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GEOMETRIC MESH PARTITIONING: IMPLEMENTATION AND
EXPERIMENTS*
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Abstract. We investigate a method of dividing an irregular mesh into equal-sized pieces with few
interconnecting edges. The method’s novel feature is that it exploits the geometric coordinates of the
mesh vertices. It is based on theoretical work of Miller, Teng, Thurston, and Vavasis, who showed
that certain classes of “well-shaped” finite-element meshes have good separators. The geometric
method is quite simple to implement: we describe a MATLAB code for it in some detail. The method
is also quite efficient and effective: we compare it with some other methods, including spectral
bisection.
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1. Introduction. Solving a large problem on a parallel computer with dis-
tributed memory usually requires that the data for the problem be partitioned some-
how among the processors. The quality of the partition affects the speed of solution;
a good partition divides the work up evenly and requires as little communication as
possible.

Many problems can be represented as graphs. Examples are both direct and
iterative methods for sparse linear system solution [23, 44], and, more generally, many
situations in which partial differential equations are solved in physical simulation and
modeling. Partitioning such a problem typically amounts to dividing the vertices of
the graph into sets of equal size with few edges joining vertices in different sets. Graph
partitioning has been an active field of research for several years, both theoretically
[2, 4, 8, 11, 20, 24, 34, 35, 36, 42] and experimentally [1, 12, 17, 18, 19, 22, 29, 32,
39, 43, 46, 47]. Optimal partitioning is an NP-hard problem, and finding good graph
partitions in practice can be very expensive.

Graphs from large-scale problems in scientific computing are often defined geo-
metrically. They are meshes of elements in d-dimensional Euclidean space (typically
d = 2 or 3). This paper reports on experiments with a geometric mesh partitioner,
which is based on theoretical work of Miller, Teng, Thurston, and Vavasis that we
summarize in section 2. The method partitions a d-dimensional mesh by finding a
suitable sphere in d-space and dividing the vertices into those interior and exterior
to the sphere. The cutting sphere is found by a randomized algorithm that involves
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a conformal mapping of the points on the surface of a sphere in (d 4 1)-space. If
the mesh elements are well shaped in a suitable sense, the theoretical algorithm pro-
vides a strong guarantee on the quality of the partition it generates [37, 38, 45]. In
practice, our implementation produces partitions that are better than the theoretical
guarantees and are competitive with those produced by other modern methods.

The goal of this paper is to convince the reader of three things. First, although the
theory behind the geometric partitioner is fairly complicated, the algorithms them-
selves are quite simple and easy to implement. Second, the implementation can be
made quite efficient. Third, the partitions produced are quite good. As evidence for
the first point, section 3 discusses the engineering that makes the theoretical algo-
rithm efficient in practice, and describes a MATLAB implementation in some detail.
We present experimental evidence for the second and third points in section 4.

2. Theory of geometric partitioning. We now briefly review Miller, Teng,
Thurston, and Vavasis’s theoretical work on separators in geometrically defined graphs.
For details and proofs, see their papers [37, 38, 45].

The partitioning algorithm maps the d-dimensional mesh into a (d+1)-dimensional
space. Our descriptions (and code) are correct for any d > 2, but our terminology
corresponds to d = 2. Thus “circle” and “disk” mean “sphere in R%” and “ball in R%,”
while “sphere” and “plane” mean “sphere in R4*1” and “d-dimensional hyperplane.”

2.1. Overlap graphs. Computational meshes are often composed of elements
that are well shaped in some sense, such as having bounded aspect ratio or having
angles that are not too small or too large. Miller et al. define a class of so-called
overlap graphs to model this kind of geometric constraint.

An overlap graph starts with a neighborhood system, which is a set of closed disks
in d-dimensional Euclidean space and a parameter k that restricts how deeply they
can intersect.

DEFINITION 1. A k-ply neighborhood system in d dimensions is a set {D1, ..., Dy}
of closed disks in R?, such that no point in R¢ is strictly interior to more than k of
the disks.

A neighborhood system and another parameter « define an overlap graph. There
is a vertex for each disk. For a = 1, an edge joins two vertices whose disks intersect.
For a > 1, an edge joins two vertices if expanding the smaller of their two disks by a
factor of a would make them intersect.

DEFINITION 2. Let a > 1, and let {D1,...,D,} be a k-ply neighborhood system.
The (a, k)-overlap graph for the neighborhood system is the graph with vertex set
{1,...,n} and edge set

{(,5) : (Din (- D;) # 0) and (- D;) N D; # 0)}.

We make an overlap graph into a mesh in d-space by locating each vertex at the
center of its disk.

Overlap graphs are good models of computational meshes because every mesh of
bounded-aspect-ratio elements in two or three dimensions is contained in some overlap
graph (for suitable choices of the parameters o and k). Also, every planar graph is
an overlap graph. Therefore, any theorem about partitioning overlap graphs implies
a theorem about partitioning meshes of bounded aspect ratio and planar graphs.

2.2. Separators for overlap graphs. The central theorem about overlap graphs
is that they have good separators, that is, small sets of vertices whose removal divides
them approximately in half. A regular cubic mesh in d-space, with n vertices in an
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Finite Element Mesh

Fic. 1. The input mesh.

array n'/? on a side, can be divided in half by removing the n(¢=1/4 vertices on a
(d — 1)—dimensional slice through the middle of the array. Up to a constant factor
that depends on «, k, and d, an overlap graph in d dimensions has as good a separator
as the cubic mesh.

THEOREM 2.1 (geometric separators [37]). Let G be an n-vertex (a, k)-overlap
graph in d dimensions. Then the vertices of G can be partitioned into three sets A,
B, and C, such that

e no edge joins A and B,
e A and B each have at most (d+ 1)/(d + 2) - n vertices,
e C has only O(ak'/n(d=1/d) yertices.

Miller et al. gave a randomized algorithm to find the separator in the theorem,
which runs in linear time on a sequential machine or in constant time on a PRAM
with n processors. The separator is defined by a circle (that is, a sphere in R?). The
algorithm chooses the separating circle at random from a distribution that is carefully
constructed so that the separator will satisfy the conclusions of Theorem 2.1 with high
probability. The distribution is described in terms of a stereographic projection and
conformal mapping on the surface of a sphere one dimension higher, in R?+!,

Here is an outline of the algorithm. Figures 1 to 6 show the steps in partitioning
the two-dimensional mesh in Figure 1.

e Project up. Project the input points stereographically from R¢ to the unit
sphere centered at the origin in R4+, Point p € R? is projected to the sphere
along the line through p and the “north pole” (0,...,0,1). (See Figure 3.)

e Find centerpoint. Compute a centerpoint of the projected points in R*+!,
This is a special point in the interior of the unit sphere, as described below.
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Fic. 2. The mesh points.

(See Figure 3.)

e Conformal map: Rotate and dilate. Move the projected points in R¢+!

on the surface of the unit sphere in two steps. First, rotate the projected
points about the origin in R%t! so that the centerpoint becomes a point
(0,...,0,7) on the (d + 1)st axis. Second, dilate the points on the surface
of the sphere so that the centerpoint becomes the origin. The dilation can
be described as a scaling in R?: project the rotated points stereographically

down to R? scale the points in R? by a factor of /(1 —7)/(1+r); and
project the scaled points up to the unit sphere in R*! again. (See Figure 4.)

e Find great circle. Choose a random great circle (i.e., d-dimensional unit

sphere) on the unit sphere in R%*!. (See Figure 4.)

e Unmap and project down. Transform the great circle to a circle in R? by

undoing the dilation, rotation, and stereographic projection. (See Figure 5.)

e Convert circle to separator. The vertex separator C' is the vertices whose

disks in the neighborhood representation (in R?) either (i) intersect the sepa-
rating circle, or (ii) are smaller than the separating circle and would intersect
it if magnified by a factor of . The two sets A and B are the remaining
vertices whose disks lie inside and outside the circle, respectively. (Figure 6
shows an edge separator rather than a vertex separator.)

A centerpoint of a given set of points is a point (not necessarily one of the given
points) such that every (hyper)plane through the centerpoint divides the given points
approximately evenly (in the ratio d:1 or better, in R%). Every finite point set in
R? has a centerpoint, which can be found by linear programming [16, section 4].
After the projection and conformal mapping, the origin of R**! is a centerpoint for
the mesh points. Therefore, the mapped points are divided approximately evenly by
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F1G. 3. Projected mesh points. The large dot is the centerpoint.

every plane through the origin—that is, by every great circle on the unit sphere in
RdJrl'

Every great circle determines a separator C' that satisfies all the conclusions of
Theorem 2.1 except the last one, on the size of the separator. Miller et al. show that
the average size of the separators determined by all the great circles is as stated in the
theorem, and therefore that a randomly chosen great circle probably gives a separator
within a constant factor of the desired size.

Using a weighted centerpoint in place of a centerpoint, Pramono, Ruppert, and
Teng proved a version of the geometric separator theorem for well-shaped finite-
element meshes in which each vertex has a positive weight and the goal is to split the
mesh roughly evenly by weight. Their algorithm uses a weighted centerpoint in place
of a centerpoint.

THEOREM 2.2 (weighted meshes [41]). Let G be an n-vertex simplicial mesh
embedded in d dimensions with a fixed upper bound on the aspect ratios of its simplices.
Let the vertices of G be labelled with arbitrary positive weights that sum to w. Then
the vertices of G can be partitioned into three sets A, B, and C, such that

e no edge joins A and B,

e A and B each have weight at most (d+1)/(d+ 2) - w,

e C has only O(n'4=1/%) yertices.
(The constant in the separator size depends on the aspect ratio bound.) Furthermore,
the geometric partitioner in conjunction with a weighted sampling algorithm above
finds such a separator in random linear time sequentially and in random n/p parallel
time, using p pProcessors.
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Fic. 4. Conformally mapped points, with separating great circle. The centerpoint is now at the
origin.

3. Practical implementation.

3.1. The mesh and its separators. The geometric separator theorem guar-
antees the quality of a partition if the mesh satisfies a geometric condition such as
a bound on the aspect ratio of its elements. However, the geometric conditions only
appear in the guarantee, not in the algorithm itself. The algorithm can be run on any
mesh, with no requirements on its geometry. In practice, we observe that it generates
good partitions even for meshes with badly shaped elements. Somewhat surprisingly,
it even does a reasonably good job of partitioning “2%—dimensional” meshes, which are
meshes of triangular elements that approximate the surface of an object in 3-space.

The theorem describes a vertex separator in terms of the disks of a neighborhood
system that defines the mesh. The implementation takes a simpler approach that
doesn’t require the neighborhood system. It just divides the vertices into those inside
and those outside the separating circle. Such a vertex partition (or an edge separator,
which is the set of edges that cross the cut) is often the goal in applications to parallel
computation.

For applications like nested dissection that require a vertex separator, we com-
pute the vertex separator from the edge separator as follows. Consider the graph G
consisting only of the separating edges and their endpoints. Any vertex cover of G
(that is, any set of vertices that includes at least one endpoint of every edge in G) is
a vertex separator for the mesh. Since G is bipartite, we can compute the smallest
vertex cover efficiently by bipartite matching [15].

The algorithm can be used to find other kinds of separators as well (although
our software only includes vertex separators and edge separators). A separating set
of mesh elements can be found directly from the separating circle. A partition of the
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Fic. 5. The separating circle projected back to the plane.

mesh elements into two equal-size sets with small boundary can be found either from
the separating circle or by applying the geometric separator algorithm to a geometric
dual of the mesh.

The separating circle does not necessarily split the mesh exactly in half. In theory,
the centerpoint construction guarantees a splitting ratio no worse than (d + 1):1; as
described in section 3.3, we actually use an approximate centerpoint construction with
an even weaker guarantee. However, we observe that our approximate centerpoints
nearly always lead to splits much better than the theory predicts. We almost never
see splits as bad as 2:1 in three dimensions, and most splits are less than 20% away
from even.

We modify the splits to be exactly even, within one vertex. We do this by shifting
the separating plane (in R?*!) away from the origin, in the direction normal to the
plane, until it evenly splits the mapped points on the sphere. Thus the separator is a
circle, but not a great circle, on the unit sphere in R%*!; this still projects back to a
circle in R?. Our experiments show that this balancing usually affects the separator
size very little. Intuitively, this is because the local geometry of a well-shaped mesh
changes relatively smoothly, so a small change in the cut does not dramatically change
the number of edges that cross it.

Our implementation runs in O(¢nlogn) time on an n-vertex mesh, where ¢ is
the number of random trials. This could be reduced to O(tn) by using a linear-time
median algorithm as described in section 4.

3.2. Representations. Our implementation uses very simple data structures.
We never need to represent the neighborhood system or the overlap graph per se, nor
do we ever use the overlap-graph parameters k and a. Most of the algorithm does
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Fic. 6. The edge separator induced by the separating circle. A wvertex separator can also be
extracted, as explained in the text.

not even need to know the edges of the mesh, but just manipulates the coordinates of
the vertices as points in R? and R4*! (that is, as vectors). The original input points
in R? are scaled (isotropically) and translated to have coordinates between —1 and 1.

The implementation never actually computes a separating circle, line, or hyper-
plane (except to draw pictures). Rather, we represent a separating plane by its unit
normal vector (in R? for line separators, in R9*! for separating hyperplanes of the
mapped points). There are infinitely many planes normal to a given vector, but the
one we intend is always the one that divides the points evenly. If v is the normal
vector and p1, ..., p, are the points (as row vectors), then the partition is into those
points for which the inner product vp! is less than its median value and those for
which it is greater.

We do keep a representation of the graph (as a sparse adjacency matrix), but we
only use it to measure the quality of a partition (which is the number of edges that
cross the even cut) and to construct an explicit edge separator or vertex separator
from a separating circle.

3.3. Centerpoints. The proof that every finite point set has a centerpoint yields
a linear-programming algorithm that theoretically finds one in polynomial time but
would be very slow in practice. Instead, we use a version of a heuristic that was
suggested by Miller and Teng [45] and analyzed by Clarkson et al. [13]. The heuristic
uses randomization and runs in linear time in the number of sample points. It finds
an approximate centerpoint by repeatedly finding Radon points of small point sets.

Point g is a Radon point [14] of a set P of points in R? if P can be partitioned
into two disjoint subsets P; and P, such that ¢ lies in the intersection of the convex
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Fi1c. 7. Radon points in two and three dimensions. The small point is the Radon point of the
large points.

hull of P; and the convex hull of P,. Such a partition is called a Radon partition.
Figure 7 shows examples of Radon points in two and three dimensions.

Every set of d + 2 points in R? has a Radon point. Moreover, it can be found
efficiently, as follows. Let P = {p1,...,par2}, where p; = (p},...,p?). Consider the
system of d + 1 homogeneous linear equations

d+2 d+2
dai=0=>ap] (1<j<d)
i=1 i=1
in the variables a1, ..., a4y2. Since there are more variables than equations, there is
a nonzero solution (aq,...,aq42). Let U = {i : a; > 0} be the set of indices of the

positive a;’s, and let ¢ = >,y i = 3 2,41;(— ;). Then we can express a single point
q as a convex combination of two disjoint subsets of P:

q=Y (ai/o)pi =Y (—ai/c)p;.

ieU i¢U

Finding ¢ just requires computing a null vector « of the (d 4+ 1) x (d 4+ 2) matrix of
the homogeneous linear system.

The idea of the centerpoint heuristic is to repeatedly replace randomly chosen
groups of d + 2 points with their Radon points. Eventually the set is reduced to a
single point, which is the approximate centerpoint. (Since a d-dimensional mesh uses
a centerpoint in d + 1 dimensions, the Radon reduction actually uses groups of d + 3
points.) We implement a simple version of this; some alternatives are discussed in
section 4.

3.4. Geometric sampling. We use geometric sampling to reduce the size of
the centerpoint problem for efficiency. That is, we run the centerpoint heuristic on
a randomly chosen sample of the input points. Theoretically, the size of the sample
necessary for a good approximation should depend on the dimension but not on the
number of mesh points [37]. We find empirically that a sample of about a thousand
points suffices in two or three dimensions. We find separators for a few different
approximate centerpoints, derived from different random samples, and keep the best
one. Since our centerpoint approximation seems very good in practice, and since it is
an expensive part of the computation, we let the number of approximate centerpoints
grow only logarithmically with the total number of random separator trials.

3.5. Great circles. After the points in R? are mapped to the surface of the
sphere in R%*1 we expect a random great circle to induce a good partition. In fact, it
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pays to spend some effort looking for an above-average circle. For each approximate
centerpoint, we generate several circles at random and use the best one. A convenient
way to generate great circles uniformly at random is to choose normally distributed
random coefficients for the vector orthogonal to the plane of the great circle [33,
section 3.4.1].

A special case of a separating circle is a separating line: a line in R? is the projec-
tion of a circle through the north pole of the unit sphere in R?*!. Our implementation
searches explicitly for a separating line as well as for a separating circle; this improves
its performance on some regular meshes. The coordinate bisection methods of Heath,
Raghavan, and others [27, 43, 47] also use separating lines. Teng [45, section 5.4] gives
an example of a mesh that has a good separating circle but no good separating line.

We let the user specify how many randomly generated separators to try. Of the
specified number ¢ of trials, we allocate a number proportional to t%/(4+1) to separating
lines and the rest to separating circles. We allocate the circle trials among a number
of approximate centerpoints. Since our centerpoint approximation seems very good
in practice, and since it is an expensive part of the computation, we let the number of
approximate centerpoints grow only logarithmically with ¢. Thus each approximate
centerpoint is used for about ¢/logt circle trials. The default is to use t = 30 trials in
all. In two dimensions, this breaks down to 6 line trials and 24 circle trials, the latter
including 12 circles for each of 2 centerpoints.

3.6. Inertial weighting. The random choice of a separating circle or line can
be improved by biasing the normal vector in the direction of the moment of inertia
of the points. The idea of inertial weighting (in one form or another) has been sug-
gested in conjunction with geometric coordinate bisection by several people [17, 47].
Gremban, Miller, and Teng [26] proved that one version of inertial weighting reduces
the expected size of the separators in Theorem 2.1. We use inertial weighting (much
more aggressively than the version analyzed by Gremban et al.) in choosing both the
separating great circles in R4t and the separating lines in R%. For great circles, we
simply weight our random choice of normal vector by a power (actually the square)
of the inertial matrix PT P, where P is the matrix whose rows are the coordinates of
the points after conformal mapping on the unit sphere in R4*!. Thus we generate a
random unit vector u and take our separating hyperplane to be normal to (P? P)?u.
For separating lines in R¢, we weight according to a power of the matrix of coordinates
that goes as the inverse of the number of choices we make—if we choose only one line,
it is exactly normal to the moment of inertia, which is the first singular vector of the
coordinate matrix.

3.7. MATLAB implementation notes. Most of our partitioner’s basic opera-
tions are from linear algebra, which makes MATLAB a natural choice of language for
experimental implementation. MATLAB’s interpreted environment and visualization
tools make it easy to experiment with variations of the algorithm. The code is writ-
ten in a data-parallel “vectorized” style for efficiency (since explicit loops are slow
in the interpreter); this also simplifies the process of porting the code to a parallel
machine. Versions of this code have been translated to NESL [7] and Connection
Machine Fortran.

To illustrate how the pieces of the partitioner fit together, and to assist the ex-
perimentally inclined reader, we discuss some of the details of the code in this section.
The Appendix describes how to obtain the complete code by anonymous ftp.

Outline of subroutines. The top-level call p = geopart(A,xy) returns a list of
the vertices on one side of the cut for a mesh whose adjacency structure is A and
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TABLE 1

Subroutines of the geometric partitioner.

geopart Geometric separator for a mesh.
stereoup Stereographic projection from plane to sphere.
centerpoint Approximate centerpoint of a set of points.
radon Radon point of a set of d + 2 points.
conmap Conformal map on the surface of the sphere.
reflector Orthogonal transform to put point on axis.
stereodown Stereographic projection from sphere to plane.
stereoup Stereographic projection from plane to sphere.
sepcircle Separating great circle.
sepquality Number of edges cut by separator.
partition Partition points by a plane or line.
sepline Separating line.
sepquality Number of edges cut by separator
partition Partition points by a plane or line.
vtxsep Convert partition to vertex separator.
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whose vertex coordinates are xy. Optional input arguments specify the number of
random trials to make, and some visualizations and statistics. Optional return values
are the separating circle or line, and the set of edges that cross the cut. Table 1 shows
the tree of subroutines called by geopart.

Data structures (geopart). A point in R? is a row vector, and a set of n points
is an n x d matrix. A partitioning line or plane is represented by its normal vector;
this is not ambiguous because, among the family of parallel planes, we always intend
the one that divides the points evenly.

The mesh edges are represented by the adjacency matrix A of the graph. This
symmetric matrix has A(i,5) # 0 if (¢,7) is an edge, and A(4,j) = 0 otherwise.
MATLAB supplies sparse data structures and operations for this matrix invisibly to
the user [25]. The adjacency matrix is only used in routines sepquality and vtxsep
(and for visualization).

Matriz arithmetic (stereoup, stereodown). Most of the manipulations of point
sets are done without loops, using matrix arithmetic. The stereographic projection
and its inverse are examples.

Null vectors (centerpoint, radon). Each Radon reduction computes a null vec-
tor of a small matrix. The null vector comes from the built-in MATLAB function null,
which computes a null space basis by singular value decomposition.

Householder matrices (conmap, reflector). The conformal mapping on the
sphere in (d 4 1)-space consists of an orthogonal transformation to move the cen-
terpoint onto the axis, a stereographic projection down to d-space, a scaling, and a
stereographic projection back up to (d+ 1)-space. The orthogonal transformation is a
Householder reflection, computed by MATLAB’s QR factorization. The rest is matrix
arithmetic.

Random directions, inertial weighting, and SVD (sepcircle, sepline). Sepa-
rating lines and planes are represented by their normal vectors. We generate uniformly
distributed random normal vectors (or directions) by generating vectors with inde-
pendent normally distributed components, using MATLAB’s randn. We implement
inertial weighting by multiplying the random direction by a power of the inertia ma-
trix M = PTP, where P is the matrix whose rows are the points. For separating
planes in (d + 1)-space (in sepcircle), we use the second power and compute M?
directly. For separating lines in d-space (in sepline), the exponent depends on the
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number of trial lines. In this case we compute a fractional power of M from the
singular value decomposition of P.

Sparse matriz manipulation (partition, sepquality). The sparse adjacency
matrix A enters the partitioning computation only when we compare the quality of
the randomly generated trial separators. (If we only made one trial, we wouldn’t
need A at all.) Subroutine sepquality calls partition to divide the points about
the median of their inner products with the normal vector into sets a and . Then
the only reference to A is the one-liner that counts the crossing edges by counting
nonzeros in rows from a and columns from b, namely, “cutsize = nnz(A(a,b)).”

From edge to vertex separators (vtxsep). This function converts the partition
from geopart (or any partition, for that matter) into a vertex separator for the
graph by finding a minimum bipartite covering as described in section matching. We
compute the covering from MATLAB’s built-in Dulmage—Mendelsohn decomposition,
dmperm.

4. Possible improvements. Finally, we list some ideas that could lead to fur-
ther improvement of the geometric partitioner.

Variants of fast centerpoint. Our MATLAB experiments suggest that the simplest
implementation of approximate centerpoint is the method of choice both for speed
and quality. We choose a random sample of the input points (without repetition),
place them onto a queue, and then repeatedly remove the first d + 3 points from the
queue and add their Radon point to the end of the queue. This performs a (d+ 3)ary
tree of Radon reductions, with the sample points at the leaves and the approximate
centerpoint at the root. The sample size is at most (d + 3)* (that is, 625 for d = 2 or
1296 for d = 3) and is congruent to 1 (modulo d + 2).

The theoretical results of Clarkson et al. [13] suggest that the probability of
returning a bad centerpoint decreases double-exponentially in the height of the tree
of Radon reductions. We use four levels. A five-level tree would need 3125 points
for d = 2 or 7776 points for d = 3. We experimented with a variant (suggested
by Clarkson et al.) that allows more levels of reduction without using more sample
points. The idea is to reduce according to a directed acyclic graph instead of a
complete (d + 3)ary tree. Let Py be a sample of L points. To construct P, choose L
random (d + 3)-tuples from P,_; (with replacement) and let P, be the set of Radon
points of these L tuples. We can parameterize the centerpoint algorithm by L and
h; the total complexity is O(Lh%). Our experiments suggest 1000 < L < 1200 and
4 < h < 8 work well. While this doesn’t seem to beat the simpler method in MATLAB,
it may be useful in some settings.

From sorting to median finding. To force an even partition, we need to find
the median of the dot products of the points with the normal to the partitioning
plane. Our implementation uses MATLAB’s built-in median function, which is based
on sorting. Theoretically, this is overkill; sorting takes O(nlogn) time and a median
can be found in linear time. In some settings (especially on parallel machines), it may
be best to use a randomized median-finding algorithm [21, 31]. Indeed, one can even
find an approximate median by using the one-dimensional version of the approximate
centerpoint algorithm [13], which amounts to repeated median-of-three reduction.

Faster quality testing. We measure the quality of a trial separating sphere by
counting the number of graph edges that cross the cut it induces. This is the only
phase of the algorithm that needs to manipulate the edges (as opposed to the vertex
coordinates), and it typically takes about half to two thirds of the total time.

One idea for speeding this up is to use geometric sampling again. For exam-
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ple, instead of examining all the edges we could look only at a random sample of
|E|'/(¢+D Jog |E| of them. This idea could be used in both sequential and parallel
implementations.

A second possibility is to preprocess the mesh to represent the graph more com-
pactly, for example, as a neighborhood system. Since a simplicial mesh has about
three times as many edges as vertices in two dimensions or seven times as many in
three dimensions, the neighborhood system is significantly smaller than the mesh, and
a quality test could be implemented by just counting intersections between neighbor-
hood disks and the separating sphere.

Local optimization for great circles. Once the centerpoint is determined and the
points are conformally mapped on the unit sphere in R4+!, each trial separating circle
is selected independently at random (from an inertially biased distribution). Instead,
one can imagine trying to improve each trial circle locally. Consider the quality of a
trial circle, as a function of its normal vector. This is a real-valued function defined
on the surface of the unit sphere in (d + 1)-space. The function is not smooth—in
fact, it is piecewise constant—but it might be possible to smooth it on a fine scale
and then use continuous optimization methods to find a local minimum on a coarser
scale. Our preliminary experiments show that this idea often improves the quality of
a partition, sometimes by a significant amount.

Another local improvement would be to use a combinatorial method like Kernighan—
Lin [32] on the final vertex partition. Our preliminary experiments suggest that this
does not often give much improvement.

Relazing the 50-50 split. Most applications do not require the vertex partition to
be exactly even. It may be worthwhile to search in the vicinity of an exact cut—for
example, by shifting the cutting hyperplane or dilating the separating circle—for a
cut whose balance is slightly uneven but whose overall quality is higher. The user
would probably have to supply the definition of “overall quality”, since the tradeoff
between load balancing (even partition) and communication cost (small cut) depends
on the application.

5. Experimental results. To assess the quality of the geometric algorithm’s
partitions, we compared them with coordinate bisection [27, 43, 47] and with spectral
bisection [3, 30, 39] on several sample meshes.

Table 2 lists the meshes. TAPIR is a test case from a two-dimensional mesh
generation algorithm of Bern, Mitchell, and Ruppert [6] that produces triangles with
sharp angles but no obtuse angles. AIRFOIL2 and AIRFOIL3 are highly graded meshes
of well-shaped two-dimensional triangles around cross sections of airfoils, from Barth
and Jespersen [5]. TRIANGLE is a two-dimensional mesh of equilateral triangles, all
the same size, generated by gridt in MATLAB. PWT is a mesh of three-dimensional
elements that discretize a thin shell. We expect this to be difficult for the geometric
algorithm to separate well, because its best separators should be like those of a two-
dimensional mesh, but the algorithm treats it as a three-dimensional mesh. BoDY is
another three-dimensional mesh with some “thin shell” parts. We obtained these two
meshes from Horst Simon at NASA. WAVE is a highly graded mesh that fills the space
around an object in three-dimensional, which we obtained from Steve Hammond at
NCAR.

Table 3 shows the number of edges cut for a balanced 2-way split, as found by
each of the three methods. We used MATLAB to implement coordinate bisection, and
we used Hendrickson and Leland’s Chaco package [28] to find the spectral bisections.
(We used the Chaco’s multilevel RQI/Symmlq eigensolver. Chaco also implements
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TABLE 2

Test problems. “Grading” is the ratio of longest to shortest edge lengths.

Mesh Description Mesh type Grading | Vertices Edges
TAPIR Cartoon animal 2-D triangles, sharp angles | 8.5 x 10% 1024 2846
AIRFOIL2 Three-element airfoil 2-D triangles 1.3 x 10° 4720 13722
TRIANGLE | Equilateral triangle 2-D triangles, all same size | 1.0 x 10° 5050 14850
AIRFOIL3 Four-element airfoil 2-D triangles 3.0 x 10* 15606 45878
Pwt Pressurized wind tunnel | Thin shell in 3-space 1.3 x 102 36519 144794
Bobpy Automobile body 3-D volumes and surfaces 9.5 x 102 45087 163734
WAVE Space around airplane 3-D volumes and surfaces 3.9 x 10° 156317 | 1059331
TABLE 3
Cut size for 2-way partitions.
Mesh Spectral | Coordinate Default Best
bisection geometric | geometric
TAPIR 59 55 37 32
AIRFOIL2 117 172 100 93
TRIANGLE 154 142 144 142
AIRFOIL3 174 230 152 148
Pwr 362 562 529 499
Boby 456 953 834 768
WAVE 13706 9821 10377 9773

other eigensolvers, and several other bisection methods, that we did not use here.)
A parameter to the geometric algorithm is the number of random trials of great
circles to make. The “default geometric” column reports results for 30 trials, which
is the default of our MATLAB code; “best geometric” reports the results for 7000
trials. (Each “default geometric” number is actually the median result of 31 separate
experiments of 30 trials each.)

The results indicate that the geometric cuts are consistently smaller than the
coordinate-bisection cuts. In most cases, the geometric cuts are also smaller than the
spectral ones. The significant exceptions are PWT and BoDy, the thin shells in 3D.
These may be difficult cases for the geometric algorithm because they really should
be treated as two-dimensional meshes in some sense.

It is hard to make meaningful comparisons of the running times of the various
algorithms, since there are many different versions and choices of parameters for
all of them, and also because the MATLAB implementation runs in an interpreted
environment. For a rough comparison, we note that finding a 2-way partition for the
AIRFOIL3 mesh takes 46 seconds with the default MATLAB geometric code, 5.9 seconds
with a similar C geometric code, 0.83 seconds with a C geometric code that only
computes one cutting circle, and 10.1 seconds with a good C spectral code.!

We do not mean to suggest that the geometric algorithm is the last word in mesh
partitioning; several researchers have proposed refinements to spectral partitioning
[9, 10, 30], and some purely combinatorial methods such as Hendrickson and Leland’s
multilevel Kernighan—Lin [29] look very promising. However, we believe these data
show that geometric partitioning is at least competitive with other modern graph
partitioning methods.

IThe MATLAB code used the default 30 trials, including two centerpoints. The “similar” C code
also used 30 trials with two centerpoints. The spectral time is from Chaco, using its multilevel
RQI/Symmlq eigensolver and no Kernighan—Lin postprocessing. The experiments were run on an
unloaded Sparc-10. All times are the median of three runs and do not include input/output.
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TABLE 4
Improvement in relative cut size with increasing number of trials.

Mesh After After Last
10 trials | 100 trials | improvement
TAPIR 1.28 1.00 49
AIRFOIL2 1.22 1.04 1636
TRIANGLE 1.07 1.01 109
AIRFOIL3 1.20 1.00 58
PwT 1.06 1.05 4927
Boby 1.14 1.02 2989
WAVE 1.16 1.06 498
AIRFOIL3
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The data in Table 3 suggest that 30 random trials are usually enough to get close
to the best separator that the geometric method will find. Table 4 and Figure 8
explore this in more detail. For each mesh, we ran 6000 random trials. The table
reports the smallest cut seen in the first 10 trials, the smallest cut seen in the first 100
trials, and the number of the trial in which the smallest cut of all was first seen (“last
improvement”). The cut sizes are normalized so that the smallest geometric cut seen
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TABLE 5
Cut size for 128-way partitions.

Mesh Spectral | Coordinate Default
bisection geometric
TAPIR 1278 1387 1239
AIRFOIL2 2826 3271 2709
TRIANGLE 2989 2907 2912
AIRFOIL3 4893 6131 4822
Pwr 13495 14220 13769
Boby 12077 22497 19905
WAVE 143015 162833 145155
TABLE 6

Nested dissection: fill.

Mesh Minimum | Sparspak | Spectral | Coordinate Default Partial
degree bisection geometric | geometric
TAPIR 7786 15402 12214 12282 10314 10094
AIRFOIL2 103207 146894 102248 124075 96901 103163
TRIANGLE 130587 128995 127785 122539 123560 130106
AIRFOIL3 409392 657687 418840 472222 389232 405918
Pwt 1424987 1631592 1441153 1545975 1503498 1576271
TABLE 7

Nested dissection: height.

Mesh Minimum | Sparspak | Spectral | Coordinate Default Partial
degree bisection geometric | geometric
TAPIR 66 103 82 83 66 68
AIRFOIL2 319 415 189 287 192 201
TRIANGLE 383 269 233 223 226 231
AIRFOIL3 526 837 346 440 321 329
Pwr 960 822 618 713 651 668

for each mesh had size 1. Figure 8 plots the smallest cut size against trial number
for two of the meshes. (Note the different scales in the two plots.) The geometric
algorithm’s difficulty with PwT, the thin shell in three-dimensions, is evident here:
although the improvement between 10 and 6000 trials is only 6%, small improvements
continue to occur almost to the very end. On the other hand, most of the meshes
“settle down” within at most a few hundred trials, and all of them are within 6% of
the 6000-trial minimum after 100 trials.

Table 5 shows the total number of edges cut by using the three algorithms re-
cursively to split the mesh into 128 pieces. For the geometric algorithm, we used the
default of 30 random trials. It is striking that, for most of the problems, the cuts from
the various methods differ much less in quality for 128-way than for 2-way partitions.
The geometric and spectral algorithms give extremely similar sizes for all but the
BobDy mesh (for which we don’t have an explanation of the difference).

Tables 6 and 7 illustrate “geometric nested dissection,” which uses balanced 2-
way geometric partitioning recursively to order a symmetric, positive definite matrix
for Cholesky factorization. We tabulate both the fill, which measures the amount of
storage needed for the Cholesky factor, and the height in vertices of the elimination
tree, which is the number of parallel elimination steps to compute the factor with an
unlimited number of processors. “Default geometric” uses the geometric algorithm to
partition the graph all the way down to fragments of three vertices or less; “partial
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TABLE 8
Mesh partitioning toolbox.

Partitioning methods.

geopart Geometric.

specpart Spectral.

coordpart Coordinate bisection.
gspart Geometric spectral.

Multiway partitions.

dice Use any 2-way partitioner to get a multiway partition.
geodice Recursive geometric partitioning.

specdice Recursive spectral partitioning.

gsdice Recursive geometric spectral partitioning.

Vertex separators.

vtxsep Convert a 2-way partition to a vertex separator.
geosep Vertex separator from geometric partitioning.
specsep Vertex separator from spectral partitioning.

Nested dissection.

ndperm Use any 2-way partitioner for nested dissection.
geond Geometric nested dissection ordering.

specnd Spectral nested dissection ordering.

gsnd Geometric spectral nested dissection ordering.
analyze Predict fill, opcount, etc., for an elimination ordering.

Meshes and graph generators.

meshes.mat Three sample meshes with coordinates.
gridb 2D square 5-point mesh.

grid7 2D square 7-point mesh.

grid9 2D square 9-point mesh.

gridt 2D triangular mesh.

grid3d 3D cubical mesh.

grid3dt 3D cubical simplicial mesh.

badmesh A mesh that has no good straight-line cut.

Visualization and graphics.

gplotpart Draw a 2-way partition.

gplotmap Draw a multiway partition.

highlight Draw a mesh with some vertices highlighted.

gplotg Draw a 2D or 3D mesh (replaces MATLAB’s gplot).

etreeplot Draw an elimination tree (replaces MATLAB’s etreeplot).
Utilities.

components Connected components of a graph.

cutsize Find or count edges cut by a partition.

other Other side of a partition, or change representations.

intersection Intersection of two sets.

union Union of two sets.

ranks Replace matrix elements by their ranks.

fiedler Fiedler vector of a graph.

laplacian Laplacian matrix of a graph.
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geometric” uses the geometric algorithm down to fragments of 100 vertices and then
uses minimum degree on the fragments. We also tabulate fill and height for Sparspak’s
nested dissection routine [22], for MATLAB’s minimum degree routine [25], and for
nested dissection with separators from spectral partitioning as described by Pothen,
Simon, and Wang [40]. Sparspak’s nested dissection routine uses a fast but fairly
simple partitioning algorithm, which generally does not perform as well as the newer
methods for either height or fill. For most of the large geometric problems there
is little to choose between minimum degree and nested dissection in terms of fill,
but nested dissection with the newer partitioners usually gives better height than
minimum degree. Among the various spectral and geometric partitioners there is no
clear winner for either height or fill.

6. Conclusions. We have described a geometric partitioning algorithm that
is fairly simple to implement and seems to give excellent results on meshes from
graded finite-element discretizations of 2- and 3-space. Our reference implementation
is in MATLAB, which makes experimenting with different versions of the algorithm
quite easy. We have also implemented versions of the geometric partitioner in C and
Fortran.

A chief application of graph partitioning is to distribute a computational mesh
across a distributed-memory parallel machine. Can the partition itself can be found in
parallel? This is challenging because most partitioners make heavy use of the edges of
the graph and therefore require a lot of communication unless most adjacent vertices
share the same processor—that is, unless a good partition is already known. We
expect the geometric partitioner to be reasonably efficient in parallel, because almost
none of the data manipulation involves the edges. (Coordinate bisection shares this
desirable property, as Heath and Raghavan’s parallel implementation shows [27].)
We have implemented parallel versions of the geometric partitioner in NESL [7] and
Connection Machine Fortran.

An open problem is how best to handle such 2%—dimensional meshes as our ex-
ample PWT. One possibility is to combine the geometric and spectral partitioning
methods, as recently suggested by Chan, Gilbert, and Teng [9].

Appendix: Obtaining the codes. In addition to the code for geometric parti-
tioning, the Mesh Partitioning Toolbox contains MATLAB implementations of spectral
bisection [39] and geometric spectral bisection [9]. It includes both edge and vertex
separators, recursive bipartition, nested dissection ordering, visualizations and demos,
and some sample meshes. Table 8 lists the main routines in the toolbox. The com-
plete toolbox is available by anonymous ftp from machine ftp.parc.xerox.com as
file /pub/gilbert/meshpart.uu.
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