatis assumed. If set to TRUE the the inverted format is expected.PROMPT Chaco assumes you are answering the input questions interactively. However,if you are piping a �le into Chaco, it may be more aesthetic to skip the inputquestions. Setting PROMPT to FALSE keeps the code from explicitly asking forinputs. The default is TRUE.PRINT HEADERS This parameter controls whether or not titles are printed for the dif-ferent sections of output. The default value is TRUE.6.2. Eigenvector calculation parameters.LANCZOS TYPE If you are using a spectral partitioning method or the multilevel{KLmethod, Lanczos is used at some point as an eigen solver. (The multilevel{KL method uses Lanczos to generate a spectral partitioning of the coarsestgrid, and the RQI/Symmlq eigen solver also uses Lanczos on the the coarsestgraph.) A discussion of the relative merits of the di�erent methods can befound in x3.3. A value of 1 selects full orthogonalization, a value of 2 choosesfull orthogonalization with the inverse operator, and a value of 3 selects selectiveorthogonalization The default value is 3.EIGEN TOLERANCE This one probably deserves its own short paper. All we can do hereis make a few general remarks and urge caution. If you are using a pure spectral25



method or the multilevel{KL partitioning method then you need to calculateeigenvectors. This parameter controls how accurately you compute them. Ifyou are using one of the Lanczos methods and LANCZOS CONVERGENCE MODE isset to 0, then EIGEN TOLERANCE is a tolerance on the eigen residual jjAu��ujjwhere (�; u) is the eigen pair of A in question. Similarly, if you are using themultilevelRQI/Symmlqmethod to compute eigenvectors and RQI CONVERGENCE MODEis set to 0, the eigen residual is used in the convergence test. If a convergencemode 
ag is set to 1 then the convergence of the corresponding iterative methodis instead monitored with respect to the partition residual. That is, the iter-ation pauses periodically and a partition is computed based on the currentapproximation to the eigenvector. When the change in partition cut size sincethe last pause is less than EIGEN TOLERANCE times the number of graph ver-tices, the eigenvector computation terminates. These latter modes provide theability to automatically choose the accuracy of the eigenvector computation toachieve any level of stability in partition quality.An extremely accurate eigenvector computation is expensive, and probablyunnecessary, particularly if you are using Kernighan{Lin to re�ne the spectralpartition. However, in general the quality of the partition gradually degrades asthe accuracy is reduced below some critical point. This can be a result of inac-curacy in the eigenvector, or it may be because the eigen solver has converged toan entirely wrong eigen pair. This latter phenomenon of misconvergence occursquite frequently if you use too large an eigen tolerance because there are manyeigenvalues in any interval of that width. So to be really correct one shouldprobably relate the eigen tolerance to the expected gap between eigenvalues inthe relevant portion of the spectrum using, for example, the graph size. But,as discussed earlier in x3, slight misconvergence is not a grave problem sincemisconverged eigenvectors often give good partitions. The multidimensionalspectral methods do in general require somewhat higher accuracy than spec-tral bisection to perform at their best. Apart from this, however, the questionof the appropriate eigen tolerance and risk of misconvergence is more a questionof being able to reproduce partitions reliably and of having a fair basis on whichto compare eigen solvers. Chaco's design philosophy here is that you shouldget the accuracy you request, and, failing that, you should be warned andtold the accuracy you did get. We feel the largest value of EIGEN TOLERANCEthat is advisable for general use is about 10�3, and that is what we ship thecode with. If you are really pressed for speed and are using a local clean{upphase, a value of 10�2 might be reasonable. At the other extreme, a value of10�6 should prove acceptably tight in most situations | if you're working ona graph large enough to require higher accuracy, you should probably switchto the multilevel{KL partitioning method, which for large problems generallygives better answers in less time.SRESTOL If this parameter is non-negative and the residual encountered at the end ofthe recurrence used to compute the eigenvector of the tridiagonal matrix in26



Lanczos is greater than it, a corresponding set of warning conditions is 
agged.(See discussion of WARNING EVECS.) If this parameter is negative, the residualtolerance for the eigenvector of the tridiagonal matrix is automatically set tothe square of EIGEN TOLERANCE. The default value is -1, so the tolerance is setautomatically. If you are frequently warned that the tolerance on this compu-tation is not achieved and you are not getting the overall Lanczos accuracy youhave requested, try increasing BISECTION SAFETY. If you get frequent warningsabout SRESTOL and you are achieving the Lanczos accuracy you want, eitherspecify a value of SRESTOL which is looser (bigger) than the square of the eigentolerance, or (if the warnings bother you) reduce the value of WARNING EVECSappropriately.LANCZOS SO INTERVAL If you are using the selective orthogonalization variant of Lanc-zos, then the convergence of the process is checked indirectly through the Ritzpairs every few steps. The number of Lanczos iterations between checks is setby the value of this parameter. Choosing a large value will generally make thecomputation run marginally faster, but increases the risk of degraded accuracyor misconvergence and may therefore actually increase run time. A smallervalue is more robust since numerical breakdown due to the convergence of Ritzpairs will be detected sooner. If you encounter convergence problems while us-ing selective orthogonalization, try reducing this parameter. Due to the detailsof the orthogonalization procedure, a value of 1 will cause redundant work, sothe minimum sensible value is 2; the default is 10.LANCZOS MAXITNS If this parameter is set to a non-negative integer, Lanczos will ter-minate at that number of iterations. If it has a negative value, the maximumnumber of Lanczos iterations will be set automatically to twice the number ofvertices in the graph, i.e. it will be 2n, where n is the order of the matrix inthe eigen system. Except in rare circumstances Lanczos will converge before niterations, so this autoset feature in practice means that Lanczos will iterateuntil it converges to tolerance. The default is -1 for autoset.BISECTION SAFETY In Lanczos some of the extremal eigenvalues of the tridiagonal ma-trix must be found periodically. If the number of eigenvalues to be found issmall, a bisection algorithm is used to �nd roots of the Sturm sequence whichcorrespond to the eigenvalues. This parameter ampli�es or shrinks the conver-gence tolerance on the bisection algorithm. A higher value speci�es a tighter(smaller) tolerance and results in more accurate computation of these eigenval-ues, but a slightly longer run time. If the code encounters numerical accuracyproblems it thinks are related to accuracy of the eigenvalues of the tridiago-nal, it will dynamically increase the ampli�cation of the convergence tolerancefor the bisection computation by some multiplicative factor. The next timeLanczos is invoked the ampli�cation is reset to BISECTION SAFETY, which hasa default value of 10.LANCZOS CONVERGENCE MODE If the code is performing spectral bisection and this pa-rameter is set to 1, the convergence of the Lanczos iteration is determined by27



monitoring convergence of the partition rather than the eigen residual. At eachLanczos pause an approximate eigenvector is computed and used to generatethe current partition. If the partition has changed less than EIGEN TOLERANCEtimes the number of vertices, the iteration is considered converged. This isuseful if you want to determine the accuracy of the eigenvector in an adaptiveway. For example, you may want to iterate until the point at which furtheriteration will not change the partition. Computing eigenvector approximationsfrequently within Lanczos is, however, very expensive because it requires a sumacross all the current Lanczos basis vectors. We therefore recommend that yougenerally leave this parameter in its default state of 0 so that convergencewill be evaluated in the normal way by comparing the eigen residual againstthe eigen tolerance. Note that when using spectral quadrisection or octasectionthere is no choice | convergence mode 0 will be used.RQI CONVERGENCE MODE This parameter plays the same role as LANCZOS CONVERGENCE MODE,but in the RQI/Symmlq context. If it is set to 0, RQI convergence happenswhen the eigen residual is less than EIGEN TOLERANCE. If the parameter is setto 1 an additional check is invoked based on whether the partition has changedsince the last step by less than EIGEN TOLERANCE times the number of vertices.Since RQI is computing a new approximation to the eigenvector on each step,this additional convergence check is relatively economical. And, since the par-tition often converges to reasonable accuracy before the eigenvector does, wehave made convergence mode 1 the default. If you are comparing run timesof Lanczos and RQI/Symmlq you should, to be fair, use the same convergencemodes for both.LANCZOS SO PRECISION The selective orthogonalization version of Lanczos performsits dominant computations (sparse matrix-vector multiplication and blas-typeoperations) on data of type float when this parameter is set to 1; when itis set to 2, type double is used. Computations of the type in question areless accurate if performed on data of type float than if performed on typedouble because the result is stored in lower precision. On some machinesand using some C compilers, 
oating point operations performed on floatdata are faster than those performed on double data. But they may be (andoften are) actually slower. You can test this for your computing environmentby setting the TIME KERNELS to TRUE. Using type float can however lead tosigni�cant memory savings in this context because the Lanczos basis, whichgenerally dominates the storage requirements, occupies half as much memory.The default value of this parameter is 2, and we recommend that you generallyuse this value unless you are running out of memory since the compute{timesaving (if any) is rarely signi�cant.WARNING EVECS If this parameter has a value greater than 0, the occurrence of a va-riety of possible numerical or storage-related problems in the eigen solvers isreported. When using RQI/Symmlq, a value above 0 means you will be no-ti�ed if the eigen residual is not converging monotonically, an indication of28



possible misconvergence. When using Lanczos, a value above 0 means you willbe warned if the requested eigen tolerance was not achieved, if there has beena minor or severe loss of orthogonality in the computation, if the maximumnumber of Lanczos iterations was reached and if the code needed to switchtridiagonal solvers to accurately compute the Ritz values. You will also benoti�ed if the code has run out of memory and is recovering by computing thebest available approximation to the eigenvector. A value above 1 means thatif any of the preceding warning conditions occur, you will be noti�ed of theeigenvalues and predicted and actual eigen residual tolerances. A value above2 means you will be noti�ed when the computation of the eigenvector of thetridiagonal matrix has been problematic and if the back-up iteration was used(and how many times) for this computation. If the extended eigen solver isused, not all this warning information is provided. Various warnings are re-ported when the extended eigen problem is not well posed and this parameteris set greater than 0. The default value is 2.WARNING ORTHTOL This parameter determines the level of loss of orthogonality in Lanc-zos which is considered minor but worth reporting. If the ratio between theestimate of the eigen residual and the computed eigen residual is above thisvalue, the minor loss of orthogonality condition is triggered. To avoid generat-ing insigni�cant messages, warnings are not printed if the actual eigen residualis signi�cantly lower than the eigen tolerance. The default value is 2. Refer tothe discussion on WARNING EVECS.WARNING MISTOL Same as WARNING ORTHTOL, but this value indicates a more seriousloss of orthogonality. In some cases this may indicate misconvergence, hencethe name. The default is 100.LANCZOS TIME A detailed breakdown of the time spent in di�erent stages of the Lanczoseigen solver is provided when this parameter is set to TRUE. Lanczos will runever so slightly faster if you leave this value at FALSE (the default), since manyfewer calls to the timing function will be made.TIME KERNELS If this parameter is set to TRUE a table is printed out comparing variouskernel operations in single precision (data type float) and double precision(data type double). The kernel operations are basic linear algebra primitivesand multiplication of a dense vector by the weighted Laplacian matrix of thegraph. The comparison is with respect to numerical result and execution time.The number of loops of the kernel operations performed is chosen so that thetime of the standard 2{norm operation is approximately 1 second, hence onvery large and dense graphs the sparse matrix multiplication kernel timing testmay require signi�cant time. The default value is FALSE.6.3. Other parameters for spectral methods.MAKE CONNECTED Spectral methods can break down if the graph is disconnected. Evenif the original graph is connected, disconnected graphs can be generated inthe recursion. To avoid any associated problems, we use a breadth-�rst-searchalgorithm to �nd connected components and add a minimal number of edges29



to make the graph connected. If MAKE CONNECTED is TRUE (the default), thenthis connectivity check will be invoked whenever a spectral option is selected.You should only change this parameter if you plan to use a spectral methodand you are certain that you will only operate on connected graphs (i.e. if youaren't recursing).PERTURB Spectral methods can encounter problems if the graph has symmetry since itseigenvalues can then have multiplicity greater than 1. For spectral bisection, allyou can hope for is selecting some vector (which depends on the starting Lanc-zos vector) in the subspace of second lowest eigenvectors. However, since theywork within a subspace of 2 and 3 vectors respectively, spectral quadrisectionand octasection can handle two or three degrees of multiplicity respectively.Unfortunately, Lanczos can't easily identify this multiplicity. We can, how-ever, avoid the issue by randomly perturbing the matrix. If you are invokingbisection, then the matrix is not perturbed, but in quadrisection or octasec-tion mode the parameter PERTURB controls whether or not this perturbation isinvoked. Using this option helps avoid problems in some degenerate cases likethe square grid graph, at the cost of a very slight increase in run time. Werecommend that you leave this feature actived (the default) unless you are sureyou don't need it.NPERTURB If the PERTURB option is being used, this parameter indicates how manyrandom edges are added to the graph to break the symmetry. The default is 2.PERTURB MAX If the PERTURB option is being used, this parameter is the maximumvalueof an edge weight for one of the randomly added edges. A small value willperturb the eigenvectors a small amount, but if the perturbation is too small,then Lanczos may not be able to separate the multiple eigenvectors. This valueshould probably be a small multiple of EIGEN TOLERANCE. The default is :003.MAPPING TYPE We have implemented several methods for generating a partition fromeigenvectors, and decided to retain two of them. If this value is 0, then thethe partitions are determined by the signs of the values in the eigenvector(s).Note that this will generally produce a somewhat imbalanced partition (whichcan be balanced by KL). In the bisection case, this option reduces to dividingat a value of zero. If MAPPING TYPE is 1, then the code uses the minimum costassignment algorithm described in [12], which generates balanced sets. In thebisection case, this latter option reduces to dividing at the median. Since weconsider this second approach superior, the default value is 1.COARSE NLEVEL RQI This parameter applies if you are using the spectral method withthe RQI/Symmlq eigen solver option. As you work back through the inter-mediate graphs, the approximation to the eigenvector is re�ned with RayleighQuotient Iteration every few levels. This parameter indicates how many levelsoccur between these re�nements. A small value for this parameter is morerobust, but a large value will reduce execution time. The default value is 2.OPT3D NTRIES If you are using spectral octasection, then when mapping back to a dis-crete solution you need to solve a constrained, global optimization problem as30



described in [12]. In our experience, this problem usually has a small numberof local minimizers, so we solve it using local minimization techniques fromrandom starting points. This parameter controls the number of local mini-mizations, and should only be modi�ed by sophisticated users. The defaultvalue is 5.6.4. Kernighan{Lin parameters.KL METRIC When dividing into more than 2 sets at once, our implementation of Kernighan{Lin can try to minimize any inter{set metric. Two are currently built into thecode and are controlled by this parameter. If the value of KL METRIC is one,then all edges crossing between two sets are treated the same. If the valueis two, then edges are weighted by a metric that corresponds to their archi-tectural distance in the target parallel architecture. (Note that the spectralquadrisection and octasection algorithms automatically use a hypercube hopmetric.) Also note that in bisection the choice of metrics doesn't matter. Ifyou wish to use a di�erent metric than cuts or hops, you can tinker with theappropriate code in \code/submain/submain.c". The default value is 2.KL RANDOM This 
ag turns on and o� the randomness in the Kernighan{Lin routines.We recommend that you leave this parameter in the default setting of TRUE sinceit increases the quality and robustness of Kernighan{Lin for a tiny increase inrun time.KL BAD MOVES Our version of Kernighan{Lin can exit a pass early if it doesn't seem tobe making any progress. This parameter controls how quickly KL will hit thiscuto�. A large value may make KL more e�ective, but will also increase therun time. The default is 20.KL NTRIES BAD This parameter controls the speed at which the Kernighan{Lin codeis exited. The KL routine will exit after KL NTRIES BAD passes in which noimprovement is detected. We have designed some randomness into this algo-rithm, so a pass with no improvement can be followed by one that �nds abetter partitioning. However, if you set KL RANDOM to FALSE, then you shouldset KL NTRIES BAD to 1. If KL NTRIES BAD is set to zero, then the code will runa single pass of KL and exit whether or not the partition is improved. Sincethe �rst pass is usually responsible for the bulk of the improvement, this is areasonable choice if run time is critical. A large value for this parameter shouldproduce better results, but will cause the code to run longer. The default is 1.KL UNDO LIST This parameter turns on an optimization that dramatically reduces therun time of Kernighan{Lin for large graphs. Instead of bucket sorting theentire set of possible vertex moves before each pass, this option preserves themoves that haven't been changed; typically the vast majority. This leads to adramatic increase in speed, with no perceptible change in quality. We stronglyencourage you to leave this parameter in its default setting of TRUE.KL IMBALANCE Chaco generally tries to keep the vertex weight sums in the sets itgenerates as nearly equal as possible. Speci�cally, when a single division stepis performed, the di�erence in vertex weight sum between any two of the subsets31



is at most the weight of the heaviest vertex. For weighted graphs, after severallevels of recursive partitioning, the set sizes may deviate by more than theweight of a single vertex. But for unweighted graphs set sizes should varyby at most one. This is the default operation of the code, associated with avalue for KL IMBALANCE of 0. However, there are settings in which sets needn'tbe perfectly matched in size, and an imbalanced partition with fewer crossingedges is preferable. Such partitions can be found by Chaco's implementationof KL and multilevel{KL. If KL IMBALANCE is set to some value q between 0and 1, then KL and multilevel KL will look for partitions in which the thefractional imbalance is no more than q. Speci�cally, the di�erence between anytwo sets is bounded by q times the average set size.6.5. Parameters for multilevel algorithms.COARSEN RATIO MIN This value is employed if you are using either the RQI/Symmlqeigen solver or the multilevel{KL partitioning algorithm. It should have avalue between .5 and 1.0, representing the minimal acceptable reduction innumber of vertices associated with a coarsening step. If a step fails to achievethis reduction, the coarsening algorithm exits prematurely, and the resultingcalculations will be performed on a larger graph than expected. The coarseningalgorithm cannot reduce the number of vertices by more than half, so this valueshould always be greater than :5; the default is :7.COARSE NLEVEL KL If you are using the multilevel{KL partitioning algorithm, thenKernighan{Lin gets invoked periodically on successively �ner graphs. Thisparameter indicates how many levels occur between these invocations. A smallvalue for COARSE NLEVEL KL will generally lead to better partitions, while alarge value will reduce execution time. The default is 2.COARSE NLEVEL RQI See discussion in x6.3.MATCH TYPE The �rst step in coarsening is the generation of a maximal matching in thegraph. We have three matching codes to choose from. The default value forMATCH TYPE is 1, which selects a fast algorithm based on a breadth �rst search.Increasingly time consuming but more truly random algorithms are invoked bylarger values up to a maximum of 4.HEAVY MATCH Karypis and Kumar [16] have reported that the multilevel{KL algorithmis improved by selecting matching edges that have high weights. If this pa-rameter is set to TRUE then the matching algorithms for either the multileveleigen solver or multilevel{KL will try to generate heavy weight matchings. Thedefault for this parameter is FALSE.COARSE KL BOTTOM Kernighan{Lin re�nement is invoked every COARSE NLEVEL KL lev-els starting with the �nest graph. To ensure that partition of the coarsestgraph is as good as possible, it makes sense to invoke KL on this graph. IfCOARSE KL BOTTOM is TRUE (the default), KL will always be invoked on thecoarsest graph. This generally improves the quality of partitions, and since thecoarsest graph is small, the time for this process is negligible.32



COARSEN VWGTS For both the multilevel{KL algorithm and the RQI/Symmlq eigensolver, we construct coarse graphs via a sequence of edge contractions. Thesecontractions combine two vertices into one. Balance constraints are preservedif the weight of the combined vertex is the sum of the weights of its twoconstituents. If COARSEN VWGTS is TRUE (the default) then the new vertex isweighted in this manner. However, as discussed in x3.6, Bui and Jones proposedan algorithm where the new vertex has unit weight. This can be implementedby setting COARSEN VWGTS to FALSE.COARSEN EWGTS Edge contraction can also cause edges in the graph to fall on top ofeach other. If so, the cost of a partition can be preserved by making the weightof the resulting edge equal to the sum of the weights of those that compriseit. This weighting is performed if COARSEN EWGTS is TRUE (the default). In thealgorithm by Bui and Jones the resulting edge is instead given a unit weight,which will happen if COARSEN EWGTS is FALSE.KL ONLY BNDY If the vertices on the boundary are known, then it is more e�cient toinitialize only these values when starting Kerninghan{Lin. Other values can beevaluated on an as{needed basis, but typically only a small fraction will needto be computed. Note that vertices not initially on a boundary can be handledproperly; they're just not placed into the KL data structures until one of theirneighbors has moved, placing them on the new boundary. In the multilevel{KL algorithm, the boundary can be easily propagated between levels, so thise�ciency can be realized. This signi�cantly improves the speed of the algorithmwithout a�ecting its quality. When runing multilevel{KL, if KL ONLY BNDY isset to TRUE (the default) then only those vertices on the boundary between setsare initialized.KL IMBALANCE See discussion in x6.4.6.6. Parameters for post{processing options.REFINE PARTITION This parameter controls how many sweeps are made through thepairs of sets with a nonzero boundary in an e�ort to improve the partition viaan invocation of Kernighan{Lin. A discussion of this approach can be foundin x4.3.1. The default value is zero since the process is fairly expensive.INTERNAL VERTICES In many parallel computing applications, vertices with no edges toother sets require only local data. This may allow for overlap of communicationand computation. If TRUE, the INTERNAL VERTICES parameter activates code totry to increase the minimal number of internal vertices in a set. The algorithmfor this task is sketched in x4.3.2. The default value for this parameter isFALSE since this fairly specialized functionality is probably not required formost applications. We also caution that this can be a time consuming processif the partition submitted is of low quality.REFINE MAP If this parameter is TRUE the mapping of sets to processors is modi�edin a greedy manner to improve locality. Note that this doesn't change thecomposition of the sets, just which processor each set is assigned to. Thealgorithm for this process is described in x4.3.3. Since Chaco is used for33



many applications other than parallel computing, the default for this parameteris FALSE. But if you are really interested in the quality of your mapping toprocessors you should set it to TRUE.6.7. Architecture parameters.ARCHITECTURE In addition to partitioning the graph, Chaco tries to assign subgraphsgenerated to processors of a parallel computer in an intelligent manner. Thisparameter speci�es the topology of the parallel computer. A value of 0 (thedefault) speci�es a hypercube, while values of 1, 2 or 3 indicate meshes ofdimensionality one, two or three respectively. If your application doesn't careabout how pieces get assigned to sets, then you should simply set this valueto 1 and input the number of sets you require when prompted. This might bethe case, for example, if you were partitioning for a heterogeneous network ofcomputers coupled by a slow or unpredictable network.6.8. Miscellaneous parameters.TERM PROP This parameter determines whether or not terminal propagation is invokedin spectral bisection, Kernighan{Lin and multilevel{KL. Details concerning ter-minal propagation, a method for generating better mappings to processors, aregiven in x4.2. Currently, spectral terminal propagation only works in bisectionmode, but with KL and multilevel{KL the method can handle an arbitrarynumber of sets. The default value is FALSE.CUT TO HOP COST When performing terminal propagation, this value controls the rel-ative importance of generating a new cut edge versus increasing the inter{processor distance associated with an existing cut edge. This parameter thusallows the user to tradeo� the importance of communication volume to com-munication locality. The default value is 1:0.SEQUENCE If this parameter is set to TRUE,Chaco computes and sorts the Fiedler vectorof the graph and places the result in a �le named by SEQ FILENAME. The otheroperations associated with partitioning are not performed. This functionalityis provided to assist development of spectral graph algorithms, and is discussedin x4.1. The default value is FALSE.SEQ FILENAME This parameter is a character string which speci�es the name of the �leto which the sorted Fiedler is printed if SEQUENCE is nonzero. The default is\Sequence.out"RANDOM SEED This is the seed for the random number generator \rand()".NSQRTS If you are using either multilevel{KL or the RQI/Symmlq eigen solver, thencoarse versions of the graph are created with vertex weights. The square rootsof these vertex weights are also needed. Since these are typically integers,Chaco avoids redundant computation by computing the root of each distinctinteger once and storing it in the array SQRTS. The value of NSQRTS is the lengthof this array, and for best performance it should be somewhat larger than thenumber of vertices in the original graph divided by the number of vertices inthe coarsest graph. A large value may use a small amount of unnecessary space,34



while a small value may lead to a slight excess of computation. The default is1000.MAKE VWGTS In matrix{vector multiplication, the cost associated with a row is propor-tional to the number of nonzeros in that row. If vertices of your graph representrows of a matrix, MAKE VWGTS allows you to automatically weight them in thisway. Note that if MAKE VWGTS is TRUE then any weights in your graph �le areignored. The default for this parameter is FALSE, meaning that the option isn'tinvoked.FREE GRAPH Chaco �rst reads a graph into a simple format before converting it into amore complex data structure. This simple format is used to allow the code tobe called from Fortran as described in x7. Once the graph has been reformattedthe space used by the simple format is deleted if FREE GRAPH is TRUE, which isthe default. However, if you are calling the code from other software, you maywish to save the simple graph structure for other purposes, or you may not havegenerated it via C malloc() calls. In these cases, you should set FREE GRAPHto FALSE, to disable this feature.PARAMS FILENAME This parameter de�nes the name of the �le from which the code readsparameter modi�cations as described in x6.10. The default is \User Params" inthe executable directory. This is the only parameter that cannot be changed atrun time. To change this �le name you must edit the �le \code/main/user params.c"and recompile.6.9. Parameters that control debugging output. These parameters allow youto invoke Chaco's built-in debugging capabilities. The default value of these parame-ters, with one exception, is 0, specifying that no debugging output should be printed.(The exception is DEBUG PARAMS, which has a default value of 2.) If no range of valuesis indicated, the parameter is treated as a TRUE/FALSE value and any nonzero value willactivate it.DEBUG EVECS This parameter controls the quantity of debug output concerning calcu-lation of eigenvectors. When set to zero, no output is generated except whenan unrecoverable error condition is encountered, in which case a short messageis printed before the program aborts. A value of 1 will produce a moderateamount amount of information, 2 a bit more, and so on up to a maximumvalueof 5.DEBUG KL This 
ag controls the output in the Kernighan{Lin routines. No debuggingoutput is generated if the value is 0, while the improvement due to KL at eachstep is shown if the value is 1. Values of 2 and 3 generate large quantities ofoutput, and should only be invoked by an expert.DEBUG INERTIAL If you are using the inertial method, this 
ag will turn on outputconcerning the computation of the principle axis of the graph.DEBUG CONNECTED If you are enforcing connectivity and using a spectral method, avalue of 1 for this 
ag turns on a small amount of output in the routines thatidentify connected components. This will tell you if subgraphs have becomedisconnected in the course of a decomposition.35



DEBUG PERTURB A value of 1 for this 
ag turns on a small amount of output in theroutines for randomly perturbing the matrix.DEBUG ASSIGN When using a spectral method, the mapping from the eigenvectors toa partition can be complicated, particularly for spectral quadrisection and oc-tasection. This parameter turns on output in the routines that compute thismapping.DEBUG OPTIMIZE With spectral quadrisection or spectral octasection, part of the map-ping to a partition involves a nonlinear optimization. This 
ag controls debug-ging output in the optimization subroutines.DEBUG BPMATCH When using spectral quadrisection or octasection, the trickiest part ofthe mapping from eigenvectors to a partition involves solving a minimal costassignment problem in a bipartite graph. This 
ag turns on the output in thecorresponding sections of the code. A value of 1 gives a moderate amount ofcryptic output, while a value of 2 does more error checking and can generate alot of output.DEBUG COARSEN If you invoke multilevel{KL or the RQI/Symmlq eigen solver, the codewill construct a sequence of increasingly coarser approximations to the originalgraph. This parameter controls the output for the routines performing thisprocess.DEBUG MEMORY This variable turns on some consistency checks in the allocation andfreeing of memory. Unless you encounter problems you think might be memoryrelated, this value should be left at 0.DEBUG INPUT If this is set to 1, a message is printed con�rming that the input �les havebeen read.DEBUG PARAMS This value controls how much output is generated while reading param-eters from the \User Params" �le. A value of 1 means that the code will notifyyou of any parameter settings it does not recognize (and therefore ignores). Avalue of 2 prints a con�rming message for each parameter value that is reset.The default value is 2.DEBUG INTERNAL If INTERNAL VERTICES is nonzero, then the code will try to increasethe number of entirely internal vertices in the sets with the fewest of them asdescribed in x4.3.2. If DEBUG INTERNAL is nonzero, debugging output will begenerated in this section of the code.DEBUG REFINE PART If REFINE PARTITION is nonzero then Chaco tries to improve apartition by locally re�ning the boundaries between sets as discussed in x4.3.1.If DEBUG REFINE PART is nonzero, the code will generate debugging output inthis operation.DEBUG REFINE MAP If REFINE MAP is TRUE, code is activated to swap sets among proces-sors to improve locality. DEBUG REFINE MAP controls output in this process.DEBUG TRACE If this value is nonzero, messages are printed which reveal the main ex-ecution path. If the code is running into problems, this parameter may helpnarrow down where they are occurring.36



DEBUG MACH PARAMS Chaco needs to compute a few numerical values that are machinedependent. If this 
ag is nonzero then the values it computes are printed out.If you are having di�culty getting the code to run on a new machine, theparameter calculation may be failing; this 
ag will help you detect that.6.10. Modifying parameters at run time. You can modify the user parametersat run time by specifying the desired changes in a �le called \User Params" in theexecutable directory. (You can change the name of this �le by modifying the value ofPARAMS FILENAME in \user params.c".) The �rst thing Chaco does is read this �le (ifit exists), and make the speci�ed changes to parameter values.Lines of the \User Params" �le should contain a parameter name (using any com-bination of upper and lower case) followed by the new value. An `=' may be used toseparate the parameter name and value, but is not required. Integer and real values arespeci�ed in the normal input manner, and logical parameters can be speci�ed by stringsstarting with `T' or `t' for true (one) and `F' or `f' for false (zero). Lines beginning witha `%' or a `#' are ignored.If you are using a single invocation of Chaco to perform several decompositions,you can vary parameters between problems by adding a line to the \User Params"�le consisting of the string STOP. When Chaco encounters a STOP it quits readingparameters and partitions or sequences the graph. When the second problem is begunChaco continues reading new parameter values from where it left o� until it encountersanother STOP or the end of the \User Params" �le. Any number of stop commands maybe used. Note that the parameter changes made for the �rst problem are still in e�ectunless later lines provide newer values. Consider the following sample �le.%This is a sample run-time parameter modification file.Architecture 3term prop True#debug memory = 1StopTERM PROP = fIn the �rst problem, the architecture is set to be a three-dimensional mesh, and termi-nal propagation is enabled. In the second problem, the architecture remains a three-dimensional mesh, but terminal propagation is now disabled.� v7. Calling Chaco from other programs. Throughout this document we haveassumed that Chaco is being used as a stand{alone program. However, this needn't bethe case. We designed version 2.0 to allow for easy interface with other codes writtenin either C or Fortran. The mechanism for this interface is described below. Somefamiliarity with the remainder of this document is assumed.The interface() routine and can be found in the �le \code/main/interface.c".This is the routine that Chaco itself invokes after prompting the user for all the nec-37



essary input. Consequently, no functionality is lost by calling interface() yourself.The input can still be checked for consistency, all the output options are still active andthe ability to modify parameters at run time by reading a �le as described in x6.10 ismaintained. (The parameters ARCHITECTURE, EIGEN TOLERANCE and RANDOM SEED aremade obsolete by the arguments to interface() as detailed below, and DEBUG INPUTand PROMPT become irrelevant, but all other parameters remain active.) The abilityto control the goals argument described below actually gives you greater functionalitythan you would have in stand{alone mode.The interface routine returns 0 if the partitioning is successful, and 1 otherwise.Typically, a return code of 1 indicates the detection of some inconsistencies in theinput arguments. The arguments to interface() describe the graph, input and output�les and arrays, properties of the desired decomposition and the requested partitioningalgorithm. The arguments are described below in the order in which they occur.A. Arguments describing the graph.1. nvtxs. Type int. This is the number of vertices in the graph. Vertices arenumbered from 1 to nvtxs.2. start. Type int *. Although Chaco internally uses a C structure to representthe graph, a simpler representation at the start allows for interface with Fortranprograms. The start array is of size (nvtxs+1). It's values are indices into theadjacency array. The values in adjacency from start[i� 1] to start[i]�1 are thevertices adjacent to vertex i in the graph. (Note that C arrays begin at zero,so in Fortran, the relevant range would be start[i] to start(i+ 1)� 1.)3. adjacency. Type int *. As indicated in the description of start, this array con-tains a list of edges for all vertices in the graph. Note that if the FREE GRAPHparameter from x6.8 is set to TRUE, then after converting to a new data struc-ture, both start and adjacency are freed. If this is inappropriate for your ap-plication (e.g. you want to keep the graph, or you didn't dynamically allocatethese arrays), then you should set FREE GRAPH to FALSE.4. vwgts. Type int *. This array of length nvtxs speci�es weights for all thevertices. If you pass in a NULL pointer, then all vertices are given unit weight.Vertex weights should be positive.5. ewgts. Type 
oat * (Fortran type real*4). This array speci�es weights for allthe edges. It is of the same length as adjacency and is indexed in the sameway. If you use Kernighan{Lin or the multilevel partitioner, these values willbe rounded to the nearest integer. We suggest scaling them so they are neithervery small nor very big. Edge weights should be positive.6. x. Type 
oat *. If you are using the inertial partitioner, you need to specifygeometric coordinates for each vertex. This array of length nvtxs speci�es thex coordinate for each vertex.7. y. Type 
oat *. This array speci�es the y coordinate for each vertex. If it isNULL, the geometry is assumed to one-dimensional.8. z. Type 
oat *. This array speci�es the z coordinate for he each vertex. If zis NULL and y is not NULL, the geometry is assumed to be two-dimensional.38



B. Output �le names.9. outassignname. Type char *. If you desire the �nal assignment to be writtento a �le, this argument gives the name of that �le. If this argument is NULLor if the parameter OUTPUT ASSIGN is 0, then the assignment is not written toa �le.10. out�lename. Type char *. This is the name of a �le in which the results ofthe run are printed. If it is NULL or if the parameter ECHO is not negative,then no �le output is performed.C. Assignment.11. assignment. Type short *. This is the only output argument to interface().It is an array of length nvtxs and returns the set number to which each vertexis assigned. The set number for vertex i is returned in assignment[i� 1] (or forFortran, in assignment(i)). This can also be an input argument if global method,argument 16 below, is set to 7. A description of what functionality can be usedwith an input assignment can be found in x4.4D. Description of the target machine.12. architecture. Type int. This parameter designates the topology of the par-allel machine for which you are partitioning. Current capabilities include ahypercube (indicated by a value of 0), and a one-, two- or three-dimensionalmesh (indicated by a value of 1, 2 or 3 respectively.) Note that this argumentoverrides the ARCHITECTURE parameter.13. ndims tot. Type int. If architecture is zero, indicating a hypercube, thisvalue is the number of dimensions in the hypercube.14. mesh dims. Type int array of size 3. If architecture is 1, 2 or 3, indicating amesh, the values in this array denote the size of the mesh in each dimension.15. goal. Type double *. This optional array speci�es the desired sizes of thedi�erent sets. The total number of sets is implicit in the architectural speci�-cations provided by the preceding three parameters. If a null value is passedfor goal, the code will try to make each set have the same vertex weight sum.If it is not null, the goal array should be as long as the total number of sets.The value in goal[i] (or, for Fortran, goal(i + 1)) should be the desired sumof vertex weights of vertices assigned to set i. Note that set numbers beginat zero. Chaco will try to get as close to this goal as possible, but may notsucceed exactly. The sum of all the goals should equal the sum of all the vertexweights, and values should be nonnegative.Although the default is to make all set sizes equal, there are applications wherethis may be undesirable. One example would be if you are decomposing acomputation among processors of di�erent speeds. All the code in Chacohandles this more general case, and should work for any consistent values ingoal.E. Partitioning options.16. global method. Type int. This argument speci�es the global partitioningmethod and should have a value from 1 and 7. These values are the same39



as those on the \Global method" menu when running Chaco in stand{alonemethod, as reviewed in x5.4.17. local method. Type int. This argument speci�es the local partitioningmethod and should have a value of 1 or 2. These values are the same as thoseon the \Local method" menu when running Chaco in stand{alone method, asreviewed in x5.4.18. rqi 
ag. Type int. If you requested spectral partitioning and wish to use themultilevel RQI/Symmlq eigensolver, this argument should be set to 1. If youwish instead to use Lanczos, it should be set to 0.19. vmax. Type int. If you are using either the multilevel{KL partitioner, orthe multilevel RQI/Symmlq eigensolver, you need to specify when the coarsestgraph is small enough. When a coarse graph has no more than vmax vertices,the recursive coarsening is �nished.20. ndims. Type int. This argument should have a value of 1, 2 or 3 indicatingpartitioning by bisection, quadrisection or octasection.21. eigtol. Type double. If you are using a spectral method or multilevel{KL, this argument speci�es the tolerance you request for the eigensolver. Adiscussion of an appropriate choice can be found in the description of theEIGEN TOLERANCE parameter in x6.2. Note that this argument overrides thevalue of the EIGEN TOLERANCE parameter.22. seed. Type long. This is a seed for the random number generator \rand()".Note that it overrides the RANDOM SEED parameter.8. Changes since Version 1. Version 2.0 of Chaco di�ers from earlier versionsin a number of ways. We gratefully acknowledge the helpful suggestions of users whorequested greater functionality, critiqued the interface or reported problems. In thissection we brie
y list the most important di�erences between this version and its pre-decessor [10], and direct the interested reader to the relevant sections of this user's guidefor more details.8.1. Enhanced functionality. Version 2.0 of Chaco can partition for one-, two-and three-dimensionalmesh topologies. Earlier versions worked only for hypercubes.There are two aspects to this generalization. First, the code can now partition intoan arbitrary number of sets. And second, the sets are assigned to processors tomaximize locality on either a hypercube or a mesh. The parameter which speci�es thetopology is ARCHITECTURE and is described in x6.8. If you don't care about the mappingto processors, you can simply select a one-dimensional mesh topology and then inputthe number of sets you require when prompted.We have added options to the implementation of our multilevel{KL method toinclude a closely related multilevel algorithm due to Bui and Jones [2, 15]. Wehave also added the ability to prefer high weight matching edges as advocated byKarypis and Kumar [16], and di�erent matching algorithms to allow the user totradeo� between randomness and speed. The speed of the multilevel{KL algorithm hasbeen improved by using a lazy evaluation technique for initializing values. All these40



options are discussed in x3.6 and/or x6.5.The ability to relax the strict balanced requirement has been added by theKL IMBALANCE parameter as discussed in x6.4.We have added a method from the circuit placement community known as ter-minal propagation. This is a technique for improving the mapping to processors byincorporating additional information in the recursion. It also allows the user to tradeo�between message congestion and communication volume. Details can be found in x4.2.Several post{processing algorithms for improving the partitioning and/ormapping have been added. These techniques work to reduce the number of edges cut(x4.3.1, increase the number of vertices with no edges to other sets (x4.3.2) or improvethe mapping of sets to processors (x4.3.3).Spectral graph algorithms are becoming important tools for a surprisingly widevariety of problems. To facilitate these applications, Chaco can now be used to gener-ate and sort the Fiedler vector of a graph (without partitioning). This is discussedin x4.1.We have re-implemented and improved both speed and robustness of most ofthe algorithms in Chaco. The speed di�erences should be most notable in the mul-tilevel RQI/Symmlq eigensolver and in the multilevel{KL partitioning algorithm. Animportant improvement on the robustness side is the inclusion of a graceful recoveryprocedure for all of the Lanczos eigensolvers in the event they run out of memory.Previously they terminated; they now compute the best readily available approxima-tion to the eigenvector and allow the code to continue. They also contain several addedlayers of defense against certain numerical problems (see x3.3).8.2. New and modi�ed parameters. Chaco contains a variety of parameterswhich control the functionality, algorithmic details and input and output options. Withversion 1 it was necessary to recompile the code to change parameter values. Thislimited the ease with which parameter studies could be conducted. In version 2.0 allparameters can be modi�ed at runtime, which signi�cantly increases the usabilityof the parameters. Details can be found in x6.10.A number of parameters have been added to the code to control the new function-ality sketched above in x8.1. The following additional parameters have been addedor had their meaning modi�ed. We include a brief discussion and a pointer to theappropriate section of text.OUTPUT METRICS The meaning of this parameter has changed to allow for more detailedcontrol of the output (x6.1).TIME KERNELS You can now time common numerical kernel operations like matrix-vector multiplication on your machine (x6.2).PROMPT This parameter allows you to turn o� the interactive queries. This makes forcleaner output when you are piping the input from a script. See x6.1.LANCZOS CONVERGENCE MODE Rather than determining convergence based directly onthe eigen residual, you may now choose to base convergence decisions on howthe partition evolves during the Lanczos iteration (x6.2).41



LANCZOS SO PRECISION To save space, you can run the selective orthogonalization vari-ants of Lanczos in single precision (x6.2).RQI CONVERGENCE MODE Rather than determining convergence based directly on theeigen residual, you can now base convergence decisions on how the partition isevolving during RQI.COARSE KL BOTTOM In multilevel{KL this parameter forces the invocation of KL on thecoarsest graph (x6.5).MATCH TYPE When performing coarsening this parameter allows you to choose severaldi�erent maximal matching algorithms with di�erent cost/quality tradeo�s(x6.5).ARCHITECTURE This important new parameter allows you to select to partition for eithera hypercube or a mesh parallel machine (x6.7).MAKE VWGTS This 
ag will automatically generate weights for vertices that are appropri-ate for applications involving parallel matrix{vector multiplication (x6.8).FREE GRAPH If you are calling Chaco from another code, this 
ag allows you to freethe original graph storage to save space (x6.8).8.3. Changes to input and output formats. To better handle the input ofvertices of high degree, vertex data can be spread over multiple lines of thegraph input �le. The mechanism enabling this is discussed in x5.1.Version 2.0 of Chaco is able to handle unexpected graph input gracefully inmore instances. For example, self edges and edges with zero weights are now discardedinstead of causing the program to halt.The output format of the code has been clari�ed and enhanced with severaladditional metrics of partition quality. These are described in x5.5.Version 2.0 ofChaco can read an existing partition from a �le. It can then re�neor evaluate the partition in several ways. Assignment �les can now be structured intwo di�erent ways to simplify interfacing with other codes. These changes are discussedin x4.4.Chaco can now be more easily coupled with other programs. The callingsequence to do this is described in x7.Chaco can now performmultiple runs with a single invocation. This enables,for example, piping many calculations into a single run of the program.The look and feel of Chaco has changed in a variety of additional ways. Theintent of these changes was to simplify the user interface and provide additionalinformation. Examples include the removal of some options from the user menu so asto streamline its use, changing the structure of the input prompts, and clarifying of allphases of output.8.4. Interfaces to other codes. AMatlab front end for Chaco has been writtenby John Gilbert as part of themeshpart software (which also contains implementationsof other partitioning algorithms). This public domain software can be obtained viaanonymous ftp to parcftp.xerox.com in the �le /pub/gilbert/meshpart.uu. Chaco hasalso been interfaced with a number of important scienti�c and engineering application42
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