Changeset 24754
- Timestamp:
- 04/27/20 21:06:48 (5 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
issm/trunk-jpl/src/c/shared/Matrix/MatrixUtils.cpp
r23999 r24754 391 391 * <Ax,y> = <x,tAy> 392 392 * Here, M'(M-lambda*Id) is symmetrical, which gives: 393 * ∀(x,y)∈R²xR² <M'x,y> = <M'y,x>393 * \forall (x,y)\in R²xR² <M'x,y> = <M'y,x> 394 394 * And we have the following: 395 * if y ∈Ker(M'), ∀x∈R² <M'x,y> = <x,M'y> = 0395 * if y\in Ker(M'), \forall x\in R² <M'x,y> = <x,M'y> = 0 396 396 * We have shown that 397 * Im(M') ⊥Ker(M')397 * Im(M') \perp Ker(M') 398 398 * 399 399 * To find the eigen vectors of M, we only have to find two vectors
Note:
See TracChangeset
for help on using the changeset viewer.