Changeset 25726


Ignore:
Timestamp:
10/29/20 17:06:23 (4 years ago)
Author:
jdquinn
Message:

CHG: Additional revision of results data structures under Python API.

Location:
issm/trunk-jpl/src/m
Files:
13 edited

Legend:

Unmodified
Added
Removed
  • issm/trunk-jpl/src/m/classes/results.py

    r25698 r25726  
     1from copy import deepcopy
     2
     3import numpy as np
     4
    15from fielddisplay import fielddisplay
    26
     
    711    Usage:
    812        md.results = results()
     13
     14    TODO:
     15    - Rework so that a solution of arbitrary length (normal or transient) can
     16    initialized from one call to the results class constructor.
     17    """
     18
     19    def __init__(self): #{{{
     20        pass
     21    #}}}
     22
     23    def __repr__(self): #{{{
     24        s = ''
     25        for key, value in self.__dict__.items():
     26            if isinstance(value, resultsdakota):
     27                lengthvalue = 1
     28            else:
     29                lengthvalue = len(value)
     30            s += '    {}: [1x{} struct]\n'.format(key, lengthvalue)
     31
     32        return s
     33    #}}}
     34
     35    def setdefaultparameters(self): #{{{
     36        #do nothing
     37        return self
     38    #}}}
     39
     40    def checkconsistency(self, md, solution, analyses): #{{{
     41        return md
     42    #}}}
     43
     44    def marshall(self, prefix, md, fid): #{{{
     45        pass
     46    #}}}
     47#}}}
     48
     49class resultsdakota(object): #{{{
     50    """RESULTSDAKOTA class definition - Used to store results from a run of
     51    Dakota.
     52
     53    Usage:
     54        md.results.dakota = resultsdakota()
     55
     56    NOTE: Values of attributes can themselves be instances of solution class.
     57    """
     58
     59    def __init__(self): #{{{
     60        pass
     61    #}}}
     62
     63    def __repr__(self): #{{{
     64        s = ''
     65        for key, value in self.__dict__.items():
     66            s += '    {}: '.format(key)
     67            if isinstance(value, list):
     68                s += '[{} element list]'.format(len(value))
     69            else:
     70                s += '{}'.format(value)
     71            s += '\n'
     72        return s
     73    #}}}
     74
     75    def __len__(self): #{{{
     76        return len(self.__dict__.keys())
     77    #}}}
     78
     79    def setdefaultparameters(self): #{{{
     80        #do nothing
     81        return self
     82    #}}}
     83
     84    def checkconsistency(self, md, solution, analyses): #{{{
     85        return md
     86    #}}}
     87
     88    def marshall(self, prefix, md, fid): #{{{
     89        pass
     90    #}}}
     91#}}}
     92
     93class solution(object): #{{{
     94    """SOLUTION class definition - Value of an attribute (which should be
     95    a string representing a solution type) of an instance of results class
     96
     97    Elements of self.steps should be instances of solutionstep.
     98
     99    Usage:
     100        setattr(md.results, 'SolutionType', solution())
     101
     102    NOTE:
     103    - Under MATLAB, this is implemented as a structure array
     104    - Only when this instance of solution represents a transient solution
     105    should self.steps have more than one element
    9106    """
    10107
    11108    def __init__(self, *args): #{{{
    12         pass
    13     #}}}
    14 
    15     def __repr__(self): #{{{
    16         s = ''
    17         if 'step' in self.__dict__:
    18             s += '{}\n'.format(fielddisplay(self, 'step', "step number"))
    19         if 'time' in self.__dict__:
    20             s += '{}\n'.format(fielddisplay(self, 'time', "time value"))
    21         if 'SolutionType' in self.__dict__:
    22             s += '{}\n'.format(fielddisplay(self, 'SolutionType', "solution type"))
    23 
    24         for name in list(self.__dict__.keys()):
    25             if name not in ['step', 'time', 'SolutionType', 'errlog', 'outlog']:
    26                 if isinstance(getattr(self, name), list):
    27                     s += '{}\n'.format(fielddisplay(self, name, "model results list"))
    28                 elif isinstance(getattr(self, name), results):
    29                     s += '{}\n'.format(fielddisplay(self, name, "model results case"))
    30                 else:
    31                     s += '{}\n'.format(fielddisplay(self, name, ""))
    32 
    33         if 'errlog' in self.__dict__:
    34             s += '{}\n'.format(fielddisplay(self, 'errlog', "error log file"))
    35         if 'outlog' in self.__dict__:
    36             s += '{}\n'.format(fielddisplay(self, 'outlog', "output log file"))
    37 
    38         return s
    39     #}}}
    40 
    41     def setdefaultparameters(self): #{{{
    42         #do nothing
    43         return self
    44     #}}}
    45 
    46     def checkconsistency(self, md, solution, analyses): #{{{
    47         return md
    48     #}}}
    49 
    50     def marshall(self, prefix, md, fid): #{{{
    51         pass
    52     #}}}
    53 #}}}
    54 
    55 class resultselement(object): #{{{
    56     """RESULTSELEMENT class definition - Value of attribute of results
    57 
    58     Usage:
    59         setattr(md.results, '<solution_type>', resultselement())
    60     """
    61 
    62     def __init__(self, *args): #{{{
    63         self.elements = [result()]
    64     #}}}
    65 
    66     def __repr__(self): #{{{
    67         s = '  1x{} struct array with fields:\n'.format(len(self.elements))
    68         s += '\n'
    69 
    70         if len(self.elements) >= 1:
    71             for name in list(self.elements[0].__dict__.keys()):
    72                 s += '    {}\n'.format(name)
     109        if len(args) == 1:
     110            arg = args[0]
     111            if isinstance(arg, list):
     112                self.steps = arg
     113            else:
     114                raise Exception('solution class error: if initializing with an argument, that argument should be an empty list or a list of instances of solutionstep')
     115        else:
     116            self.steps = [solutionstep()]
     117    #}}}
     118
     119    def __deepcopy__(self, memo): #{{{
     120        return solution(deepcopy(self.steps, memo))
     121    #}}}
     122
     123    def __repr__(self): #{{{
     124        s = ''
     125        numsteps = len(self.steps)
     126        if numsteps == 1:
     127            for key, value in self.steps[0].__dict__.items():
     128                s += '    {}: {}\n'.format(key, value)
     129        else:
     130            s = '  1x{} struct array with fields:\n'.format(numsteps)
     131            s += '\n'
     132            for fieldname in self.steps[0].getfieldnames():
     133                s += '    {}\n'.format(fieldname)
    73134
    74135        return s
     
    76137
    77138    def __len__(self): #{{{
    78         return len(self.elements)
     139        return len(self.steps)
     140    #}}}
     141
     142    def __getattr__(self, key): #{{{
     143        if len(self.steps) == 1:
     144            return getattr(self.steps[0], key)
     145        else:
     146            raise Exception('<results>.<solution> error: Currently, can only get a field if we are not working with a transient solution.')
    79147    #}}}
    80148
     
    82150        while True:
    83151            try:
    84                 return self.elements[index]
     152                return self.steps[index]
    85153            except:
    86                 self.elements.append(result())
    87     #}}}
    88 
    89     def __setitem__(self, index, value): #{{{
    90         while True:
    91             try:
    92                 self.elements[index] = value
    93                 break
    94             except:
    95                 self.elements.append(result())
    96     #}}}
    97 
    98     def setdefaultparameters(self): #{{{
    99         return self
    100     #}}}
    101 
    102     def checkconsistency(self, md, solution, analyses): #{{{
    103         return md
    104     #}}}
    105 
    106     def marshall(self, prefix, md, fid): #{{{
    107         pass
    108     #}}}
    109 #}}}
    110 
    111 class result(object): #{{{
    112     """RESULT class definition - Element of resultselement::elements
    113 
    114     Usage:
    115         resultselement.elements.append(result())
     154                self.steps.append(solutionstep())
     155        else:
     156            raise Exception('<results>.<solution>: either request a specific result by index or make sure that there is only a single result for this solution (cannot be a transient solution)')
     157    #}}}
     158
     159    def setdefaultparameters(self): #{{{
     160        return self
     161    #}}}
     162
     163    def checkconsistency(self, md, solution, analyses): #{{{
     164        return md
     165    #}}}
     166
     167    def marshall(self, prefix, md, fid): #{{{
     168        pass
     169    #}}}
     170#}}}
     171
     172class solutionstep(object): #{{{
     173    """SOLUTIONSTEP class definition - Single element of <solution>.steps
     174
     175    Usage:
     176        <solution>.steps.append(solutionstep())
    116177    """
    117178
     
    120181    #}}}
    121182
    122     def setdefaultparameters(self): #{{{
    123         return self
    124     #}}}
    125 
    126     def checkconsistency(self, md, solution, analyses): #{{{
    127         return md
    128     #}}}
    129 
    130     def marshall(self, prefix, md, fid): #{{{
    131         pass
    132     #}}}
    133 #}}}
     183    def __repr__(self): #{{{
     184        s = ''
     185        width = self.getlongestfieldname()
     186        for key, value in self.__dict__.items():
     187            s += '    {:{width}s}: {}\n'.format(key, value, width=width)
     188
     189        return s
     190    #}}}
     191
     192    def getfieldnames(self): #{{{
     193        return self.__dict__.keys()
     194    #}}}
     195
     196    def getlongestfieldname(self): #{{{
     197        maxlength = 0
     198        for key in self.__dict__.keys():
     199            length = len(key)
     200            if length > maxlength:
     201                maxlength = length
     202
     203        return maxlength
     204    #}}}
     205
     206    def setdefaultparameters(self): #{{{
     207        return self
     208    #}}}
     209
     210    def checkconsistency(self, md, solution, analyses): #{{{
     211        return md
     212    #}}}
     213
     214    def marshall(self, prefix, md, fid): #{{{
     215        pass
     216    #}}}
     217#}}}
  • issm/trunk-jpl/src/m/miscellaneous/fielddisplay.py

    r25157 r25726  
    2222    #string
    2323    if isinstance(field, str):
    24 
    2524        if len(field) > 30:
    2625            string = displayunit(offset, name, "not displayed", comment)
  • issm/trunk-jpl/src/m/miscellaneous/prctile_issm.py

    r24261 r25726  
    33
    44
    5 #  wrapper for prctile to avoid using the matlab statistics toolbox.
    65def prctile_issm(x, p, dim):
     6    # NumPy has no interpolation method that matches MATLAB's percentile function
     7    #y = np.percentile(x, p, dim, interpolation = 'higher')
    78
    8     try:
    9         raise RuntimeError('hello world')
     9    if len(np.shape(x)) > 2:
     10        raise RuntimeError('Number of dimensions {} not implemented.'.format(len(np.shape(x))))
    1011
    11     #numpy has no interpolation method that matches matlab's percentile function
    12     #y = np.percentile(x, p, dim, interpolation = 'higher')
    13     except:
    14         if len(np.shape(x)) > 2:
    15             raise RuntimeError('Number of dimensions  #d not implemented.' + str(len(np.shape(x))))
     12    # presumably at least 1 input value has been given
     13    #    np.shape(integer) -> (), must be at least (1, )
     14    psize = np.shape(p) or (1, )
     15    if len(psize) > 1 and np.size(p, 1) > 1:
     16        p = p.T
    1617
    17         # presumably at least 1 input value has been given
    18         #    np.shape(integer) -> (), must be at least (1, )
    19         psize = np.shape(p) or (1, )
    20         if len(psize) > 1 and np.size(p, 1) > 1:
    21             p = p.T
     18    xsize = np.shape(x) or (1, )
     19    if dim == 2:
     20        x = x.T
    2221
    23         xsize = np.shape(x) or (1, )
    24         if dim == 2:
    25             x = x.T
     22    #  check for any NaN in any columns
     23    if not np.isnan(x).any():
     24        x = np.sort(x, axis=0)
     25        n = np.size(x, 0)
    2626
    27         #  check for any NaN in any columns
    28         if not np.isnan(x).any():
    29             x = np.sort(x, axis=0)
    30             n = np.size(x, 0)
     27        #  branch based on number of elements
     28        if n > 1:
     29            #  set up percent values and interpolate
     30            xi = [((i + 0.5) * 100 / n) for i in range(n)]
     31            # scipy's interp1d returns a function
     32            y = interp1d(xi, x, axis=dim, bounds_error=False)
     33            y = y(p)
    3134
    32             #  branch based on number of elements
    33             if n > 1:
    34                 #  set up percent values and interpolate
    35                 xi = [((i + 0.5) * 100 / n) for i in range(n)]
    36                 # scipy's interp1d returns a function
    37                 y = interp1d(xi, x, axis=dim, bounds_error=False)
    38                 y = y(p)
     35            #  fill in high and low values outside of interp range
     36            if p > xi[n - 1]:
     37                y = np.tile(x[n - 1, :], 1)
     38            if p < xi[0]:
     39                y = np.tile(x[0, :], 1)
    3940
    40                 #  fill in high and low values outside of interp range
    41                 if p > xi[n - 1]:
    42                     y = np.tile(x[n - 1, :], 1)
    43                 if p < xi[0]:
    44                     y = np.tile(x[0, :], 1)
     41        #  if one value, just copy it
     42        elif n == 1:
     43            y = np.tile(x[0, :], (len(p), 1))
    4544
    46             #  if one value, just copy it
    47             elif n == 1:
    48                 y = np.tile(x[0, :], (len(p), 1))
     45        #  if no values, use NaN
     46        else:
     47            y = np.tile(float('NaN'), (np.size(p, 0), np.size(x, 0)))
     48    else:
     49        #  must loop over columns, since number of elements could be different
     50        y = np.zeros((np.size(p, 0), np.size(x, 1)))
     51        for j in range(np.size(x, 1)):
     52            #  remove any NaN and recursively call column
     53            y[:, j] = prctile_issm(x[np.where(not np.isnan(x[:, j]), j)], p)
    4954
    50             #  if no values, use NaN
    51             else:
    52                 y = np.tile(float('NaN'), (np.size(p, 0), np.size(x, 0)))
    53         else:
    54             #  must loop over columns, since number of elements could be different
    55             y = np.zeros((np.size(p, 0), np.size(x, 1)))
    56             for j in range(np.size(x, 1)):
    57                 #  remove any NaN and recursively call column
    58                 y[:, j] = prctile_issm(x[np.where(not np.isnan(x[:, j]), j)], p)
    59 
    60         if (np.min(xsize) == 1 and len(xsize) > 1 and xsize[dim] > 1 and len(p) > 1 and psize[1] > 1) or (np.min(xsize) > 1 and dim == 2):
    61             y = y.T
     55    if (np.min(xsize) == 1 and len(xsize) > 1 and xsize[dim] > 1 and len(p) > 1 and psize[1] > 1) or (np.min(xsize) > 1 and dim == 2):
     56        y = y.T
    6257
    6358    return y
  • issm/trunk-jpl/src/m/qmu/dakota_in_write.m

    r25041 r25726  
    1 %
    2 %  write a Dakota .in input file.
    3 %
    4 %  []=dakota_in_write(method,dvar,dresp,params,filei,varargin)
    5 %  []=dakota_in_write(dmeth ,dvar,dresp,params,filei,varargin)
    6 %
    7 %  where the required input is:
    8 %    method        (character, dakota method name)
    9 %    dmeth         (dakota_method, method class object)
    10 %    dvar          (structure array, variable class objects)
    11 %    dresp         (structure array, response class objects)
    12 %    params        (structure array, method-independent parameters)
    13 %    filei         (character, name of .in file)
    14 %
    15 %  the method and filei will be prompted if empty.  params
    16 %  may be empty, in which case defaults will be used.
    17 %
    18 %  the optional varargin are not yet used.
    19 %
    20 %  this function writes a dakota .in input file to be used
    21 %  by dakota.  this file is independent of the particular
    22 %  analysis package.
    23 %
    24 %  this data would typically be generated by a matlab script
    25 %  for a specific model, using the method, variable, and
    26 %  response class objects.  this function may be called by
    27 %  dakota_in_data.
    28 %
    29 %  "Copyright 2009, by the California Institute of Technology.
    30 %  ALL RIGHTS RESERVED. United States Government Sponsorship
    31 %  acknowledged. Any commercial use must be negotiated with
    32 %  the Office of Technology Transfer at the California Institute
    33 %  of Technology.  (J. Schiermeier, NTR 47078)
    34 %
    35 %  This software may be subject to U.S. export control laws.
    36 %  By accepting this  software, the user agrees to comply with
    37 %  all applicable U.S. export laws and regulations. User has the
    38 %  responsibility to obtain export licenses, or other export
    39 %  authority as may be required before exporting such information
    40 %  to foreign countries or providing access to foreign persons."
    41 %
    421function []=dakota_in_write(method,dvar,dresp,params,filei,corrin,varargin)
    43 
     2%DAKOTA_IN_WRITE - Write a Dakota .in input file.
     3%
     4%   Usage:
     5%      []=dakota_in_write(method,dvar,dresp,params,filei,varargin)
     6%      []=dakota_in_write(dmeth ,dvar,dresp,params,filei,varargin)
     7%
     8%   where the required input is,
     9%      method        (character, dakota method name)
     10%      dmeth         (dakota_method, method class object)
     11%      dvar          (structure array, variable class objects)
     12%      dresp         (structure array, response class objects)
     13%      params        (structure array, method-independent parameters)
     14%      filei         (character, name of .in file)
     15%
     16%   The method and filei will be prompted for if empty. params may be empty, in
     17%   which case defaults will be used.
     18%
     19%   The optional varargin are not yet used.
     20%
     21%   This function writes a Dakota .in input file to be used by Dakota. This
     22%   file is independent of the particular analysis package.
     23%
     24%   This data would typically be generated by a MATLAB script for a specific
     25%   model, using the method, variable, and response class objects. This
     26%   function may be called by dakota_in_data.
     27%
     28%   "Copyright 2009, by the California Institute of Technology. ALL RIGHTS
     29%   RESERVED. United States Government Sponsorship acknowledged. Any commercial
     30%   use must be negotiated with the Office of Technology Transfer at the
     31%   California Institute of Technology. (NTR 47078)
     32%
     33%   This software may be subject to U.S. export control laws. By accepting this
     34%   software, the user agrees to comply with all applicable U.S. export laws
     35%   and regulations. User has the responsibility to obtain export licenses, or
     36%   other export authority as may be required before exporting such information
     37%   to foreign countries or providing access to foreign persons."
     38%
    4439if ~nargin
    4540    help dakota_in_write
     
    5752    dmeth=method;
    5853else
    59     error(['Method ''' inputname(1) ''' is unrecognized class ''' class(method) '''.']);
     54    error(['Method ''' inputname(1) ''' is unrecognized class ''' class(method) '''']);
    6055end
    6156
     
    7065filei2=fullfile(pathstr,[name ext]);
    7166
    72 display(sprintf('Opening Dakota input file ''%s''.',filei2));
     67display(sprintf('Opening Dakota input file ''%s''',filei2));
    7368fidi=fopen(sprintf('%s',filei2),'w');
    7469if (fidi < 0)
    75     error('''%s'' could not be opened.',filei2);
     70    error('''%s'' could not be opened',filei2);
    7671end
    7772
     
    110105
    111106fclose(fidi);
    112 display('End of file successfully written.');
     107display('End of file successfully written');
    113108
    114109% Uncomment to print contents of Dakota input file (for debugging)
     
    121116function []=strategy_write(fidi,params)
    122117
    123 display('Writing strategy section of Dakota input file.');
     118display('Writing strategy section of Dakota input file');
    124119
    125120fprintf(fidi,'strategy,\n');
     
    136131function []=environment_write(fidi,params)
    137132
    138         display('Writing environment section of Dakota input file.');
     133        display('Writing environment section of Dakota input file');
    139134
    140135        fprintf(fidi,'environment,\n');
     
    150145function []=method_write(fidi,dmeth,dresp,params)
    151146
    152 display('Writing method section of Dakota input file.');
     147display('Writing method section of Dakota input file');
    153148
    154149fprintf(fidi,'method,\n');
     
    172167function []=model_write(fidi)
    173168
    174 display('Writing model section of Dakota input file.');
     169display('Writing model section of Dakota input file');
    175170
    176171fprintf(fidi,'model,\n');
     
    183178function []=variables_write(fidi,dmeth,dvar,corrin)
    184179
    185 display('Writing variables section of Dakota input file.');
     180display('Writing variables section of Dakota input file');
    186181
    187182fprintf(fidi,'variables,\n');
     
    219214function []=interface_write(fidi,params)
    220215
    221 display('Writing interface section of Dakota input file.');
     216display('Writing interface section of Dakota input file');
    222217
    223218fprintf(fidi,'interface,\n');
     
    226221    params.fork=true;
    227222elseif (params.system+params.fork+params.direct > 1)
    228     error('Too many interfaces selected.')
     223    error('Too many interfaces selected')
    229224end
    230225
     
    296291function []=responses_write(fidi,dmeth,dresp,params)
    297292
    298 display('Writing responses section of Dakota input file.');
     293display('Writing responses section of Dakota input file');
    299294
    300295fprintf(fidi,'responses,\n');
     
    333328        params.numerical_gradients=true;
    334329    elseif (params.numerical_gradients+params.analytic_gradients > 1)
    335         error('Too many gradients selected.')
     330        error('Too many gradients selected')
    336331    end
    337332
     
    352347
    353348if ismember('hess',ghspec)
    354     error('Hessians needed by method but not provided.');
     349    error('Hessians needed by method but not provided');
    355350else
    356351    fprintf(fidi,'\tno_hessians\n');
  • issm/trunk-jpl/src/m/qmu/dakota_in_write.py

    r25455 r25726  
    1313
    1414def dakota_in_write(method, dvar, dresp, params, filei, *args):
    15     '''
    16   write a Dakota .in input file.
    17 
    18   [] = dakota_in_write(method, dvar, dresp, params, filei, args)
    19   [] = dakota_in_write(dmeth , dvar, dresp, params, filei, args)
    20 
    21   where the required input is:
    22     method        (character, dakota method name)
    23     dmeth         (dakota_method, method class object)
    24     dvar          (structure array, variable class objects)
    25     dresp         (structure array, response class objects)
    26     params        (structure array, method - indepent parameters)
    27     filei         (character, name of .in file)
    28 
    29   the method and filei will be prompted if empty.  params
    30   may be empty, in which case defaults will be used.
    31 
    32   the optional args are not yet used.
    33 
    34   this function writes a dakota .in input file to be used
    35   by dakota.  this file is indepent of the particular
    36   analysis package.
    37 
    38   this data would typically be generated by a matlab script
    39   for a specific model, using the method, variable, and
    40   response class objects.  this function may be called by
    41   dakota_in_data.
    42 '''
     15    """DAKOTA_IN_WRITE - Write a Dakota .in input file.
     16
     17    Usage:
     18        [] = dakota_in_write(method, dvar, dresp, params, filei, args)
     19        [] = dakota_in_write(dmeth , dvar, dresp, params, filei, args)
     20
     21    where the required input is,
     22        method        (character, Dakota method name)
     23        dmeth         (dakota_method, method class object)
     24        dvar          (structure array, variable class objects)
     25        dresp         (structure array, response class objects)
     26        params        (structure array, method-independent parameters)
     27        filei         (character, name of .in file)
     28
     29    The method and filei will be prompted for if empty. params may be empty, in
     30    which case defaults will be used.
     31
     32    The optional args are not yet used.
     33
     34    This function writes a Dakota .in input file to be used by Dakota. This
     35    file is indepent of the particular analysis package.
     36
     37    This data would typically be generated by a matlab script for a specific
     38    model, using the method, variable, and response class objects. This
     39    function may be called by dakota_in_data.
     40
     41    "Copyright 2009, by the California Institute of Technology. ALL RIGHTS
     42    RESERVED. United States Government Sponsorship acknowledged. Any commercial
     43    use must be negotiated with the Office of Technology Transfer at the
     44    California Institute of Technology. (NTR 47078)
     45
     46    This software may be subject to U.S. export control laws. By accepting this
     47    software, the user agrees to comply with all applicable U.S. export laws
     48    and regulations. User has the responsibility to obtain export licenses, or
     49    other export authority as may be required before exporting such information
     50    to foreign countries or providing access to foreign persons."
     51    """
    4352
    4453    #  process the input parameters
     
    6372    filei2 = fullfile(pathstr, name + ext)
    6473
    65     print('Opening Dakota input file \'' + filei2 + '\'.')
     74    print('Opening Dakota input file \'' + filei2 + '\'')
    6675    try:
    6776        with open(filei2, 'w+') as fidi:
     
    9099
    91100    except IOError:
    92         print(filei2 + ' could not be opened.')
    93 
    94     print('End of file successfully written.')
     101        print(filei2 + ' could not be opened')
     102
     103    print('End of file successfully written')
    95104
    96105    # Uncomment to print contents of Dakota input file (for debugging)
     
    101110def strategy_write(fidi, params):
    102111
    103     print('Writing strategy section of Dakota input file.')
     112    print('Writing strategy section of Dakota input file')
    104113
    105114    fidi.write('strategy, \n')
     
    114123def environment_write(fidi, params):
    115124
    116     print('Writing environment section of Dakota input file.')
     125    print('Writing environment section of Dakota input file')
    117126
    118127    fidi.write('environment, \n')
     
    126135def method_write(fidi, dmeth, dresp, params):
    127136
    128     print('Writing method section of Dakota input file.')
     137    print('Writing method section of Dakota input file')
    129138
    130139    fidi.write('method, \n')
     
    147156def model_write(fidi):
    148157
    149     print('Writing model section of Dakota input file.')
     158    print('Writing model section of Dakota input file')
    150159
    151160    fidi.write('model, \n')
     
    156165def variables_write(fidi, dmeth, dvar):
    157166
    158     # print('Writing variables section of Dakota input file.')
     167    # print('Writing variables section of Dakota input file')
    159168
    160169    # fidi.write('variables, \n')
     
    195204    # fidi.write('\n')
    196205
    197     print('Writing variables section of Dakota input file.')
     206    print('Writing variables section of Dakota input file')
    198207
    199208    fidi.write('variables, \n')
     
    218227def interface_write(fidi, params):
    219228
    220     print('Writing interface section of Dakota input file.')
     229    print('Writing interface section of Dakota input file')
    221230
    222231    fidi.write('interface, \n')
     
    225234        params.fork = True
    226235    elif params.system + params.fork + params.direct > 1:
    227         raise RuntimeError('Too many interfaces selected.')
     236        raise RuntimeError('Too many interfaces selected')
    228237    if params.system or params.fork:
    229238        param_write(fidi, '\t', 'asynchronous', '', '\n', params)
     
    289298def responses_write(fidi, dmeth, dresp, params):
    290299
    291     print('Writing responses section of Dakota input file.')
     300    print('Writing responses section of Dakota input file')
    292301
    293302    fidi.write('responses, \n')
     
    320329            params.numerical_gradients = True
    321330        elif (params.numerical_gradients + params.analytic_gradients > 1):
    322             raise RuntimeError('Too many gradients selected.')
     331            raise RuntimeError('Too many gradients selected')
    323332
    324333        if params.numerical_gradients:
     
    335344    #  hessians (no implemented methods use them yet)
    336345    if 'hess' in ghspec:
    337         raise RuntimeError('Hessians needed by method but not provided.')
     346        raise RuntimeError('Hessians needed by method but not provided')
    338347    else:
    339348        fidi.write('\tno_hessians\n')
  • issm/trunk-jpl/src/m/qmu/dakota_m_write.m

    r15771 r25726  
    1 %
    2 %  write a Matlab .m function file to be called by Dakota for
    3 %  the Matlab direct or external driver.
    4 %
    5 %  []=dakota_m_write(method,dmeth,dvar,dresp,params,filem,package,varargin)
    6 %
    7 %  where the required input is:
    8 %    method        (character, dakota method name)
    9 %    dmeth         (dakota_method, method class object)
    10 %    dvar          (structure array, variable class objects)
    11 %    dresp         (structure array, response class objects)
    12 %    params        (structure array, method-independent parameters)
    13 %    filem         (character, name of .m file)
    14 %    package       (character, analysis package)
    15 %
    16 %  the method, dmeth, and filem will be prompted if empty.
    17 %  params may be empty, in which case defaults will be used.
    18 %
    19 %  the optional varargin are passed directly through to the
    20 %  QmuUpdateFunctions brancher to be used by the analysis
    21 %  package.  for example, this could be model information.
    22 %
    23 %  this function writes a matlab .m function file to be called
    24 %  by dakota for the matlab direct or external driver.  for
    25 %  the direct driver, dakota is linked with matlab and
    26 %  automatically starts a matlab session, passing the variables
    27 %  and responses through the function; for the external driver,
    28 %  dakota calls a shell script to start the matlab session,
    29 %  passing the variables and responses through text files.
    30 %  this function must be tailored to the particular analysis
    31 %  package.
    32 %
    33 %  this data would typically be generated by a matlab script
    34 %  for a specific model, using the method, variable, and
    35 %  response class objects.  this function may be called by
    36 %  dakota_in_data.
    37 %
    38 %  "Copyright 2009, by the California Institute of Technology.
    39 %  ALL RIGHTS RESERVED. United States Government Sponsorship
    40 %  acknowledged. Any commercial use must be negotiated with
    41 %  the Office of Technology Transfer at the California Institute
    42 %  of Technology.  (NTR 47078)
    43 %
    44 %  This software may be subject to U.S. export control laws.
    45 %  By accepting this  software, the user agrees to comply with
    46 %  all applicable U.S. export laws and regulations. User has the
    47 %  responsibility to obtain export licenses, or other export
    48 %  authority as may be required before exporting such information
    49 %  to foreign countries or providing access to foreign persons."
    50 %
    511function []=dakota_m_write(method,dmeth,dvar,dresp,params,filem,package,varargin)
    52 
     2%DAKOTA_M_WRITE - Write a Matlab .m function file to be called by Dakota for
     3% the MATLAB direct or external driver.
     4%
     5%   Usage:
     6%      []=dakota_m_write(method,dmeth,dvar,dresp,params,filem,package,varargin)
     7%
     8%   where the required input is,
     9%      method        (character, Dakota method name)
     10%      dmeth         (dakota_method, method class object)
     11%      dvar          (structure array, variable class objects)
     12%      dresp         (structure array, response class objects)
     13%      params        (structure array, method-independent parameters)
     14%      filem         (character, name of .m file)
     15%      package       (character, analysis package)
     16%
     17%   The method, dmeth, and filem will be prompted for if empty. params may be
     18%   empty, in which case defaults will be used.
     19%
     20%   The optional varargin are passed directly through to the QmuUpdateFunctions
     21%   brancher to be used by the analysis package. For example, this could be
     22%   model information.
     23%
     24%   This function writes a MATLAB .m function file to be called by Dakota for
     25%   the MATLAB direct or external driver. For the direct driver, Dakota is
     26%   linked with MATLAB and automatically starts a MATLAB session, passing the
     27%   variables and responses through the function; for the external driver,
     28%   Dakota calls a shell script to start the MATLAB session, passing the
     29%   variables and responses through text files. This function must be tailored
     30%   to the particular analysis package.
     31%
     32%   This data would typically be generated by a MATLAB script for a specific
     33%   model, using the method, variable, and response class objects. This
     34%   function may be called by dakota_in_data.
     35%
     36%   "Copyright 2009, by the California Institute of Technology. ALL RIGHTS
     37%   RESERVED. United States Government Sponsorship acknowledged. Any commercial
     38%   use must be negotiated with the Office of Technology Transfer at the
     39%   California Institute of Technology. (NTR 47078)
     40%
     41%   This software may be subject to U.S. export control laws. By accepting this
     42%   software, the user agrees to comply with all applicable U.S. export laws
     43%   and regulations. User has the responsibility to obtain export licenses, or
     44%   other export authority as may be required before exporting such information
     45%   to foreign countries or providing access to foreign persons."
     46%
    5347if ~nargin
    5448    help dakota_m_write
     
    7973filem2=fullfile(pathstr,[name ext versn]);
    8074
    81 display(sprintf('Opening Matlab m-file ''%s''.',filem2));
     75display(sprintf('Opening Matlab m-file ''%s''',filem2));
    8276fidm=fopen(sprintf('%s',filem2),'w');
    8377if (fidm < 0)
    84     error('''%s'' could not be opened.',filem2);
     78    error('''%s'' could not be opened',filem2);
    8579end
    8680
     
    106100
    107101fclose(fidm);
    108 display('End of file successfully written.');
     102display('End of file successfully written');
    109103
    110104end
     
    114108function []=begin_write(fidm,name,params)
    115109
    116 display('Writing beginning of Matlab m-file.');
     110display('Writing beginning of Matlab m-file');
    117111
    118112fprintf(fidm,'%%\n');
     
    147141function []=variables_write(fidm,dmeth,dvar,params,varargin)
    148142
    149 display('Writing variables for Matlab m-file.');
     143display('Writing variables for Matlab m-file');
    150144
    151145fprintf(fidm,'%%  Apply the variables.\n\n');
     
    174168function [ixc]=vlist_write(fidm,ixc,vtype,dvar,params,varargin)
    175169
    176 disp(sprintf('  Writing %d %s variables.',length(dvar),class(dvar)));
     170disp(sprintf('  Writing %d %s variables',length(dvar),class(dvar)));
    177171
    178172for i=1:length(dvar)
     
    204198function []=solution_write(fidm,package)
    205199
    206 display('Writing solution for Matlab m-file.');
     200display('Writing solution for Matlab m-file');
    207201fprintf(fidm,'%%  Run the solution.\n\n');
    208202
     
    215209function []=responses_write(fidm,dmeth,params,dresp)
    216210
    217 display('Writing responses for Matlab m-file.');
     211display('Writing responses for Matlab m-file');
    218212
    219213fprintf(fidm,'%%  Calculate the responses.\n\n');
     
    251245function [ifnvals]=rlist_write(fidm,ifnvals,params,rtype,dresp)
    252246
    253 disp(sprintf('  Writing %d %s responses.',length(dresp),class(dresp)));
     247disp(sprintf('  Writing %d %s responses',length(dresp),class(dresp)));
    254248for i=1:length(dresp)
    255249    ifnvals=ifnvals+1;
     
    267261function []=end_write(fidm,name,params)
    268262
    269 display('Writing end of Matlab m-file.');
     263display('Writing end of Matlab m-file');
    270264
    271265fprintf(fidm,'%%  Error condition.\n\n');
  • issm/trunk-jpl/src/m/qmu/dakota_out_parse.m

    r25688 r25726  
    11function [method,dresp,scm,pcm,srcm,prcm]=dakota_out_parse(filei) % {{{
     2%DAKOTA_OUT_PARSE - Read a Dakota .out or .dat output file and parse it.
    23%
    3 %  read a Dakota .out or .dat output file and parse it.
     4%   Usage:
     5%      [method,dresp,scm,pcm,srcm,prcm]=dakota_out_parse(filei)
    46%
    5 %  [method,dresp,scm,pcm,srcm,prcm]=dakota_out_parse(filei)
     7%   where the required input is,
     8%      filei         (character, name of .out file)
    69%
    7 %  where the required input is:
    8 %    filei         (character, name of .out file)
     10%   the required output is,
     11%      method        (character, dakota method name)
     12%      dresp         (structure array, responses)
    913%
    10 %  the required output is:
    11 %    method        (character, dakota method name)
    12 %    dresp         (structure array, responses)
     14%   and the optional output is,
     15%      scm           (double array, simple correlation matrix)
     16%      pcm           (double array, partial correlation matrix)
     17%      srcm          (double array, simple rank correlation matrix)
     18%      prcm          (double array, partial rank correlation matrix)
    1319%
    14 %  and the optional output is:
    15 %    scm           (double array, simple correlation matrix)
    16 %    pcm           (double array, partial correlation matrix)
    17 %    srcm          (double array, simple rank correlation matrix)
    18 %    prcm          (double array, partial rank correlation matrix)
     20%   The filei will be prompted for if empty. The fields of dresp are particular
     21%   to the data contained within the file. The scm, pcm, srcm, and prcm are
     22%   output by dakota only for the sampling methods.
    1923%
    20 %  the filei will be prompted if empty.  the fields of dresp
    21 %  are particular to the data contained within the file.  the
    22 %  scm, pcm, srcm, and prcm are output by dakota only for the
    23 %  sampling methods.
     24%   This function reads a dakota .out output file and parses it into the MATLAB
     25%   workspace. It operates in a content-driven fashion: it skips the
     26%   intermediate data and then parses whatever output data it encounters in the
     27%   order in which it exists in the file, rather than searching for data based
     28%   on the particular method (this makes it independent of method). It also can
     29%   read and parse the .dat tabular_output file.
    2430%
    25 %  this function reads a dakota .out output file and parses it
    26 %  into the matlab workspace.  it operates in a content-driven
    27 %  fashion, where it skips the intermediate data and then parses
    28 %  whatever output data it encounters in the order in which it
    29 %  exists in the file, rather than searching for data based on
    30 %  the particular method.  (this makes it independent of method.)
    31 %  it also can read and parse the .dat tabular_output file.
     31%   This data would typically be used for plotting and other postprocessing
     32%   within MATLAB or Excel.
    3233%
    33 %  this data would typically be used for plotting and other
    34 %  post-processing within matlab or excel.
     34%   "Copyright 2009, by the California Institute of Technology. ALL RIGHTS
     35%   RESERVED. United States Government Sponsorship acknowledged. Any commercial
     36%   use must be negotiated with the Office of Technology Transfer at the
     37%   California Institute of Technology. (NTR 47078)
    3538%
    36 "Copyright 2009, by the California Institute of Technology.
    37 ALL RIGHTS RESERVED. United States Government Sponsorship
    38 acknowledged. Any commercial use must be negotiated with
    39 the Office of Technology Transfer at the California Institute
    40 of Technology.  (NTR 47078)
     39 This software may be subject to U.S. export control laws. By accepting this
     40 software, the user agrees to comply with all applicable U.S. export laws
     41 and regulations. User has the responsibility to obtain export licenses, or
     42 other export authority as may be required before exporting such information
     43 to foreign countries or providing access to foreign persons."
    4144%
    42 %  This software may be subject to U.S. export control laws.
    43 %  By accepting this  software, the user agrees to comply with
    44 %  all applicable U.S. export laws and regulations. User has the
    45 %  responsibility to obtain export licenses, or other export
    46 %  authority as may be required before exporting such information
    47 %  to foreign countries or providing access to foreign persons."
    48 %
    49 
    5045        if ~nargin
    5146                help dakota_out_parse
     
    5853        fidi=fopen(sprintf('%s',filei),'r');
    5954        if (fidi < 0)
    60                 error('''%s'' could not be opened.',filei);
     55                error('''%s'' could not be opened',filei);
    6156        end
    6257
     
    6661        fline=fgetl(fidi);
    6762        if ~ischar(fline)
    68                 error('File ''%s'' is empty.',filei);
     63                error('File ''%s'' is empty',filei);
    6964        end
    7065
     
    9085                        [ntokens,tokens]=fltokens(fline);
    9186                        method=tokens{1}{1};
    92                         display(sprintf('Dakota method = ''%s''.',method));
     87                        display(sprintf('Dakota method = ''%s''',method));
    9388                elseif strcmp(tokens{1}{1}(7),'N')
    9489                        [fline]=findline(fidi,'methodName = ');
    9590                        [ntokens,tokens]=fltokens(fline);
    9691                        method=tokens{1}{3};
    97                         display(sprintf('Dakota methodName = ''%s''.',method));
     92                        display(sprintf('Dakota methodName = ''%s''',method));
    9893                end
    9994        end
     
    165160        %     return
    166161        % end
    167         display('End of file successfully reached.');
     162        display('End of file successfully reached');
    168163        fclose(fidi);
    169164
     
    172167%%  function to parse the dakota tabular output file
    173168
    174         display('Reading Dakota tabular output file.');
     169        display('Reading Dakota tabular output file');
    175170
    176171        %  process column headings of matrix (skipping eval_id)
     
    178173        [ntokens,tokens]=fltokens(fline);
    179174
    180         % New file DAKOTA versions>6
    181         if strncmpi(fline,'%eval_id interface',18)
     175        if strncmpi(fline,'%eval_id interface',18) % Dakota versions >= 6
    182176                offset=2;
    183         else %DAKOTA versions<6
     177        else % Dakota versions < 6
    184178                offset=1;
    185179        end
    186         desc=cell (1,ntokens-offset);
     180        desc=cell(1,ntokens-offset);
    187181        data=zeros(1,ntokens-offset);
    188182
     
    190184                desc(1,i)=cellstr(tokens{1}{i+offset});
    191185        end
    192         display(sprintf('Number of columns (Dakota V+R)=%d.',ntokens-2));
     186        display(sprintf('Number of columns (Dakota V + R) = %d',ntokens-2));
    193187
    194188        %  process rows of matrix
     
    197191        while 1
    198192                fline=fgetl(fidi);
     193
    199194                if ~ischar(fline) || isempty(fline)
    200195                        break;
     
    209204                end
    210205        end
    211         display(sprintf('Number of rows (Dakota func evals)=%d.',nrow));
     206        display(sprintf('Number of rows (Dakota func evals) = %d',nrow));
    212207
    213208        %  calculate statistics
     
    231226        end
    232227
    233         dmin   =min         (data,[],1);
     228        dmin   =min(data,[],1);
    234229        dquart1=prctile_issm(data,25,1);
    235         dmedian=median      (data,1);
     230        dmedian=median(data,1);
    236231        dquart3=prctile_issm(data,75,1);
    237         dmax   =max         (data,[],1);
    238         dmin95=prctile_issm(data,5,1);
    239         dmax95=prctile_issm(data,95,1);
     232        dmax   =max(data,[],1);
     233        dmin95 =prctile_issm(data,5,1);
     234        dmax95 =prctile_issm(data,95,1);
    240235
    241236        %  same as Dakota scm, Excel correl
     
    285280        [ntokens,tokens]=fltokens(fline);
    286281        nfeval=tokens{1}{5};
    287         display(sprintf('  Dakota function evaluations=%d.',nfeval));
     282        display(sprintf('  Dakota function evaluations = %d',nfeval));
    288283
    289284end % }}}
     
    300295        [ntokens,tokens]=fltokens(fline);
    301296        nsamp=tokens{1}{4};
    302         display(sprintf('  Dakota samples=%d.',nsamp));
     297        display(sprintf('  Dakota samples = %d',nsamp));
    303298
    304299end % }}}
     
    331326        end
    332327
    333         display(sprintf('  Number of Dakota response functions=%d.',...
     328        display(sprintf('  Number of Dakota response functions = %d',...
    334329                length(dresp)));
    335330
     
    368363        end
    369364
    370         display(sprintf('  Number of Dakota response functions=%d.',...
     365        display(sprintf('  Number of Dakota response functions = %d',...
    371366                length(dresp)));
    372367
     
    432427        end
    433428
    434         display(sprintf('  Number of Dakota response functions=%d.',...
     429        display(sprintf('  Number of Dakota response functions = %d',...
    435430                length(dresp)));
    436431
     
    504499        end
    505500
    506         display(sprintf('  Number of Dakota response functions=%d.',...
     501        display(sprintf('  Number of Dakota response functions = %d',...
    507502                length(dresp)));
    508503
     
    568563        end
    569564
    570         display(sprintf('  Number of Dakota response functions=%d.',...
     565        display(sprintf('  Number of Dakota response functions = %d',...
    571566                length(dresp)));
    572567
     
    583578        end
    584579
    585         display(['Reading ''' fline '''.']);
     580        display(['Reading ''' fline '''']);
    586581
    587582        cmat.title=fline;
     
    682677
    683678                if ~idvar
    684                         display('    Importance Factors not available.');
     679                        display('    Importance Factors not available');
    685680                        dresp(end).var   ={};
    686681                        dresp(end).impfac=[];
     
    746741
    747742                if ~icdf
    748                         display('    Cumulative Distribution Function not available.');
     743                        display('    Cumulative Distribution Function not available');
    749744                        dresp(ndresp).cdf=[];
    750745                        while ischar(fline) && ...
     
    757752        end
    758753
    759         display(sprintf('  Number of Dakota response functions=%d.',...
     754        display(sprintf('  Number of Dakota response functions = %d',...
    760755                length(dresp)));
    761756
     
    902897                dresp(end+1).vum=[];
    903898        end
    904         display('Reading measures for volumetric uniformity.');
     899        display('Reading measures for volumetric uniformity');
    905900
    906901        fline=fgetl(fidi);
     
    941936        [ntokens,tokens]=fltokens(fline);
    942937        method=tokens{1}{3};
    943         display(sprintf('Dakota iterator ''%s'' completed.',method));
     938        display(sprintf('Dakota iterator ''%s'' completed',method));
    944939
    945940end % }}}
     
    963958
    964959        warning('findline:str_not_found',...
    965                 'String ''%s'' not found in file.',string);
     960                'String ''%s'' not found in file',string);
    966961        fseek(fidi,ipos,'bof');
    967962
  • issm/trunk-jpl/src/m/qmu/dakota_out_parse.py

    r25688 r25726  
    88from helpers import *
    99
    10 #Note: this may be re-written later to take advantage of Python's file i / o mechanics
    11 #    as it is written now it is often difficult to work with, but is analagous to
    12 #    the Matlab version of dakota_out_parse
     10# NOTE: May be rewritten later to take advantage of Python's file I/O
     11# mechanics. As it is written now, it is often difficult to work with, but is
     12# analagous to the MATLAB version of dakota_out_parse.
    1313
    1414
    1515def dakota_out_parse(filei):  # {{{
    16     '''
    17   read a Dakota .out or .dat output file and parse it.
    18 
    19   [method, dresp, scm, pcm, srcm, prcm] = dakota_out_parse(filei)
    20 
    21   where the required input is:
    22     filei         (character, name of .out file)
    23 
    24   the required output is:
    25     method        (character, dakota method name)
    26     dresp         (structure array, responses)
    27 
    28   and the optional output is:
    29     scm           (double array, simple correlation matrix)
    30     pcm           (double array, partial correlation matrix)
    31     srcm          (double array, simple rank correlation matrix)
    32     prcm          (double array, partial rank correlation matrix)
    33 
    34   the filei will be prompted if empty.  the fields of dresp
    35   are particular to the data contained within the file.  the
    36   scm, pcm, srcm, and prcm are output by dakota only for the
    37   sampling methods.
    38 
    39   this function reads a dakota .out output file and parses it
    40   into the matlab workspace.  it operates in a content - driven
    41   fashion, where it skips the intermediate data and then parses
    42   whatever output data it encounters in the order in which it
    43   exists in the file, rather than searching for data based on
    44   the particular method.  (this makes it independent of method.)
    45   it also can read and parse the .dat tabular_output file.
    46 
    47   this data would typically be used for plotting and other
    48   post - processing within matlab or excel.
    49 '''
     16    """DAKOTA_OUT_PARSE - read a Dakota .out or .dat output file and parse it.
     17
     18    Usage:
     19        [method, dresp, scm, pcm, srcm, prcm] = dakota_out_parse(filei)
     20
     21    where the required input is,
     22        filei         (character, name of .out file)
     23
     24    the required output is,
     25        method        (character, Dakota method name)
     26        dresp         (structure array, responses)
     27
     28    and the optional output is,
     29        scm           (double array, simple correlation matrix)
     30        pcm           (double array, partial correlation matrix)
     31        srcm          (double array, simple rank correlation matrix)
     32        prcm          (double array, partial rank correlation matrix)
     33
     34    The filei will be prompted for if empty. The fields of dresp are particular
     35    to the data contained within the file. The scm, pcm, srcm, and prcm are
     36    output by Dakota only for the sampling methods.
     37
     38    This function reads a Dakota .out output file and parses it into the Python
     39    runtime. It operates in a content-driven fashion, where it skips the
     40    intermediate data and then parses whatever output data it encounters in the
     41    order in which it exists in the file, rather than searching for data based
     42    on the particular method (this makes it independent of method). It also can
     43    read and parse the .dat tabular_output file.
     44
     45    This data would typically be used for plotting and other postprocessing
     46    within MATLAB or Excel.
     47
     48    TODO:
     49    - Figure out why output from Dakota is different under MATLAB and Python
     50    (is it the input file that we write?)
     51
     52    "Copyright 2009, by the California Institute of Technology. ALL RIGHTS
     53    RESERVED. United States Government Sponsorship acknowledged. Any commercial
     54    use must be negotiated with the Office of Technology Transfer at the
     55    California Institute of Technology. (NTR 47078)
     56
     57    This software may be subject to U.S. export control laws. By accepting this
     58    software, the user agrees to comply with all applicable U.S. export laws
     59    and regulations. User has the responsibility to obtain export licenses, or
     60    other export authority as may be required before exporting such information
     61    to foreign countries or providing access to foreign persons."
     62    """
     63
    5064    if filei is None:
    5165        help(dakota_out_parse)
     
    5367
    5468    if not isfile(filei) or getsize(filei) == 0:
    55         filei = str(eval(input('Input file?  ')))
     69        filei = str(eval(input('Input file? ')))
    5670
    5771    #fidi = fopen(sprintf('%s', filei), 'r')
     
    6276        fline = fidi.readline()
    6377        if getsize(filei) == 0 or fline == '':
    64             raise RuntimeError('File ' + filei + ' is empty.')
    65 
    66         dresp = []  # of struct()
     78            raise RuntimeError('File ' + filei + ' is empty')
     79
     80        dresp = [] # of struct()
    6781        scm = struct()
    6882        pcm = struct()
     
    7791            fidi.seek(0, 0)
    7892
    79     # loop through the file to find the Dakota method name
     93        # loop through the file to find the Dakota method name
    8094        fline = findline(fidi, 'method', True)
    8195        if fline is None:
     
    87101                [ntokens, tokens] = fltokens(fline)
    88102                method = tokens[0].strip()
    89                 print('Dakota method = \'' + method + '\'.')
     103                print('Dakota method = \'' + method + '\'')
    90104            elif fline[6] in ['N', 'n']:
    91105                fline = findline(fidi, 'methodName = ')
    92106                [ntokens, tokens] = fltokens(fline)
    93107                method = tokens[2].strip()
    94                 print('Dakota methodName = \'' + method + '\'.')
    95 
    96     # loop through the file to find the function evaluation summary
     108                print('Dakota methodName = \'' + method + '\'')
     109
     110        # loop through the file to find the function evaluation summary
    97111        counter = 0
    98112        fline = ''
    99113        nfeval = nfeval_read(fidi, fline)
    100114
    101         #  process each results section based on content of the file
     115        # process each results section based on content of the file
    102116        while counter < 10:
    103             # because python makes file i / o difficult
     117            # because python makes file I/O difficult
    104118            # if we see 10 + blank lines in a row then we have reached EOF
    105119            # (tests show actual maximum number of blank lines is around 5)
     
    108122            else:
    109123                counter = 0
    110     #    ipos = ftell(fidi)
     124            # ipos = ftell(fidi)
    111125            fline = fidi.readline()
    112126            if fline == '' or fline.isspace():
     
    147161                'Unexpected line: ' + str(fline)
    148162
    149     #    fidi.seek(ipos, 0)
    150 
    151     #  loop through the file to verify the end
     163            # fidi.seek(ipos, 0)
     164
     165    # loop through the file to verify the end
    152166
    153167    # fline = findline(fidi, '<<<<< Single Method Strategy completed')
     
    155169    #     return
    156170    #
    157         print('End of file successfully reached.')
     171        print('End of file successfully reached')
    158172    #close(fidi)
    159173    #except Exception as err:
    160174    #print "ERROR in dakota_out_parse: " + err
    161175    #raise err
    162     #raise RuntimeError(filei + ' could not be opened.')
     176    #raise RuntimeError(filei + ' could not be opened')
    163177
    164178    return [method, dresp, scm, pcm, srcm, prcm]
     
    167181
    168182def dak_tab_out(fidi, fline):  # {{{
    169     #  function to parse the dakota tabular output file
    170 
    171     print('Reading Dakota tabular output file.')
    172 
    173     #  process column headings of matrix (skipping eval_id)
     183    """DAK_TAB_OUT - function to parse the Dakota tabular output file
     184    """
     185
     186    print('Reading Dakota tabular output file')
     187
     188    # Process column headings of matrix (skipping eval_id)
    174189    [ntokens, tokens] = fltokens(fline)
    175190
    176     # New file DAKOTA versions > 6
    177     if strncmpi(fline, '%eval_id interface', 18):
     191    if strncmpi(fline, '%eval_id interface', 18): # Dakota versions >= 6
    178192        offset = 2
    179     else:  #DAKOTA versions < 6
     193    else:  # Dakota versions < 6
    180194        offset = 1
    181195
    182     desc = [['' for i in range(ntokens - offset)]]
     196    desc = ['' for i in range(ntokens - offset)]
    183197    data = np.zeros((1, ntokens - offset))
    184198
    185199    for i in range(ntokens - offset):
    186         desc[0][i] = str(tokens[i + offset])
    187 
    188     print("Number of columns (Dakota V + R)=" + str(ntokens - 2) + '.')
    189 
    190     #  process rows of matrix
     200        desc[i] = str(tokens[i + offset])
     201
     202    print('Number of columns (Dakota V + R) = {}'.format(ntokens - 2))
     203
     204    # Process rows of matrix
    191205    nrow = 0
    192206    while True:
    193 
    194207        fline = fidi.readline()
    195208
     
    202215        [ntokens, tokens] = fltokens(fline)
    203216
    204     #  add row values to matrix (skipping eval_id)
    205 
     217        # Add row values to matrix (skipping eval_id)
    206218        for i in range(ntokens - offset):
    207219            data[nrow, i] = tokens[i + offset]
     
    209221        nrow = nrow + 1
    210222
    211     print('Number of rows (Dakota func evals) = ' + str(nrow) + '.')
    212 
    213     #  calculate statistics
    214 
    215     #  since normfit doesn't have a dim argument, and matlab isvector is True
    216     #  for a 1xn matrix, handle the case of one row explicitly
    217 
    218     #  Update: normfit_issm.py does handle this case
     223    print('Number of rows (Dakota func evals) = ' + str(nrow))
     224
     225    # Calculate statistics
    219226    if (np.size(data, 0) > 1):
    220         #dmean  =mean   (data)
    221         #dstddev = std    (data, 0)
     227        #dmean = mean(data)
     228        #dstddev = std(data, 0)
    222229        [dmean, dstddev, dmeanci, dstddevci] = normfit_issm(data, 0.05)
    223230    else:
     
    229236            [dmean[0, i], dstddev[0, i], dmeanci[:, i], dstddevci[:, i]] = normfit_issm(data[:, i], 0.05)
    230237
    231     dmin = data.min(0)
     238    dmin = data.min(axis=0)
    232239    dquart1 = prctile_issm(data, 25, 0)
    233     dmedian = np.median(data, 0)
     240    dmedian = np.median(data, axis=0)
    234241    dquart3 = prctile_issm(data, 75, 0)
    235     dmax = data.max(0)
     242    dmax = data.max(axis=0)
    236243    dmin95 = prctile_issm(data, 5, 0)
    237244    dmax95 = prctile_issm(data, 95, 0)
    238245
    239     # Note: the following line may cause the following warning
    240     #    (should not crash or invalidate results) when one of
    241     #    the inputs does not change with respect to the
    242     #    other / s causing an internal divide-by - zero error
    243 
    244     # / usr / local / lib / python2.7 / dist - packages / numpy / lib / function_base.py:3163:
    245     #    RuntimeWarning: invalid value encountered in true_divide
    246     #    c / = stddev[:, None]
    247 
    248     #    (and / or the same but with "c / = stddev[None, :]")
    249 
     246    # NOTE: The following line may cause the following warning (should not
     247    # crash or invalidate results) when one of the inputs does not change with
     248    # respect to the other(s), causing an internal divide-by-zero error,
     249    #
     250    #       /usr/local/lib/python2.7/dist-packages/numpy/lib/function_base.py:3163:
     251    #       RuntimeWarning: invalid value encountered in true_divide
     252    #       c /= stddev[:, None]
     253    #
     254    # (and/or the same but with "c /= stddev[None, :]")
     255
     256    # Equivalent to Dakota scm, MATLAB corrcoef, and Excel correl
    250257    dcorrel = np.corrcoef(data.T)
    251258
    252     #  divide the data into structures for consistency
     259    # Divide the data into structures for consistency
    253260    dresp = []
    254 
    255261    for i in range(len(desc)):
    256262        dresp.append(struct())
    257         dresp[i].descriptor = str(desc[i])
     263        dresp[i].descriptor = desc[i]
    258264        dresp[i].sample = data[:, i]
    259265        dresp[i].mean = dmean[i]
     
    294300    [ntokens, tokens] = fltokens(fline)
    295301    nfeval = tokens[4]
    296     print('  Dakota function evaluations = ' + str(int(nfeval)) + '.')
     302    print('  Dakota function evaluations = ' + str(int(nfeval)))
    297303
    298304    return nfeval
     
    309315    [ntokens, tokens] = fltokens(fline)
    310316    nsamp = tokens[3]
    311     print('  Dakota samples = ' + str(int(nsamp)) + '.')
     317    print('  Dakota samples = ' + str(int(nsamp)))
    312318
    313319    return nsamp
     
    340346        dresp[-1].coefvar = tokens[12]
    341347
    342     print('  Number of Dakota response functions = ' + str(len(dresp)) + '.')
     348    print('  Number of Dakota response functions = ' + str(len(dresp)))
    343349
    344350    return dresp
     
    350356
    351357    if fline is None or fline == '' or fline.isspace():
    352         fline = findline(fidi, 'Moment - based statistics for each response function')
     358        fline = findline(fidi, 'Moment-based statistics for each response function')
    353359        return
    354360
    355     print('Reading moment - based statistics for response functions:')
     361    print('Reading moment-based statistics for response functions:')
    356362
    357363    #  skip column headings of moment - based statistics
     
    376382        dresp[-1].kurtosis = tokens[4]
    377383
    378     print('  Number of Dakota response functions = ' + str(len(dresp)) + '.')
     384    print('  Number of Dakota response functions = ' + str(len(dresp)))
    379385
    380386    return dresp
     
    433439            dresp[i].stddevci[1, 0] = tokens[4]
    434440
    435     print('  Number of Dakota response functions = ' + str(len(dresp)) + '.')
     441    print('  Number of Dakota response functions = ' + str(len(dresp)))
    436442
    437443    return dresp
     
    495501                fline = fidi.readline()
    496502
    497     print('  Number of Dakota response functions = ' + str(len(dresp)) + '.')
     503    print('  Number of Dakota response functions = ' + str(len(dresp)))
    498504
    499505    return dresp
     
    550556                fline = fidi.readline()
    551557
    552     print('  Number of Dakota response functions = ' + str(len(dresp)) + '.')
     558    print('  Number of Dakota response functions = ' + str(len(dresp)))
    553559
    554560    return dresp
     
    565571            return
    566572
    567     print('Reading ' + fline + '.')
     573    print('Reading ' + fline)
    568574
    569575    cmat.title = fline
     
    657663        #  if importance factors missing, skip to cdf
    658664        if not idvar:
    659             print('    Importance Factors not available.')
     665            print('    Importance Factors not available')
    660666            dresp[-1].var = []
    661667            dresp[-1].impfac = []
     
    716722        #  if cdf missing, skip to end of response function
    717723        if not icdf:
    718             print('    Cumulative Distribution Function not available.')
     724            print('    Cumulative Distribution Function not available')
    719725            dresp[ndresp].cdf = []
    720726            while (fline != '' and not fline.isspace()) and not strncmpi(fline, 'MV Statistics for ', 18) and not strncmp(fline, ' - ', 1):
    721727                fline = fidi.readline()
    722728
    723     print('  Number of Dakota response functions = ' + str(len(dresp)) + '.')
     729    print('  Number of Dakota response functions = ' + str(len(dresp)))
    724730
    725731    return dresp
     
    845851        dresp[-1].vum = []
    846852
    847     print('Reading measures for volumetric uniformity.')
     853    print('Reading measures for volumetric uniformity')
    848854    fline = fidi.readline()
    849855    fline = fidi.readline()
     
    881887    [ntokens, tokens] = fltokens(fline)
    882888    method = tokens[2]
    883     print('Dakota iterator \'' + str(method) + '\' completed.')
     889    print('Dakota iterator \'' + str(method) + '\' completed')
    884890
    885891    return method
     
    905911
    906912    #  issue warning and reset file position
    907     print('Warning: findline:str_not_found: String ' + str(string) + ' not found in file.')
     913    print('Warning: findline:str_not_found: String ' + str(string) + ' not found in file')
    908914    fidi.seek(ipos, 0)
    909915    return None
  • issm/trunk-jpl/src/m/qmu/helpers.py

    r25492 r25726  
    11from collections import OrderedDict
     2from copy import deepcopy
     3
    24import numpy as np
    3 from copy import deepcopy
    45
    56
    67class struct(object):
    7     """An empty struct that can be assigned arbitrary attributes"""
    8     pass
     8    """STRUCT class definition - An empty struct that can be assigned arbitrary
     9    attributes
     10    """
     11    def __init__(self): #{{{
     12        pass
     13    #}}}
     14
     15    def __repr__(self): #{{{
     16        s = ''
     17        for key, value in self.__dict__.items():
     18            s += '    {}: '.format(key)
     19            if isinstance(value, list):
     20                s += '[{} element list]'.format(len(value))
     21            elif isinstance(value, np.ndarray):
     22                if len(value.shape) == 1:
     23                    s += '[{} element numpy.ndarray]'.format(value.shape[0])
     24                else:
     25                    s += '[{}x{} numpy.ndarray]'.format(value.shape[0], value.shape[1])
     26            else:
     27                s += '{}'.format(value)
     28            s += '\n'
     29        return s
     30    #}}}
     31
     32    def __len__(self): #{{{
     33        return len(self.__dict__.keys())
     34    #}}}
    935
    1036
    1137class Lstruct(list):
    12     """
    13     An empty struct that can be assigned arbitrary attributes but can also be
     38    """An empty struct that can be assigned arbitrary attributes but can also be
    1439    accesed as a list. Eg. x.y = 'hello', x[:] = ['w', 'o', 'r', 'l', 'd']
    1540
  • issm/trunk-jpl/src/m/qmu/postqmu.m

    r25627 r25726  
    3939        if strcmpi(md.qmu.method.method,'nond_sampling'),
    4040                dakotaresults.modelresults={};
    41                 md2=md; md2.qmu.isdakota=0;
     41                md2=md;
     42                md2.qmu.isdakota=0;
    4243                for i=1:md2.qmu.method.params.samples,
    43                         disp(['reading qmu file ' md2.miscellaneous.name '.outbin.' num2str(i)]);
     44                        disp(['Reading qmu file ' md2.miscellaneous.name '.outbin.' num2str(i)]);
    4445                        md2=loadresultsfromdisk(md2,[md2.miscellaneous.name '.outbin.' num2str(i)]);
    4546                        dakotaresults.modelresults{end+1}=md2.results;
  • issm/trunk-jpl/src/m/qmu/postqmu.py

    r25688 r25726  
    66from dakota_out_parse import *
    77from helpers import *
    8 import loadresultsfromdisk as loadresults
     8import loadresultsfromdisk as loadresultsfromdisk # There is a name conflict somewhere
     9from results import results, resultsdakota, solution
    910
    1011
     
    1617
    1718    TODO:
    18     - Run Dakota test to check that updates from 6/26 are working
    1919    - Add checks to Popen
    2020    """
     
    3434    qmuoutfile = str(md.miscellaneous.name) + '.qmu.out'
    3535    [method, dresp_out, scm, pcm, srcm, prcm] = dakota_out_parse(qmuoutfile)
    36     dakotaresults = struct()
     36    dakotaresults = resultsdakota()
    3737    dakotaresults.dresp_out = dresp_out
    38     dakotaresults.scm = scm
    39     dakotaresults.pcm = pcm
    40     dakotaresults.srcm = srcm
    41     dakotaresults.prcm = prcm
     38    dakotaresults.scm       = scm
     39    dakotaresults.pcm       = pcm
     40    dakotaresults.srcm      = srcm
     41    dakotaresults.prcm      = prcm
    4242
    4343    if isfile('dakota_tabular.dat'):
     
    5050            dakotaresults.modelresults = []
    5151            md2 = deepcopy(md)
     52            md2.results = results()
    5253            md2.qmu.isdakota = 0
    5354            for i in range(md2.qmu.method.params.samples):
    5455                outbin_name = '{}.outbin.{}'.format(md2.miscellaneous.name, (i + 1))
    55                 print('reading qmu file {}'.format(outbin_name))
    56                 md2 = loadresults.loadresultsfromdisk(md2, outbin_name)
    57                 dakotaresults.modelresults.append(md2.results)
     56                print('Reading qmu file {}'.format(outbin_name))
     57                md2 = loadresultsfromdisk.loadresultsfromdisk(md2, outbin_name)
     58                dakotaresults.modelresults.append(deepcopy(md2.results))
     59            del md2
    5860
    5961    if md.qmu.statistics.method[0]['name'] != 'None':
    6062        md.qmu.isdakota = 0
    61         md = loadresults.loadresultsfromdisk(md, '{}.stats'.format(md.miscellaneous.name))
     63        md = loadresultsfromdisk.loadresultsfromdisk(md, '{}.stats'.format(md.miscellaneous.name))
    6264        md.qmu.isdakota = 1
    6365
    6466    # put dakotaresults in their right location.
    65     md.results.dakota = dakotaresults
     67    md.results.dakota = deepcopy(dakotaresults)
    6668
    6769    # move all the individual function evalutations into zip files
  • issm/trunk-jpl/src/m/solve/loadresultsfromdisk.py

    r25712 r25726  
    11import os
    2 
    3 import numpy as np # Remove: used temporarily for debugging
    42
    53from helpers import fieldnames, struct
     
    3129            err_msg += '   Please check for error messages above or in the outlog   \n'
    3230            err_msg += '============================================================\n'
     31            print(err_msg)
     32            return
    3333
    34             raise OSError(err_msg)
    35 
    36         # Initialize md.results if not a results structure yet
     34        # Initialize md.results if not a structure yet
    3735        if not isinstance(md.results, results):
    3836            md.results = results()
  • issm/trunk-jpl/src/m/solve/parseresultsfromdisk.py

    r25714 r25726  
    44import numpy as np
    55
    6 from results import resultselement
     6from results import solution
    77
    88
     
    2929    loadres = ReadDataDimensions(fid)
    3030    while loadres:
    31 
    32         #Get time and step
     31        # Get time and step
    3332        if loadres['step'] > len(saveres):
    3433            for i in range(len(saveres), loadres['step'] - 1):
     
    3837        setattr(saveres[loadres['step'] - 1], 'time', loadres['time'])
    3938
    40     #Add result
     39        # Add result
    4140        setattr(saveres[loadres['step'] - 1], loadres['fieldname'], float('NaN'))
    4241
    43     #read next result
     42        # Read next result
    4443        loadres = ReadDataDimensions(fid)
    4544
     
    6564        setattr(saveres[loadres['step'] - 1], 'time', loadres['time'])
    6665
    67     #Add result
     66        # Add result
    6867        setattr(saveres[loadres['step'] - 1], loadres['fieldname'], loadres['field'])
    6968
    70     #read next result
     69        # Read next result
    7170        loadres = ReadData(fid, md)
    7271
    73     #close file
     72    # Close file
    7473    fid.close()
    7574
     
    108107
    109108    # Ok, now construct structure
    110     results = resultselement()
     109    results = solution()
     110
    111111    for i in range(numresults):
    112112        result = allresults[i]
     
    118118            setattr(results[index], 'time', result['time'])
    119119        setattr(results[index], result['fieldname'], result['field'])
    120 
    121120    return results
    122121# }}}
     
    322321    return saveres
    323322# }}}
     323
     324def addfieldtorecord(a, descr): #{{{
     325    if a.dtype.fields is None:
     326        raise ValueError('\'a\' must be a structured numpy array')
     327    b = np.empty(a.shape, dtype=a.dtype.descr + descr)
     328    for name in a.dtype.names:
     329        b[name] = a[name]
     330
     331    return b
     332#}}}
Note: See TracChangeset for help on using the changeset viewer.