Changeset 23716
- Timestamp:
- 02/12/19 06:10:51 (6 years ago)
- Location:
- issm/trunk-jpl/src/m
- Files:
-
- 165 edited
Legend:
- Unmodified
- Added
- Removed
-
issm/trunk-jpl/src/m/archive/arch.py
r21303 r23716 1 1 import numpy as np 2 import math3 2 import struct 4 import sys 5 import os 3 from os import path 6 4 from collections import OrderedDict 7 5 … … 18 16 # open file 19 17 try: 20 if not os.path.isfile(filename):18 if not path.isfile(filename): 21 19 fid=open(filename,'wb') 22 20 else: … … 31 29 name=args[2*i] 32 30 write_field_name(fid,name) 33 31 34 32 # write data associated with field name 35 33 data=args[2*i+1] … … 43 41 else: 44 42 raise ValueError("archwrite : error writing data, invalid code entered '%d'" % code) 45 43 46 44 fid.close() 47 45 … … 55 53 """ 56 54 try: 57 if os.path.isfile(filename):55 if path.isfile(filename): 58 56 fid=open(filename,'rb') 59 57 else: … … 61 59 except IOError as e: 62 60 raise IOError("archread error : could not open file '%s' to read from" % filename) 63 61 64 62 archive_results=[] 65 63 66 64 # read first result 67 65 result=read_field(fid) 66 68 67 while result: 69 68 if fieldname == result['field_name']: … … 71 70 archive_results=result['data']; # we only want the data 72 71 break 73 72 74 73 # read next result 75 74 result=read_field(fid) 76 75 77 76 # close file 78 77 fid.close() 79 78 80 79 return archive_results 81 80 # }}} … … 88 87 """ 89 88 try: 90 if os.path.isfile(filename):89 if path.isfile(filename): 91 90 fid=open(filename,'rb') 92 91 else: … … 94 93 except IOError as e: 95 94 raise IOError("archread error : could not open file '%s' to read from" % filename) 96 97 print 'Source file: '98 print '\t{0}'.format(filename)99 print 'Variables: '95 96 print('Source file: ') 97 print(('\t{0}'.format(filename))) 98 print('Variables: ') 100 99 101 100 result=read_field(fid) 102 101 while result: 103 print '\t{0}'.format(result['field_name'])104 print '\t\tSize:\t\t{0}'.format(result['size'])105 print '\t\tDatatype:\t{0}'.format(result['data_type'])102 print(('\t{0}'.format(result['field_name']))) 103 print(('\t\tSize:\t\t{0}'.format(result['size']))) 104 print(('\t\tDatatype:\t{0}'.format(result['data_type']))) 106 105 # go to next result 107 106 result=read_field(fid) 108 107 109 108 # close file 110 109 fid.close() … … 112 111 # }}} 113 112 114 # Helper functions 113 # Helper functions 115 114 def write_field_name(fid,data): # {{{ 116 115 """ … … 121 120 reclen=len(data)+4+4 122 121 fid.write(struct.pack('>i',reclen)) 123 122 124 123 # write format code 125 124 code=format_archive_code(data); … … 130 129 # write string length, and then the string 131 130 fid.write(struct.pack('>i',len(data))) 132 fid.write(struct.pack('> %ds' % len(data),data))131 fid.write(struct.pack('>{}s'.format(len(data)),data.encode('utf8'))) 133 132 # }}} 134 133 def write_scalar(fid,data): # {{{ … … 143 142 # write the format code (2 for scalar) 144 143 fid.write(struct.pack('>i',2)) 145 144 146 145 # write the double 147 146 fid.write(struct.pack('>d',data)) … … 154 153 # Make sure our vector is the correct shape. 155 154 # Reshape it into a row vector if it is not correct. 156 if isinstance(data,(bool,int, long,float)):155 if isinstance(data,(bool,int,float)): 157 156 data=np.array([data]) 158 157 elif isinstance(data,(list,tuple)): 159 158 data=np.array(data).reshape(-1,) 160 159 161 160 if np.ndim(data) == 1: 162 161 if np.size(data): … … 164 163 else: 165 164 data=data.reshape(0,0) 166 165 167 166 # get size of data 168 167 sz=data.shape … … 175 174 raise ValueError("archwrite error : can not write vector to binary file because it is too large") 176 175 fid.write(struct.pack('>i',reclen)) 177 176 178 177 # write format code 179 178 fid.write(struct.pack('>i',3)) … … 182 181 fid.write(struct.pack('>i',sz[0])) 183 182 fid.write(struct.pack('>i',sz[1])) 184 for i in xrange(sz[0]):185 for j in xrange(sz[1]):183 for i in range(sz[0]): 184 for j in range(sz[1]): 186 185 fid.write(struct.pack('>d',float(data[i][j]))) 187 186 … … 204 203 raise ValueError('archread error : a string was not present at the start of the arch file') 205 204 namelen=struct.unpack('>i',fid.read(struct.calcsize('>i')))[0] 206 fieldname=struct.unpack('> %ds' % namelen,fid.read(namelen))[0]207 205 fieldname=struct.unpack('>{}s'.format(namelen),fid.read(namelen))[0] 206 208 207 # then, read the data 209 208 datalen=struct.unpack('>i',fid.read(struct.calcsize('>i')))[0] … … 211 210 212 211 if data_type==2: 213 # unpack scalar212 # struct.upack scalar 214 213 data=struct.unpack('>d',fid.read(struct.calcsize('>d')))[0] 215 214 elif data_type==3: … … 217 216 cols=struct.unpack('>i',fid.read(struct.calcsize('>i')))[0] 218 217 raw_data=np.zeros(shape=(rows,cols),dtype=float) 219 for i in xrange(rows):220 raw_data[i,:]=struct.unpack('> %dd' % cols,fid.read(cols*struct.calcsize('>d')))221 # The matrix will be unpacked in order and will be filled left -> right by column218 for i in range(rows): 219 raw_data[i,:]=struct.unpack('>{}d'.format(cols),fid.read(cols*struct.calcsize('>d'))) 220 # The matrix will be struct.upacked in order and will be filled left -> right by column 222 221 # We need to reshape and transpose the matrix so it can be read correctly 223 222 data=raw_data.reshape(raw_data.shape[::-1]).T 224 223 else: 225 224 raise TypeError("Cannot read data type %d" % data_type) 226 225 227 226 # give additional data to user 228 227 if data_type==2: … … 234 233 235 234 result=OrderedDict() 236 result['field_name']=fieldname 235 result['field_name']=fieldname.decode('utf8') 237 236 result['size']=data_size 238 237 result['data_type']=data_type_str … … 255 254 256 255 """ 257 if isinstance(format, basestring):256 if isinstance(format,str): 258 257 code=1 259 258 elif format.shape[0] == 1 and format.shape[1] == 1: -
issm/trunk-jpl/src/m/array/MatlabArray.py
r23095 r23716 5 5 #move this later 6 6 from helpers import * 7 from functools import reduce 7 8 8 9 def allempty(cin): … … 28 29 ''' 29 30 if type(ain) != type(aval): 30 print allequal.__doc__31 print((allequal.__doc__)) 31 32 raise RuntimeError("ain and aval must be of the same type") 32 33 … … 247 248 try: 248 249 # I tried other methods, but this is, unfortunately, the best behaving by far 249 exec 'from '+cstr+' import *'250 exec('from '+cstr+' import *') 250 251 except: 251 252 raise RuntimeError('MatlabArray.struc_class Class Error: class "'+cstr+'" does not exist') -
issm/trunk-jpl/src/m/boundaryconditions/SetIceSheetBC.py
r22133 r23716 26 26 #Dirichlet Values 27 27 if isinstance(md.inversion.vx_obs,np.ndarray) and np.size(md.inversion.vx_obs,axis=0)==md.mesh.numberofvertices and isinstance(md.inversion.vy_obs,np.ndarray) and np.size(md.inversion.vy_obs,axis=0)==md.mesh.numberofvertices: 28 print " boundary conditions for stressbalance model: spc set as observed velocities"28 print(" boundary conditions for stressbalance model: spc set as observed velocities") 29 29 md.stressbalance.spcvx[pos]=md.inversion.vx_obs[pos] 30 30 md.stressbalance.spcvy[pos]=md.inversion.vy_obs[pos] 31 31 else: 32 print " boundary conditions for stressbalance model: spc set as zero"32 print(" boundary conditions for stressbalance model: spc set as zero") 33 33 34 34 #No ice front -> do nothing … … 41 41 if np.all(np.isnan(md.balancethickness.thickening_rate)): 42 42 md.balancethickness.thickening_rate=np.zeros((md.mesh.numberofvertices)) 43 print " no balancethickness.thickening_rate specified: values set as zero"43 print(" no balancethickness.thickening_rate specified: values set as zero") 44 44 md.masstransport.spcthickness=float('nan')*np.ones((md.mesh.numberofvertices)) 45 45 md.balancethickness.spcthickness=float('nan')*np.ones((md.mesh.numberofvertices)) … … 54 54 md.basalforcings.geothermalflux=50.*10**-3*np.ones((md.mesh.numberofvertices)) #50 mW/m^2 55 55 else: 56 print " no thermal boundary conditions created: no observed temperature found"56 print(" no thermal boundary conditions created: no observed temperature found") 57 57 58 58 return md -
issm/trunk-jpl/src/m/boundaryconditions/SetIceShelfBC.py
r21303 r23716 70 70 if np.ndim(md.inversion.vy_obs)==1: 71 71 md.inversion.vy_obs=md.inversion.vy_obs.reshape(-1,) 72 print " boundary conditions for stressbalance model: spc set as observed velocities"72 print(" boundary conditions for stressbalance model: spc set as observed velocities") 73 73 md.stressbalance.spcvx[pos]=md.inversion.vx_obs[pos] 74 74 md.stressbalance.spcvy[pos]=md.inversion.vy_obs[pos] 75 75 else: 76 print " boundary conditions for stressbalance model: spc set as zero"76 print(" boundary conditions for stressbalance model: spc set as zero") 77 77 78 78 #Create zeros basalforcings and smb … … 83 83 if np.all(np.isnan(md.balancethickness.thickening_rate)): 84 84 md.balancethickness.thickening_rate=np.zeros((md.mesh.numberofvertices)) 85 print " no balancethickness.thickening_rate specified: values set as zero"85 print(" no balancethickness.thickening_rate specified: values set as zero") 86 86 md.masstransport.spcthickness=float('nan')*np.ones((md.mesh.numberofvertices)) 87 87 md.balancethickness.spcthickness=float('nan')*np.ones((md.mesh.numberofvertices)) … … 96 96 md.basalforcings.geothermalflux=np.zeros((md.mesh.numberofvertices)) 97 97 else: 98 print " no thermal boundary conditions created: no observed temperature found"98 print(" no thermal boundary conditions created: no observed temperature found") 99 99 100 100 return md -
issm/trunk-jpl/src/m/boundaryconditions/SetMarineIceSheetBC.py
r21303 r23716 40 40 pos=np.nonzero(np.logical_and(md.mesh.vertexonboundary,np.logical_not(vertexonicefront)))[0] 41 41 if not np.size(pos): 42 print "SetMarineIceSheetBC warning: ice front all around the glacier, no dirichlet found. Dirichlet must be added manually."42 print("SetMarineIceSheetBC warning: ice front all around the glacier, no dirichlet found. Dirichlet must be added manually.") 43 43 44 44 md.stressbalance.spcvx=float('nan')*np.ones(md.mesh.numberofvertices) … … 58 58 numbernodesfront=2 59 59 else: 60 raise StandardError("Mesh type not supported")60 raise Exception("Mesh type not supported") 61 61 if any(md.mask.ice_levelset<=0): 62 62 values=md.mask.ice_levelset[md.mesh.segments[:,0:-1]-1] … … 74 74 #Dirichlet Values 75 75 if isinstance(md.inversion.vx_obs,np.ndarray) and np.size(md.inversion.vx_obs,axis=0)==md.mesh.numberofvertices and isinstance(md.inversion.vy_obs,np.ndarray) and np.size(md.inversion.vy_obs,axis=0)==md.mesh.numberofvertices: 76 print " boundary conditions for stressbalance model: spc set as observed velocities"76 print(" boundary conditions for stressbalance model: spc set as observed velocities") 77 77 md.stressbalance.spcvx[pos]=md.inversion.vx_obs[pos] 78 78 md.stressbalance.spcvy[pos]=md.inversion.vy_obs[pos] 79 79 else: 80 print " boundary conditions for stressbalance model: spc set as zero"80 print(" boundary conditions for stressbalance model: spc set as zero") 81 81 82 82 md.hydrology.spcwatercolumn=np.zeros((md.mesh.numberofvertices,2)) … … 91 91 if np.all(np.isnan(md.balancethickness.thickening_rate)): 92 92 md.balancethickness.thickening_rate=np.zeros((md.mesh.numberofvertices)) 93 print " no balancethickness.thickening_rate specified: values set as zero"93 print(" no balancethickness.thickening_rate specified: values set as zero") 94 94 95 95 md.masstransport.spcthickness=float('nan')*np.ones((md.mesh.numberofvertices)) … … 106 106 md.basalforcings.geothermalflux[np.nonzero(md.mask.groundedice_levelset>0.)]=50.*10.**-3 #50mW/m2 107 107 else: 108 print " no thermal boundary conditions created: no observed temperature found"108 print(" no thermal boundary conditions created: no observed temperature found") 109 109 110 110 return md -
issm/trunk-jpl/src/m/boundaryconditions/love_numbers.py
r22359 r23716 20 20 if len(varargin)==0: 21 21 frame='CM'; 22 print 'Info: computation is done in Center of Mass (CM) reference frame by default'22 print('Info: computation is done in Center of Mass (CM) reference frame by default') 23 23 elif len(varargin)==1: 24 24 reference_frame = varargin[0] -
issm/trunk-jpl/src/m/classes/SMBcomponents.py
r21303 r23716 40 40 if np.all(np.isnan(self.accumulation)): 41 41 self.accumulation=np.zeros((md.mesh.numberofvertices)) 42 print " no SMB.accumulation specified: values set as zero"42 print(" no SMB.accumulation specified: values set as zero") 43 43 44 44 if np.all(np.isnan(self.runoff)): 45 45 self.runoff=np.zeros((md.mesh.numberofvertices)) 46 print " no SMB.runoff specified: values set as zero"46 print(" no SMB.runoff specified: values set as zero") 47 47 48 48 if np.all(np.isnan(self.evaporation)): 49 49 self.evaporation=np.zeros((md.mesh.numberofvertices)) 50 print " no SMB.evaporation specified: values set as zero"50 print(" no SMB.evaporation specified: values set as zero") 51 51 52 52 return self -
issm/trunk-jpl/src/m/classes/SMBd18opdd.py
r22855 r23716 94 94 if np.all(np.isnan(self.s0p)): 95 95 self.s0p=np.zeros((md.mesh.numberofvertices)) 96 print " no SMBd18opdd.s0p specified: values set as zero"96 print(" no SMBd18opdd.s0p specified: values set as zero") 97 97 98 98 if np.all(np.isnan(self.s0t)): 99 99 self.s0t=np.zeros((md.mesh.numberofvertices)) 100 print " no SMBd18opdd.s0t specified: values set as zero"100 print(" no SMBd18opdd.s0t specified: values set as zero") 101 101 102 102 return self -
issm/trunk-jpl/src/m/classes/SMBforcing.py
r21711 r23716 35 35 if np.all(np.isnan(self.mass_balance)): 36 36 self.mass_balance=np.zeros((md.mesh.numberofvertices)) 37 print " no SMBforcing.mass_balance specified: values set as zero"37 print(" no SMBforcing.mass_balance specified: values set as zero") 38 38 39 39 return self -
issm/trunk-jpl/src/m/classes/SMBgemb.py
r23468 r23716 14 14 15 15 def __init__(self): # {{{ 16 #each one of these properties is a transient forcing to the GEMB model, loaded from meteorological data derived 17 #from an automatic weather stations (AWS). Each property is therefore a matrix, of size (numberofvertices x number 16 #each one of these properties is a transient forcing to the GEMB model, loaded from meteorological data derived 17 #from an automatic weather stations (AWS). Each property is therefore a matrix, of size (numberofvertices x number 18 18 #of time steps. ) 19 19 … … 27 27 #ismelt 28 28 #isdensification 29 #isturbulentflux 30 31 #inputs: 29 #isturbulentflux 30 31 #inputs: 32 32 Ta = float('NaN') #2 m air temperature, in Kelvin 33 33 V = float('NaN') #wind speed (m/s-1) … … 37 37 eAir = float('NaN') #screen level vapor pressure [Pa] 38 38 pAir = float('NaN') #surface pressure [Pa] 39 40 39 Tmean = float('NaN') #mean annual temperature [K] 41 40 Vmean = float('NaN') #mean annual wind velocity [m s-1] 42 41 C = float('NaN') #mean annual snow accumulation [kg m-2 yr-1] 43 42 Tz = float('NaN') #height above ground at which temperature (T) was sampled [m] … … 47 46 aValue = float('NaN') #Albedo forcing at every element. Used only if aIdx == 0. 48 47 teValue = float('NaN') #Outward longwave radiation thermal emissivity forcing at every element (default in code is 1) 49 48 50 49 # Initialization of snow properties 51 50 Dzini = float('NaN') #cell depth (m) … … 60 59 Sizeini = float('NaN') #Number of layers 61 60 62 #settings: 61 #settings: 63 62 aIdx = float('NaN') #method for calculating albedo and subsurface absorption (default is 1) 64 # 0: direct input from aValue parameter 65 # 1: effective grain radius [Gardner & Sharp, 2009] 66 # 2: effective grain radius [Brun et al., 2009] 67 # 3: density and cloud amount [Greuell & Konzelmann, 1994] 68 # 4: exponential time decay & wetness [Bougamont & Bamber, 2005] 69 # 5: ingest MODIS mode, direct input from aValue parameter applied to surface ice only 70 63 # 0: direct input from aValue parameter 64 # 1: effective grain radius [Gardner & Sharp, 2009] 65 # 2: effective grain radius [Brun et al., 2009] 66 # 3: density and cloud amount [Greuell & Konzelmann, 1994] 67 # 4: exponential time decay & wetness [Bougamont & Bamber, 2005] 68 # 5: ingest MODIS mode, direct input from aValue parameter applied to surface ice only 71 69 swIdx = float('NaN') # apply all SW to top grid cell (0) or allow SW to penetrate surface (1) (default 1) 72 73 70 denIdx = float('NaN') #densification model to use (default is 2): 74 # 1 = emperical model of Herron and Langway (1980) 75 # 2 = semi-emperical model of Anthern et al. (2010) 76 # 3 = DO NOT USE: physical model from Appix B of Anthern et al. (2010) 77 # 4 = DO NOT USE: emperical model of Li and Zwally (2004) 78 # 5 = DO NOT USE: modified emperical model (4) by Helsen et al. (2008) 79 # 6 = Antarctica semi-emperical model of Ligtenberg et al. (2011) 80 # 7 = Greenland semi-emperical model of Kuipers Munneke et al. (2015) 81 82 dsnowIdx = float('NaN') #model for fresh snow accumulation density (default is 1): 83 # 0 = Original GEMB value, 150 kg/m^3 84 # 1 = Antarctica value of fresh snow density, 350 kg/m^3 85 # 2 = Greenland value of fresh snow density, 315 kg/m^3, Fausto et al. (2008) 86 # 3 = Antarctica model of Kaspers et al. (2004) 87 # 4 = Greenland model of Kuipers Munneke et al. (2015) 88 71 # 1 = emperical model of Herron and Langway (1980) 72 # 2 = semi-emperical model of Anthern et al. (2010) 73 # 3 = DO NOT USE: physical model from Appix B of Anthern et al. (2010) 74 # 4 = DO NOT USE: emperical model of Li and Zwally (2004) 75 # 5 = DO NOT USE: modified emperical model (4) by Helsen et al. (2008) 76 # 6 = Antarctica semi-emperical model of Ligtenberg et al. (2011) 77 # 7 = Greenland semi-emperical model of Kuipers Munneke et al. (2015) 78 dsnowIdx = float('NaN') #model for fresh snow accumulation density (default is 1): 79 # 0 = Original GEMB value, 150 kg/m^3 80 # 1 = Antarctica value of fresh snow density, 350 kg/m^3 81 # 2 = Greenland value of fresh snow density, 315 kg/m^3, Fausto et al. (2008) 82 # 3 = Antarctica model of Kaspers et al. (2004) 83 # 4 = Greenland model of Kuipers Munneke et al. (2015) 89 84 zTop = float('NaN') # depth over which grid length is constant at the top of the snopack (default 10) [m] 90 dzTop = float('NaN') # initial top vertical grid spacing (default .05) [m] 91 dzMin = float('NaN') # initial min vertical allowable grid spacing (default dzMin/2) [m] 85 dzTop = float('NaN') # initial top vertical grid spacing (default .05) [m] 86 dzMin = float('NaN') # initial min vertical allowable grid spacing (default dzMin/2) [m] 92 87 zY = float('NaN') # strech grid cells bellow top_z by a [top_dz * y ^ (cells bellow top_z)] 93 88 zMax = float('NaN') #initial max model depth (default is min(thickness,500)) [m] … … 95 90 outputFreq = float('NaN') #output frequency in days (default is monthly, 30) 96 91 97 #specific albedo parameters: 98 #Method 1 and 2: 92 #specific albedo parameters: 93 #Method 1 and 2: 99 94 aSnow = float('NaN') # new snow albedo (0.64 - 0.89) 100 95 aIce = float('NaN') # range 0.27-0.58 for old snow 101 96 #Method 3: Radiation Correction Factors -> only used for met station data and Greuell & Konzelmann, 1994 albedo 102 97 cldFrac = float('NaN') # average cloud amount 103 104 t0wet = float('NaN') # time scale for wet snow (15-21.9) 105 t0dry = float('NaN') # warm snow timescale (30) 106 K = float('NaN') # time scale temperature coef. (7) 98 #Method 4: additonal tuning parameters albedo as a funtion of age and water content (Bougamont et al., 2005) 99 t0wet = float('NaN') # time scale for wet snow (15-21.9) 100 t0dry = float('NaN') # warm snow timescale (30) 101 K = float('NaN') # time scale temperature coef. (7) 107 102 adThresh = float('NaN') # Apply aIdx method to all areas with densities below this value, 108 109 103 # or else apply direct input value from aValue, allowing albedo to be altered. 104 # Default value is rho water (1023 kg m-3). 110 105 111 106 #densities: … … 114 109 #thermo: 115 110 ThermoDeltaTScaling = float('NaN') #scaling factor to multiply the thermal diffusion timestep (delta t) 116 111 117 112 requested_outputs = [] 118 113 119 #Several fields are missing from the standard GEMB model, which are capture intrinsically by ISSM. 120 #dateN: that's the last row of the above fields. 121 #dt: included in dateN. Not an input. 114 #Several fields are missing from the standard GEMB model, which are capture intrinsically by ISSM. 115 #dateN: that's the last row of the above fields. 116 #dt: included in dateN. Not an input. 122 117 #elev: this is taken from the ISSM surface itself. 123 118 … … 128 123 #string = "#s\n#s"%(string,fielddisplay(self,'requested_outputs','additional outputs requested')) 129 124 string = ' surface forcings for SMB GEMB model :' 130 131 string="%s\n%s"%(string,fielddisplay(self,'issmbgradients','is smb gradients method activated (0 or 1, default is 0)')) 125 string = "%s\n%s"%(string,fielddisplay(self,'issmbgradients','is smb gradients method activated (0 or 1, default is 0)')) 132 126 string = "%s\n%s"%(string,fielddisplay(self,'isgraingrowth','run grain growth module (default true)')) 133 127 string = "%s\n%s"%(string,fielddisplay(self,'isalbedo','run albedo module (default true)')) … … 147 141 string = "%s\n%s"%(string,fielddisplay(self,'Tmean','mean annual temperature [K]')) 148 142 string = "%s\n%s"%(string,fielddisplay(self,'C','mean annual snow accumulation [kg m-2 yr-1]')) 149 143 string = "%s\n%s"%(string,fielddisplay(self,'Vmean','mean annual temperature [m s-1] (default 10 m/s)')) 150 144 string = "%s\n%s"%(string,fielddisplay(self,'Tz','height above ground at which temperature (T) was sampled [m]')) 151 145 string = "%s\n%s"%(string,fielddisplay(self,'Vz','height above ground at which wind (V) eas sampled [m]')) … … 161 155 string = "%s\n%s"%(string,fielddisplay(self,'adThresh','Apply aIdx method to all areas with densities below this value,','or else apply direct input value from aValue, allowing albedo to be altered.')) 162 156 string = "%s\n%s"%(string,fielddisplay(self,'aIdx',['method for calculating albedo and subsurface absorption (default is 1)', 163 '0: direct input from aValue parameter', 164 '1: effective grain radius [Gardner & Sharp, 2009]', 165 '2: effective grain radius [Brun et al., 2009]', 166 '3: density and cloud amount [Greuell & Konzelmann, 1994]', 167 '4: exponential time decay & wetness [Bougamont & Bamber, 2005]'])) 168 157 '0: direct input from aValue parameter', 158 '1: effective grain radius [Gardner & Sharp, 2009]', 159 '2: effective grain radius [Brun et al., 2009]', 160 '3: density and cloud amount [Greuell & Konzelmann, 1994]', 161 '4: exponential time decay & wetness [Bougamont & Bamber, 2005]'])) 169 162 string = "%s\n%s"%(string,fielddisplay(self,'teValue','Outward longwave radiation thermal emissivity forcing at every element (default in code is 1)')) 170 171 163 #snow properties init 172 164 string = "%s\n%s"%(string,fielddisplay(self,'Dzini','Initial cell depth when restart [m]')) … … 180 172 string = "%s\n%s"%(string,fielddisplay(self,'Tini','Initial snow temperature when restart [K]')) 181 173 string = "%s\n%s"%(string,fielddisplay(self,'Sizeini','Initial number of layers when restart [K]')) 182 183 #additional albedo parameters: 174 175 #additional albedo parameters: 184 176 if type(self.aIdx) == list or type(self.aIdx) == type(np.array([1,2])) and (self.aIdx == [1,2] or (1 in self.aIdx and 2 in self.aIdx)): 185 177 string = "%s\n%s"%(string,fielddisplay(self,'aSnow','new snow albedo (0.64 - 0.89)')) … … 195 187 string = "%s\n%s"%(string,fielddisplay(self,'t0dry','warm snow timescale (30) [d]')) 196 188 string = "%s\n%s"%(string,fielddisplay(self,'K','time scale temperature coef. (7) [d]')) 197 189 198 190 string = "%s\n%s"%(string,fielddisplay(self,'swIdx','apply all SW to top grid cell (0) or allow SW to penetrate surface (1) [default 1]')) 199 191 string = "%s\n%s"%(string,fielddisplay(self,'denIdx',['densification model to use (default is 2):', 200 '1 = emperical model of Herron and Langway (1980)', 201 '2 = semi-emperical model of Anthern et al. (2010)', 202 '3 = DO NOT USE: physical model from Appix B of Anthern et al. (2010)', 203 '4 = DO NOT USE: emperical model of Li and Zwally (2004)', 204 '5 = DO NOT USE: modified emperical model (4) by Helsen et al. (2008)', 205 '6 = Antarctica semi-emperical model of Ligtenberg et al. (2011)', 206 '7 = Greenland semi-emperical model of Kuipers Munneke et al. (2015)'])) 207 208 string = "%s\n%s"%(string,fielddisplay(self,'dsnowIdx',['model for fresh snow accumulation density (default is 1):', 209 '0 = Original GEMB value, 150 kg/m^3', 210 '1 = Antarctica value of fresh snow density, 350 kg/m^3', 211 '2 = Greenland value of fresh snow density, 315 kg/m^3, Fausto et al. (2008)', 212 '3 = Antarctica model of Kaspers et al. (2004), Make sure to set Vmean accurately', 213 '4 = Greenland model of Kuipers Munneke et al. (2015)'])); 214 192 '1 = emperical model of Herron and Langway (1980)', 193 '2 = semi-emperical model of Anthern et al. (2010)', 194 '3 = DO NOT USE: physical model from Appix B of Anthern et al. (2010)', 195 '4 = DO NOT USE: emperical model of Li and Zwally (2004)', 196 '5 = DO NOT USE: modified emperical model (4) by Helsen et al. (2008)', 197 '6 = Antarctica semi-emperical model of Ligtenberg et al. (2011)', 198 '7 = Greenland semi-emperical model of Kuipers Munneke et al. (2015)'])) 199 string = "%s\n%s"%(string,fielddisplay(self,'dsnowIdx',['model for fresh snow accumulation density (default is 1):', 200 '0 = Original GEMB value, 150 kg/m^3', 201 '1 = Antarctica value of fresh snow density, 350 kg/m^3', 202 '2 = Greenland value of fresh snow density, 315 kg/m^3, Fausto et al. (2008)', 203 '3 = Antarctica model of Kaspers et al. (2004), Make sure to set Vmean accurately', 204 '4 = Greenland model of Kuipers Munneke et al. (2015)'])); 215 205 string = "%s\n%s"%(string,fielddisplay(self,'requested_outputs','additional outputs requested')) 216 206 return string … … 247 237 self.isdensification = 1 248 238 self.isturbulentflux = 1 249 239 250 240 self.aIdx = 1 251 241 self.swIdx = 1 252 242 self.denIdx = 2 253 243 self.dsnowIdx = 1 254 244 self.zTop = 10*np.ones((mesh.numberofelements,)) 255 245 self.dzTop = .05* np.ones((mesh.numberofelements,)) … … 258 248 self.ThermoDeltaTScaling = 1/11.0 259 249 260 261 250 self.Vmean = 10*np.ones((mesh.numberofelements,)) 251 262 252 self.zMax = 250*np.ones((mesh.numberofelements,)) 263 253 self.zMin = 130*np.ones((mesh.numberofelements,)) … … 268 258 self.aSnow = 0.85 269 259 self.aIce = 0.48 270 self.cldFrac = 0.1 260 self.cldFrac = 0.1 271 261 self.t0wet = 15 272 262 self.t0dry = 30 … … 276 266 self.teValue = np.ones((mesh.numberofelements,)); 277 267 self.aValue = self.aSnow*np.ones(mesh.numberofelements,); 278 268 279 269 self.Dzini = 0.05*np.ones((mesh.numberofelements,2)) 280 self.Dini = 910.0*np.ones((mesh.numberofelements,2)) 270 self.Dini = 910.0*np.ones((mesh.numberofelements,2)) 281 271 self.Reini = 2.5*np.ones((mesh.numberofelements,2)) 282 272 self.Gdnini = 0.0*np.ones((mesh.numberofelements,2)) … … 286 276 self.Aini = self.aSnow*np.ones((mesh.numberofelements,2)) 287 277 self.Tini = 273.15*np.ones((mesh.numberofelements,2)) 288 # /!\ Default value of Tini must be equal to Tmean but don't know Tmean yet (computed when atmospheric forcings are interpolated on mesh). 289 # If initialization without restart, this value will be overwritten when snow parameters are retrieved in Element.cpp 278 # /!\ Default value of Tini must be equal to Tmean but don't know Tmean yet (computed when atmospheric forcings are interpolated on mesh). 279 # If initialization without restart, this value will be overwritten when snow parameters are retrieved in Element.cpp 290 280 self.Sizeini = 2*np.ones((mesh.numberofelements,)) 291 281 #}}} … … 310 300 311 301 md = checkfield(md,'fieldname','smb.Tmean','size',[md.mesh.numberofelements],'NaN',1,'Inf',1,'>',273-100,'<',273+100) #-100/100 celsius min/max value 312 md = checkfield(md,'fieldname','smb.C','size',[md.mesh.numberofelements],'NaN',1,'Inf',1,'> = ',0) 313 314 md = checkfield(md,'fieldname','smb.Tz','size',[md.mesh.numberofelements],'NaN',1,'Inf',1,'> = ',0,'< = ',5000) 315 md = checkfield(md,'fieldname','smb.Vz','size',[md.mesh.numberofelements],'NaN',1,'Inf',1,'> = ',0,'< = ',5000) 302 md = checkfield(md,'fieldname','smb.C','size',[md.mesh.numberofelements],'NaN',1,'Inf',1,'> = ',0) 303 md = checkfield(md,'fieldname','smb.Vmean','size',[md.mesh.numberofelements],'NaN',1,'Inf',1,'> = ',0) 304 md = checkfield(md,'fieldname','smb.Tz','size',[md.mesh.numberofelements],'NaN',1,'Inf',1,'> = ',0,'< = ',5000) 305 md = checkfield(md,'fieldname','smb.Vz','size',[md.mesh.numberofelements],'NaN',1,'Inf',1,'> = ',0,'< = ',5000) 316 306 317 307 md = checkfield(md,'fieldname','smb.teValue','timeseries',1,'NaN',1,'Inf',1,'>=',0,'<=',1); … … 320 310 md = checkfield(md,'fieldname','smb.swIdx','NaN',1,'Inf',1,'values',[0,1]) 321 311 md = checkfield(md,'fieldname','smb.denIdx','NaN',1,'Inf',1,'values',[1,2,3,4,5,6,7]) 322 312 md = checkfield(md,'fieldname','smb.dsnowIdx','NaN',1,'Inf',1,'values',[0,1,2,3,4]) 323 313 324 314 md = checkfield(md,'fieldname','smb.zTop','NaN',1,'Inf',1,'> = ',0) … … 326 316 md = checkfield(md,'fieldname','smb.dzMin','NaN',1,'Inf',1,'>',0) 327 317 md = checkfield(md,'fieldname','smb.zY','NaN',1,'Inf',1,'> = ',1) 328 md = checkfield(md,'fieldname','smb.outputFreq','NaN',1,'Inf',1,'>',0,'<',10*365) #10 years max 318 md = checkfield(md,'fieldname','smb.outputFreq','NaN',1,'Inf',1,'>',0,'<',10*365) #10 years max 329 319 md = checkfield(md,'fieldname','smb.InitDensityScaling','NaN',1,'Inf',1,'> = ',0,'< = ',1) 330 320 md = checkfield(md,'fieldname','smb.ThermoDeltaTScaling','NaN',1,'Inf',1,'> = ',0,'< = ',1) … … 342 332 md = checkfield(md,'fieldname','smb.t0dry','NaN',1,'Inf',1,'> = ',30,'< = ',30) 343 333 md = checkfield(md,'fieldname','smb.K','NaN',1,'Inf',1,'> = ',7,'< = ',7) 344 334 345 335 346 336 #check zTop is < local thickness: … … 348 338 if np.any(he<self.zTop): 349 339 error('SMBgemb consistency check error: zTop should be smaller than local ice thickness') 350 340 351 341 md = checkfield(md,'fieldname','smb.requested_outputs','stringrow',1) 352 342 return md … … 358 348 359 349 WriteData(fid,prefix,'name','md.smb.model','data',8,'format','Integer') 360 350 361 351 WriteData(fid,prefix,'object',self,'class','smb','fieldname','isgraingrowth','format','Boolean') 362 352 WriteData(fid,prefix,'object',self,'class','smb','fieldname','isalbedo','format','Boolean') … … 367 357 WriteData(fid,prefix,'object',self,'class','smb','fieldname','isdensification','format','Boolean') 368 358 WriteData(fid,prefix,'object',self,'class','smb','fieldname','isturbulentflux','format','Boolean') 369 359 370 360 WriteData(fid,prefix,'object',self,'class','smb','fieldname','Ta','format','DoubleMat','mattype',2,'timeserieslength',md.mesh.numberofelements+1,'yts',md.constants.yts) 371 361 WriteData(fid,prefix,'object',self,'class','smb','fieldname','V','format','DoubleMat','mattype',2,'timeserieslength',md.mesh.numberofelements+1,'yts',md.constants.yts) … … 374 364 WriteData(fid,prefix,'object',self,'class','smb','fieldname','P','format','DoubleMat','mattype',2,'timeserieslength',md.mesh.numberofelements+1,'yts',md.constants.yts) 375 365 WriteData(fid,prefix,'object',self,'class','smb','fieldname','eAir','format','DoubleMat','mattype',2,'timeserieslength',md.mesh.numberofelements+1,'yts',md.constants.yts) 376 WriteData(fid,prefix,'object',self,'class','smb','fieldname','pAir','format','DoubleMat','mattype',2,'timeserieslength',md.mesh.numberofelements+1,'yts',md.constants.yts) 366 WriteData(fid,prefix,'object',self,'class','smb','fieldname','pAir','format','DoubleMat','mattype',2,'timeserieslength',md.mesh.numberofelements+1,'yts',md.constants.yts) 377 367 378 368 WriteData(fid,prefix,'object',self,'class','smb','fieldname','Tmean','format','DoubleMat','mattype',2) 379 369 WriteData(fid,prefix,'object',self,'class','smb','fieldname','C','format','DoubleMat','mattype',2) 380 370 WriteData(fid,prefix,'object',self,'class','smb','fieldname','Vmean','format','DoubleMat','mattype',2) 381 371 WriteData(fid,prefix,'object',self,'class','smb','fieldname','Tz','format','DoubleMat','mattype',2) 382 372 WriteData(fid,prefix,'object',self,'class','smb','fieldname','Vz','format','DoubleMat','mattype',2) … … 387 377 WriteData(fid,prefix,'object',self,'class','smb','fieldname','zMax','format','DoubleMat','mattype',2) 388 378 WriteData(fid,prefix,'object',self,'class','smb','fieldname','zMin','format','DoubleMat','mattype',2) 389 379 390 380 WriteData(fid,prefix,'object',self,'class','smb','fieldname','aIdx','format','Integer') 391 381 WriteData(fid,prefix,'object',self,'class','smb','fieldname','swIdx','format','Integer') 392 382 WriteData(fid,prefix,'object',self,'class','smb','fieldname','denIdx','format','Integer') 393 383 WriteData(fid,prefix,'object',self,'class','smb','fieldname','dsnowIdx','format','Integer') 394 384 WriteData(fid,prefix,'object',self,'class','smb','fieldname','InitDensityScaling','format','Double') 395 385 WriteData(fid,prefix,'object',self,'class','smb','fieldname','ThermoDeltaTScaling','format','Double') … … 405 395 WriteData(fid,prefix,'object',self,'class','smb','fieldname','aValue','format','DoubleMat','mattype',2,'timeserieslength',md.mesh.numberofelements+1,'yts',md.constants.yts); 406 396 WriteData(fid,prefix,'object',self,'class','smb','fieldname','teValue','format','DoubleMat','mattype',2,'timeserieslength',md.mesh.numberofelements+1,'yts',md.constants.yts); 407 397 408 398 #snow properties init 409 399 WriteData(fid,prefix,'object',self,'class','smb','fieldname','Dzini','format','DoubleMat','mattype',3) … … 418 408 WriteData(fid,prefix,'object',self,'class','smb','fieldname','Sizeini','format','IntMat','mattype',2) 419 409 420 #figure out dt from forcings: 410 #figure out dt from forcings: 421 411 time = self.Ta[-1] #assume all forcings are on the same time step 422 412 dtime = np.diff(time,n=1,axis=0) 423 413 dt = min(dtime) / yts 424 414 425 415 WriteData(fid,prefix,'data',dt,'name','md.smb.dt','format','Double','scale',yts) 426 416 427 417 # Check if smb_dt goes evenly into transient core time step 428 418 if (md.timestepping.time_step % dt >= 1e-10): 429 430 419 error('smb_dt/dt = #f. The number of SMB time steps in one transient core time step has to be an an integer',md.timestepping.time_step/dt) 420 431 421 #process requested outputs 432 422 outputs = self.requested_outputs … … 435 425 outputscopy=outputs[0:max(0,indices[0]-1)]+self.defaultoutputs(md)+outputs[indices[0]+1:] 436 426 outputs =outputscopy 437 427 438 428 WriteData(fid,prefix,'data',outputs,'name','md.smb.requested_outputs','format','StringArray') 439 429 # }}} 440 -
issm/trunk-jpl/src/m/classes/SMBmeltcomponents.py
r22846 r23716 42 42 if np.all(np.isnan(self.accumulation)): 43 43 self.accumulation=np.zeros((md.mesh.numberofvertices)) 44 print " no SMB.accumulation specified: values set as zero"44 print(" no SMB.accumulation specified: values set as zero") 45 45 46 46 if np.all(np.isnan(self.evaporation)): 47 47 self.evaporation=np.zeros((md.mesh.numberofvertices)) 48 print " no SMB.evaporation specified: values set as zero"48 print(" no SMB.evaporation specified: values set as zero") 49 49 50 50 if np.all(np.isnan(self.melt)): 51 51 self.melt=np.zeros((md.mesh.numberofvertices)) 52 print " no SMB.melt specified: values set as zero"52 print(" no SMB.melt specified: values set as zero") 53 53 54 54 if np.all(np.isnan(self.refreeze)): 55 55 self.refreeze=np.zeros((md.mesh.numberofvertices)) 56 print " no SMB.refreeze specified: values set as zero"56 print(" no SMB.refreeze specified: values set as zero") 57 57 58 58 return self -
issm/trunk-jpl/src/m/classes/SMBpdd.py
r22448 r23716 97 97 if np.all(np.isnan(self.s0p)): 98 98 self.s0p=np.zeros((md.mesh.numberofvertices)) 99 print " no SMBpdd.s0p specified: values set as zero"99 print(" no SMBpdd.s0p specified: values set as zero") 100 100 101 101 if np.all(np.isnan(self.s0t)): 102 102 self.s0t=np.zeros((md.mesh.numberofvertices)) 103 print " no SMBpdd.s0t specified: values set as zero"103 print(" no SMBpdd.s0t specified: values set as zero") 104 104 105 105 return self -
issm/trunk-jpl/src/m/classes/SMBpddSicopolis.py
r23333 r23716 60 60 if np.isnan(self.s0p): 61 61 self.s0p = np.zeros((md.mesh.numberofvertices,)) 62 print ' no SMBpddSicopolis.s0p specified: values set as zero'62 print(' no SMBpddSicopolis.s0p specified: values set as zero') 63 63 64 64 if np.isnan(self.s0t): 65 65 self.s0t = np.zeros((md.mesh.numberofvertices,)) 66 print ' no SMBpddSicopolis.s0t specified: values set as zero'66 print(' no SMBpddSicopolis.s0t specified: values set as zero') 67 67 68 68 if np.isnan(self.temperature_anomaly): 69 69 self.temperature_anomaly = np.zeros((md.mesh.numberofvertices,)) 70 print ' no SMBpddSicopolis.temperature_anomaly specified: values set as zero'70 print(' no SMBpddSicopolis.temperature_anomaly specified: values set as zero') 71 71 72 72 if np.isnan(self.precipitation_anomaly): 73 73 self.precipitation_anomaly = np.ones((md.mesh.numberofvertices,)) 74 print ' no SMBpddSicopolis.precipitation_anomaly specified: values set as ones'74 print(' no SMBpddSicopolis.precipitation_anomaly specified: values set as ones') 75 75 76 76 if np.isnan(self.smb_corr): 77 77 self.smb_corr = np.zeros((md.mesh.numberofvertices,)) 78 print ' no SMBpddSicopolis.smb_corr specified: values set as zero'78 print(' no SMBpddSicopolis.smb_corr specified: values set as zero') 79 79 # }}} 80 80 -
issm/trunk-jpl/src/m/classes/autodiff.py
r23245 r23716 5 5 from checkfield import checkfield 6 6 from WriteData import WriteData 7 from MatlabFuncs import *8 7 9 8 class autodiff(object): … … 15 14 """ 16 15 def __init__(self,*args): # {{{ 17 self.isautodiff 18 self.dependents 19 self.independents 20 self.driver 21 self.obufsize 22 self.lbufsize 23 self.cbufsize 24 self.tbufsize 25 self.gcTriggerMaxSize 26 self.gcTriggerRatio 27 self.tapeAlloc= float('NaN')16 self.isautodiff = False 17 self.dependents = [] 18 self.independents = [] 19 self.driver = 'fos_forward' 20 self.obufsize = float('NaN') 21 self.lbufsize = float('NaN') 22 self.cbufsize = float('NaN') 23 self.tbufsize = float('NaN') 24 self.gcTriggerMaxSize = float('NaN') 25 self.gcTriggerRatio = float('NaN') 26 self.tapeAlloc = float('NaN') 28 27 if not len(args): 29 28 self.setdefaultparameters() … … 31 30 raise RuntimeError("constructor not supported") 32 31 # }}} 32 33 33 def __repr__(self): # {{{ 34 34 s =" automatic differentiation parameters:\n" 35 36 35 s+="%s\n" % fielddisplay(self,'isautodiff',"indicates if the automatic differentiation is activated") 37 36 s+="%s\n" % fielddisplay(self,'dependents',"list of dependent variables") … … 44 43 s+="%s\n" % fielddisplay(self,'gcTriggerRatio',"free location block sorting/consolidation triggered if the ratio between allocated and used locations exceeds gcTriggerRatio") 45 44 s+="%s\n" % fielddisplay(self,'gcTriggerMaxSize',"free location block sorting/consolidation triggered if the allocated locations exceed gcTriggerMaxSize)") 46 45 s+="%s\n" % fielddisplay(self,'tapeAlloc','Iteration count of a priori memory allocation of the AD tape'); 47 46 48 47 return s 49 48 # }}} 49 50 50 def setdefaultparameters(self): # {{{ 51 52 self.obufsize = 524288 53 self.lbufsize = 524288 54 self.cbufsize = 524288 55 self.tbufsize = 524288 56 self.gcTriggerRatio=2.0 57 self.gcTriggerMaxSize=65536 58 self.tapeAlloc = 15000000; 51 self.obufsize = 524288 52 self.lbufsize = 524288 53 self.cbufsize = 524288 54 self.tbufsize = 524288 55 self.gcTriggerRatio = 2.0 56 self.gcTriggerMaxSize = 65536 57 self.tapeAlloc = 15000000; 59 58 return self 60 59 # }}} 60 61 61 def checkconsistency(self,md,solution,analyses): # {{{ 62 63 #Early return 62 #Early return 64 63 if not self.isautodiff: 65 return md 66 64 return md 65 67 66 md = checkfield(md,'fieldname','autodiff.obufsize','>=',524288) 68 67 md = checkfield(md,'fieldname','autodiff.lbufsize','>=',524288) … … 71 70 md = checkfield(md,'fieldname','autodiff.gcTriggerRatio','>=',2.0) 72 71 md = checkfield(md,'fieldname','autodiff.gcTriggerMaxSize','>=',65536) 73 72 md = checkfield(md,'fieldname','autodiff.tapeAlloc','>=',0); 74 73 75 74 #Driver value: 76 75 md = checkfield(md,'fieldname','autodiff.driver','values',['fos_forward','fov_forward','fov_forward_all','fos_reverse','fov_reverse','fov_reverse_all']) 77 76 78 #go through our dependents and independents and check consistency: 77 #go through our dependents and independents and check consistency: 79 78 for dep in self.dependents: 80 79 dep.checkconsistency(md,solution,analyses) … … 84 83 return md 85 84 # }}} 85 86 86 def marshall(self,prefix,md,fid): # {{{ 87 87 WriteData(fid,prefix,'object',self,'fieldname','isautodiff','format','Boolean') … … 93 93 WriteData(fid,prefix,'data',False,'name','md.autodiff.keep','format','Boolean') 94 94 return 95 95 96 96 #buffer sizes {{{ 97 97 WriteData(fid,prefix,'object',self,'fieldname','obufsize','format','Double'); … … 101 101 WriteData(fid,prefix,'object',self,'fieldname','gcTriggerRatio','format','Double'); 102 102 WriteData(fid,prefix,'object',self,'fieldname','gcTriggerMaxSize','format','Double'); 103 104 103 WriteData(fid,prefix,'object',self,'fieldname','tapeAlloc','format','Integer'); 104 #}}} 105 105 #process dependent variables {{{ 106 106 num_dependent_objects=len(self.dependents) … … 200 200 keep=False 201 201 202 #From ADOLC userdoc: 203 # The optional integer argument keep of trace on determines whether the numerical values of all active variables are 204 # recorded in a buffered temporary array or file called the taylor stack. This option takes effect if keep = 1 and 205 # prepares the scene for an immediately following gradient evaluation by a call to a routine implementing the reverse 206 # mode as described in the Section 4 and Section 5. 202 #From ADOLC userdoc: 203 # The optional integer argument keep of trace on determines whether the numerical values of all active variables are 204 # recorded in a buffered temporary array or file called the taylor stack. This option takes effect if keep = 1 and 205 # prepares the scene for an immediately following gradient evaluation by a call to a routine implementing the reverse 206 # mode as described in the Section 4 and Section 5. 207 207 # 208 208 209 209 if len(self.driver)<=3: 210 keep=False #there is no "_reverse" string within the driver string: 210 keep=False #there is no "_reverse" string within the driver string: 211 211 else: 212 212 if strncmpi(self.driver[3:],'_reverse',8): -
issm/trunk-jpl/src/m/classes/bamggeom.py
r21303 r23716 25 25 elif len(args) == 1: 26 26 object=args[0] 27 for field in object.iterkeys():27 for field in list(object.keys()): 28 28 if field in vars(self): 29 29 setattr(self,field,object[field]) -
issm/trunk-jpl/src/m/classes/bamgmesh.py
r21676 r23716 32 32 elif len(args) == 1: 33 33 object=args[0] 34 for field in object.iterkeys():34 for field in list(object.keys()): 35 35 if field in vars(self): 36 36 setattr(self,field,object[field]) -
issm/trunk-jpl/src/m/classes/basalforcings.py
r22267 r23716 40 40 if np.all(np.isnan(self.groundedice_melting_rate)): 41 41 self.groundedice_melting_rate=np.zeros((md.mesh.numberofvertices)) 42 print " no basalforcings.groundedice_melting_rate specified: values set as zero"42 print(" no basalforcings.groundedice_melting_rate specified: values set as zero") 43 43 44 44 if np.all(np.isnan(self.floatingice_melting_rate)): 45 45 self.floatingice_melting_rate=np.zeros((md.mesh.numberofvertices)) 46 print " no basalforcings.floatingice_melting_rate specified: values set as zero"46 print(" no basalforcings.floatingice_melting_rate specified: values set as zero") 47 47 #if np.all(np.isnan(self.geothermalflux)): 48 48 #self.geothermalflux=np.zeros((md.mesh.numberofvertices)) -
issm/trunk-jpl/src/m/classes/clusters/cyclone.py
r21576 r23716 10 10 from cyclone_settings import cyclone_settings 11 11 except ImportError: 12 print 'You need cyclone_settings.py to proceed, check presence and sys.path'12 print('You need cyclone_settings.py to proceed, check presence and sys.path') 13 13 14 14 class cyclone(object): … … 101 101 subprocess.call(compressstring,shell=True) 102 102 103 print 'uploading input file and queueing script'103 print('uploading input file and queueing script') 104 104 issmscpout(self.name,self.executionpath,self.login,self.port,[dirname+'.tar.gz']) 105 105 … … 108 108 # {{{ 109 109 110 print 'launching solution sequence on remote cluster'110 print('launching solution sequence on remote cluster') 111 111 if restart: 112 112 launchcommand='cd %s && cd %s && qsub %s.queue' % (self.executionpath,dirname,modelname) -
issm/trunk-jpl/src/m/classes/clusters/fram.py
r22203 r23716 11 11 from fram_settings import fram_settings 12 12 except ImportError: 13 print 'You need fram_settings.py to proceed, check presence and sys.path'13 print('You need fram_settings.py to proceed, check presence and sys.path') 14 14 15 15 class fram(object): … … 143 143 subprocess.call(compressstring,shell=True) 144 144 145 print 'uploading input file and queueing script'145 print('uploading input file and queueing script') 146 146 issmscpout(self.name,self.executionpath,self.login,self.port,[dirname+'.tar.gz']) 147 147 … … 150 150 # {{{ 151 151 152 print 'launching solution sequence on remote cluster'152 print('launching solution sequence on remote cluster') 153 153 if restart: 154 154 launchcommand='cd %s && cd %s && sbatch %s.queue' % (self.executionpath,dirname,modelname) -
issm/trunk-jpl/src/m/classes/clusters/generic.py
r23095 r23716 41 41 #initialize cluster using user settings if provided 42 42 if os.path.exists(self.name+'_settings.py'): 43 exec file(self.name+'_settings.py',globals())43 exec(compile(open(self.name+'_settings.py').read(), self.name+'_settings.py', 'exec'),globals()) 44 44 45 45 #OK get other fields … … 180 180 subprocess.call(compressstring,shell=True) 181 181 182 print 'uploading input file and queueing script'182 print('uploading input file and queueing script') 183 183 issmscpout(self.name,self.executionpath,self.login,self.port,[dirname+'.tar.gz']) 184 184 … … 186 186 def LaunchQueueJob(self,modelname,dirname,filelist,restart,batch): # {{{ 187 187 188 print 'launching solution sequence on remote cluster'188 print('launching solution sequence on remote cluster') 189 189 if restart: 190 190 launchcommand='cd %s && cd %s chmod 777 %s.queue && ./%s.queue' % (self.executionpath,dirname,modelname,modelname) -
issm/trunk-jpl/src/m/classes/clusters/hexagon.py
r21576 r23716 10 10 from hexagon_settings import hexagon_settings 11 11 except ImportError: 12 print 'You need hexagon_settings.py to proceed, check presence and sys.path'13 12 print('You need hexagon_settings.py to proceed, check presence and sys.path') 13 14 14 class hexagon(object): 15 15 """ 16 16 Hexagon cluster class definition 17 Hexagon have nodes built of 2*16 CPUs. Nodes are dedicated to one job so the best usage is to use 32 procs per nodes (16 per cores) as it is what is billed anyway. 17 Hexagon have nodes built of 2*16 CPUs. Nodes are dedicated to one job so the best usage is to use 32 procs per nodes (16 per cores) as it is what is billed anyway. 18 18 You can reduce this number if you run out of memory as the total node memory is divided by the number of procs 19 19 Usage: … … 46 46 self.np=self.numnodes*self.procspernodes 47 47 # }}} 48 48 49 def __repr__(self): 49 50 # {{{ … … 62 63 s = "%s\n%s"%(s,fielddisplay(self,'accountname','your cluster account')) 63 64 return s 64 # }}} 65 # }}} 66 65 67 def checkconsistency(self,md,solution,analyses): 66 68 # {{{ 67 69 #mem should not be over 32000mb 68 70 #numprocs should not be over 4096 69 #we have cpupernodes*numberofcpus=mppwidth and mppnppn=cpupernodes, 71 #we have cpupernodes*numberofcpus=mppwidth and mppnppn=cpupernodes, 70 72 #Miscelaneous 71 73 if not self.login: … … 80 82 md = md.checkmessage('asking too much memory max is 32000 per node') 81 83 return self 82 # }}} 84 # }}} 85 83 86 def BuildQueueScript(self,dirname,modelname,solution,io_gather,isvalgrind,isgprof,isdakota,isoceancoupling): 84 87 # {{{ 85 86 88 executable='issm.exe' 87 89 if isdakota: … … 93 95 executable='issm_ocean.exe' 94 96 95 #write queuing script 97 #write queuing script 96 98 shortname=modelname[0:min(12,len(modelname))] 97 99 fid=open(modelname+'.queue','w') … … 99 101 fid.write('#PBS -N %s \n' % shortname) 100 102 fid.write('#PBS -l mppwidth=%i,mppnppn=%i\n' % (self.np,self.procspernodes)) 101 102 103 104 103 timeobj=datetime.timedelta(minutes=self.time) 104 m,s=divmod(timeobj.total_seconds(), 60) 105 h,m=divmod(m, 60) 106 timestring="%02d:%02d:%02d" % (h, m, s) 105 107 fid.write('#PBS -l walltime=%s\n' % timestring) #walltime is hh:mm:ss 106 108 fid.write('#PBS -l mppmem=%imb\n' % int(self.mem/self.procspernodes)) 107 fid.write('#PBS -A %s\n' % self.accountname) 109 fid.write('#PBS -A %s\n' % self.accountname) 108 110 fid.write('#PBS -o %s/%s/%s.outlog \n' % (self.executionpath,dirname,modelname)) 109 111 fid.write('#PBS -e %s/%s/%s.errlog \n\n' % (self.executionpath,dirname,modelname)) … … 118 120 fid.write('aprun -B %s/%s %s %s/%s %s\n' % (self.codepath,executable,str(solution),self.executionpath,dirname,modelname)) 119 121 fid.close() 122 # }}} 120 123 121 # }}}122 124 def UploadQueueJob(self,modelname,dirname,filelist): 123 125 # {{{ 124 125 126 #compress the files into one zip. 126 127 compressstring='tar -zcf %s.tar.gz ' % dirname … … 129 130 subprocess.call(compressstring,shell=True) 130 131 131 print 'uploading input file and queueing script'132 print('uploading input file and queueing script') 132 133 issmscpout(self.name,self.executionpath,self.login,self.port,[dirname+'.tar.gz']) 134 # }}} 133 135 134 # }}}135 136 def LaunchQueueJob(self,modelname,dirname,filelist,restart,batch): 136 137 # {{{ 137 138 print 'launching solution sequence on remote cluster' 138 print('launching solution sequence on remote cluster') 139 139 if restart: 140 140 launchcommand='cd %s && cd %s && qsub %s.queue' % (self.executionpath,dirname,modelname) … … 142 142 launchcommand='cd %s && rm -rf ./%s && mkdir %s && cd %s && mv ../%s.tar.gz ./ && tar -zxf %s.tar.gz && qsub %s.queue' % (self.executionpath,dirname,dirname,dirname,dirname,dirname,modelname) 143 143 issmssh(self.name,self.login,self.port,launchcommand) 144 # }}} 144 145 145 # }}}146 146 def Download(self,dirname,filelist): 147 147 # {{{ -
issm/trunk-jpl/src/m/classes/clusters/pfe.py
r21576 r23716 12 12 from pfe_settings import pfe_settings 13 13 except ImportError: 14 print 'You need pfe_settings.py to proceed, check presence and sys.path'14 print('You need pfe_settings.py to proceed, check presence and sys.path') 15 15 16 16 class pfe(object): … … 177 177 subprocess.call(compressstring,shell=True) 178 178 179 print 'uploading input file and queueing script'179 print('uploading input file and queueing script') 180 180 issmscpout(self.name,self.executionpath,self.login,self.port,[dirname+'.tar.gz']) 181 181 … … 184 184 # {{{ 185 185 186 print 'launching solution sequence on remote cluster'186 print('launching solution sequence on remote cluster') 187 187 if restart: 188 188 launchcommand='cd %s && cd %s && qsub %s.queue' % (self.executionpath,dirname,modelname) -
issm/trunk-jpl/src/m/classes/clusters/stallo.py
r23378 r23716 11 11 from stallo_settings import stallo_settings 12 12 except ImportError: 13 print 'You need stallo_settings.py to proceed, check presence and sys.path'13 print('You need stallo_settings.py to proceed, check presence and sys.path') 14 14 15 15 class stallo(object): … … 151 151 subprocess.call(compressstring,shell=True) 152 152 153 print 'uploading input file and queueing script'153 print('uploading input file and queueing script') 154 154 issmscpout(self.name,self.executionpath,self.login,self.port,[dirname+'.tar.gz']) 155 155 … … 158 158 # {{{ 159 159 160 print 'launching solution sequence on remote cluster'160 print('launching solution sequence on remote cluster') 161 161 if restart: 162 162 launchcommand='cd %s && cd %s && sbatch %s.queue' % (self.executionpath,dirname,modelname) -
issm/trunk-jpl/src/m/classes/clusters/vilje.py
r22173 r23716 10 10 from vilje_settings import vilje_settings 11 11 except ImportError: 12 print 'You need vilje_settings.py to proceed, check presence and sys.path'13 12 print('You need vilje_settings.py to proceed, check presence and sys.path') 13 14 14 class vilje(object): 15 15 """ 16 16 Vilje cluster class definition 17 17 18 18 Usage: 19 19 cluster=vilje(); … … 43 43 #OK get other fields 44 44 self=options.AssignObjectFields(self) 45 self.np=self.numnodes*self.procspernodes 46 # }}} 45 self.np=self.numnodes*self.procspernodes 46 # }}} 47 47 48 def __repr__(self): 48 49 # {{{ … … 62 63 s = "%s\n%s"%(s,fielddisplay(self,'accountname','your cluster account')) 63 64 return s 64 # }}} 65 # }}} 66 65 67 def checkconsistency(self,md,solution,analyses): 66 68 # {{{ 67 69 #Queue dictionarry gives queu name as key and max walltime and cpus as var 68 70 queuedict = {'workq':[5*24*60, 30], 69 71 'test':[30,4]} … … 80 82 md = md.checkmessage('interactive mode not implemented') 81 83 return self 82 # }}} 84 # }}} 85 83 86 def BuildQueueScript(self,dirname,modelname,solution,io_gather,isvalgrind,isgprof,isdakota,isoceancoupling): 84 87 # {{{ 85 86 88 executable='issm.exe' 87 89 if isdakota: … … 93 95 executable='issm_ocean.exe' 94 96 95 #write queuing script 97 #write queuing script 96 98 shortname=modelname[0:min(12,len(modelname))] 97 99 fid=open(modelname+'.queue','w') … … 106 108 fid.write('#PBS -l walltime=%s\n' % timestring) #walltime is hh:mm:ss 107 109 #fid.write('#PBS -l mem=%igb\n' % self.mem) 108 fid.write('#PBS -A %s\n' % self.accountname) 110 fid.write('#PBS -A %s\n' % self.accountname) 109 111 fid.write('#PBS -o %s/%s/%s.outlog \n' % (self.executionpath,dirname,modelname)) 110 112 fid.write('#PBS -e %s/%s/%s.errlog \n\n' % (self.executionpath,dirname,modelname)) 111 113 fid.write('export ISSM_DIR="%s/../"\n' % self.codepath) 112 fid.write('module load intelcomp/17.0.0\n') 114 fid.write('module load intelcomp/17.0.0\n') 113 115 fid.write('module load mpt/2.14\n') 114 116 fid.write('module load petsc/3.7.4d\n') 115 fid.write('module load parmetis/4.0.3\n') 117 fid.write('module load parmetis/4.0.3\n') 116 118 fid.write('module load mumps/5.0.2\n') 117 119 fid.write('cd %s/%s/\n\n' % (self.executionpath,dirname)) 118 120 fid.write('mpiexec_mpt -np %i %s/%s %s %s/%s %s\n' % (self.np,self.codepath,executable,str(solution),self.executionpath,dirname,modelname)) 119 fid.close() 121 fid.close() 122 # }}} 120 123 121 # }}}122 124 def UploadQueueJob(self,modelname,dirname,filelist): 123 125 # {{{ … … 128 130 subprocess.call(compressstring,shell=True) 129 131 130 print 'uploading input file and queueing script'132 print('uploading input file and queueing script') 131 133 issmscpout(self.name,self.executionpath,self.login,self.port,[dirname+'.tar.gz']) 134 # }}} 132 135 133 # }}}134 136 def LaunchQueueJob(self,modelname,dirname,filelist,restart,batch): 135 137 # {{{ 136 137 print 'launching solution sequence on remote cluster' 138 print('launching solution sequence on remote cluster') 138 139 if restart: 139 140 launchcommand='cd %s && cd %s && qsub %s.queue' % (self.executionpath,dirname,modelname) … … 141 142 launchcommand='cd %s && rm -rf ./%s && mkdir %s && cd %s && mv ../%s.tar.gz ./ && tar -zxf %s.tar.gz && qsub %s.queue' % (self.executionpath,dirname,dirname,dirname,dirname,dirname,modelname) 142 143 issmssh(self.name,self.login,self.port,launchcommand) 144 # }}} 143 145 144 # }}}145 146 def Download(self,dirname,filelist): 146 147 # {{{ 147 148 148 #copy files from cluster to current directory 149 149 directory='%s/%s/' % (self.executionpath,dirname) 150 150 issmscpin(self.name,self.login,self.port,directory,filelist) 151 151 # }}} -
issm/trunk-jpl/src/m/classes/damage.py
r21049 r23716 3 3 from checkfield import checkfield 4 4 from WriteData import WriteData 5 import MatlabFuncs as m6 5 7 6 class damage(object): … … 14 13 15 14 def __init__(self,*args): # {{{ 16 17 #damage: 18 self.isdamage = 0. 19 self.D = float('NaN') 20 self.law = float('NaN') 21 self.spcdamage = float('NaN') 22 self.max_damage = float('NaN') 23 15 #damage: 16 self.isdamage = 0. 17 self.D = float('NaN') 18 self.law = float('NaN') 19 self.spcdamage = float('NaN') 20 self.max_damage = float('NaN') 21 24 22 #numerical 25 self.stabilization 26 self.maxiter = float('NaN')27 self.elementinterp 23 self.stabilization = float('NaN') 24 self.maxiter = float('NaN') 25 self.elementinterp = '' 28 26 29 #general parameters for evolution law: 30 self.stress_threshold 31 self.kappa 32 self.c1 33 self.c2 34 self.c3 35 self.c4 36 self.healing = float('NaN')37 self.equiv_stress 38 self.requested_outputs 27 #general parameters for evolution law: 28 self.stress_threshold = float('NaN') 29 self.kappa = float('NaN') 30 self.c1 = float('NaN') 31 self.c2 = float('NaN') 32 self.c3 = float('NaN') 33 self.c4 = float('NaN') 34 self.healing = float('NaN') 35 self.equiv_stress = float('NaN') 36 self.requested_outputs = [] 39 37 40 38 if not len(args): … … 42 40 else: 43 41 raise RuntimeError("constructor not supported") 42 # }}} 44 43 45 # }}}46 44 def __repr__(self): # {{{ 47 45 s =' Damage:\n' 48 49 46 s+="%s\n" % fielddisplay(self,"isdamage","is damage mechanics being used? [0 (default) or 1]") 50 47 if self.isdamage: … … 53 50 s+="%s\n" % fielddisplay(self,"spcdamage","damage constraints (NaN means no constraint)") 54 51 s+="%s\n" % fielddisplay(self,"max_damage","maximum possible damage (0<=max_damage<1)") 55 56 s+="%s\n" % fielddisplay(self,"stabilization","0: no, 1: artificial_diffusivity, 2: SUPG (not working), 4: Flux corrected transport") 52 s+="%s\n" % fielddisplay(self,"stabilization","0: no, 1: artificial_diffusivity, 2: SUPG (not working), 4: Flux corrected transport") 57 53 s+="%s\n" % fielddisplay(self,"maxiter","maximum number of non linear iterations") 58 54 s+="%s\n" % fielddisplay(self,"elementinterp","interpolation scheme for finite elements [''P1'',''P2'']") … … 69 65 return s 70 66 # }}} 67 71 68 def extrude(self,md): # {{{ 72 69 self.D=project3d(md,'vector',self.D,'type','node') … … 74 71 return self 75 72 #}}} 73 76 74 def setdefaultparameters(self): # {{{ 75 #damage parameters: 76 self.isdamage = 0 77 self.D = 0 78 self.law = 0 79 self.max_damage = 1-1e-5 #if damage reaches 1, solve becomes singular, as viscosity becomes nil 77 80 78 #damage parameters:79 self.isdamage=080 self.D=081 self.law=082 83 self.max_damage=1-1e-5 #if damage reaches 1, solve becomes singular, as viscosity becomes nil84 85 81 #Type of stabilization used 86 82 self.stabilization=4 87 83 88 84 #Maximum number of iterations 89 85 self.maxiter=100 … … 92 88 self.elementinterp='P1' 93 89 94 #damage evolution parameters 90 #damage evolution parameters 95 91 self.stress_threshold=1.3e5 96 92 self.kappa=2.8 … … 107 103 return self 108 104 # }}} 105 109 106 def defaultoutputs(self,md): # {{{ 110 111 107 if md.mesh.domaintype().lower()=='2dhorizontal': 112 108 list = ['DamageDbar'] … … 114 110 list = ['DamageD'] 115 111 return list 112 #}}} 116 113 117 #}}}118 114 def checkconsistency(self,md,solution,analyses): # {{{ 119 120 115 md = checkfield(md,'fieldname','damage.isdamage','numel',[1],'values',[0,1]) 121 116 if self.isdamage: … … 143 138 return md 144 139 # }}} 140 145 141 def marshall(self,prefix,md,fid): # {{{ 146 147 142 WriteData(fid,prefix,'object',self,'fieldname','isdamage','format','Boolean') 148 143 if self.isdamage: … … 162 157 WriteData(fid,prefix,'object',self,'fieldname','healing','format','Double') 163 158 WriteData(fid,prefix,'object',self,'fieldname','equiv_stress','format','Integer') 164 159 165 160 #process requested outputs 166 161 outputs = self.requested_outputs -
issm/trunk-jpl/src/m/classes/esa.py
r22352 r23716 9 9 """ 10 10 ESA class definition 11 11 12 12 Usage: 13 13 esa=esa(); 14 14 """ 15 15 16 16 def __init__(self): # {{{ 17 17 self.deltathickness = float('NaN') … … 22 22 self.requested_outputs = [] 23 23 self.transitions = [] 24 24 25 25 #set defaults 26 26 self.setdefaultparameters() 27 27 #}}} 28 28 29 def __repr__(self): # {{{ 29 30 string=' esa parameters:' … … 31 32 string="%s\n%s"%(string,fielddisplay(self,'love_h','load Love number for radial displacement')) 32 33 string="%s\n%s"%(string,fielddisplay(self,'love_l','load Love number for horizontal displaements')) 33 34 string="%s\n%s"%(string,fielddisplay(self,'hemisphere','North-south, East-west components of 2-D horiz displacement vector: -1 south, 1 north')) 34 35 string="%s\n%s"%(string,fielddisplay(self,'degacc','accuracy (default .01 deg) for numerical discretization of the Green''s functions')) 35 36 string="%s\n%s"%(string,fielddisplay(self,'transitions','indices into parts of the mesh that will be icecaps')) … … 38 39 return string 39 40 # }}} 41 40 42 def setdefaultparameters(self): # {{{ 41 42 43 #numerical discretization accuracy 43 44 self.degacc=.01 44 45 46 45 46 #computational flags: 47 self.hemisphere=0; 47 48 48 49 #output default: 49 50 self.requested_outputs=['default'] 50 51 51 #transitions should be a cell array of vectors: 52 #transitions should be a cell array of vectors: 52 53 self.transitions=[] 53 54 … … 56 57 return self 57 58 #}}} 59 58 60 def checkconsistency(self,md,solution,analyses): # {{{ 59 60 61 #Early return 61 62 if (solution!='EsaAnalysis'): … … 69 70 md = checkfield(md,'fieldname','esa.requested_outputs','stringrow',1) 70 71 71 #check that love numbers are provided at the same level of accuracy: 72 #check that love numbers are provided at the same level of accuracy: 72 73 if (size(self.love_h,0) != size(self.love_l,0)): 73 74 error('esa error message: love numbers should be provided at the same level of accuracy') 74 75 return md 75 76 # }}} 77 76 78 def defaultoutputs(self,md): # {{{ 77 79 return ['EsaUmotion'] 78 80 # }}} 81 79 82 def marshall(self,prefix,md,fid): # {{{ 80 83 WriteData(fid,prefix,'object',self,'fieldname','deltathickness','format','DoubleMat','mattype',2) … … 84 87 WriteData(fid,prefix,'object',self,'fieldname','degacc','format','Double') 85 88 WriteData(fid,prefix,'object',self,'fieldname','transitions','format','MatArray') 86 89 87 90 #process requested outputs 88 91 outputs = self.requested_outputs -
issm/trunk-jpl/src/m/classes/flowequation.py
r23537 r23716 118 118 if any(self.element_equation==1): 119 119 if np.any(np.logical_and(self.vertex_equation,md.mask.groundedice_levelset)): 120 print "\n !!! Warning: SIA's model is not consistent on ice shelves !!!\n"120 print("\n !!! Warning: SIA's model is not consistent on ice shelves !!!\n") 121 121 122 122 return md -
issm/trunk-jpl/src/m/classes/fourierlove.py
r23095 r23716 10 10 fourierlove=fourierlove(); 11 11 """ 12 13 12 def __init__(self): # {{{ 14 self.nfreq =0;15 self.frequencies = 16 self.sh_nmax = 17 self.sh_nmin = 18 self.g0 = 0;19 self.r0 = 0;20 self.mu0 = 21 self.allow_layer_deletion =0;22 self.love_kernels =0;23 self.forcing_type = 13 self.nfreq = 0; 14 self.frequencies = 0; 15 self.sh_nmax = 0; 16 self.sh_nmin = 0; 17 self.g0 = 0; 18 self.r0 = 0; 19 self.mu0 = 0; 20 self.allow_layer_deletion = 0; 21 self.love_kernels = 0; 22 self.forcing_type = 0; 24 23 25 24 #set defaults 26 25 self.setdefaultparameters() 26 #}}} 27 27 28 def __repr__(self): # {{{ 29 string=' Fourier Love class:' 30 string="%s\n%s"%(string,fielddisplay(self,'nfreq','number of frequencies sampled (default 1, elastic) [Hz]')) 31 string="%s\n%s"%(string,fielddisplay(self,'frequencies','frequencies sampled (convention defaults to 0 for the elastic case) [Hz]')) 32 string="%s\n%s"%(string,fielddisplay(self,'sh_nmax','maximum spherical harmonic degree (default 256, .35 deg, or 40 km at equator)')) 33 string="%s\n%s"%(string,fielddisplay(self,'sh_nmin','minimum spherical harmonic degree (default 1)')) 34 string="%s\n%s"%(string,fielddisplay(self,'g0','adimensioning constant for gravity (default 10) [m/s^2]')) 35 string="%s\n%s"%(string,fielddisplay(self,'r0','adimensioning constant for radius (default 6378*10^3) [m]')) 36 string="%s\n%s"%(string,fielddisplay(self,'mu0','adimensioning constant for stress (default 10^11) [Pa]')) 37 string="%s\n%s"%(string,fielddisplay(self,'allow_layer_deletion','allow for migration of the integration boundary with increasing spherical harmonics degree (default 1)')) 38 string="%s\n%s"%(string,fielddisplay(self,'love_kernels','compute love numbers at depth? (default 0)')) 39 string="%s\n%s"%(string,fielddisplay(self,'forcing_type','integer indicating the nature and depth of the forcing for the Love number calculation (default 11) :')) 40 string="%s\n%s"%(string,' 1: Inner core boundary -- Volumic Potential') 41 string="%s\n%s"%(string,' 2: Inner core boundary -- Pressure') 42 string="%s\n%s"%(string,' 3: Inner core boundary -- Loading') 43 string="%s\n%s"%(string,' 4: Inner core boundary -- Tangential traction') 44 string="%s\n%s"%(string,' 5: Core mantle boundary -- Volumic Potential') 45 string="%s\n%s"%(string,' 6: Core mantle boundary -- Pressure') 46 string="%s\n%s"%(string,' 7: Core mantle boundary -- Loading') 47 string="%s\n%s"%(string,' 8: Core mantle boundary -- Tangential traction') 48 string="%s\n%s"%(string,' 9: Surface -- Volumic Potential') 49 string="%s\n%s"%(string,' 10: Surface -- Pressure') 50 string="%s\n%s"%(string,' 11: Surface -- Loading') 51 string="%s\n%s"%(string,' 12: Surface -- Tangential traction ') 52 53 return string; 28 54 #}}} 29 def __repr__(self): # {{{30 31 string=' Fourier Love class:'32 33 string="%s\n%s"%(string,fielddisplay(self,'nfreq','number of frequencies sampled (default 1, elastic) [Hz]'))34 string="%s\n%s"%(string,fielddisplay(self,'frequencies','frequencies sampled (convention defaults to 0 for the elastic case) [Hz]'))35 string="%s\n%s"%(string,fielddisplay(self,'sh_nmax','maximum spherical harmonic degree (default 256, .35 deg, or 40 km at equator)'))36 string="%s\n%s"%(string,fielddisplay(self,'sh_nmin','minimum spherical harmonic degree (default 1)'))37 string="%s\n%s"%(string,fielddisplay(self,'g0','adimensioning constant for gravity (default 10) [m/s^2]'))38 string="%s\n%s"%(string,fielddisplay(self,'r0','adimensioning constant for radius (default 6378*10^3) [m]'))39 string="%s\n%s"%(string,fielddisplay(self,'mu0','adimensioning constant for stress (default 10^11) [Pa]'))40 string="%s\n%s"%(string,fielddisplay(self,'allow_layer_deletion','allow for migration of the integration boundary with increasing spherical harmonics degree (default 1)'))41 string="%s\n%s"%(string,fielddisplay(self,'love_kernels','compute love numbers at depth? (default 0)'))42 string="%s\n%s"%(string,fielddisplay(self,'forcing_type','integer indicating the nature and depth of the forcing for the Love number calculation (default 11) :'))43 string="%s\n%s"%(string,' 1: Inner core boundary -- Volumic Potential')44 string="%s\n%s"%(string,' 2: Inner core boundary -- Pressure')45 string="%s\n%s"%(string,' 3: Inner core boundary -- Loading')46 string="%s\n%s"%(string,' 4: Inner core boundary -- Tangential traction')47 string="%s\n%s"%(string,' 5: Core mantle boundary -- Volumic Potential')48 string="%s\n%s"%(string,' 6: Core mantle boundary -- Pressure')49 string="%s\n%s"%(string,' 7: Core mantle boundary -- Loading')50 string="%s\n%s"%(string,' 8: Core mantle boundary -- Tangential traction')51 string="%s\n%s"%(string,' 9: Surface -- Volumic Potential')52 string="%s\n%s"%(string,' 10: Surface -- Pressure')53 string="%s\n%s"%(string,' 11: Surface -- Loading')54 string="%s\n%s"%(string,' 12: Surface -- Tangential traction ')55 55 56 return string;57 58 59 #}}}60 56 def extrude(self,md): # {{{ 61 57 return self 62 58 #}}} 59 63 60 def setdefaultparameters(self): # {{{ 61 #we setup an elastic love number computation by default. 62 self.nfreq=1 63 self.frequencies=[0]; #Hz 64 self.sh_nmax=256 # .35 degree, 40 km at the equator. 65 self.sh_nmin=1 66 self.g0=10 # m/s^2 67 self.r0=6378*1e3 #m 68 self.mu0=1e11 # Pa 69 self.allow_layer_deletion=1 70 self.love_kernels=0 71 self.forcing_type = 11 64 72 65 #we setup an elastic love number computation by default. 66 self.nfreq=1 67 self.frequencies=[0]; #Hz 68 self.sh_nmax=256 # .35 degree, 40 km at the equator. 69 self.sh_nmin=1 70 self.g0=10 # m/s^2 71 self.r0=6378*1e3 #m 72 self.mu0=1e11 # Pa 73 self.allow_layer_deletion=1 74 self.love_kernels=0 75 self.forcing_type = 11 73 return self 74 #}}} 76 75 77 return self78 #}}}79 76 def checkconsistency(self,md,solution,analyses): # {{{ 77 md = checkfield(md,'fieldname','love.nfreq','NaN',1,'Inf',1,'numel',[1],'>',0); 78 md = checkfield(md,'fieldname','love.frequencies','NaN',1,'Inf',1,'numel',[md.love.nfreq]); 79 md = checkfield(md,'fieldname','love.sh_nmax','NaN',1,'Inf',1,'numel',[1],'>',0); 80 md = checkfield(md,'fieldname','love.sh_nmin','NaN',1,'Inf',1,'numel',[1],'>',0); 81 md = checkfield(md,'fieldname','love.g0','NaN',1,'Inf',1,'numel',[1],'>',0); 82 md = checkfield(md,'fieldname','love.r0','NaN',1,'Inf',1,'numel',[1],'>',0); 83 md = checkfield(md,'fieldname','love.mu0','NaN',1,'Inf',1,'numel',[1],'>',0); 84 md = checkfield(md,'fieldname','love.allow_layer_deletion','values',[0,1]); 85 md = checkfield(md,'fieldname','love.love_kernels','values',[0,1]); 86 md = checkfield(md,'fieldname','love.forcing_type','NaN',1,'Inf',1,'numel',[1],'>',0, '<=', 12); 87 if md.love.sh_nmin<=1 and md.love.forcing_type==9: 88 raise RuntimeError("Degree 1 not supported for Volumetric Potential forcing. Use sh_min>=2 for this kind of calculation.") 80 89 81 md = checkfield(md,'fieldname','love.nfreq','NaN',1,'Inf',1,'numel',[1],'>',0); 82 md = checkfield(md,'fieldname','love.frequencies','NaN',1,'Inf',1,'numel',[md.love.nfreq]); 83 md = checkfield(md,'fieldname','love.sh_nmax','NaN',1,'Inf',1,'numel',[1],'>',0); 84 md = checkfield(md,'fieldname','love.sh_nmin','NaN',1,'Inf',1,'numel',[1],'>',0); 85 md = checkfield(md,'fieldname','love.g0','NaN',1,'Inf',1,'numel',[1],'>',0); 86 md = checkfield(md,'fieldname','love.r0','NaN',1,'Inf',1,'numel',[1],'>',0); 87 md = checkfield(md,'fieldname','love.mu0','NaN',1,'Inf',1,'numel',[1],'>',0); 88 md = checkfield(md,'fieldname','love.allow_layer_deletion','values',[0,1]); 89 md = checkfield(md,'fieldname','love.love_kernels','values',[0,1]); 90 md = checkfield(md,'fieldname','love.forcing_type','NaN',1,'Inf',1,'numel',[1],'>',0, '<=', 12); 91 if md.love.sh_nmin<=1 and md.love.forcing_type==9: 92 raise RuntimeError("Degree 1 not supported for Volumetric Potential forcing. Use sh_min>=2 for this kind of calculation.") 90 return md 91 # }}} 93 92 94 return md 93 def marshall(self,prefix,md,fid): # {{{ 94 WriteData(fid,prefix,'object',self,'fieldname','nfreq','format','Integer'); 95 WriteData(fid,prefix,'object',self,'fieldname','frequencies','format','DoubleMat','mattype',3); 96 WriteData(fid,prefix,'object',self,'fieldname','sh_nmax','format','Integer'); 97 WriteData(fid,prefix,'object',self,'fieldname','sh_nmin','format','Integer'); 98 WriteData(fid,prefix,'object',self,'fieldname','g0','format','Double'); 99 WriteData(fid,prefix,'object',self,'fieldname','r0','format','Double'); 100 WriteData(fid,prefix,'object',self,'fieldname','mu0','format','Double'); 101 WriteData(fid,prefix,'object',self,'fieldname','allow_layer_deletion','format','Boolean'); 102 WriteData(fid,prefix,'object',self,'fieldname','love_kernels','format','Boolean'); 103 WriteData(fid,prefix,'object',self,'fieldname','forcing_type','format','Integer'); 95 104 # }}} 96 def marshall(self,prefix,md,fid): # {{{97 98 WriteData(fid,prefix,'object',self,'fieldname','nfreq','format','Integer');99 WriteData(fid,prefix,'object',self,'fieldname','frequencies','format','DoubleMat','mattype',3);100 WriteData(fid,prefix,'object',self,'fieldname','sh_nmax','format','Integer');101 WriteData(fid,prefix,'object',self,'fieldname','sh_nmin','format','Integer');102 WriteData(fid,prefix,'object',self,'fieldname','g0','format','Double');103 WriteData(fid,prefix,'object',self,'fieldname','r0','format','Double');104 WriteData(fid,prefix,'object',self,'fieldname','mu0','format','Double');105 WriteData(fid,prefix,'object',self,'fieldname','allow_layer_deletion','format','Boolean');106 WriteData(fid,prefix,'object',self,'fieldname','love_kernels','format','Boolean');107 WriteData(fid,prefix,'object',self,'fieldname','forcing_type','format','Integer');108 109 # }}} -
issm/trunk-jpl/src/m/classes/frictioncoulomb.py
r22052 r23716 5 5 6 6 class frictioncoulomb(object): 7 8 7 """ 8 FRICTIONCOULOMB class definition 9 9 10 11 12 10 Usage: 11 frictioncoulomb=frictioncoulomb() 12 """ 13 13 14 def __init__(self): # {{{ 15 self.coefficient = float('NaN') 16 self.coefficientcoulomb = float('NaN') 17 self.p = float('NaN') 18 self.q = float('NaN') 19 self.coupling = 0 20 self.effective_pressure = float('NaN') 21 #set defaults 22 self.setdefaultparameters() 14 def __init__(self): # {{{ 15 self.coefficient = float('NaN') 16 self.coefficientcoulomb = float('NaN') 17 self.p = float('NaN') 18 self.q = float('NaN') 19 self.coupling = 0 20 self.effective_pressure = float('NaN') 21 #set defaults 22 self.setdefaultparameters() 23 #}}} 23 24 24 #}}} 25 def __repr__(self): # {{{ 26 string="Basal shear stress parameters: Sigma_b = min(coefficient^2 * Neff ^r * |u_b|^(s-1) * u_b,\n coefficientcoulomb^2 * rho_i * g * (h-h_f)), (effective stress Neff=rho_ice*g*thickness+rho_water*g*bed, r=q/p and s=1/p)." 25 def __repr__(self): # {{{ 26 string="Basal shear stress parameters: Sigma_b = min(coefficient^2 * Neff ^r * |u_b|^(s-1) * u_b,\n coefficientcoulomb^2 * rho_i * g * (h-h_f)), (effective stress Neff=rho_ice*g*thickness+rho_water*g*bed, r=q/p and s=1/p)." 27 string="%s\n%s"%(string,fielddisplay(self,"coefficient","power law (Weertman) friction coefficient [SI]")) 28 string="%s\n%s"%(string,fielddisplay(self,"coefficientcoulomb","Coulomb friction coefficient [SI]")) 29 string="%s\n%s"%(string,fielddisplay(self,"p","p exponent")) 30 string="%s\n%s"%(string,fielddisplay(self,"q","q exponent")) 31 string="%s\n%s"%(string,fielddisplay(self,'coupling','Coupling flag: 0 for default, 1 for forcing(provide md.friction.effective_pressure) and 2 for coupled(not implemented yet)')) 32 string="%s\n%s"%(string,fielddisplay(self,'effective_pressure','Effective Pressure for the forcing if not coupled [Pa]')) 33 return string 34 #}}} 35 def extrude(self,md): # {{{ 36 self.coefficient=project3d(md,'vector',self.coefficient,'type','node','layer',1) 37 self.coefficientcoulomb=project3d(md,'vector',self.coefficientcoulomb,'type','node','layer',1) 38 self.p=project3d(md,'vector',self.p,'type','element') 39 self.q=project3d(md,'vector',self.q,'type','element') 40 if self.coupling==1: 41 self.effective_pressure=project3d(md,'vector',self.effective_pressure,'type','node','layer',1) 42 elif self.coupling==2: 43 raise ValueError('coupling not supported yet') 44 elif self.coupling > 2: 45 raise ValueError('md.friction.coupling larger than 2, not supported yet') 46 return self 47 #}}} 27 48 28 string="%s\n%s"%(string,fielddisplay(self,"coefficient","power law (Weertman) friction coefficient [SI]")) 29 string="%s\n%s"%(string,fielddisplay(self,"coefficientcoulomb","Coulomb friction coefficient [SI]")) 30 string="%s\n%s"%(string,fielddisplay(self,"p","p exponent")) 31 string="%s\n%s"%(string,fielddisplay(self,"q","q exponent")) 32 string="%s\n%s"%(string,fielddisplay(self,'coupling','Coupling flag: 0 for default, 1 for forcing(provide md.friction.effective_pressure) and 2 for coupled(not implemented yet)')) 33 string="%s\n%s"%(string,fielddisplay(self,'effective_pressure','Effective Pressure for the forcing if not coupled [Pa]')) 34 return string 35 #}}} 36 def extrude(self,md): # {{{ 37 self.coefficient=project3d(md,'vector',self.coefficient,'type','node','layer',1) 38 self.coefficientcoulomb=project3d(md,'vector',self.coefficientcoulomb,'type','node','layer',1) 39 self.p=project3d(md,'vector',self.p,'type','element') 40 self.q=project3d(md,'vector',self.q,'type','element') 41 if self.coupling==1: 42 self.effective_pressure=project3d(md,'vector',self.effective_pressure,'type','node','layer',1) 43 elif self.coupling==2: 44 raise ValueError('coupling not supported yet') 45 elif self.coupling > 2: 46 raise ValueError('md.friction.coupling larger than 2, not supported yet') 47 return self 48 #}}} 49 def setdefaultparameters(self): # {{{ 50 return self 51 #}}} 52 def checkconsistency(self,md,solution,analyses): # {{{ 49 def setdefaultparameters(self): # {{{ 50 return self 51 #}}} 53 52 54 #Early return 55 if 'StressbalanceAnalysis' not in analyses and 'ThermalAnalysis' not in analyses: 56 return md 53 def checkconsistency(self,md,solution,analyses): # {{{ 54 #Early return 55 if 'StressbalanceAnalysis' not in analyses and 'ThermalAnalysis' not in analyses: 56 return md 57 57 58 md = checkfield(md,'fieldname','friction.coefficient','timeseries',1,'NaN',1,'Inf',1) 59 md = checkfield(md,'fieldname','friction.coefficientcoulomb','timeseries',1,'NaN',1,'Inf',1) 60 md = checkfield(md,'fieldname','friction.q','NaN',1,'Inf',1,'size',[md.mesh.numberofelements]) 61 md = checkfield(md,'fieldname','friction.p','NaN',1,'Inf',1,'size',[md.mesh.numberofelements]) 62 if self.coupling==1: 63 md = checkfield(md,'fieldname','friction.effective_pressure','NaN',1,'Inf',1,'timeseries',1) 64 elif self.coupling==2: 65 raise ValueError('coupling not supported yet') 66 elif self.coupling > 2: 67 raise ValueError('md.friction.coupling larger than 2, not supported yet') 68 return md 58 md = checkfield(md,'fieldname','friction.coefficient','timeseries',1,'NaN',1,'Inf',1) 59 md = checkfield(md,'fieldname','friction.coefficientcoulomb','timeseries',1,'NaN',1,'Inf',1) 60 md = checkfield(md,'fieldname','friction.q','NaN',1,'Inf',1,'size',[md.mesh.numberofelements]) 61 md = checkfield(md,'fieldname','friction.p','NaN',1,'Inf',1,'size',[md.mesh.numberofelements]) 62 if self.coupling==1: 63 md = checkfield(md,'fieldname','friction.effective_pressure','NaN',1,'Inf',1,'timeseries',1) 64 elif self.coupling==2: 65 raise ValueError('coupling not supported yet') 66 elif self.coupling > 2: 67 raise ValueError('md.friction.coupling larger than 2, not supported yet') 68 return md 69 # }}} 69 70 71 def marshall(self,prefix,md,fid): # {{{ 72 WriteData(fid,prefix,'name','md.friction.law','data',7,'format','Integer') 73 WriteData(fid,prefix,'object',self,'fieldname','coefficient','format','DoubleMat','mattype',1,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts) 74 WriteData(fid,prefix,'object',self,'fieldname','coefficientcoulomb','format','DoubleMat','mattype',1) 75 WriteData(fid,prefix,'object',self,'fieldname','p','format','DoubleMat','mattype',2) 76 WriteData(fid,prefix,'object',self,'fieldname','q','format','DoubleMat','mattype',2) 77 WriteData(fid,prefix,'class','friction','object',self,'fieldname','coupling','format','Integer') 78 if self.coupling==1: 79 WriteData(fid,prefix,'class','friction','object',self,'fieldname','effective_pressure','format','DoubleMat','mattype',1,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts) 80 elif self.coupling==2: 81 raise ValueError('coupling not supported yet') 82 elif self.coupling > 2: 83 raise ValueError('md.friction.coupling larger than 2, not supported yet') 70 84 # }}} 71 def marshall(self,prefix,md,fid): # {{{72 WriteData(fid,prefix,'name','md.friction.law','data',7,'format','Integer')73 WriteData(fid,prefix,'object',self,'fieldname','coefficient','format','DoubleMat','mattype',1,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts)74 WriteData(fid,prefix,'object',self,'fieldname','coefficientcoulomb','format','DoubleMat','mattype',1)75 WriteData(fid,prefix,'object',self,'fieldname','p','format','DoubleMat','mattype',2)76 WriteData(fid,prefix,'object',self,'fieldname','q','format','DoubleMat','mattype',2)77 WriteData(fid,prefix,'class','friction','object',self,'fieldname','coupling','format','Integer')78 if self.coupling==1:79 WriteData(fid,prefix,'class','friction','object',self,'fieldname','effective_pressure','format','DoubleMat','mattype',1,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts)80 elif self.coupling==2:81 raise ValueError('coupling not supported yet')82 elif self.coupling > 2:83 raise ValueError('md.friction.coupling larger than 2, not supported yet')84 # }}} -
issm/trunk-jpl/src/m/classes/frictionshakti.py
r23020 r23716 5 5 6 6 class frictionshakti(object): 7 8 7 """ 8 FRICTIONSHAKTI class definition 9 9 10 11 12 10 Usage: 11 friction=frictionshakti() 12 """ 13 13 14 def __init__(self,md): # {{{ 15 self.coefficient = md.friction.coefficient 16 #set defaults 17 self.setdefaultparameters() 14 def __init__(self,md): # {{{ 15 self.coefficient = md.friction.coefficient 16 #set defaults 17 self.setdefaultparameters() 18 #}}} 18 19 19 #}}} 20 def __repr__(self): # {{{ 21 string="Basal shear stress parameters: Sigma_b = coefficient^2 * Neff * u_b\n(effective stress Neff=rho_ice*g*thickness+rho_water*g*(head-b))" 20 def __repr__(self): # {{{ 21 string="Basal shear stress parameters: Sigma_b = coefficient^2 * Neff * u_b\n(effective stress Neff=rho_ice*g*thickness+rho_water*g*(head-b))" 22 string="%s\n%s"%(string,fielddisplay(self,"coefficient","friction coefficient [SI]")) 23 return string 24 #}}} 22 25 23 string="%s\n%s"%(string,fielddisplay(self,"coefficient","friction coefficient [SI]")) 24 return string 25 #}}} 26 def extrude(self,md): # {{{ 27 self.coefficient=project3d(md,'vector',self.coefficient,'type','node','layer',1) 28 return self 29 #}}} 30 def setdefaultparameters(self): # {{{ 31 return self 32 #}}} 33 def checkconsistency(self,md,solution,analyses): # {{{ 26 def extrude(self,md): # {{{ 27 self.coefficient=project3d(md,'vector',self.coefficient,'type','node','layer',1) 28 return self 29 #}}} 34 30 35 #Early return36 if 'StressbalanceAnalysis' not in analyses and 'ThermalAnalysis' not in analyses:37 return md31 def setdefaultparameters(self): # {{{ 32 return self 33 #}}} 38 34 39 md = checkfield(md,'fieldname','friction.coefficient','timeseries',1,'NaN',1,'Inf',1) 40 return md 35 def checkconsistency(self,md,solution,analyses): # {{{ 36 #Early return 37 if 'StressbalanceAnalysis' not in analyses and 'ThermalAnalysis' not in analyses: 38 return md 41 39 40 md = checkfield(md,'fieldname','friction.coefficient','timeseries',1,'NaN',1,'Inf',1) 41 return md 42 # }}} 43 44 def marshall(self,prefix,md,fid): # {{{ 45 yts=md.constants.yts 46 WriteData(fid,prefix,'name','md.friction.law','data',8,'format','Integer') 47 WriteData(fid,prefix,'object',self,'fieldname','coefficient','format','DoubleMat','mattype',1,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts) 42 48 # }}} 43 def marshall(self,prefix,md,fid): # {{{44 yts=md.constants.yts45 WriteData(fid,prefix,'name','md.friction.law','data',8,'format','Integer')46 WriteData(fid,prefix,'object',self,'fieldname','coefficient','format','DoubleMat','mattype',1,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts)47 # }}} -
issm/trunk-jpl/src/m/classes/frontalforcings.py
r23658 r23716 13 13 14 14 def __init__(self): # {{{ 15 16 15 self.meltingrate = float('NaN') 17 16 18 17 #set defaults 19 18 self.setdefaultparameters() 19 #}}} 20 20 21 #}}}22 21 def __repr__(self): # {{{ 23 22 string=' Frontalforcings parameters:' … … 26 25 return string 27 26 #}}} 27 28 28 def extrude(self,md): # {{{ 29 29 self.meltingrate=project3d(md,'vector',self.meltingrate,'type','node') 30 30 return self 31 31 #}}} 32 32 33 def setdefaultparameters(self): # {{{ 33 34 34 return self 35 35 #}}} 36 36 37 def checkconsistency(self,md,solution,analyses): # {{{ 38 #Early return 39 if (solution!='TransientSolution') or (not md.transient.ismovingfront): 40 return md 37 41 38 #Early return 39 if (solution!='TransientSolution') or (not md.transient.ismovingfront): 40 return md 41 42 md = checkfield(md,'fieldname','frontalforcings.meltingrate','NaN',1,'Inf',1,'timeseries',1,'>=',0); 43 42 md = checkfield(md,'fieldname','frontalforcings.meltingrate','NaN',1,'Inf',1,'timeseries',1,'>=',0); 44 43 return md 45 44 # }}} 45 46 46 def marshall(self,prefix,md,fid): # {{{ 47 48 yts=md.constants.yts 49 50 WriteData(fid,prefix,'name','md.frontalforcings.parameterization','data',1,'format','Integer') 51 WriteData(fid,prefix,'object',self,'fieldname','meltingrate','format','DoubleMat','mattype',1,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts,'scale',1./yts); 52 53 # }}} 47 yts=md.constants.yts 48 WriteData(fid,prefix,'name','md.frontalforcings.parameterization','data',1,'format','Integer') 49 WriteData(fid,prefix,'object',self,'fieldname','meltingrate','format','DoubleMat','mattype',1,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts,'scale',1./yts); 50 # }}} -
issm/trunk-jpl/src/m/classes/hydrologydc.py
r23664 r23716 148 148 149 149 def defaultoutputs(self,md): # {{{ 150 list = ['SedimentHeadHydrostep','SedimentHeadResidual','EffectivePressureHydrostep' ,'HydrologydcMaskThawedNode','HydrologydcMaskThawedElt']150 list = ['SedimentHeadHydrostep','SedimentHeadResidual','EffectivePressureHydrostep'] 151 151 if self.isefficientlayer==1: 152 152 list.extend(['EplHeadHydrostep','HydrologydcMaskEplactiveNode','HydrologydcMaskEplactiveElt','EplHeadSlopeX','EplHeadSlopeY','HydrologydcEplThicknessHydrostep']) … … 162 162 if np.all(np.isnan(self.basal_moulin_input)): 163 163 self.basal_moulin_input=np.zeros((md.mesh.numberofvertices)) 164 print " no hydrology.basal_moulin_input specified: values set as zero"164 print(" no hydrology.basal_moulin_input specified: values set as zero") 165 165 166 166 return self … … 204 204 md = checkfield(md,'fieldname','hydrology.epl_max_thickness','numel',[1],'>',0.) 205 205 md = checkfield(md,'fieldname','hydrology.epl_initial_thickness','numel',[1],'>',0.) 206 md = checkfield(md,'fieldname','hydrology.epl_colapse_thickness','numel',[1],'>',0. ,'<',self.epl_initial_thickness)206 md = checkfield(md,'fieldname','hydrology.epl_colapse_thickness','numel',[1],'>',0.) 207 207 md = checkfield(md,'fieldname','hydrology.epl_thick_comp','numel',[1],'values',[0,1]) 208 208 md = checkfield(md,'fieldname','hydrology.eplflip_lock','>=',0.,'numel',[1]) -
issm/trunk-jpl/src/m/classes/hydrologyshakti.py
r23025 r23716 30 30 #}}} 31 31 def __repr__(self): # {{{ 32 33 32 string=' hydrologyshakti solution parameters:' 34 33 string="%s\n%s"%(string,fielddisplay(self,'head','subglacial hydrology water head (m)')) … … 45 44 string="%s\n%s"%(string,fielddisplay(self,'requested_outputs','additional outputs requested')) 46 45 return string 47 #}}} 46 #}}} 47 48 48 def extrude(self,md): # {{{ 49 49 return self 50 50 #}}} 51 51 52 def setdefaultparameters(self): # {{{ 52 # Set under-relaxation parameter to be 1 (no under-relaxation of nonlinear iteration) 53 # Set under-relaxation parameter to be 1 (no under-relaxation of nonlinear iteration) 53 54 self.relaxation=1 54 55 self.storage=0 … … 56 57 return self 57 58 #}}} 59 58 60 def defaultoutputs(self,md): # {{{ 59 61 list = ['HydrologyHead','HydrologyGapHeight','EffectivePressure','HydrologyBasalFlux','DegreeOfChannelization'] … … 62 64 63 65 def checkconsistency(self,md,solution,analyses): # {{{ 64 65 66 #Early return 66 67 if 'HydrologyShaktiAnalysis' not in analyses: … … 76 77 md = checkfield(md,'fieldname','hydrology.neumannflux','timeseries',1,'NaN',1,'Inf',1) 77 78 md = checkfield(md,'fieldname','hydrology.spchead','size',[md.mesh.numberofvertices]) 78 md = checkfield(md,'fieldname','hydrology.relaxation','>=',0) 79 md = checkfield(md,'fieldname','hydrology.relaxation','>=',0) 79 80 md = checkfield(md,'fieldname','hydrology.storage','>=',0) 80 81 md = checkfield(md,'fieldname','hydrology.requested_outputs','stringrow',1) 81 82 82 return md 83 83 # }}} 84 84 85 def marshall(self,prefix,md,fid): # {{{ 85 86 yts=md.constants.yts -
issm/trunk-jpl/src/m/classes/levelset.py
r23170 r23716 18 18 self.reinit_frequency = 0 19 19 self.calving_max = 0. 20 20 self.fe = 'P1' 21 21 22 22 #set defaults … … 30 30 string="%s\n%s"%(string,fielddisplay(self,'reinit_frequency','Amount of time steps after which the levelset function in re-initialized')) 31 31 string="%s\n%s"%(string,fielddisplay(self,'calving_max','maximum allowed calving rate (m/a)')) 32 32 string="%s\n%s"%(string,fielddisplay(self,'fe','Finite Element type: ''P1'' (default), or ''P2''')) 33 33 34 34 return string … … 41 41 42 42 #stabilization = 1 by default 43 self.stabilization 43 self.stabilization = 1 44 44 self.reinit_frequency = 5 45 45 self.calving_max = 3000. 46 46 47 48 47 #Linear elements by default 48 self.fe='P1' 49 49 50 50 return self … … 59 59 md = checkfield(md,'fieldname','levelset.stabilization','values',[0,1,2]); 60 60 md = checkfield(md,'fieldname','levelset.calving_max','NaN',1,'Inf',1,'>',0); 61 61 md = checkfield(md,'fieldname','levelset.fe','values',['P1','P2']); 62 62 63 63 return md … … 71 71 WriteData(fid,prefix,'object',self,'fieldname','reinit_frequency','format','Integer'); 72 72 WriteData(fid,prefix,'object',self,'fieldname','calving_max','format','Double','scale',1./yts); 73 73 WriteData(fid,prefix,'object',self,'fieldname','fe','format','String'); 74 74 # }}} -
issm/trunk-jpl/src/m/classes/linearbasalforcings.py
r22505 r23716 15 15 16 16 if not len(args): 17 print 'empty init'17 print('empty init') 18 18 self.groundedice_melting_rate = float('NaN') 19 19 self.deepwater_melting_rate = 0. … … 25 25 self.setdefaultparameters() 26 26 elif len(args)==1 and args[0].__module__=='basalforcings': 27 print 'converting basalforings to linearbasalforcings'27 print('converting basalforings to linearbasalforcings') 28 28 inv=args[0] 29 29 self.groundedice_melting_rate = inv.groundedice_melting_rate … … 53 53 if np.all(np.isnan(self.groundedice_melting_rate)): 54 54 self.groundedice_melting_rate=np.zeros((md.mesh.numberofvertices)) 55 print " no basalforcings.groundedice_melting_rate specified: values set as zero"55 print(" no basalforcings.groundedice_melting_rate specified: values set as zero") 56 56 57 57 return self -
issm/trunk-jpl/src/m/classes/m1qn3inversion.py
r21303 r23716 19 19 20 20 if not len(args): 21 print 'empty init'21 print('empty init') 22 22 self.iscontrol = 0 23 23 self.incomplete_adjoint = 0 … … 41 41 self.setdefaultparameters() 42 42 elif len(args)==1 and args[0].__module__=='inversion': 43 print 'converting inversion to m1qn3inversion'43 print('converting inversion to m1qn3inversion') 44 44 inv=args[0] 45 45 #first call setdefaultparameters: -
issm/trunk-jpl/src/m/classes/massfluxatgate.py
r21808 r23716 46 46 #}}} 47 47 def checkconsistency(self,md,solution,analyses): # {{{ 48 49 if not isinstance(self.name, basestring):48 49 if not isinstance(self.name, str): 50 50 raise RuntimeError("massfluxatgate error message: 'name' field should be a string!") 51 52 if not isinstance(self.profilename, basestring):53 raise RuntimeError("massfluxatgate error message: 'profilename' field should be a string!") 54 51 52 if not isinstance(self.profilename, str): 53 raise RuntimeError("massfluxatgate error message: 'profilename' field should be a string!") 54 55 55 OutputdefinitionStringArray=[] 56 56 for i in range(1,100): 57 57 x='Outputdefinition'+str(i) 58 58 OutputdefinitionStringArray.append(x) 59 59 60 60 md = checkfield(md,'field',self.definitionstring,'values',OutputdefinitionStringArray) 61 62 #check the profilename points to a file!: 61 62 #check the profilename points to a file!: 63 63 if not os.path.isfile(self.profilename): 64 64 raise RuntimeError("massfluxatgate error message: file name for profile corresponding to gate does not point to a legitimate file on disk!") … … 67 67 # }}} 68 68 def marshall(self,prefix,md,fid): # {{{ 69 70 #before marshalling, we need to create the segments out of the profilename: 69 70 #before marshalling, we need to create the segments out of the profilename: 71 71 self.segments=MeshProfileIntersection(md.mesh.elements,md.mesh.x,md.mesh.y,self.profilename)[0] 72 72 73 #ok, marshall name and segments: 73 #ok, marshall name and segments: 74 74 WriteData(fid,prefix,'data',self.name,'name','md.massfluxatgate.name','format','String'); 75 75 WriteData(fid,prefix,'data',self.definitionstring,'name','md.massfluxatgate.definitionstring','format','String'); -
issm/trunk-jpl/src/m/classes/matdamageice.py
r23703 r23716 30 30 self.rheology_law = '' 31 31 32 #giaivins: 32 #giaivins: 33 33 self.lithosphere_shear_modulus = 0. 34 34 self.lithosphere_density = 0. 35 35 self.mantle_shear_modulus = 0. 36 36 self.mantle_density = 0. 37 37 38 38 #SLR 39 39 self.earth_density= 5512; # average density of the Earth, (kg/m^3) 40 40 41 42 41 self.setdefaultparameters() 43 42 #}}} 43 44 44 def __repr__(self): # {{{ 45 45 string=" Materials:" 46 47 46 string="%s\n%s"%(string,fielddisplay(self,"rho_ice","ice density [kg/m^3]")) 48 47 string="%s\n%s"%(string,fielddisplay(self,"rho_water","water density [kg/m^3]")) … … 52 51 string="%s\n%s"%(string,fielddisplay(self,"thermalconductivity","ice thermal conductivity [W/m/K]")) 53 52 string="%s\n%s"%(string,fielddisplay(self,"temperateiceconductivity","temperate ice thermal conductivity [W/m/K]")) 54 string="%s\n%s"%(string,fielddisplay(self,"effectiveconductivity_averaging","computation of effective 53 string="%s\n%s"%(string,fielddisplay(self,"effectiveconductivity_averaging","computation of effectiveconductivity: (0) arithmetic mean, (1) harmonic mean, (2) geometric mean (default)")) 55 54 string="%s\n%s"%(string,fielddisplay(self,"meltingpoint","melting point of ice at 1atm in K")) 56 55 string="%s\n%s"%(string,fielddisplay(self,"latentheat","latent heat of fusion [J/m^3]")) … … 66 65 string="%s\n%s"%(string,fielddisplay(self,"mantle_density","Mantle density [g/cm^-3]")) 67 66 string="%s\n%s"%(string,fielddisplay(self,"earth_density","Mantle density [kg/m^-3]")) 68 69 70 67 return string 71 68 #}}} 69 72 70 def extrude(self,md): # {{{ 73 71 self.rheology_B=project3d(md,'vector',self.rheology_B,'type','node') … … 75 73 return self 76 74 #}}} 75 77 76 def setdefaultparameters(self): # {{{ 78 77 #ice density (kg/m^3) 79 78 self.rho_ice=917. 80 81 79 #ocean water density (kg/m^3) 82 80 self.rho_water=1023. 83 84 81 #fresh water density (kg/m^3) 85 82 self.rho_freshwater=1000. 86 87 83 #water viscosity (N.s/m^2) 88 self.mu_water=0.001787 89 84 self.mu_water=0.001787 90 85 #ice heat capacity cp (J/kg/K) 91 86 self.heatcapacity=2093. 92 93 87 #ice latent heat of fusion L (J/kg) 94 88 self.latentheat=3.34*10**5 95 96 89 #ice thermal conductivity (W/m/K) 97 90 self.thermalconductivity=2.4 98 99 91 #temperate ice thermal conductivity (W/m/K) 100 92 self.temperateiceconductivity=0.24 101 102 #computation of effective conductivity 93 #computation of effective conductivity 103 94 self.effectiveconductivity_averaging=1 104 105 95 #the melting point of ice at 1 atmosphere of pressure in K 106 96 self.meltingpoint=273.15 107 108 97 #rate of change of melting point with pressure (K/Pa) 109 98 self.beta=9.8*10**-8 110 111 99 #mixed layer (ice-water interface) heat capacity (J/kg/K) 112 100 self.mixed_layer_capacity=3974. 113 114 101 #thermal exchange velocity (ice-water interface) (m/s) 115 102 self.thermal_exchange_velocity=1.00*10**-4 116 117 103 #Rheology law: what is the temperature dependence of B with T 118 104 #available: none, paterson and arrhenius … … 124 110 self.mantle_shear_modulus = 1.45*10**11 # (Pa) 125 111 self.mantle_density = 3.34 # (g/cm^-3) 126 112 127 113 #SLR 128 114 self.earth_density= 5512; #average density of the Earth, (kg/m^3) 129 130 131 115 return self 132 116 #}}} 117 133 118 def checkconsistency(self,md,solution,analyses): # {{{ 134 119 md = checkfield(md,'fieldname','materials.rho_ice','>',0) … … 139 124 md = checkfield(md,'fieldname','materials.rheology_n','>',0,'size',[md.mesh.numberofelements]) 140 125 md = checkfield(md,'fieldname','materials.rheology_law','values',['None', 'BuddJacka', 'Cuffey', 'CuffeyTemperate', 'Paterson','Arrhenius','LliboutryDuval']) 126 md = checkfield(md,'fieldname','materials.effectiveconductivity_averaging','numel',[1],'values',[0,1,2]) 141 127 md = checkfield(md,'fieldname','materials.lithosphere_shear_modulus','>',0,'numel',[1]); 142 128 md = checkfield(md,'fieldname','materials.lithosphere_density','>',0,'numel',[1]); … … 144 130 md = checkfield(md,'fieldname','materials.mantle_density','>',0,'numel',[1]); 145 131 md = checkfield(md,'fieldname','materials.earth_density','>',0,'numel',[1]); 146 md = checkfield(md,'fieldname','materials.effectiveconductivity_averaging','numel',[1],'values',[0,1,2])147 148 132 return md 149 133 # }}} 134 150 135 def marshall(self,prefix,md,fid): # {{{ 151 136 WriteData(fid,prefix,'name','md.materials.type','data',1,'format','Integer'); … … 166 151 WriteData(fid,prefix,'object',self,'class','materials','fieldname','rheology_n','format','DoubleMat','mattype',2) 167 152 WriteData(fid,prefix,'data',self.rheology_law,'name','md.materials.rheology_law','format','String') 168 169 153 WriteData(fid,prefix,'object',self,'class','materials','fieldname','lithosphere_shear_modulus','format','Double'); 170 154 WriteData(fid,prefix,'object',self,'class','materials','fieldname','lithosphere_density','format','Double','scale',10.**3.); -
issm/trunk-jpl/src/m/classes/matenhancedice.py
r23703 r23716 26 26 self.mixed_layer_capacity = 0. 27 27 self.thermal_exchange_velocity = 0. 28 self.rheology_E 28 self.rheology_E = float('NaN') 29 29 self.rheology_B = float('NaN') 30 30 self.rheology_n = float('NaN') 31 31 self.rheology_law = '' 32 32 33 #giaivins: 33 #giaivins: 34 34 self.lithosphere_shear_modulus = 0. 35 35 self.lithosphere_density = 0. 36 36 self.mantle_shear_modulus = 0. 37 37 self.mantle_density = 0. 38 38 39 39 #SLR 40 40 self.earth_density= 0 # average density of the Earth, (kg/m^3) … … 42 42 self.setdefaultparameters() 43 43 #}}} 44 44 45 def __repr__(self): # {{{ 45 46 string=" Materials:" 46 47 47 string="%s\n%s"%(string,fielddisplay(self,"rho_ice","ice density [kg/m^3]")) 48 48 string="%s\n%s"%(string,fielddisplay(self,"rho_water","water density [kg/m^3]")) … … 52 52 string="%s\n%s"%(string,fielddisplay(self,"thermalconductivity","ice thermal conductivity [W/m/K]")) 53 53 string="%s\n%s"%(string,fielddisplay(self,"temperateiceconductivity","temperate ice thermal conductivity [W/m/K]")) 54 string="%s\n%s"%(string,fielddisplay(self,"effectiveconductivity_averaging","computation of effective 54 string="%s\n%s"%(string,fielddisplay(self,"effectiveconductivity_averaging","computation of effectiveconductivity: (0) arithmetic mean, (1) harmonic mean, (2) geometric mean (default)")) 55 55 string="%s\n%s"%(string,fielddisplay(self,"meltingpoint","melting point of ice at 1atm in K")) 56 56 string="%s\n%s"%(string,fielddisplay(self,"latentheat","latent heat of fusion [J/m^3]")) … … 67 67 string="%s\n%s"%(string,fielddisplay(self,"mantle_density","Mantle density [g/cm^-3]")) 68 68 string="%s\n%s"%(string,fielddisplay(self,"earth_density","Mantle density [kg/m^-3]")) 69 70 69 return string 71 70 #}}} 71 72 72 def extrude(self,md): # {{{ 73 73 self.rheology_E=project3d(md,'vector',self.rheology_E,'type','node') … … 76 76 return self 77 77 #}}} 78 78 79 def setdefaultparameters(self): # {{{ 79 80 #ice density (kg/m^3) 80 81 self.rho_ice=917. 81 82 82 #ocean water density (kg/m^3) 83 83 self.rho_water=1023. 84 85 84 #fresh water density (kg/m^3) 86 85 self.rho_freshwater=1000. 87 88 86 #water viscosity (N.s/m^2) 89 self.mu_water=0.001787 90 87 self.mu_water=0.001787 91 88 #ice heat capacity cp (J/kg/K) 92 89 self.heatcapacity=2093. 93 94 90 #ice latent heat of fusion L (J/kg) 95 91 self.latentheat=3.34*10**5 96 97 92 #ice thermal conductivity (W/m/K) 98 93 self.thermalconductivity=2.4 99 100 94 #temperate ice thermal conductivity (W/m/K) 101 95 self.temperateiceconductivity=0.24 102 103 #computation of effective conductivity 96 #computation of effective conductivity 104 97 self.effectiveconductivity_averaging=1 105 106 98 #the melting point of ice at 1 atmosphere of pressure in K 107 99 self.meltingpoint=273.15 108 109 100 #rate of change of melting point with pressure (K/Pa) 110 101 self.beta=9.8*10**-8 111 112 102 #mixed layer (ice-water interface) heat capacity (J/kg/K) 113 103 self.mixed_layer_capacity=3974. 114 115 104 #thermal exchange velocity (ice-water interface) (m/s) 116 105 self.thermal_exchange_velocity=1.00*10**-4 117 118 106 #Rheology law: what is the temperature dependence of B with T 119 107 #available: none, paterson and arrhenius … … 125 113 self.mantle_shear_modulus = 1.45*10**11 # (Pa) 126 114 self.mantle_density = 3.34 # (g/cm^-3) 127 115 128 116 #SLR 129 117 self.earth_density= 5512 #average density of the Earth, (kg/m^3) … … 131 119 return self 132 120 #}}} 121 133 122 def checkconsistency(self,md,solution,analyses): # {{{ 134 123 md = checkfield(md,'fieldname','materials.rho_ice','>',0) … … 141 130 md = checkfield(md,'fieldname','materials.rheology_law','values',['None','BuddJacka','Cuffey','CuffeyTemperate','Paterson','Arrhenius','LliboutryDuval']) 142 131 md = checkfield(md,'fieldname','materials.effectiveconductivity_averaging','numel',[1],'values',[0,1,2]) 143 132 144 133 if 'GiaAnalysis' in analyses: 145 134 md = checkfield(md,'fieldname','materials.lithosphere_shear_modulus','>',0,'numel',1) … … 151 140 return md 152 141 # }}} 142 153 143 def marshall(self,prefix,md,fid): # {{{ 154 144 WriteData(fid,prefix,'name','md.materials.type','data',4,'format','Integer') … … 170 160 WriteData(fid,prefix,'object',self,'class','materials','fieldname','rheology_n','format','DoubleMat','mattype',2) 171 161 WriteData(fid,prefix,'data',self.rheology_law,'name','md.materials.rheology_law','format','String') 172 173 162 WriteData(fid,prefix,'object',self,'class','materials','fieldname','lithosphere_shear_modulus','format','Double') 174 163 WriteData(fid,prefix,'object',self,'class','materials','fieldname','lithosphere_density','format','Double','scale',10^3) -
issm/trunk-jpl/src/m/classes/materials.py
r23005 r23716 4 4 from checkfield import checkfield 5 5 from WriteData import WriteData 6 6 7 7 def naturetointeger(strnat): #{{{ 8 9 10 11 12 13 14 intnat[i]=2 15 16 intnat[i]=3 17 18 intnat[i]=4 19 20 21 else: 22 23 24 8 9 intnat=np.zeros(len(strnat)) 10 for i in range(len(intnat)): 11 if strnat[i]=='damageice': 12 intnat[i]=1 13 elif strnat[i]=='estar': 14 intnat[i]=2 15 elif strnat[i]=='ice': 16 intnat[i]=3 17 elif strnat[i]=='enhancedice': 18 intnat[i]=4 19 elif strnat[i]=='litho': 20 intnat[i]=5 21 else: 22 raise RuntimeError("materials constructor error message: nature of the material not supported yet! (''ice'' or ''litho'')"); 23 24 return intnat 25 25 # }}} 26 26 27 class materials(object): 27 28 """ … … 33 34 34 35 def __init__(self,*args): # {{{ 35 36 self.nature = [] 37 38 if not len(args): 39 self.nature=['ice'] 40 else: 41 self.nature=args 42 43 for i in range(len(self.nature)): 44 if not(self.nature[i] == 'litho' or self.nature[i]=='ice'): 45 raise RuntimeError("materials constructor error message: nature of the material not supported yet! ('ice' or 'litho')") 46 47 #start filling in the dynamic fields: 48 for i in range(len(self.nature)): 49 nat=self.nature[i]; 50 if nat=='ice': 51 setattr(self,'rho_ice',0) 52 setattr(self,'rho_ice',0); 53 setattr(self,'rho_water',0); 54 setattr(self,'rho_freshwater',0); 55 setattr(self,'mu_water',0); 56 setattr(self,'heatcapacity',0); 57 setattr(self,'latentheat',0); 58 setattr(self,'thermalconductivity',0); 59 setattr(self,'temperateiceconductivity',0); 60 setattr(self,'meltingpoint',0); 61 setattr(self,'beta',0); 62 setattr(self,'mixed_layer_capacity',0); 63 setattr(self,'thermal_exchange_velocity',0); 64 setattr(self,'rheology_B',0); 65 setattr(self,'rheology_n',0); 66 setattr(self,'rheology_law',0); 67 elif nat=='litho': 68 setattr(self,'numlayers',0); 69 setattr(self,'radius',0); 70 setattr(self,'viscosity',0); 71 setattr(self,'lame_lambda',0); 72 setattr(self,'lame_mu',0); 73 setattr(self,'burgers_viscosity',0); 74 setattr(self,'burgers_mu',0); 75 setattr(self,'isburgers',0); 76 setattr(self,'density',0); 77 setattr(self,'issolid',0); 78 else: 79 raise RuntimeError("materials constructor error message: nature of the material not supported yet! ('ice' or 'litho')"); 80 #set default parameters: 36 self.nature = [] 37 if not len(args): 38 self.nature=['ice'] 39 else: 40 self.nature=args 41 42 for i in range(len(self.nature)): 43 if not(self.nature[i] == 'litho' or self.nature[i]=='ice'): 44 raise RuntimeError("materials constructor error message: nature of the material not supported yet! ('ice' or 'litho')") 45 46 #start filling in the dynamic fields: 47 for i in range(len(self.nature)): 48 nat=self.nature[i]; 49 if nat=='ice': 50 setattr(self,'rho_ice',0) 51 setattr(self,'rho_ice',0); 52 setattr(self,'rho_water',0); 53 setattr(self,'rho_freshwater',0); 54 setattr(self,'mu_water',0); 55 setattr(self,'heatcapacity',0); 56 setattr(self,'latentheat',0); 57 setattr(self,'thermalconductivity',0); 58 setattr(self,'temperateiceconductivity',0); 59 setattr(self,'meltingpoint',0); 60 setattr(self,'beta',0); 61 setattr(self,'mixed_layer_capacity',0); 62 setattr(self,'thermal_exchange_velocity',0); 63 setattr(self,'rheology_B',0); 64 setattr(self,'rheology_n',0); 65 setattr(self,'rheology_law',0); 66 elif nat=='litho': 67 setattr(self,'numlayers',0); 68 setattr(self,'radius',0); 69 setattr(self,'viscosity',0); 70 setattr(self,'lame_lambda',0); 71 setattr(self,'lame_mu',0); 72 setattr(self,'burgers_viscosity',0); 73 setattr(self,'burgers_mu',0); 74 setattr(self,'isburgers',0); 75 setattr(self,'density',0); 76 setattr(self,'issolid',0); 77 else: 78 raise RuntimeError("materials constructor error message: nature of the material not supported yet! ('ice' or 'litho')"); 79 #set default parameters: 81 80 self.setdefaultparameters() 82 81 #}}} 82 83 83 def __repr__(self): # {{{ 84 84 string=" Materials:" 85 86 nat=self.nature[i]; 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 85 for i in range(len(self.nature)): 86 nat=self.nature[i]; 87 if nat=='ice': 88 string="%s\n%s"%(string,'Ice:'); 89 string="%s\n%s"%(string,fielddisplay(self,"rho_ice","ice density [kg/m^3]")) 90 string="%s\n%s"%(string,fielddisplay(self,"rho_water","water density [kg/m^3]")) 91 string="%s\n%s"%(string,fielddisplay(self,"rho_freshwater","fresh water density [kg/m^3]")) 92 string="%s\n%s"%(string,fielddisplay(self,"mu_water","water viscosity [N s/m^2]")) 93 string="%s\n%s"%(string,fielddisplay(self,"heatcapacity","heat capacity [J/kg/K]")) 94 string="%s\n%s"%(string,fielddisplay(self,"thermalconductivity","ice thermal conductivity [W/m/K]")) 95 string="%s\n%s"%(string,fielddisplay(self,"temperateiceconductivity","temperate ice thermal conductivity [W/m/K]")) 96 string="%s\n%s"%(string,fielddisplay(self,"meltingpoint","melting point of ice at 1atm in K")) 97 string="%s\n%s"%(string,fielddisplay(self,"latentheat","latent heat of fusion [J/m^3]")) 98 string="%s\n%s"%(string,fielddisplay(self,"beta","rate of change of melting point with pressure [K/Pa]")) 99 string="%s\n%s"%(string,fielddisplay(self,"mixed_layer_capacity","mixed layer capacity [W/kg/K]")) 100 string="%s\n%s"%(string,fielddisplay(self,"thermal_exchange_velocity","thermal exchange velocity [m/s]")) 101 string="%s\n%s"%(string,fielddisplay(self,"rheology_B","flow law parameter [Pa s^(1/n)]")) 102 string="%s\n%s"%(string,fielddisplay(self,"rheology_n","Glen's flow law exponent")) 103 string="%s\n%s"%(string,fielddisplay(self,"rheology_law","law for the temperature dependance of the rheology: 'None', 'BuddJacka', 'Cuffey', 'CuffeyTemperate', 'Paterson', 'Arrhenius' or 'LliboutryDuval'")) 104 elif nat=='litho': 105 string="%s\n%s"%(string,'Litho:'); 106 string="%s\n%s"%(string,fielddisplay(self,'numlayers','number of layers (default 2)')) 107 string="%s\n%s"%(string,fielddisplay(self,'radius','array describing the radius for each interface (numlayers+1) [m]')) 108 string="%s\n%s"%(string,fielddisplay(self,'viscosity','array describing each layer''s viscosity (numlayers) [Pa.s]')) 109 string="%s\n%s"%(string,fielddisplay(self,'lame_lambda','array describing the lame lambda parameter (numlayers) [Pa]')) 110 string="%s\n%s"%(string,fielddisplay(self,'lame_mu','array describing the shear modulus for each layers (numlayers) [Pa]')) 111 string="%s\n%s"%(string,fielddisplay(self,'burgers_viscosity','array describing each layer''s transient viscosity, only for Burgers rheologies (numlayers) [Pa.s]')) 112 string="%s\n%s"%(string,fielddisplay(self,'burgers_mu','array describing each layer''s transient shear modulus, only for Burgers rheologies (numlayers) [Pa]')) 113 string="%s\n%s"%(string,fielddisplay(self,'isburgers','array describing whether we adopt a MaxWell (0) or Burgers (1) rheology (default 0)')) 114 string="%s\n%s"%(string,fielddisplay(self,'density','array describing each layer''s density (numlayers) [kg/m^3]')) 115 string="%s\n%s"%(string,fielddisplay(self,'issolid','array describing whether the layer is solid or liquid (default 1) (numlayers)')) 116 117 else: 118 raise RuntimeError("materials constructor error message: nature of the material not supported yet! ('ice' or 'litho')"); 119 119 120 120 return string 121 121 #}}} 122 122 123 def extrude(self,md): # {{{ 123 124 nat=self.nature[i]; 125 126 127 128 124 for i in range(len(self.nature)): 125 nat=self.nature[i]; 126 if nat=='ice': 127 self.rheology_B=project3d(md,'vector',self.rheology_B,'type','node') 128 self.rheology_n=project3d(md,'vector',self.rheology_n,'type','element') 129 return self 129 130 #}}} 131 130 132 def setdefaultparameters(self): # {{{ 131 for i in range(len(self.nature)): 132 nat=self.nature[i]; 133 if nat=='ice': 134 #ice density (kg/m^3) 135 self.rho_ice=917. 136 137 #ocean water density (kg/m^3) 138 self.rho_water=1023. 139 140 #fresh water density (kg/m^3) 141 self.rho_freshwater=1000. 142 143 #water viscosity (N.s/m^2) 144 self.mu_water=0.001787 145 146 #ice heat capacity cp (J/kg/K) 147 self.heatcapacity=2093. 148 149 #ice latent heat of fusion L (J/kg) 150 self.latentheat=3.34*10^5 151 152 #ice thermal conductivity (W/m/K) 153 self.thermalconductivity=2.4 154 155 #wet ice thermal conductivity (W/m/K) 156 self.temperateiceconductivity=.24 157 158 #the melting point of ice at 1 atmosphere of pressure in K 159 self.meltingpoint=273.15 160 161 #rate of change of melting point with pressure (K/Pa) 162 self.beta=9.8*10^-8 163 164 #mixed layer (ice-water interface) heat capacity (J/kg/K) 165 self.mixed_layer_capacity=3974. 166 167 #thermal exchange velocity (ice-water interface) (m/s) 168 self.thermal_exchange_velocity=1.00*10^-4 169 170 #Rheology law: what is the temperature dependence of B with T 171 #available: none, paterson and arrhenius 172 self.rheology_law='Paterson' 173 174 elif nat=='litho': 175 #we default to a configuration that enables running GIA solutions using giacaron and/or giaivins. 176 self.numlayers=2 177 178 #center of the earth (approximation, must not be 0), then the lab (lithosphere/asthenosphere boundary) then the surface 179 #(with 1d3 to avoid numerical singularities) 180 self.radius=[1e3,6278*1e3,6378*1e3] 181 182 self.viscosity=[1e21,1e40] #mantle and lithosphere viscosity (respectively) [Pa.s] 183 self.lame_mu=[1.45*1e11,6.7*1e10] # (Pa) #lithosphere and mantle shear modulus (respectively) [Pa] 184 self.lame_lambda=self.lame_mu # (Pa) #mantle and lithosphere lamba parameter (respectively) [Pa] 185 self.burgers_viscosity=[np.nan,np.nan] 186 self.burgers_mu=[np.nan,np.nan] 187 self.isburgers=[0,0] 188 self.density=[5.51*1e3,5.50*1e3] # (Pa) #mantle and lithosphere density [kg/m^3] 189 self.issolid=[1,1] # is layer solid or liquid. 190 191 else: 192 raise RuntimeError("materials setdefaultparameters error message: nature of the material not supported yet! ('ice' or 'litho')"); 133 for i in range(len(self.nature)): 134 nat=self.nature[i]; 135 if nat=='ice': 136 #ice density (kg/m^3) 137 self.rho_ice=917. 138 #ocean water density (kg/m^3) 139 self.rho_water=1023. 140 #fresh water density (kg/m^3) 141 self.rho_freshwater=1000. 142 #water viscosity (N.s/m^2) 143 self.mu_water=0.001787 144 #ice heat capacity cp (J/kg/K) 145 self.heatcapacity=2093. 146 #ice latent heat of fusion L (J/kg) 147 self.latentheat=3.34*10^5 148 #ice thermal conductivity (W/m/K) 149 self.thermalconductivity=2.4 150 #wet ice thermal conductivity (W/m/K) 151 self.temperateiceconductivity=.24 152 #the melting point of ice at 1 atmosphere of pressure in K 153 self.meltingpoint=273.15 154 #rate of change of melting point with pressure (K/Pa) 155 self.beta=9.8*10^-8 156 #mixed layer (ice-water interface) heat capacity (J/kg/K) 157 self.mixed_layer_capacity=3974. 158 #thermal exchange velocity (ice-water interface) (m/s) 159 self.thermal_exchange_velocity=1.00*10^-4 160 #Rheology law: what is the temperature dependence of B with T 161 #available: none, paterson and arrhenius 162 self.rheology_law='Paterson' 163 164 elif nat=='litho': 165 #we default to a configuration that enables running GIA solutions using giacaron and/or giaivins. 166 self.numlayers=2 167 #center of the earth (approximation, must not be 0), then the lab (lithosphere/asthenosphere boundary) then the surface 168 #(with 1d3 to avoid numerical singularities) 169 self.radius=[1e3,6278*1e3,6378*1e3] 170 self.viscosity=[1e21,1e40] #mantle and lithosphere viscosity (respectively) [Pa.s] 171 self.lame_mu=[1.45*1e11,6.7*1e10] # (Pa) #lithosphere and mantle shear modulus (respectively) [Pa] 172 self.lame_lambda=self.lame_mu # (Pa) #mantle and lithosphere lamba parameter (respectively) [Pa] 173 self.burgers_viscosity=[np.nan,np.nan] 174 self.burgers_mu=[np.nan,np.nan] 175 self.isburgers=[0,0] 176 self.density=[5.51*1e3,5.50*1e3] # (Pa) #mantle and lithosphere density [kg/m^3] 177 self.issolid=[1,1] # is layer solid or liquid. 178 179 else: 180 raise RuntimeError("materials setdefaultparameters error message: nature of the material not supported yet! ('ice' or 'litho')"); 193 181 194 182 return self 195 183 #}}} 196 184 def checkconsistency(self,md,solution,analyses): # {{{ 197 for i in range(len(self.nature)): 198 nat=self.nature[i]; 199 if nat=='ice': 200 md = checkfield(md,'fieldname','materials.rho_ice','>',0) 201 md = checkfield(md,'fieldname','materials.rho_water','>',0) 202 md = checkfield(md,'fieldname','materials.rho_freshwater','>',0) 203 md = checkfield(md,'fieldname','materials.mu_water','>',0) 204 md = checkfield(md,'fieldname','materials.rheology_B','>',0,'timeseries',1,'NaN',1,'Inf',1) 205 md = checkfield(md,'fieldname','materials.rheology_n','>',0,'size',[md.mesh.numberofelements]) 206 md = checkfield(md,'fieldname','materials.rheology_law','values',['None','BuddJacka','Cuffey','CuffeyTemperate','Paterson','Arrhenius','LliboutryDuval']) 207 elif nat=='litho': 208 if 'LoveAnalysis' not in analyses: 209 return md 210 211 md = checkfield(md,'fieldname','materials.numlayers','NaN',1,'Inf',1,'>',0,'numel',[1]) 212 md = checkfield(md,'fieldname','materials.radius','NaN',1,'Inf',1,'size',[md.materials.numlayers+1,1],'>',0) 213 md = checkfield(md,'fieldname','materials.lame_mu','NaN',1,'Inf',1,'size',[md.materials.numlayers,1],'>=',0) 214 md = checkfield(md,'fieldname','materials.lame_lambda','NaN',1,'Inf',1,'size',[md.materials.numlayers,1],'>=',0) 215 md = checkfield(md,'fieldname','materials.issolid','NaN',1,'Inf',1,'size',[md.materials.numlayers,1],'>=',0,'<',2) 216 md = checkfield(md,'fieldname','materials.density','NaN',1,'Inf',1,'size',[md.materials.numlayers,1],'>',0) 217 md = checkfield(md,'fieldname','materials.viscosity','NaN',1,'Inf',1,'size',[md.materials.numlayers,1],'>=',0) 218 md = checkfield(md,'fieldname','materials.isburgers','NaN',1,'Inf',1,'size',[md.materials.numlayers,1],'>=',0,'<=',1) 219 md = checkfield(md,'fieldname','materials.burgers_viscosity','Inf',1,'size',[md.materials.numlayers,1],'>=',0) 220 md = checkfield(md,'fieldname','materials.burgers_mu','Inf',1,'size',[md.materials.numlayers,1],'>=',0) 221 222 for i in range(md.materials.numlayers): 223 if md.materials.isburgers[i] and (np.isnan(md.materials.burgers_viscosity[i] or np.isnan(md.materials.burgers_mu[i]))): 224 raise RuntimeError("materials checkconsistency error message: Litho burgers_viscosity or burgers_mu has NaN values, inconsistent with isburgers choice") 225 226 if md.materials.issolid[0]==0 or md.materials.lame_mu[0]==0: 227 raise RuntimeError('First layer must be solid (issolid(1) > 0 AND lame_mu(1) > 0). Add a weak inner core if necessary.') 228 229 for i in range(md.materials.numlayers-1): 230 if (not md.materials.issolid[i]) and (not md.materials.issolid[i+1]): #if there are at least two consecutive indices that contain issolid = 0 231 raise RuntimeError("%s%i%s"%('2 or more adjacent fluid layers detected starting at layer ',i,'. This is not supported yet. Consider merging them.')) 232 233 else: 234 raise RuntimeError("materials checkconsistency error message: nature of the material not supported yet! ('ice' or 'litho')"); 185 for i in range(len(self.nature)): 186 nat=self.nature[i]; 187 if nat=='ice': 188 md = checkfield(md,'fieldname','materials.rho_ice','>',0) 189 md = checkfield(md,'fieldname','materials.rho_water','>',0) 190 md = checkfield(md,'fieldname','materials.rho_freshwater','>',0) 191 md = checkfield(md,'fieldname','materials.mu_water','>',0) 192 md = checkfield(md,'fieldname','materials.rheology_B','>',0,'timeseries',1,'NaN',1,'Inf',1) 193 md = checkfield(md,'fieldname','materials.rheology_n','>',0,'size',[md.mesh.numberofelements]) 194 md = checkfield(md,'fieldname','materials.rheology_law','values',['None','BuddJacka','Cuffey','CuffeyTemperate','Paterson','Arrhenius','LliboutryDuval']) 195 196 elif nat=='litho': 197 if 'LoveAnalysis' not in analyses: 198 return md 199 200 md = checkfield(md,'fieldname','materials.numlayers','NaN',1,'Inf',1,'>',0,'numel',[1]) 201 md = checkfield(md,'fieldname','materials.radius','NaN',1,'Inf',1,'size',[md.materials.numlayers+1,1],'>',0) 202 md = checkfield(md,'fieldname','materials.lame_mu','NaN',1,'Inf',1,'size',[md.materials.numlayers,1],'>=',0) 203 md = checkfield(md,'fieldname','materials.lame_lambda','NaN',1,'Inf',1,'size',[md.materials.numlayers,1],'>=',0) 204 md = checkfield(md,'fieldname','materials.issolid','NaN',1,'Inf',1,'size',[md.materials.numlayers,1],'>=',0,'<',2) 205 md = checkfield(md,'fieldname','materials.density','NaN',1,'Inf',1,'size',[md.materials.numlayers,1],'>',0) 206 md = checkfield(md,'fieldname','materials.viscosity','NaN',1,'Inf',1,'size',[md.materials.numlayers,1],'>=',0) 207 md = checkfield(md,'fieldname','materials.isburgers','NaN',1,'Inf',1,'size',[md.materials.numlayers,1],'>=',0,'<=',1) 208 md = checkfield(md,'fieldname','materials.burgers_viscosity','Inf',1,'size',[md.materials.numlayers,1],'>=',0) 209 md = checkfield(md,'fieldname','materials.burgers_mu','Inf',1,'size',[md.materials.numlayers,1],'>=',0) 210 211 for i in range(md.materials.numlayers): 212 if md.materials.isburgers[i] and (np.isnan(md.materials.burgers_viscosity[i] or np.isnan(md.materials.burgers_mu[i]))): 213 raise RuntimeError("materials checkconsistency error message: Litho burgers_viscosity or burgers_mu has NaN values, inconsistent with isburgers choice") 214 215 if md.materials.issolid[0]==0 or md.materials.lame_mu[0]==0: 216 raise RuntimeError('First layer must be solid (issolid(1) > 0 AND lame_mu(1) > 0). Add a weak inner core if necessary.') 217 218 for i in range(md.materials.numlayers-1): 219 if (not md.materials.issolid[i]) and (not md.materials.issolid[i+1]): #if there are at least two consecutive indices that contain issolid = 0 220 raise RuntimeError("%s%i%s"%('2 or more adjacent fluid layers detected starting at layer ',i,'. This is not supported yet. Consider merging them.')) 221 222 else: 223 raise RuntimeError("materials checkconsistency error message: nature of the material not supported yet! ('ice' or 'litho')"); 235 224 236 225 return md 237 226 # }}} 227 238 228 def marshall(self,prefix,md,fid): # {{{ 239 240 #1: MatdamageiceEnum 2: MatestarEnum 3: MaticeEnum 4: MatenhancediceEnum 5: MaterialsEnum 241 WriteData(fid,prefix,'name','md.materials.type','data',6,'format','Integer') 242 WriteData(fid,prefix,'name','md.materials.nature','data',naturetointeger(self.nature),'format','IntMat','mattype',3) 243 244 for i in range(len(self.nature)): 245 nat=self.nature[i]; 246 if nat=='ice': 247 248 WriteData(fid,prefix,'name','md.materials.type','data',3,'format','Integer') 249 WriteData(fid,prefix,'object',self,'class','materials','fieldname','rho_ice','format','Double') 250 WriteData(fid,prefix,'object',self,'class','materials','fieldname','rho_water','format','Double') 251 WriteData(fid,prefix,'object',self,'class','materials','fieldname','rho_freshwater','format','Double') 252 WriteData(fid,prefix,'object',self,'class','materials','fieldname','mu_water','format','Double') 253 WriteData(fid,prefix,'object',self,'class','materials','fieldname','heatcapacity','format','Double') 254 WriteData(fid,prefix,'object',self,'class','materials','fieldname','latentheat','format','Double') 255 WriteData(fid,prefix,'object',self,'class','materials','fieldname','thermalconductivity','format','Double') 256 WriteData(fid,prefix,'object',self,'class','materials','fieldname','temperateiceconductivity','format','Double') 257 WriteData(fid,prefix,'object',self,'class','materials','fieldname','meltingpoint','format','Double') 258 WriteData(fid,prefix,'object',self,'class','materials','fieldname','beta','format','Double') 259 WriteData(fid,prefix,'object',self,'class','materials','fieldname','mixed_layer_capacity','format','Double') 260 WriteData(fid,prefix,'object',self,'class','materials','fieldname','thermal_exchange_velocity','format','Double') 261 WriteData(fid,prefix,'object',self,'class','materials','fieldname','rheology_B','format','DoubleMat','mattype',1,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts) 262 WriteData(fid,prefix,'object',self,'class','materials','fieldname','rheology_n','format','DoubleMat','mattype',2) 263 WriteData(fid,prefix,'data',self.rheology_law,'name','md.materials.rheology_law','format','String') 264 265 elif nat=='litho': 266 WriteData(fid,prefix,'object',self,'class','materials','fieldname','numlayers','format','Integer') 267 WriteData(fid,prefix,'object',self,'class','materials','fieldname','radius','format','DoubleMat','mattype',3) 268 WriteData(fid,prefix,'object',self,'class','materials','fieldname','lame_mu','format','DoubleMat','mattype',3) 269 WriteData(fid,prefix,'object',self,'class','materials','fieldname','lame_lambda','format','DoubleMat','mattype',3) 270 WriteData(fid,prefix,'object',self,'class','materials','fieldname','issolid','format','DoubleMat','mattype',3) 271 WriteData(fid,prefix,'object',self,'class','materials','fieldname','density','format','DoubleMat','mattype',3) 272 WriteData(fid,prefix,'object',self,'class','materials','fieldname','viscosity','format','DoubleMat','mattype',3) 273 WriteData(fid,prefix,'object',self,'class','materials','fieldname','isburgers','format','DoubleMat','mattype',3) 274 WriteData(fid,prefix,'object',self,'class','materials','fieldname','burgers_viscosity','format','DoubleMat','mattype',3) 275 WriteData(fid,prefix,'object',self,'class','materials','fieldname','burgers_mu','format','DoubleMat','mattype',3) 276 277 else: 278 raise RuntimeError("materials constructor error message: nature of the material not supported yet! (''ice'' or ''litho'')") 279 229 #1: MatdamageiceEnum 2: MatestarEnum 3: MaticeEnum 4: MatenhancediceEnum 5: MaterialsEnum 230 WriteData(fid,prefix,'name','md.materials.type','data',6,'format','Integer') 231 WriteData(fid,prefix,'name','md.materials.nature','data',naturetointeger(self.nature),'format','IntMat','mattype',3) 232 233 for i in range(len(self.nature)): 234 nat=self.nature[i]; 235 if nat=='ice': 236 WriteData(fid,prefix,'name','md.materials.type','data',3,'format','Integer') 237 WriteData(fid,prefix,'object',self,'class','materials','fieldname','rho_ice','format','Double') 238 WriteData(fid,prefix,'object',self,'class','materials','fieldname','rho_water','format','Double') 239 WriteData(fid,prefix,'object',self,'class','materials','fieldname','rho_freshwater','format','Double') 240 WriteData(fid,prefix,'object',self,'class','materials','fieldname','mu_water','format','Double') 241 WriteData(fid,prefix,'object',self,'class','materials','fieldname','heatcapacity','format','Double') 242 WriteData(fid,prefix,'object',self,'class','materials','fieldname','latentheat','format','Double') 243 WriteData(fid,prefix,'object',self,'class','materials','fieldname','thermalconductivity','format','Double') 244 WriteData(fid,prefix,'object',self,'class','materials','fieldname','temperateiceconductivity','format','Double') 245 WriteData(fid,prefix,'object',self,'class','materials','fieldname','meltingpoint','format','Double') 246 WriteData(fid,prefix,'object',self,'class','materials','fieldname','beta','format','Double') 247 WriteData(fid,prefix,'object',self,'class','materials','fieldname','mixed_layer_capacity','format','Double') 248 WriteData(fid,prefix,'object',self,'class','materials','fieldname','thermal_exchange_velocity','format','Double') 249 WriteData(fid,prefix,'object',self,'class','materials','fieldname','rheology_B','format','DoubleMat','mattype',1,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts) 250 WriteData(fid,prefix,'object',self,'class','materials','fieldname','rheology_n','format','DoubleMat','mattype',2) 251 WriteData(fid,prefix,'data',self.rheology_law,'name','md.materials.rheology_law','format','String') 252 253 elif nat=='litho': 254 WriteData(fid,prefix,'object',self,'class','materials','fieldname','numlayers','format','Integer') 255 WriteData(fid,prefix,'object',self,'class','materials','fieldname','radius','format','DoubleMat','mattype',3) 256 WriteData(fid,prefix,'object',self,'class','materials','fieldname','lame_mu','format','DoubleMat','mattype',3) 257 WriteData(fid,prefix,'object',self,'class','materials','fieldname','lame_lambda','format','DoubleMat','mattype',3) 258 WriteData(fid,prefix,'object',self,'class','materials','fieldname','issolid','format','DoubleMat','mattype',3) 259 WriteData(fid,prefix,'object',self,'class','materials','fieldname','density','format','DoubleMat','mattype',3) 260 WriteData(fid,prefix,'object',self,'class','materials','fieldname','viscosity','format','DoubleMat','mattype',3) 261 WriteData(fid,prefix,'object',self,'class','materials','fieldname','isburgers','format','DoubleMat','mattype',3) 262 WriteData(fid,prefix,'object',self,'class','materials','fieldname','burgers_viscosity','format','DoubleMat','mattype',3) 263 WriteData(fid,prefix,'object',self,'class','materials','fieldname','burgers_mu','format','DoubleMat','mattype',3) 264 265 else: 266 raise RuntimeError("materials constructor error message: nature of the material not supported yet! (''ice'' or ''litho'')") 280 267 # }}} -
issm/trunk-jpl/src/m/classes/matestar.py
r23703 r23716 14 14 15 15 def __init__(self): # {{{ 16 17 rho_ice = 0. 18 rho_water = 0. 19 rho_freshwater = 0. 20 mu_water = 0. 21 heatcapacity = 0. 22 latentheat = 0. 23 thermalconductivity = 0. 24 temperateiceconductivity = 0. 16 rho_ice = 0. 17 rho_water = 0. 18 rho_freshwater = 0. 19 mu_water = 0. 20 heatcapacity = 0. 21 latentheat = 0. 22 thermalconductivity = 0. 23 temperateiceconductivity = 0. 25 24 self.effectiveconductivity_averaging = 0. 26 meltingpoint 27 beta 28 mixed_layer_capacity 29 thermal_exchange_velocity 30 rheology_B 31 rheology_Ec 32 rheology_Es 33 rheology_law 25 meltingpoint = 0. 26 beta = 0. 27 mixed_layer_capacity = 0. 28 thermal_exchange_velocity = 0. 29 rheology_B = float('NaN') 30 rheology_Ec = float('NaN') 31 rheology_Es = float('NaN') 32 rheology_law = '' 34 33 35 #giaivins: 34 #giaivins: 36 35 lithosphere_shear_modulus = 0. 37 36 lithosphere_density = 0. … … 42 41 earth_density = 0 43 42 44 43 #set default parameters: 45 44 self.setdefaultparameters() 46 45 #}}} 46 47 47 def __repr__(self): # {{{ 48 48 string=" Materials:" 49 50 49 string="%s\n%s"%(string,fielddisplay(self,'rho_ice','ice density [kg/m^3]')) 51 50 string="%s\n%s"%(string,fielddisplay(self,'rho_water','ocean water density [kg/m^3]')) … … 55 54 string="%s\n%s"%(string,fielddisplay(self,'thermalconductivity',['ice thermal conductivity [W/m/K]'])) 56 55 string="%s\n%s"%(string,fielddisplay(self,'temperateiceconductivity','temperate ice thermal conductivity [W/m/K]')) 57 string="%s\n%s"%(string,fielddisplay(self,"effectiveconductivity_averaging","computation of effective 56 string="%s\n%s"%(string,fielddisplay(self,"effectiveconductivity_averaging","computation of effectiveconductivity: (0) arithmetic mean, (1) harmonic mean, (2) geometric mean (default)")) 58 57 string="%s\n%s"%(string,fielddisplay(self,'meltingpoint','melting point of ice at 1atm in K')) 59 58 string="%s\n%s"%(string,fielddisplay(self,'latentheat','latent heat of fusion [J/kg]')) … … 70 69 string="%s\n%s"%(string,fielddisplay(self,'mantle_density','Mantle density [g/cm^-3]')) 71 70 string="%s\n%s"%(string,fielddisplay(self,'earth_density','Mantle density [kg/m^-3]')) 72 73 71 return string 74 72 #}}} 73 75 74 def extrude(self,md): # {{{ 76 75 self.rheology_B=project3d(md,'vector',self.rheology_B,'type','node') 77 76 self.rheology_Ec=project3d(md,'vector',self.rheology_Ec,'type','node') 78 77 self.rheology_Es=project3d(md,'vector',self.rheology_Es,'type','node') 79 78 return self 80 79 #}}} 80 81 81 def setdefaultparameters(self): # {{{ 82 82 #ice density (kg/m^3) 83 83 self.rho_ice=917. 84 85 84 #ocean water density (kg/m^3) 86 85 self.rho_water=1023. 87 88 86 #fresh water density (kg/m^3) 89 87 self.rho_freshwater=1000. 90 91 88 #water viscosity (N.s/m^2) 92 self.mu_water=0.001787 93 89 self.mu_water=0.001787 94 90 #ice heat capacity cp (J/kg/K) 95 91 self.heatcapacity=2093. 96 97 92 #ice latent heat of fusion L (J/kg) 98 93 self.latentheat=3.34*10**5 99 100 94 #ice thermal conductivity (W/m/K) 101 95 self.thermalconductivity=2.4 102 103 96 #wet ice thermal conductivity (W/m/K) 104 97 self.temperateiceconductivity=.24 105 106 #computation of effective conductivity 98 #computation of effective conductivity 107 99 self.effectiveconductivity_averaging=1 108 109 100 #the melting point of ice at 1 atmosphere of pressure in K 110 101 self.meltingpoint=273.15 111 112 102 #rate of change of melting point with pressure (K/Pa) 113 103 self.beta=9.8*10**-8 114 115 104 #mixed layer (ice-water interface) heat capacity (J/kg/K) 116 105 self.mixed_layer_capacity=3974. 117 118 106 #thermal exchange velocity (ice-water interface) (m/s) 119 107 self.thermal_exchange_velocity=1.00*10**-4 120 121 108 #Rheology law: what is the temperature dependence of B with T 122 109 #available: none, paterson and arrhenius 123 110 self.rheology_law='Paterson' 124 125 111 # GIA: 126 112 self.lithosphere_shear_modulus = 6.7*10**10 # (Pa) … … 128 114 self.mantle_shear_modulus = 1.45*10**11 # (Pa) 129 115 self.mantle_density = 3.34 # (g/cm^-3) 130 131 116 #SLR 132 117 self.earth_density= 5512 # average density of the Earth, (kg/m^3) … … 134 119 return self 135 120 #}}} 121 136 122 def checkconsistency(self,md,solution,analyses): # {{{ 137 123 md = checkfield(md,'fieldname','materials.rho_ice','>',0) … … 150 136 md = checkfield(md,'fieldname','materials.mantle_shear_modulus','>',0,'numel',1) 151 137 md = checkfield(md,'fieldname','materials.mantle_density','>',0,'numel',1) 138 152 139 if 'SealevelriseAnalysis' in analyses: 153 140 md = checkfield(md,'fieldname','materials.earth_density','>',0,'numel',1) … … 155 142 return md 156 143 # }}} 144 157 145 def marshall(self,prefix,md,fid): # {{{ 158 146 WriteData(fid,prefix,'name','md.materials.type','data',2,'format','Integer') … … 174 162 WriteData(fid,prefix,'object',self,'class','materials','fieldname','rheology_Es','format','DoubleMat','mattype',1) 175 163 WriteData(fid,prefix,'data',self.rheology_law,'name','md.materials.rheology_law','format','String') 176 177 164 WriteData(fid,prefix,'object',self,'class','materials','fieldname','lithosphere_shear_modulus','format','Double') 178 165 WriteData(fid,prefix,'object',self,'class','materials','fieldname','lithosphere_density','format','Double','scale',10^3) -
issm/trunk-jpl/src/m/classes/matice.py
r23704 r23716 30 30 self.rheology_law = '' 31 31 32 #giaivins: 32 #giaivins: 33 33 self.lithosphere_shear_modulus = 0. 34 34 self.lithosphere_density = 0. 35 35 self.mantle_shear_modulus = 0. 36 self.mantle_density = 0. 37 36 self.mantle_density = 0. 37 38 38 #SLR 39 self.earth_density= 5512; 40 41 39 self.earth_density= 5512; 42 40 43 41 self.setdefaultparameters() 44 42 #}}} 43 45 44 def __repr__(self): # {{{ 46 45 string=" Materials:" … … 53 52 string="%s\n%s"%(string,fielddisplay(self,"thermalconductivity","ice thermal conductivity [W/m/K]")) 54 53 string="%s\n%s"%(string,fielddisplay(self,"temperateiceconductivity","temperate ice thermal conductivity [W/m/K]")) 55 string="%s\n%s"%(string,fielddisplay(self,"effectiveconductivity_averaging","computation of effective 54 string="%s\n%s"%(string,fielddisplay(self,"effectiveconductivity_averaging","computation of effectiveconductivity: (0) arithmetic mean, (1) harmonic mean, (2) geometric mean (default)")) 56 55 string="%s\n%s"%(string,fielddisplay(self,"meltingpoint","melting point of ice at 1atm in K")) 57 56 string="%s\n%s"%(string,fielddisplay(self,"latentheat","latent heat of fusion [J/m^3]")) … … 67 66 string="%s\n%s"%(string,fielddisplay(self,"mantle_density","Mantle density [g/cm^-3]")) 68 67 string="%s\n%s"%(string,fielddisplay(self,"earth_density","Mantle density [kg/m^-3]")) 69 70 71 68 return string 72 69 #}}} 70 73 71 def extrude(self,md): # {{{ 74 72 self.rheology_B=project3d(md,'vector',self.rheology_B,'type','node') … … 76 74 return self 77 75 #}}} 76 78 77 def setdefaultparameters(self): # {{{ 79 78 #ice density (kg/m^3) 80 79 self.rho_ice=917. 81 82 80 #ocean water density (kg/m^3) 83 81 self.rho_water=1023. 84 85 82 #fresh water density (kg/m^3) 86 83 self.rho_freshwater=1000. 87 88 84 #water viscosity (N.s/m^2) 89 self.mu_water=0.001787 90 85 self.mu_water=0.001787 91 86 #ice heat capacity cp (J/kg/K) 92 87 self.heatcapacity=2093. 93 94 88 #ice latent heat of fusion L (J/kg) 95 89 self.latentheat=3.34*10**5 96 97 90 #ice thermal conductivity (W/m/K) 98 91 self.thermalconductivity=2.4 99 92 #computation of effective conductivity 93 self.effectiveconductivity_averaging=1 100 94 #temperate ice thermal conductivity (W/m/K) 101 95 self.temperateiceconductivity=0.24 102 103 #computation of effective conductivity104 self.effectiveconductivity_averaging=1105 106 96 #the melting point of ice at 1 atmosphere of pressure in K 107 97 self.meltingpoint=273.15 108 109 98 #rate of change of melting point with pressure (K/Pa) 110 99 self.beta=9.8*10**-8 111 112 100 #mixed layer (ice-water interface) heat capacity (J/kg/K) 113 101 self.mixed_layer_capacity=3974. 114 115 102 #thermal exchange velocity (ice-water interface) (m/s) 116 103 self.thermal_exchange_velocity=1.00*10**-4 117 118 104 #Rheology law: what is the temperature dependence of B with T 119 105 #available: none, paterson and arrhenius … … 125 111 self.mantle_shear_modulus = 1.45*10**11 # (Pa) 126 112 self.mantle_density = 3.34 # (g/cm^-3) 127 113 128 114 #SLR 129 115 self.earth_density= 5512; # average density of the Earth, (kg/m^3) 130 131 132 116 return self 133 117 #}}} 118 134 119 def checkconsistency(self,md,solution,analyses): # {{{ 135 120 md = checkfield(md,'fieldname','materials.rho_ice','>',0) … … 140 125 md = checkfield(md,'fieldname','materials.rheology_n','>',0,'size',[md.mesh.numberofelements]) 141 126 md = checkfield(md,'fieldname','materials.rheology_law','values',['None','BuddJacka','Cuffey','CuffeyTemperate','Paterson','Arrhenius','LliboutryDuval']) 127 md = checkfield(md,'fieldname','materials.effectiveconductivity_averaging','numel',[1],'values',[0,1,2]) 142 128 md = checkfield(md,'fieldname','materials.lithosphere_shear_modulus','>',0,'numel',[1]); 143 129 md = checkfield(md,'fieldname','materials.lithosphere_density','>',0,'numel',[1]); … … 145 131 md = checkfield(md,'fieldname','materials.mantle_density','>',0,'numel',[1]); 146 132 md = checkfield(md,'fieldname','materials.earth_density','>',0,'numel',[1]); 147 md = checkfield(md,'fieldname','materials.effectiveconductivity_averaging','numel',[1],'values',[0,1,2])148 149 133 return md 150 134 # }}} 135 151 136 def marshall(self,prefix,md,fid): # {{{ 152 137 WriteData(fid,prefix,'name','md.materials.type','data',3,'format','Integer'); -
issm/trunk-jpl/src/m/classes/mismipbasalforcings.py
r22505 r23716 6 6 7 7 class mismipbasalforcings(object): 8 """ 9 8 """ 9 MISMIP Basal Forcings class definition 10 10 11 12 13 11 Usage: 12 mismipbasalforcings=mismipbasalforcings() 13 """ 14 14 15 def __init__(self): # {{{ 15 def __init__(self): # {{{ 16 self.groundedice_melting_rate = float('NaN') 17 self.meltrate_factor = float('NaN') 18 self.threshold_thickness = float('NaN') 19 self.upperdepth_melt = float('NaN') 20 self.geothermalflux = float('NaN') 21 self.setdefaultparameters() 16 22 17 self.groundedice_melting_rate = float('NaN') 18 self.meltrate_factor = float('NaN') 19 self.threshold_thickness = float('NaN') 20 self.upperdepth_melt = float('NaN') 21 self.geothermalflux = float('NaN') 23 #}}} 24 def __repr__(self): # {{{ 25 string=" MISMIP+ basal melt parameterization\n" 26 string="%s\n%s"%(string,fielddisplay(self,"groundedice_melting_rate","basal melting rate (positive if melting) [m/yr]")) 27 string="%s\n%s"%(string,fielddisplay(self,"meltrate_factor","Melt-rate rate factor [1/yr] (sign is opposite to MISMIP+ benchmark to remain consistent with ISSM convention of positive values for melting)")) 28 string="%s\n%s"%(string,fielddisplay(self,"threshold_thickness","Threshold thickness for saturation of basal melting [m]")) 29 string="%s\n%s"%(string,fielddisplay(self,"upperdepth_melt","Depth above which melt rate is zero [m]")) 30 string="%s\n%s"%(string,fielddisplay(self,"geothermalflux","Geothermal heat flux [W/m^2]")) 31 return string 32 #}}} 33 def extrude(self,md): # {{{ 34 self.groundedice_melting_rate=project3d(md,'vector',self.groundedice_melting_rate,'type','node','layer',1) 35 self.geothermalflux=project3d(md,'vector',self.geothermalflux,'type','node','layer',1) #bedrock only gets geothermal flux 36 return self 37 #}}} 38 def initialize(self,md): # {{{ 39 if np.all(np.isnan(self.groundedice_melting_rate)): 40 self.groundedice_melting_rate=np.zeros((md.mesh.numberofvertices)) 41 print(' no basalforcings.groundedice_melting_rate specified: values set as zero') 42 if np.all(np.isnan(self.geothermalflux)): 43 self.geothermalflux=np.zeros((md.mesh.numberofvertices)) 44 print(" no basalforcings.geothermalflux specified: values set as zero") 45 return self 46 #}}} 47 def setdefaultparameters(self): # {{{ 48 # default values for melting parameterization 49 self.meltrate_factor = 0.2 50 self.threshold_thickness = 75. 51 self.upperdepth_melt = -100. 52 return self 53 #}}} 54 def checkconsistency(self,md,solution,analyses): # {{{ 55 #Early return 56 if 'MasstransportAnalysis' in analyses and not (solution=='TransientSolution' and md.transient.ismasstransport==0): 57 md = checkfield(md,'fieldname','basalforcings.groundedice_melting_rate','NaN',1,'Inf',1,'timeseries',1) 58 md = checkfield(md,'fieldname','basalforcings.meltrate_factor','>=',0,'numel',[1]) 59 md = checkfield(md,'fieldname','basalforcings.threshold_thickness','>=',0,'numel',[1]) 60 md = checkfield(md,'fieldname','basalforcings.upperdepth_melt','<=',0,'numel',[1]) 22 61 23 self.setdefaultparameters() 62 if 'BalancethicknessAnalysis' in analyses: 63 md = checkfield(md,'fieldname','basalforcings.groundedice_melting_rate','NaN',1,'Inf',1,'size',[md.mesh.numberofvertices]) 64 md = checkfield(md,'fieldname','basalforcings.meltrate_factor','>=',0,'numel',[1]) 65 md = checkfield(md,'fieldname','basalforcings.threshold_thickness','>=',0,'numel',[1]) 66 md = checkfield(md,'fieldname','basalforcings.upperdepth_melt','<=',0,'numel',[1]) 24 67 25 #}}} 26 def __repr__(self): # {{{ 27 string=" MISMIP+ basal melt parameterization\n" 28 string="%s\n%s"%(string,fielddisplay(self,"groundedice_melting_rate","basal melting rate (positive if melting) [m/yr]")) 29 string="%s\n%s"%(string,fielddisplay(self,"meltrate_factor","Melt-rate rate factor [1/yr] (sign is opposite to MISMIP+ benchmark to remain consistent with ISSM convention of positive values for melting)")) 30 string="%s\n%s"%(string,fielddisplay(self,"threshold_thickness","Threshold thickness for saturation of basal melting [m]")) 31 string="%s\n%s"%(string,fielddisplay(self,"upperdepth_melt","Depth above which melt rate is zero [m]")) 32 string="%s\n%s"%(string,fielddisplay(self,"geothermalflux","Geothermal heat flux [W/m^2]")) 33 return string 34 #}}} 35 def extrude(self,md): # {{{ 36 self.groundedice_melting_rate=project3d(md,'vector',self.groundedice_melting_rate,'type','node','layer',1) 37 self.geothermalflux=project3d(md,'vector',self.geothermalflux,'type','node','layer',1) #bedrock only gets geothermal flux 38 return self 39 #}}} 40 def initialize(self,md): # {{{ 41 if np.all(np.isnan(self.groundedice_melting_rate)): 42 self.groundedice_melting_rate=np.zeros((md.mesh.numberofvertices)) 43 print ' no basalforcings.groundedice_melting_rate specified: values set as zero' 44 if np.all(np.isnan(self.geothermalflux)): 45 self.geothermalflux=np.zeros((md.mesh.numberofvertices)) 46 print " no basalforcings.geothermalflux specified: values set as zero" 47 return self 48 #}}} 49 def setdefaultparameters(self): # {{{ 50 # default values for melting parameterization 51 self.meltrate_factor = 0.2 52 self.threshold_thickness = 75. 53 self.upperdepth_melt = -100. 54 return self 55 #}}} 56 def checkconsistency(self,md,solution,analyses): # {{{ 68 if 'ThermalAnalysis' in analyses and not (solution=='TransientSolution' and md.transient.isthermal==0): 69 md = checkfield(md,'fieldname','basalforcings.groundedice_melting_rate','NaN',1,'Inf',1,'timeseries',1) 70 md = checkfield(md,'fieldname','basalforcings.meltrate_factor','>=',0,'numel',[1]) 71 md = checkfield(md,'fieldname','basalforcings.threshold_thickness','>=',0,'numel',[1]) 72 md = checkfield(md,'fieldname','basalforcings.upperdepth_melt','<=',0,'numel',[1]) 73 md = checkfield(md,'fieldname','basalforcings.geothermalflux','NaN',1,'Inf',1,'timeseries',1,'>=',0) 74 return md 75 # }}} 76 def marshall(self,prefix,md,fid): # {{{ 77 yts=md.constants.yts 78 if yts!=365.2422*24.*3600.: 79 print('WARNING: value of yts for MISMIP+ runs different from ISSM default!') 57 80 58 #Early return 59 if 'MasstransportAnalysis' in analyses and not (solution=='TransientSolution' and md.transient.ismasstransport==0): 60 61 md = checkfield(md,'fieldname','basalforcings.groundedice_melting_rate','NaN',1,'Inf',1,'timeseries',1) 62 md = checkfield(md,'fieldname','basalforcings.meltrate_factor','>=',0,'numel',[1]) 63 md = checkfield(md,'fieldname','basalforcings.threshold_thickness','>=',0,'numel',[1]) 64 md = checkfield(md,'fieldname','basalforcings.upperdepth_melt','<=',0,'numel',[1]) 65 66 if 'BalancethicknessAnalysis' in analyses: 67 68 md = checkfield(md,'fieldname','basalforcings.groundedice_melting_rate','NaN',1,'Inf',1,'size',[md.mesh.numberofvertices]) 69 md = checkfield(md,'fieldname','basalforcings.meltrate_factor','>=',0,'numel',[1]) 70 md = checkfield(md,'fieldname','basalforcings.threshold_thickness','>=',0,'numel',[1]) 71 md = checkfield(md,'fieldname','basalforcings.upperdepth_melt','<=',0,'numel',[1]) 72 73 if 'ThermalAnalysis' in analyses and not (solution=='TransientSolution' and md.transient.isthermal==0): 74 75 md = checkfield(md,'fieldname','basalforcings.groundedice_melting_rate','NaN',1,'Inf',1,'timeseries',1) 76 md = checkfield(md,'fieldname','basalforcings.meltrate_factor','>=',0,'numel',[1]) 77 md = checkfield(md,'fieldname','basalforcings.threshold_thickness','>=',0,'numel',[1]) 78 md = checkfield(md,'fieldname','basalforcings.upperdepth_melt','<=',0,'numel',[1]) 79 md = checkfield(md,'fieldname','basalforcings.geothermalflux','NaN',1,'Inf',1,'timeseries',1,'>=',0) 80 return md 81 WriteData(fid,prefix,'name','md.basalforcings.model','data',3,'format','Integer') 82 WriteData(fid,prefix,'object',self,'fieldname','groundedice_melting_rate','format','DoubleMat','name','md.basalforcings.groundedice_melting_rate','mattype',1,'scale',1./yts,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts) 83 WriteData(fid,prefix,'object',self,'fieldname','geothermalflux','name','md.basalforcings.geothermalflux','format','DoubleMat','mattype',1,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts) 84 WriteData(fid,prefix,'object',self,'fieldname','meltrate_factor','format','Double','scale',1./yts) 85 WriteData(fid,prefix,'object',self,'fieldname','threshold_thickness','format','Double') 86 WriteData(fid,prefix,'object',self,'fieldname','upperdepth_melt','format','Double') 81 87 # }}} 82 def marshall(self,prefix,md,fid): # {{{83 84 yts=md.constants.yts85 if yts!=365.2422*24.*3600.:86 print 'WARNING: value of yts for MISMIP+ runs different from ISSM default!'87 88 WriteData(fid,prefix,'name','md.basalforcings.model','data',3,'format','Integer')89 WriteData(fid,prefix,'object',self,'fieldname','groundedice_melting_rate','format','DoubleMat','name','md.basalforcings.groundedice_melting_rate','mattype',1,'scale',1./yts,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts)90 WriteData(fid,prefix,'object',self,'fieldname','geothermalflux','name','md.basalforcings.geothermalflux','format','DoubleMat','mattype',1,'timeserieslength',md.mesh.numberofvertices+1,'yts',md.constants.yts)91 WriteData(fid,prefix,'object',self,'fieldname','meltrate_factor','format','Double','scale',1./yts)92 WriteData(fid,prefix,'object',self,'fieldname','threshold_thickness','format','Double')93 WriteData(fid,prefix,'object',self,'fieldname','upperdepth_melt','format','Double')94 95 # }}} -
issm/trunk-jpl/src/m/classes/model.py
r23664 r23716 81 81 # self.__dict__[classe] = classtype[str(classe)] 82 82 83 self.mesh 84 self.mask 85 self.geometry 86 self.constants 87 self.smb 88 self.basalforcings 89 self.materials 90 self.damage 91 self.friction 92 self.flowequation 93 self.timestepping 94 self.initialization 95 self.rifts 96 self.slr 97 98 self.debug 99 self.verbose 100 self.settings 101 self.toolkits 102 self.cluster 83 self.mesh = mesh2d() 84 self.mask = mask() 85 self.geometry = geometry() 86 self.constants = constants() 87 self.smb = SMBforcing() 88 self.basalforcings = basalforcings() 89 self.materials = matice() 90 self.damage = damage() 91 self.friction = friction() 92 self.flowequation = flowequation() 93 self.timestepping = timestepping() 94 self.initialization = initialization() 95 self.rifts = rifts() 96 self.slr = slr() 97 98 self.debug = debug() 99 self.verbose = verbose() 100 self.settings = issmsettings() 101 self.toolkits = toolkits() 102 self.cluster = generic() 103 103 104 104 self.balancethickness = balancethickness() … … 112 112 self.levelset = levelset() 113 113 self.calving = calving() 114 115 116 self.love 117 self.esa 118 self.autodiff 119 self.inversion 120 self.qmu 121 self.amr 114 self.frontalforcings = frontalforcings() 115 self.gia = giaivins() 116 self.love = fourierlove() 117 self.esa = esa() 118 self.autodiff = autodiff() 119 self.inversion = inversion() 120 self.qmu = qmu() 121 self.amr = amr() 122 122 123 123 self.results = results() … … 129 129 def properties(self): # {{{ 130 130 # ordered list of properties since vars(self) is random 131 131 return ['mesh', 132 132 'mask', 133 133 'geometry', … … 158 158 'levelset', 159 159 'calving', 160 161 'love',162 'gia',163 'esa',160 'frontalforcings', 161 'love', 162 'gia', 163 'esa', 164 164 'autodiff', 165 165 'inversion', … … 218 218 # }}} 219 219 def checkmessage(self,string): # {{{ 220 print "model not consistent: ", string220 print(("model not consistent: ", string)) 221 221 self.private.isconsistent=False 222 222 return self … … 399 399 #Penalties 400 400 if np.any(np.logical_not(np.isnan(md2.stressbalance.vertex_pairing))): 401 for i in xrange(np.size(md1.stressbalance.vertex_pairing,axis=0)):401 for i in range(np.size(md1.stressbalance.vertex_pairing,axis=0)): 402 402 md2.stressbalance.vertex_pairing[i,:]=Pnode[md1.stressbalance.vertex_pairing[i,:]] 403 403 md2.stressbalance.vertex_pairing=md2.stressbalance.vertex_pairing[np.nonzero(md2.stressbalance.vertex_pairing[:,0])[0],:] 404 404 if np.any(np.logical_not(np.isnan(md2.masstransport.vertex_pairing))): 405 for i in xrange(np.size(md1.masstransport.vertex_pairing,axis=0)):405 for i in range(np.size(md1.masstransport.vertex_pairing,axis=0)): 406 406 md2.masstransport.vertex_pairing[i,:]=Pnode[md1.masstransport.vertex_pairing[i,:]] 407 407 md2.masstransport.vertex_pairing=md2.masstransport.vertex_pairing[np.nonzero(md2.masstransport.vertex_pairing[:,0])[0],:] … … 419 419 md2.mesh.elementconnectivity=ElementConnectivity(md2.mesh.elements2d,md2.mesh.vertexconnectivity)[0] 420 420 segments=contourenvelope(md2) 421 md2.mesh.vertexonboundary=np.zeros( numberofvertices2/md2.mesh.numberoflayers,bool)421 md2.mesh.vertexonboundary=np.zeros(int(numberofvertices2/md2.mesh.numberoflayers),bool) 422 422 md2.mesh.vertexonboundary[segments[:,0:2]-1]=True 423 423 md2.mesh.vertexonboundary=np.tile(md2.mesh.vertexonboundary,md2.mesh.numberoflayers) … … 440 440 md2.stressbalance.spcvx[nodestoflag2]=np.nan 441 441 md2.stressbalance.spcvy[nodestoflag2]=np.nan 442 print "\n!! extract warning: spc values should be checked !!\n\n"442 print("\n!! extract warning: spc values should be checked !!\n\n") 443 443 #put 0 for vz 444 444 md2.stressbalance.spcvz[nodestoflag2]=0 … … 449 449 if md1.results: 450 450 md2.results=results() 451 for solutionfield,field in md1.results.__dict__.iteritems():451 for solutionfield,field in list(md1.results.__dict__.items()): 452 452 if isinstance(field,list): 453 453 setattr(md2.results,solutionfield,[]) … … 458 458 fieldr=getattr(md2.results,solutionfield)[i] 459 459 #get subfields 460 for solutionsubfield,subfield in fieldi.__dict__.iteritems():460 for solutionsubfield,subfield in list(fieldi.__dict__.items()): 461 461 if np.size(subfield)==numberofvertices1: 462 462 setattr(fieldr,solutionsubfield,subfield[pos_node]) … … 472 472 fieldr=getattr(md2.results,solutionfield) 473 473 #get subfields 474 for solutionsubfield,subfield in field.__dict__.iteritems():474 for solutionsubfield,subfield in list(field.__dict__.items()): 475 475 if np.size(subfield)==numberofvertices1: 476 476 setattr(fieldr,solutionsubfield,subfield[pos_node]) … … 482 482 #OutputDefinitions fields 483 483 if md1.outputdefinition.definitions: 484 for solutionfield,field in md1.outputdefinition.__dict__.iteritems():484 for solutionfield,field in list(md1.outputdefinition.__dict__.items()): 485 485 if isinstance(field,list): 486 486 #get each definition … … 489 489 fieldr=getattr(md2.outputdefinition,solutionfield)[i] 490 490 #get subfields 491 for solutionsubfield,subfield in fieldi.__dict__.iteritems():491 for solutionsubfield,subfield in list(fieldi.__dict__.items()): 492 492 if np.size(subfield)==numberofvertices1: 493 493 setattr(fieldr,solutionsubfield,subfield[pos_node]) … … 593 593 594 594 #Create the new layers 595 for i in xrange(numlayers):595 for i in range(numlayers): 596 596 x3d=np.concatenate((x3d,md.mesh.x)) 597 597 y3d=np.concatenate((y3d,md.mesh.y)) … … 602 602 #Extrude elements 603 603 elements3d=np.empty((0,6),int) 604 for i in xrange(numlayers-1):604 for i in range(numlayers-1): 605 605 elements3d=np.vstack((elements3d,np.hstack((md.mesh.elements+i*md.mesh.numberofvertices,md.mesh.elements+(i+1)*md.mesh.numberofvertices)))) #Create the elements of the 3d mesh for the non extruded part 606 606 number_el3d=np.size(elements3d,axis=0) #number of 3d nodes for the non extruded part of the mesh … … 669 669 #connectivity 670 670 md.mesh.elementconnectivity=np.tile(md.mesh.elementconnectivity,(numlayers-1,1)) 671 md.mesh.elementconnectivity[np.nonzero(md.mesh.elementconnectivity==0)]=-sys.max int-1671 md.mesh.elementconnectivity[np.nonzero(md.mesh.elementconnectivity==0)]=-sys.maxsize-1 672 672 if not np.isnan(md.mesh.elementconnectivity).all(): 673 for i in xrange(1,numlayers-1):673 for i in range(1,numlayers-1): 674 674 md.mesh.elementconnectivity[i*md.mesh.numberofelements2d:(i+1)*md.mesh.numberofelements2d,:] \ 675 675 =md.mesh.elementconnectivity[i*md.mesh.numberofelements2d:(i+1)*md.mesh.numberofelements2d,:]+md.mesh.numberofelements2d … … 704 704 #Check that the model is really a 3d model 705 705 if md.mesh.domaintype().lower() != '3d': 706 raise StandardError("only a 3D model can be collapsed")706 raise Exception("only a 3D model can be collapsed") 707 707 708 708 #dealing with the friction law … … 783 783 784 784 # Hydrologydc variables 785 hydrofields=md.hydrology.__dict__.keys() 786 for field in hydrofields: 787 try: 788 isvector=np.logical_or(np.shape(md.hydrology.__dict__[field])[0]==md.mesh.numberofelements, 789 np.shape(md.hydrology.__dict__[field])[0]==md.mesh.numberofvertices) 790 except IndexError: 791 isvector=False 792 #we colpase only fields that are vertices or element based 793 if isvector: 794 md.hydrology.__dict__[field]=project2d(md,md.hydrology.__dict__[field],1) 785 if type(md.hydrology) is 'hydrologydc': 786 md.hydrology.spcsediment_head=project2d(md,md.hydrology.spcsediment_head,1) 787 md.hydrology.sediment_transmitivity=project2d(md,md.hydrology.sediment_transmitivity,1) 788 md.hydrology.basal_moulin_input=project2d(md,md.hydrology.basal_moulin_input,1) 789 md.hydrology.mask_thawed_node=project2d(md,md.hydrology.mask_thawed_node,1) 790 if md.hydrology.isefficientlayer == 1: 791 md.hydrology.mask_eplactive_node=project2d(md,md.hydrology.mask_eplactive_node,1) 792 md.hydrology.spcepl_head=project2d(md,md.hydrology.spcepl_head,1) 795 793 796 794 #boundary conditions … … 836 834 #OutputDefinitions 837 835 if md.outputdefinition.definitions: 838 for solutionfield,field in md.outputdefinition.__dict__.iteritems():836 for solutionfield,field in list(md.outputdefinition.__dict__.items()): 839 837 if isinstance(field,list): 840 838 #get each definition … … 843 841 fieldr=getattr(md.outputdefinition,solutionfield)[i] 844 842 #get subfields 845 for solutionsubfield,subfield in fieldi.__dict__.iteritems():843 for solutionsubfield,subfield in list(fieldi.__dict__.items()): 846 844 if np.size(subfield)==md.mesh.numberofvertices: 847 845 setattr(fieldr,solutionsubfield,project2d(md,subfield,1)) -
issm/trunk-jpl/src/m/classes/organizer.py
r20689 r23716 6 6 from savevars import savevars 7 7 from model import model 8 from whichdbimport whichdb8 from dbm.ndbm import whichdb 9 9 import MatlabFuncs as m 10 10 … … 39 39 #Get prefix 40 40 prefix=options.getfieldvalue('prefix','model.') 41 if not isinstance(prefix, (str,unicode)):41 if not isinstance(prefix,str): 42 42 raise TypeError("prefix is not a string") 43 43 if not m.strcmp(prefix,prefix.strip()) or len(prefix.split()) > 1: … … 47 47 #Get repository 48 48 repository=options.getfieldvalue('repository','./') 49 if not isinstance(repository, (str,unicode)):49 if not isinstance(repository,str): 50 50 raise TypeError("repository is not a string") 51 51 if not os.path.isdir(repository): … … 59 59 if options.exist('trunkprefix'): 60 60 trunkprefix=options.getfieldvalue('trunkprefix','') 61 if not isinstance(trunkprefix, (str,unicode)):61 if not isinstance(trunkprefix,str): 62 62 raise TypeError("trunkprefix is not a string") 63 63 if not m.strcmp(trunkprefix,trunkprefix.strip()) or len(trunkprefix.split()) > 1: … … 79 79 80 80 #Get model path 81 if not isinstance(string, (str,unicode)):81 if not isinstance(string,str): 82 82 raise TypeError("argument provided is not a string") 83 83 path=os.path.join(self.repository,self.prefix+string) … … 86 86 if os.path.exists(path): 87 87 struc=loadvars(path) 88 name=name=[key for key in struc.iterkeys()]88 name=name=[key for key in list(struc.keys())] 89 89 md=struc.name[0] 90 90 else: … … 96 96 97 97 #Get model path 98 if not isinstance(string, (str,unicode)):98 if not isinstance(string,str): 99 99 raise TypeError("argument provided is not a string") 100 100 path1=os.path.join(self.repository,self.prefix+string+'.python') … … 115 115 raise IOError("Could find neither '%s' nor '%s'" % (path,path2)) 116 116 else: 117 print "--> Branching '%s' from trunk '%s'" % (self.prefix,self.trunkprefix)117 print(("--> Branching '%s' from trunk '%s'" % (self.prefix,self.trunkprefix))) 118 118 md=loadmodel(path2) 119 119 return md … … 126 126 127 127 #Some checks 128 if not isinstance(string, (str,unicode)):128 if not isinstance(string,str): 129 129 raise TypeError("Step provided should be a string") 130 130 if not m.strcmp(string,string.strip()) or len(string.split()) > 1: … … 142 142 if 0 in self.requestedsteps: 143 143 if self._currentstep==1: 144 print " prefix: %s" % self.prefix145 print " step #%i : %s" % (self.steps[self._currentstep-1]['id'],self.steps[self._currentstep-1]['string'])144 print((" prefix: %s" % self.prefix)) 145 print((" step #%i : %s" % (self.steps[self._currentstep-1]['id'],self.steps[self._currentstep-1]['string']))) 146 146 147 147 #Ok, now if _currentstep is a member of steps, return true 148 148 if self._currentstep in self.requestedsteps: 149 print "\n step #%i : %s\n" % (self.steps[self._currentstep-1]['id'],self.steps[self._currentstep-1]['string'])149 print(("\n step #%i : %s\n" % (self.steps[self._currentstep-1]['id'],self.steps[self._currentstep-1]['string']))) 150 150 bool=True 151 151 … … 167 167 else: 168 168 name=os.path.join(self.repository,name) 169 print "saving model as: '%s'" % name169 print(("saving model as: '%s'" % name)) 170 170 171 171 #check that md is a model -
issm/trunk-jpl/src/m/classes/pairoptions.py
r20919 r23716 5 5 """ 6 6 PAIROPTIONS class definition 7 7 8 8 Usage: 9 9 pairoptions=pairoptions(); … … 27 27 # }}} 28 28 def __repr__(self): # {{{ 29 s=" functionname: ' %s'\n" % self.functionname29 s=" functionname: '{}'\n".format(self.functionname) 30 30 if self.list: 31 s+=" list: ( %ix%i)\n\n" %(len(self.list),2)32 for item in self.list.iteritems():33 if isinstance(item[1],(str,unicode)):34 s+=" field: %-10s value: '%s'\n" % (item[0],item[1])35 elif isinstance(item[1],(bool,int,long,float)):36 s+=" field: %-10s value: %g\n" % (item[0],item[1])37 else:38 s+=" field: %-10s value: %s\n" % (item[0],type(item[1]))31 s+=" list: ({}x{}) \n\n".format(len(self.list),2) 32 for item in list(self.list.items()): 33 #if isinstance(item[1],str): 34 s+=" field: {} value: '{}'\n".format((item[0],item[1])) 35 # elif isinstance(item[1],(bool,int,float)): 36 # s+=" field: %-10s value: %g\n" % (item[0],item[1]) 37 # else: 38 # s+=" field: %-10s value: %s\n" % (item[0],type(item[1])) 39 39 else: 40 40 s+=" list: empty\n" … … 46 46 #check length of input 47 47 if len(arg) % 2: 48 raise TypeError('Invalid parameter/value pair arguments') 49 numoptions = len(arg)/248 raise TypeError('Invalid parameter/value pair arguments') 49 numoptions = int(len(arg)/2) 50 50 51 51 #go through arg and build list of objects 52 for i in xrange(numoptions):53 if isinstance(arg[2*i], (str,unicode)):52 for i in range(numoptions): 53 if isinstance(arg[2*i],str): 54 54 self.list[arg[2*i]] = arg[2*i+1]; 55 55 else: 56 56 #option is not a string, ignore it 57 print "WARNING: option number %d is not a string and will be ignored." % (i+1)57 print(("WARNING: option number {} is not a string and will be ignored.".format(i+1))) 58 58 # }}} 59 59 def addfield(self,field,value): # {{{ 60 60 """ADDFIELD - add a field to an options list""" 61 if isinstance(field, (str,unicode)):61 if isinstance(field,str): 62 62 if field in self.list: 63 print "WARNING: field '%s' with value=%s exists and will be overwritten with value=%s." % (field,str(self.list[field]),str(value))63 print(("WARNING: field '{}' with value={} exists and will be overwritten with value={}.".format(field,str(self.list[field]),str(value)))) 64 64 self.list[field] = value 65 65 # }}} 66 66 def addfielddefault(self,field,value): # {{{ 67 67 """ADDFIELDDEFAULT - add a field to an options list if it does not already exist""" 68 if isinstance(field, (str,unicode)):68 if isinstance(field,str): 69 69 if field not in self.list: 70 70 self.list[field] = value … … 72 72 def AssignObjectFields(self,obj2): # {{{ 73 73 """ASSIGNOBJECTFIELDS - assign object fields from options""" 74 for item in self.list.iteritems():74 for item in list(self.list.items()): 75 75 if item[0] in dir(obj2): 76 76 setattr(obj2,item[0],item[1]) 77 77 else: 78 print "WARNING: field '%s' is not a property of '%s'." % (item[0],type(obj2))78 print(("WARNING: field '%s' is not a property of '%s'." % (item[0],type(obj2)))) 79 79 return obj2 80 80 # }}} … … 87 87 """EXIST - check if the option exist""" 88 88 89 #some argument checking: 89 #some argument checking: 90 90 if field == None or field == '': 91 91 raise ValueError('exist error message: bad usage'); 92 if not isinstance(field, (str,unicode)):92 if not isinstance(field,str): 93 93 raise TypeError("exist error message: field '%s' should be a string." % str(field)); 94 94 … … 102 102 """ 103 103 GETOPTION - get the value of an option 104 104 105 105 Usage: 106 106 value=options.getfieldvalue(field,default) 107 107 108 108 Find an option value from a field. A default option 109 109 can be given in input if the field does not exist 110 110 111 111 Examples: 112 112 value=options.getfieldvalue(options,'caxis') … … 114 114 """ 115 115 116 #some argument checking: 116 #some argument checking: 117 117 if field == None or field == '': 118 118 raise ValueError('getfieldvalue error message: bad usage'); 119 if not isinstance(field, (str,unicode)):119 if not isinstance(field,str): 120 120 raise TypeError("getfieldvalue error message: field '%s' should be a string." % str(field)); 121 121 … … 134 134 """ 135 135 REMOVEFIELD - delete a field in an option list 136 136 137 137 Usage: 138 138 obj=removefield(self,field,warn) 139 139 140 140 if warn==1 display an info message to warn user that 141 141 some of his options have been removed. … … 150 150 #warn user if requested 151 151 if warn: 152 print "removefield info: option '%s' has been removed from the list of options." % field152 print(("removefield info: option '%s' has been removed from the list of options." % field)) 153 153 # }}} 154 154 def marshall(self,md,fid,firstindex): # {{{ 155 155 156 for i,item in enumerate(self.list.ite ritems()):156 for i,item in enumerate(self.list.items()): 157 157 name = item[0] 158 158 value = item[1] -
issm/trunk-jpl/src/m/classes/plotoptions.py
r23563 r23716 23 23 if self.list: 24 24 s+=" list: (%ix%i)\n" % (len(self.list),2) 25 for item in self.list.iteritems():25 for item in list(self.list.items()): 26 26 #s+=" options of plot number %i\n" % item 27 if isinstance(item[1], (str,unicode)):27 if isinstance(item[1],str): 28 28 s+=" field: %-10s value: '%s'\n" % (item[0],item[1]) 29 elif isinstance(item[1],(bool,int, long,float)):29 elif isinstance(item[1],(bool,int,float)): 30 30 s+=" field: %-10s value: '%g'\n" % (item[0],item[1]) 31 31 else: … … 42 42 #go through args and build list (like pairoptions) 43 43 rawoptions=pairoptions.pairoptions(*arg) 44 numoptions= len(arg)/244 numoptions=int(len(arg)/2) 45 45 rawlist=[] # cannot be a dict since they do not support duplicate keys 46 46 47 for i in xrange(numoptions):48 if isinstance(arg[2*i], (str,unicode)):47 for i in range(numoptions): 48 if isinstance(arg[2*i],str): 49 49 rawlist.append([arg[2*i],arg[2*i+1]]) 50 50 else: 51 51 #option is not a string, ignore it 52 print "WARNING: option number %d is not a string and will be ignored." % (i+1)52 print(("WARNING: option number %d is not a string and will be ignored." % (i+1))) 53 53 54 54 #get figure number … … 68 68 #initialize self.list (will need a list of dict's (or nested dict) for numberofplots>1) 69 69 #self.list=defaultdict(dict) 70 for i in xrange(numberofplots):70 for i in range(numberofplots): 71 71 self.list[i]=pairoptions.pairoptions() 72 72 73 73 #process plot options 74 for i in xrange(len(rawlist)):74 for i in range(len(rawlist)): 75 75 76 76 #if alloptions flag is on, apply to all plots 77 77 if (allflag and 'data' not in rawlist[i][0] and '#' not in rawlist[i][0]): 78 78 79 for j in xrange(numberofplots):79 for j in range(numberofplots): 80 80 self.list[j].addfield(rawlist[i][0],rawlist[i][1]) 81 81 … … 88 88 89 89 #loop over plotnums 90 for k in xrange(len(plotnums)):90 for k in range(len(plotnums)): 91 91 plotnum=plotnums[k] 92 92 … … 96 96 # '#all' 97 97 elif 'all' in plotnum: 98 for j in xrange(numberofplots):98 for j in range(numberofplots): 99 99 self.list[j].addfield(field,rawlist[i][1]) 100 100 … … 105 105 if False in [x.isdigit() for x in nums]: 106 106 raise ValueError('error: in option i-j both i and j must be integers') 107 for j in xrange(int(nums[0])-1,int(nums[1])):107 for j in range(int(nums[0])-1,int(nums[1])): 108 108 self.list[j].addfield(field,rawlist[i][1]) 109 109 … … 125 125 j=j+1 126 126 if j+1>numberofplots: 127 print "WARNING: too many instances of '%s' in options" % rawlist[i][0]127 print(("WARNING: too many instances of '%s' in options" % rawlist[i][0])) 128 128 #}}} -
issm/trunk-jpl/src/m/classes/plumebasalforcings.py
r22267 r23716 32 32 33 33 def __repr__(self): # {{{ 34 print ' mantle plume basal melt parameterization:'34 print(' mantle plume basal melt parameterization:') 35 35 36 36 string="%s\n%s"%(string,fielddisplay(self,'groundedice_melting_rate','basal melting rate (positive if melting) [m/yr]')) … … 55 55 if np.all(np.isnan(self.groundedice_melting_rate)): 56 56 self.groundedice_melting_rate=np.zeros((md.mesh.numberofvertices,)) 57 print ' no basalforcings.groundedice_melting_rate specified: values set as zero'57 print(' no basalforcings.groundedice_melting_rate specified: values set as zero') 58 58 if np.all(np.isnan(self.floatingice_melting_rate)): 59 59 self.floatingice_melting_rate=np.zeros((md.mesh.numberofvertices,)) 60 print ' no basalforcings.floatingice_melting_rate specified: values set as zero'60 print(' no basalforcings.floatingice_melting_rate specified: values set as zero') 61 61 return 62 62 #}}} -
issm/trunk-jpl/src/m/classes/qmu.py
r23433 r23716 80 80 params = np.hstack(np.atleast_1d(np.array(self.params))) 81 81 for param in params: 82 print type(param)83 print param82 print(type(param)) 83 print(param) 84 84 s+=" params: (array of method-independent parameters)\n" 85 85 fnames=vars(param) -
issm/trunk-jpl/src/m/classes/qmu/@dakota_method/dakota_method.py
r23095 r23716 54 54 #properites 55 55 self.params =struct() 56 56 57 57 @staticmethod 58 58 def dakota_method(*args): 59 60 59 dm = dakota_method() 61 62 60 # return a default object 63 61 if len(args) == 0: … … 72 70 #dm=method 73 71 object=method 74 for field in object. iterkeys():72 for field in object.keys(): 75 73 if field in vars(dm): 76 74 setattr(dm,field,object[field]) … … 79 77 #given argument was a way of constructing a method 80 78 else: 81 mlist=[ 82 'dot_bfgs', 83 'dot_frcg', 84 'dot_mmfd', 85 'dot_slp', 86 'dot_sqp', 87 'npsol_sqp', 88 'conmin_frcg', 89 'conmin_mfd', 90 'optpp_cg', 91 'optpp_q_newton', 92 'optpp_fd_newton', 93 'optpp_newton', 94 'optpp_pds', 95 'asynch_pattern_search', 96 'coliny_cobyla', 97 'coliny_direct', 98 'coliny_ea', 99 'coliny_pattern_search', 100 'coliny_solis_wets', 101 'ncsu_direct', 102 'surrogate_based_local', 103 'surrogate_based_global', 104 'moga', 105 'soga', 106 'nl2sol', 107 'nlssol_sqp', 108 'optpp_g_newton', 109 'nond_sampling', 110 'nond_local_reliability', 111 'nond_global_reliability', 112 'nond_polynomial_chaos', 113 'nond_stoch_collocation', 114 'nond_evidence', 115 'dace', 116 'fsu_quasi_mc', 117 'fsu_cvt', 118 'vector_parameter_study', 119 'list_parameter_study', 120 'centered_parameter_study', 121 'multidim_parameter_study', 122 'bayes_calibration'] 123 124 mlist2=[] 79 mlist=['dot_bfgs', 80 'dot_frcg', 81 'dot_mmfd', 82 'dot_slp', 83 'dot_sqp', 84 'npsol_sqp', 85 'conmin_frcg', 86 'conmin_mfd', 87 'optpp_cg', 88 'optpp_q_newton', 89 'optpp_fd_newton', 90 'optpp_newton', 91 'optpp_pds', 92 'asynch_pattern_search', 93 'coliny_cobyla', 94 'coliny_direct', 95 'coliny_ea', 96 'coliny_pattern_search', 97 'coliny_solis_wets', 98 'ncsu_direct', 99 'surrogate_based_local', 100 'surrogate_based_global', 101 'moga', 102 'soga', 103 'nl2sol', 104 'nlssol_sqp', 105 'optpp_g_newton', 106 'nond_sampling', 107 'nond_local_reliability', 108 'nond_global_reliability', 109 'nond_polynomial_chaos', 110 'nond_stoch_collocation', 111 'nond_evidence', 112 'dace', 113 'fsu_quasi_mc', 114 'fsu_cvt', 115 'vector_parameter_study', 116 'list_parameter_study', 117 'centered_parameter_study', 118 'multidim_parameter_study', 119 'bayes_calibration'] 120 121 mlist2=[] 125 122 for i in range(len(mlist)): 126 if strncmpi(method,mlist[i],len(method)): 127 mlist2.append(mlist[i]) 128 129 # check for a unique match in the list of methods 130 131 l = len(mlist2) 132 if l == 0: 133 raise RuntimeError('Unrecognized method: '+str(method)+'.') 134 elif l == 1: 135 dm.method=mlist2[0] 136 else: 137 raise RuntimeError('Non-unique method: '+str(method)+' matches '+string_cell(mlist2)) 138 123 if strncmpi(method,mlist[i],len(method)): 124 mlist2.append(mlist[i]) 125 # check for a unique match in the list of methods 126 l = len(mlist2) 127 if l == 0: 128 raise RuntimeError('Unrecognized method: '+str(method)+'.') 129 elif l == 1: 130 dm.method=mlist2[0] 131 else: 132 raise RuntimeError('Non-unique method: '+str(method)+' matches '+string_cell(mlist2)) 133 139 134 # assign the default values for the method 140 #switch dm.method 141 if dm.method in ['dot_bfgs', 142 'dot_frcg']: 143 dm.type ='dot' 144 dm.variables=['continuous_design', 145 'continuous_state'] 146 dm.lcspec =[] 147 dm.responses=['objective_function'] 148 dm.ghspec =['grad'] 149 dm.params.max_iterations=False 150 dm.params.max_function_evaluations=False 151 dm.params.convergence_tolerance=False 152 dm.params.constraint_tolerance=False 153 dm.params.output=False 154 dm.params.speculative=False 155 dm.params.scaling=False 156 dm.params.optimization_type='minimize' 157 elif dm.method in ['dot_mmfd', 158 'dot_slp', 159 'dot_sqp']: 160 dm.type ='dot' 161 dm.variables=['continuous_design', 162 'continuous_state'] 163 dm.lcspec =['linear_inequality_constraint', 164 'linear_equality_constraint'] 165 dm.responses=['objective_function', 166 'nonlinear_inequality_constraint', 167 'nonlinear_equality_constraint'] 168 dm.ghspec =['grad'] 169 dm.params.max_iterations=False 170 dm.params.max_function_evaluations=False 171 dm.params.convergence_tolerance=False 172 dm.params.constraint_tolerance=False 173 dm.params.output=False 174 dm.params.speculative=False 175 dm.params.scaling=False 176 dm.params.optimization_type='minimize' 135 # switch dm.method 136 if dm.method in ['dot_bfgs','dot_frcg']: 137 dm.type ='dot' 138 dm.variables=['continuous_design', 139 'continuous_state'] 140 dm.lcspec =[] 141 dm.responses=['objective_function'] 142 dm.ghspec =['grad'] 143 dm.params.max_iterations=False 144 dm.params.max_function_evaluations=False 145 dm.params.convergence_tolerance=False 146 dm.params.constraint_tolerance=False 147 dm.params.output=False 148 dm.params.speculative=False 149 dm.params.scaling=False 150 dm.params.optimization_type='minimize' 151 152 elif dm.method in ['dot_mmfd','dot_slp','dot_sqp']: 153 dm.type ='dot' 154 dm.variables=['continuous_design', 155 'continuous_state'] 156 dm.lcspec =['linear_inequality_constraint', 157 'linear_equality_constraint'] 158 dm.responses=['objective_function', 159 'nonlinear_inequality_constraint', 160 'nonlinear_equality_constraint'] 161 dm.ghspec =['grad'] 162 dm.params.max_iterations=False 163 dm.params.max_function_evaluations=False 164 dm.params.convergence_tolerance=False 165 dm.params.constraint_tolerance=False 166 dm.params.output=False 167 dm.params.speculative=False 168 dm.params.scaling=False 169 dm.params.optimization_type='minimize' 177 170 178 171 elif dm.method == 'npsol_sqp': 179 172 dm.type ='npsol' 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 173 dm.variables=['continuous_design', 174 'continuous_state'] 175 dm.lcspec =['linear_inequality_constraint', 176 'linear_equality_constraint'] 177 dm.responses=['objective_function', 178 'nonlinear_inequality_constraint', 179 'nonlinear_equality_constraint'] 180 dm.ghspec =['grad'] 181 dm.params.max_iterations=False 182 dm.params.max_function_evaluations=False 183 dm.params.convergence_tolerance=False 184 dm.params.constraint_tolerance=False 185 dm.params.output=False 186 dm.params.speculative=False 187 dm.params.scaling=False 188 dm.params.verify_level=-1 189 dm.params.function_precision=1.0e-10 190 dm.params.linesearch_tolerance=0.9 198 191 199 192 elif dm.method == 'conmin_frcg': 200 dm.type ='conmin' 201 dm.variables=['continuous_design', 202 'continuous_state'] 203 dm.lcspec =[] 204 dm.responses=['objective_function'] 205 dm.ghspec =['grad'] 206 dm.params.max_iterations=False 207 dm.params.max_function_evaluations=False 208 dm.params.convergence_tolerance=False 209 dm.params.constraint_tolerance=False 210 dm.params.output=False 211 dm.params.speculative=False 212 dm.params.scaling=False 193 dm.type ='conmin' 194 dm.variables=['continuous_design', 195 'continuous_state'] 196 dm.lcspec =[] 197 dm.responses=['objective_function'] 198 dm.ghspec =['grad'] 199 dm.params.max_iterations=False 200 dm.params.max_function_evaluations=False 201 dm.params.convergence_tolerance=False 202 dm.params.constraint_tolerance=False 203 dm.params.output=False 204 dm.params.speculative=False 205 dm.params.scaling=False 206 213 207 elif dm.method == 'conmin_mfd': 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 208 dm.type ='conmin' 209 dm.variables=['continuous_design', 210 'continuous_state'] 211 dm.lcspec =['linear_inequality_constraint', 212 'linear_equality_constraint'] 213 dm.responses=['objective_function', 214 'nonlinear_inequality_constraint', 215 'nonlinear_equality_constraint'] 216 dm.ghspec =['grad'] 217 dm.params.max_iterations=False 218 dm.params.max_function_evaluations=False 219 dm.params.convergence_tolerance=False 220 dm.params.constraint_tolerance=False 221 dm.params.output=False 222 dm.params.speculative=False 223 dm.params.scaling=False 230 224 231 225 elif dm.method == 'optpp_cg': 232 dm.type ='optpp' 233 dm.variables=['continuous_design', 234 'continuous_state'] 235 dm.lcspec =[] 236 dm.responses=['objective_function'] 237 dm.ghspec =['grad'] 238 dm.params.max_iterations=False 239 dm.params.max_function_evaluations=False 240 dm.params.convergence_tolerance=False 241 dm.params.output=False 242 dm.params.speculative=False 243 dm.params.scaling=False 244 dm.params.max_step=1000. 245 dm.params.gradient_tolerance=1.0e-4 226 dm.type ='optpp' 227 dm.variables=['continuous_design', 228 'continuous_state'] 229 dm.lcspec =[] 230 dm.responses=['objective_function'] 231 dm.ghspec =['grad'] 232 dm.params.max_iterations=False 233 dm.params.max_function_evaluations=False 234 dm.params.convergence_tolerance=False 235 dm.params.output=False 236 dm.params.speculative=False 237 dm.params.scaling=False 238 dm.params.max_step=1000. 239 dm.params.gradient_tolerance=1.0e-4 240 246 241 elif dm.method in ['optpp_q_newton', 247 'optpp_fd_newton', 248 'optpp_newton']: 249 dm.type ='optpp' 250 dm.variables=['continuous_design', 251 'continuous_state'] 252 dm.lcspec =['linear_inequality_constraint', 253 'linear_equality_constraint'] 254 dm.responses=['objective_function', 255 'nonlinear_inequality_constraint', 256 'nonlinear_equality_constraint'] 257 dm.ghspec =['grad'] 258 dm.params.max_iterations=False 259 dm.params.max_function_evaluations=False 260 dm.params.convergence_tolerance=False 261 dm.params.output=False 262 dm.params.speculative=False 263 dm.params.scaling=False 264 dm.params.value_based_line_search=False 265 dm.params.gradient_based_line_search=False 266 dm.params.trust_region=False 267 dm.params.tr_pds=False 268 dm.params.max_step=1000. 269 dm.params.gradient_tolerance=1.0e-4 270 dm.params.merit_function='argaez_tapia' 271 dm.params.central_path=dm.params.merit_function 272 dm.params.steplength_to_boundary=0.99995 273 dm.params.centering_parameter=0.2 242 'optpp_fd_newton', 243 'optpp_newton']: 244 dm.type ='optpp' 245 dm.variables=['continuous_design', 246 'continuous_state'] 247 dm.lcspec =['linear_inequality_constraint', 248 'linear_equality_constraint'] 249 dm.responses=['objective_function', 250 'nonlinear_inequality_constraint', 251 'nonlinear_equality_constraint'] 252 dm.ghspec =['grad'] 253 dm.params.max_iterations=False 254 dm.params.max_function_evaluations=False 255 dm.params.convergence_tolerance=False 256 dm.params.output=False 257 dm.params.speculative=False 258 dm.params.scaling=False 259 dm.params.value_based_line_search=False 260 dm.params.gradient_based_line_search=False 261 dm.params.trust_region=False 262 dm.params.tr_pds=False 263 dm.params.max_step=1000. 264 dm.params.gradient_tolerance=1.0e-4 265 dm.params.merit_function='argaez_tapia' 266 dm.params.central_path=dm.params.merit_function 267 dm.params.steplength_to_boundary=0.99995 268 dm.params.centering_parameter=0.2 269 274 270 elif dm.method == 'optpp_pds': 275 276 277 278 279 280 281 282 283 284 285 286 287 271 dm.type ='optpp' 272 dm.variables=['continuous_design', 273 'continuous_state'] 274 dm.lcspec =[] 275 dm.responses=['objective_function'] 276 dm.ghspec =['grad'] 277 dm.params.max_iterations=False 278 dm.params.max_function_evaluations=False 279 dm.params.convergence_tolerance=False 280 dm.params.output=False 281 dm.params.speculative=False 282 dm.params.scaling=False 283 dm.params.search_scheme_size=32 288 284 289 285 elif dm.method == 'asynch_pattern_search': 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 286 dm.type ='apps' 287 dm.variables=['continuous_design', 288 'continuous_state'] 289 dm.lcspec =['linear_inequality_constraint', 290 'linear_equality_constraint'] 291 dm.responses=['objective_function', 292 'nonlinear_inequality_constraint', 293 'nonlinear_equality_constraint'] 294 dm.ghspec =['grad'] 295 dm.params.max_function_evaluations=False 296 dm.params.constraint_tolerance=False 297 dm.params.output=False 298 dm.params.scaling=False 299 dm.params.initial_delta=1.0 300 dm.params.threshold_delta=0.01 301 dm.params.contraction_factor=0.5 302 dm.params.solution_target=False 303 dm.params.synchronization='nonblocking' 304 dm.params.merit_function='merit2_smooth' 305 dm.params.constraint_penalty=1.0 306 dm.params.smoothing_factor=1.0 311 307 312 308 elif dm.method == 'coliny_cobyla': 313 dm.type ='coliny' 314 dm.variables=['continuous_design', 315 'continuous_state'] 316 dm.lcspec =[] 317 dm.responses=['objective_function', 318 'nonlinear_inequality_constraint', 319 'nonlinear_equality_constraint'] 320 dm.ghspec =['grad'] 321 dm.params.max_iterations=False 322 dm.params.max_function_evaluations=False 323 dm.params.convergence_tolerance=False 324 dm.params.output=False 325 dm.params.scaling=False 326 dm.params.show_misc_options=False 327 dm.params.misc_options=[] 328 dm.params.solution_accuracy=-np.inf 329 dm.params.initial_delta=[] 330 dm.params.threshold_delta=[] 309 dm.type ='coliny' 310 dm.variables=['continuous_design', 311 'continuous_state'] 312 dm.lcspec =[] 313 dm.responses=['objective_function', 314 'nonlinear_inequality_constraint', 315 'nonlinear_equality_constraint'] 316 dm.ghspec =['grad'] 317 dm.params.max_iterations=False 318 dm.params.max_function_evaluations=False 319 dm.params.convergence_tolerance=False 320 dm.params.output=False 321 dm.params.scaling=False 322 dm.params.show_misc_options=False 323 dm.params.misc_options=[] 324 dm.params.solution_accuracy=-np.inf 325 dm.params.initial_delta=[] 326 dm.params.threshold_delta=[] 327 331 328 elif dm.method == 'coliny_direct': 332 dm.type ='coliny' 333 dm.variables=['continuous_design', 334 'continuous_state'] 335 dm.lcspec =[] 336 dm.responses=['objective_function', 337 'nonlinear_inequality_constraint', 338 'nonlinear_equality_constraint'] 339 dm.ghspec =['grad'] 340 dm.params.max_iterations=False 341 dm.params.max_function_evaluations=False 342 dm.params.convergence_tolerance=False 343 dm.params.output=False 344 dm.params.scaling=False 345 dm.params.show_misc_options=False 346 dm.params.misc_options=[] 347 dm.params.solution_accuracy=-np.inf 348 dm.params.division='major_dimension' 349 dm.params.global_balance_parameter=0.0 350 dm.params.local_balance_parameter=1.0e-8 351 dm.params.max_boxsize_limit=0.0 352 dm.params.min_boxsize_limit=0.0001 353 dm.params.constraint_penalty=1000.0 329 dm.type ='coliny' 330 dm.variables=['continuous_design', 331 'continuous_state'] 332 dm.lcspec =[] 333 dm.responses=['objective_function', 334 'nonlinear_inequality_constraint', 335 'nonlinear_equality_constraint'] 336 dm.ghspec =['grad'] 337 dm.params.max_iterations=False 338 dm.params.max_function_evaluations=False 339 dm.params.convergence_tolerance=False 340 dm.params.output=False 341 dm.params.scaling=False 342 dm.params.show_misc_options=False 343 dm.params.misc_options=[] 344 dm.params.solution_accuracy=-np.inf 345 dm.params.division='major_dimension' 346 dm.params.global_balance_parameter=0.0 347 dm.params.local_balance_parameter=1.0e-8 348 dm.params.max_boxsize_limit=0.0 349 dm.params.min_boxsize_limit=0.0001 350 dm.params.constraint_penalty=1000.0 351 354 352 elif dm.method == 'coliny_ea': 355 dm.type ='coliny' 356 dm.variables=['continuous_design', 357 'continuous_state'] 358 dm.lcspec =[] 359 dm.responses=['objective_function', 360 'nonlinear_inequality_constraint', 361 'nonlinear_equality_constraint'] 362 dm.ghspec =['grad'] 363 dm.params.max_iterations=False 364 dm.params.max_function_evaluations=False 365 dm.params.convergence_tolerance=False 366 dm.params.output=False 367 dm.params.scaling=False 368 dm.params.show_misc_options=False 369 dm.params.misc_options=[] 370 dm.params.solution_accuracy=-np.inf 371 dm.params.seed=False 372 dm.params.population_size=50 373 dm.params.initialization_type='unique_random' 374 dm.params.fitness_type='linear_rank' 375 dm.params.replacement_type='elitist' 376 dm.params.random=[] 377 dm.params.chc=[] 378 dm.params.elitist=[] 379 dm.params.new_solutions_generated='population_size - replacement_size' 380 dm.params.crossover_type='two_point' 381 dm.params.crossover_rate=0.8 382 dm.params.mutation_type='offset_normal' 383 dm.params.mutation_scale=0.1 384 dm.params.mutation_range=1 385 dm.params.dimension_ratio=1.0 386 dm.params.mutation_rate=1.0 387 dm.params.non_adaptive=False 353 dm.type ='coliny' 354 dm.variables=['continuous_design', 355 'continuous_state'] 356 dm.lcspec =[] 357 dm.responses=['objective_function', 358 'nonlinear_inequality_constraint', 359 'nonlinear_equality_constraint'] 360 dm.ghspec =['grad'] 361 dm.params.max_iterations=False 362 dm.params.max_function_evaluations=False 363 dm.params.convergence_tolerance=False 364 dm.params.output=False 365 dm.params.scaling=False 366 dm.params.show_misc_options=False 367 dm.params.misc_options=[] 368 dm.params.solution_accuracy=-np.inf 369 dm.params.seed=False 370 dm.params.population_size=50 371 dm.params.initialization_type='unique_random' 372 dm.params.fitness_type='linear_rank' 373 dm.params.replacement_type='elitist' 374 dm.params.random=[] 375 dm.params.chc=[] 376 dm.params.elitist=[] 377 dm.params.new_solutions_generated='population_size - replacement_size' 378 dm.params.crossover_type='two_point' 379 dm.params.crossover_rate=0.8 380 dm.params.mutation_type='offset_normal' 381 dm.params.mutation_scale=0.1 382 dm.params.mutation_range=1 383 dm.params.dimension_ratio=1.0 384 dm.params.mutation_rate=1.0 385 dm.params.non_adaptive=False 386 388 387 elif dm.method == 'coliny_pattern_search': 389 dm.type ='coliny' 390 dm.variables=['continuous_design', 391 'continuous_state'] 392 dm.lcspec =[] 393 dm.responses=['objective_function', 394 'nonlinear_inequality_constraint', 395 'nonlinear_equality_constraint'] 396 dm.ghspec =['grad'] 397 dm.params.max_iterations=False 398 dm.params.max_function_evaluations=False 399 dm.params.convergence_tolerance=False 400 dm.params.output=False 401 dm.params.scaling=False 402 dm.params.show_misc_options=False 403 dm.params.misc_options=[] 404 dm.params.solution_accuracy=-np.inf 405 dm.params.stochastic=False 406 dm.params.seed=False 407 dm.params.initial_delta=[] 408 dm.params.threshold_delta=[] 409 dm.params.constraint_penalty=1.0 410 dm.params.constant_penalty=False 411 dm.params.pattern_basis='coordinate' 412 dm.params.total_pattern_size=False 413 dm.params.no_expansion=False 414 dm.params.expand_after_success=1 415 dm.params.contraction_factor=0.5 416 dm.params.synchronization='nonblocking' 417 dm.params.exploratory_moves='basic_pattern' 388 dm.type ='coliny' 389 dm.variables=['continuous_design', 390 'continuous_state'] 391 dm.lcspec =[] 392 dm.responses=['objective_function', 393 'nonlinear_inequality_constraint', 394 'nonlinear_equality_constraint'] 395 dm.ghspec =['grad'] 396 dm.params.max_iterations=False 397 dm.params.max_function_evaluations=False 398 dm.params.convergence_tolerance=False 399 dm.params.output=False 400 dm.params.scaling=False 401 dm.params.show_misc_options=False 402 dm.params.misc_options=[] 403 dm.params.solution_accuracy=-np.inf 404 dm.params.stochastic=False 405 dm.params.seed=False 406 dm.params.initial_delta=[] 407 dm.params.threshold_delta=[] 408 dm.params.constraint_penalty=1.0 409 dm.params.constant_penalty=False 410 dm.params.pattern_basis='coordinate' 411 dm.params.total_pattern_size=False 412 dm.params.no_expansion=False 413 dm.params.expand_after_success=1 414 dm.params.contraction_factor=0.5 415 dm.params.synchronization='nonblocking' 416 dm.params.exploratory_moves='basic_pattern' 417 418 418 elif dm.method == 'coliny_solis_wets': 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 419 dm.type ='coliny' 420 dm.variables=['continuous_design', 421 'continuous_state'] 422 dm.lcspec =[] 423 dm.responses=['objective_function', 424 'nonlinear_inequality_constraint', 425 'nonlinear_equality_constraint'] 426 dm.ghspec =['grad'] 427 dm.params.max_iterations=False 428 dm.params.max_function_evaluations=False 429 dm.params.convergence_tolerance=False 430 dm.params.output=False 431 dm.params.scaling=False 432 dm.params.show_misc_options=False 433 dm.params.misc_options=[] 434 dm.params.solution_accuracy=-np.inf 435 dm.params.seed=False 436 dm.params.initial_delta=[] 437 dm.params.threshold_delta=[] 438 dm.params.no_expansion=False 439 dm.params.expand_after_success=5 440 dm.params.contract_after_failure=3 441 dm.params.contraction_factor=0.5 442 dm.params.constraint_penalty=1.0 443 dm.params.constant_penalty=False 444 444 445 445 elif dm.method == 'ncsu_direct': 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 #if dm.method in ['surrogate_based_local',463 #'surrogate_based_global']:446 dm.type ='ncsu' 447 dm.variables=['continuous_design', 448 'continuous_state'] 449 dm.lcspec =['linear_inequality_constraint', 450 'linear_equality_constraint'] # ? 451 dm.responses=['objective_function', 452 'nonlinear_inequality_constraint', 453 'nonlinear_equality_constraint'] # ? 454 dm.ghspec =['grad'] 455 dm.params.max_iterations=False 456 dm.params.max_function_evaluations=False 457 dm.params.scaling=False 458 dm.params.solution_accuracy=0. 459 dm.params.min_boxsize_limit=1.0e-8 460 dm.params.vol_boxsize_limit=1.0e-8 461 462 #if dm.method in ['surrogate_based_local', 463 #'surrogate_based_global']: 464 464 465 465 elif dm.method == 'moga': 466 dm.type ='jega' 467 dm.variables=['continuous_design', 468 'continuous_state'] 469 dm.lcspec =['linear_inequality_constraint', 470 'linear_equality_constraint'] 471 dm.responses=['objective_function', 472 'nonlinear_inequality_constraint', 473 'nonlinear_equality_constraint'] 474 dm.ghspec =['grad'] 475 dm.params.max_iterations=False 476 dm.params.max_function_evaluations=False 477 dm.params.output=False 478 dm.params.scaling=False 479 dm.params.seed=False 480 dm.params.log_file='JEGAGlobal.log' 481 dm.params.population_size=50 482 dm.params.print_each_pop=False 483 # according to documentation, uses method-indepent control 484 # dm.params.output='normal' 485 dm.params.initialization_type='unique_random' 486 dm.params.mutation_type='replace_uniform' 487 dm.params.mutation_scale=0.15 488 dm.params.mutation_rate=0.08 489 dm.params.replacement_type='' 490 dm.params.below_limit=6 491 dm.params.shrinkage_percentage=0.9 492 dm.params.crossover_type='shuffle_random' 493 dm.params.multi_point_binary=[] 494 dm.params.multi_point_parameterized_binary=[] 495 dm.params.multi_point_real=[] 496 dm.params.shuffle_random=[] 497 dm.params.num_parents=2 498 dm.params.num_offspring=2 499 dm.params.crossover_rate=0.8 500 dm.params.fitness_type='' 501 dm.params.niching_type=False 502 dm.params.radial=[0.01] 503 dm.params.distance=[0.01] 504 dm.params.metric_tracker=False 505 dm.params.percent_change=0.1 506 dm.params.num_generations=10 507 dm.params.postprocessor_type=False 508 dm.params.orthogonal_distance=[0.01] 466 dm.type ='jega' 467 dm.variables=['continuous_design', 468 'continuous_state'] 469 dm.lcspec =['linear_inequality_constraint', 470 'linear_equality_constraint'] 471 dm.responses=['objective_function', 472 'nonlinear_inequality_constraint', 473 'nonlinear_equality_constraint'] 474 dm.ghspec =['grad'] 475 dm.params.max_iterations=False 476 dm.params.max_function_evaluations=False 477 dm.params.output=False 478 dm.params.scaling=False 479 dm.params.seed=False 480 dm.params.log_file='JEGAGlobal.log' 481 dm.params.population_size=50 482 dm.params.print_each_pop=False 483 #according to documentation, uses method-indepent control 484 #dm.params.output='normal' 485 dm.params.initialization_type='unique_random' 486 dm.params.mutation_type='replace_uniform' 487 dm.params.mutation_scale=0.15 488 dm.params.mutation_rate=0.08 489 dm.params.replacement_type='' 490 dm.params.below_limit=6 491 dm.params.shrinkage_percentage=0.9 492 dm.params.crossover_type='shuffle_random' 493 dm.params.multi_point_binary=[] 494 dm.params.multi_point_parameterized_binary=[] 495 dm.params.multi_point_real=[] 496 dm.params.shuffle_random=[] 497 dm.params.num_parents=2 498 dm.params.num_offspring=2 499 dm.params.crossover_rate=0.8 500 dm.params.fitness_type='' 501 dm.params.niching_type=False 502 dm.params.radial=[0.01] 503 dm.params.distance=[0.01] 504 dm.params.metric_tracker=False 505 dm.params.percent_change=0.1 506 dm.params.num_generations=10 507 dm.params.postprocessor_type=False 508 dm.params.orthogonal_distance=[0.01] 509 509 510 elif dm.method == 'soga': 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 511 dm.type ='jega' 512 dm.variables=['continuous_design', 513 'continuous_state'] 514 dm.lcspec =['linear_inequality_constraint', 515 'linear_equality_constraint'] 516 dm.responses=['objective_function', 517 'nonlinear_inequality_constraint', 518 'nonlinear_equality_constraint'] 519 dm.ghspec =['grad'] 520 dm.params.max_iterations=False 521 dm.params.max_function_evaluations=False 522 dm.params.output=False 523 dm.params.scaling=False 524 dm.params.seed=False 525 dm.params.log_file='JEGAGlobal.log' 526 dm.params.population_size=50 527 dm.params.print_each_pop=False 528 dm.params.output='normal' 529 dm.params.initialization_type='unique_random' 530 dm.params.mutation_type='replace_uniform' 531 dm.params.mutation_scale=0.15 532 dm.params.mutation_rate=0.08 533 dm.params.replacement_type='' 534 dm.params.below_limit=6 535 dm.params.shrinkage_percentage=0.9 536 dm.params.crossover_type='shuffle_random' 537 dm.params.multi_point_binary=[] 538 dm.params.multi_point_parameterized_binary=[] 539 dm.params.multi_point_real=[] 540 dm.params.shuffle_random=[] 541 dm.params.num_parents=2 542 dm.params.num_offspring=2 543 dm.params.crossover_rate=0.8 544 dm.params.fitness_type='merit_function' 545 dm.params.constraint_penalty=1.0 546 dm.params.replacement_type='' 547 dm.params.convergence_type=False 548 dm.params.num_generations=10 549 dm.params.percent_change=0.1 549 550 550 551 elif dm.method == 'nl2sol': 551 dm.type ='lsq' 552 dm.variables=['continuous_design', 553 'continuous_state'] 554 dm.lcspec =[] 555 dm.responses=['least_squares_term'] 556 dm.ghspec =['grad'] 557 dm.params.max_iterations=False 558 dm.params.max_function_evaluations=False 559 dm.params.convergence_tolerance=False 560 dm.params.output=False 561 dm.params.scaling=False 562 dm.params.function_precision=1.0e-10 563 dm.params.absolute_conv_tol=-1. 564 dm.params.x_conv_tol=-1. 565 dm.params.singular_conv_tol=-1. 566 dm.params.singular_radius=-1. 567 dm.params.False_conv_tol=-1. 568 dm.params.initial_trust_radius=-1. 569 dm.params.covariance=0 570 dm.params.regression_stressbalances=False 552 dm.type ='lsq' 553 dm.variables=['continuous_design', 554 'continuous_state'] 555 dm.lcspec =[] 556 dm.responses=['least_squares_term'] 557 dm.ghspec =['grad'] 558 dm.params.max_iterations=False 559 dm.params.max_function_evaluations=False 560 dm.params.convergence_tolerance=False 561 dm.params.output=False 562 dm.params.scaling=False 563 dm.params.function_precision=1.0e-10 564 dm.params.absolute_conv_tol=-1. 565 dm.params.x_conv_tol=-1. 566 dm.params.singular_conv_tol=-1. 567 dm.params.singular_radius=-1. 568 dm.params.False_conv_tol=-1. 569 dm.params.initial_trust_radius=-1. 570 dm.params.covariance=0 571 dm.params.regression_stressbalances=False 572 571 573 elif dm.method == 'nlssol_sqp': 572 dm.type ='lsq' 573 dm.variables=['continuous_design', 574 'continuous_state'] 575 dm.lcspec =['linear_inequality_constraint', 576 'linear_equality_constraint'] 577 dm.responses=['least_squares_term', 578 'nonlinear_inequality_constraint', 579 'nonlinear_equality_constraint'] 580 dm.ghspec =['grad'] 581 dm.params.max_iterations=False 582 dm.params.max_function_evaluations=False 583 dm.params.convergence_tolerance=False 584 dm.params.constraint_tolerance=False 585 dm.params.output=False 586 dm.params.speculative=False 587 dm.params.scaling=False 588 dm.params.verify_level=-1 589 dm.params.function_precision=1.0e-10 590 dm.params.linesearch_tolerance=0.9 574 dm.type ='lsq' 575 dm.variables=['continuous_design', 576 'continuous_state'] 577 dm.lcspec =['linear_inequality_constraint', 578 'linear_equality_constraint'] 579 dm.responses=['least_squares_term', 580 'nonlinear_inequality_constraint', 581 'nonlinear_equality_constraint'] 582 dm.ghspec =['grad'] 583 dm.params.max_iterations=False 584 dm.params.max_function_evaluations=False 585 dm.params.convergence_tolerance=False 586 dm.params.constraint_tolerance=False 587 dm.params.output=False 588 dm.params.speculative=False 589 dm.params.scaling=False 590 dm.params.verify_level=-1 591 dm.params.function_precision=1.0e-10 592 dm.params.linesearch_tolerance=0.9 593 591 594 elif dm.method == 'optpp_g_newton': 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 595 dm.type ='lsq' 596 dm.variables=['continuous_design', 597 'continuous_state'] 598 dm.lcspec =['linear_inequality_constraint', 599 'linear_equality_constraint'] 600 dm.responses=['least_squares_term', 601 'nonlinear_inequality_constraint', 602 'nonlinear_equality_constraint'] 603 dm.ghspec =['grad'] 604 dm.params.max_iterations=False 605 dm.params.max_function_evaluations=False 606 dm.params.convergence_tolerance=False 607 dm.params.output=False 608 dm.params.speculative=False 609 dm.params.scaling=False 610 dm.params.value_based_line_search=False 611 dm.params.gradient_based_line_search=False 612 dm.params.trust_region=False 613 dm.params.tr_pds=False 614 dm.params.max_step=1000. 615 dm.params.gradient_tolerance=1.0e-4 616 dm.params.merit_function='argaez_tapia' 617 dm.params.central_path=dm.params.merit_function 618 dm.params.steplength_to_boundary=0.99995 619 dm.params.centering_parameter=0.2 617 620 618 621 elif dm.method == 'nond_sampling': 619 dm.type ='nond' 620 dm.variables=['normal_uncertain', 621 'uniform_uncertain', 622 'continuous_state'] 623 dm.lcspec =[] 624 dm.responses=['response_function'] 625 dm.ghspec =[] 626 # not documented, but apparently works 627 dm.params.output=False 628 dm.params.seed=False 629 dm.params.fixed_seed=False 630 dm.params.rng=False 631 dm.params.samples=False 632 dm.params.sample_type='lhs' 633 dm.params.all_variables=False 634 dm.params.variance_based_decomp=False 635 dm.params.previous_samples=0 622 dm.type ='nond' 623 dm.variables=['normal_uncertain', 624 'uniform_uncertain', 625 'continuous_state'] 626 dm.lcspec =[] 627 dm.responses=['response_function'] 628 dm.ghspec =[] 629 # not documented, but apparently works 630 dm.params.output=False 631 dm.params.seed=False 632 dm.params.fixed_seed=False 633 dm.params.rng=False 634 dm.params.samples=False 635 dm.params.sample_type='lhs' 636 dm.params.all_variables=False 637 dm.params.variance_based_decomp=False 638 dm.params.previous_samples=0 639 636 640 elif dm.method == 'nond_local_reliability': 637 dm.type ='nond' 638 dm.variables=['normal_uncertain', 639 'uniform_uncertain', 640 'continuous_state'] 641 dm.lcspec =[] 642 dm.responses=['response_function'] 643 dm.ghspec =['grad'] 644 # not documented, but may work 645 dm.params.output=False 646 dm.params.max_iterations=False 647 dm.params.convergence_tolerance=False 648 dm.params.mpp_search=False 649 dm.params.sqp=False 650 dm.params.nip=False 651 dm.params.integration='first_order' 652 dm.params.refinement=False 653 dm.params.samples=0 654 dm.params.seed=False 641 dm.type ='nond' 642 dm.variables=['normal_uncertain', 643 'uniform_uncertain', 644 'continuous_state'] 645 dm.lcspec =[] 646 dm.responses=['response_function'] 647 dm.ghspec =['grad'] 648 # not documented, but may work 649 dm.params.output=False 650 dm.params.max_iterations=False 651 dm.params.convergence_tolerance=False 652 dm.params.mpp_search=False 653 dm.params.sqp=False 654 dm.params.nip=False 655 dm.params.integration='first_order' 656 dm.params.refinement=False 657 dm.params.samples=0 658 dm.params.seed=False 659 655 660 elif dm.method == 'nond_global_reliability': 656 dm.type ='nond' 657 dm.variables=['normal_uncertain', 658 'uniform_uncertain', 659 'continuous_state'] 660 dm.lcspec =[] 661 dm.responses=['response_function'] 662 dm.ghspec =['grad'] 663 # not documented, but may work 664 dm.params.output=False 665 dm.params.x_gaussian_process=False 666 dm.params.u_gaussian_process=False 667 dm.params.all_variables=False 668 dm.params.seed=False 661 dm.type ='nond' 662 dm.variables=['normal_uncertain', 663 'uniform_uncertain', 664 'continuous_state'] 665 dm.lcspec =[] 666 dm.responses=['response_function'] 667 dm.ghspec =['grad'] 668 # not documented, but may work 669 dm.params.output=False 670 dm.params.x_gaussian_process=False 671 dm.params.u_gaussian_process=False 672 dm.params.all_variables=False 673 dm.params.seed=False 674 669 675 elif dm.method == 'nond_polynomial_chaos': 670 dm.type ='nond' 671 dm.variables=['normal_uncertain', 672 'uniform_uncertain', 673 'continuous_state'] 674 dm.lcspec =[] 675 dm.responses=['response_function'] 676 dm.ghspec =['grad'] 677 # not documented, but may work 678 dm.params.output=False 679 dm.params.expansion_order=[] 680 dm.params.expansion_terms=[] 681 dm.params.quadrature_order=[] 682 dm.params.sparse_grid_level=[] 683 dm.params.expansion_samples=[] 684 dm.params.incremental_lhs=False 685 dm.params.collocation_points=[] 686 dm.params.collocation_ratio=[] 687 dm.params.reuse_samples=False 688 dm.params.expansion_import_file='' 689 dm.params.seed=False 690 dm.params.fixed_seed=False 691 dm.params.samples=0 692 dm.params.sample_type='lhs' 693 dm.params.all_variables=False 676 dm.type ='nond' 677 dm.variables=['normal_uncertain', 678 'uniform_uncertain', 679 'continuous_state'] 680 dm.lcspec =[] 681 dm.responses=['response_function'] 682 dm.ghspec =['grad'] 683 # not documented, but may work 684 dm.params.output=False 685 dm.params.expansion_order=[] 686 dm.params.expansion_terms=[] 687 dm.params.quadrature_order=[] 688 dm.params.sparse_grid_level=[] 689 dm.params.expansion_samples=[] 690 dm.params.incremental_lhs=False 691 dm.params.collocation_points=[] 692 dm.params.collocation_ratio=[] 693 dm.params.reuse_samples=False 694 dm.params.expansion_import_file='' 695 dm.params.seed=False 696 dm.params.fixed_seed=False 697 dm.params.samples=0 698 dm.params.sample_type='lhs' 699 dm.params.all_variables=False 700 694 701 elif dm.method == 'nond_stoch_collocation': 695 dm.type ='nond' 696 dm.variables=['normal_uncertain', 697 'uniform_uncertain', 698 'continuous_state'] 699 dm.lcspec =[] 700 dm.responses=['response_function'] 701 dm.ghspec =['grad'] 702 # not documented, but may work 703 dm.params.output=False 704 dm.params.quadrature_order=[] 705 dm.params.sparse_grid_level=[] 706 dm.params.seed=False 707 dm.params.fixed_seed=False 708 dm.params.samples=0 709 dm.params.sample_type='lhs' 710 dm.params.all_variables=False 702 dm.type ='nond' 703 dm.variables=['normal_uncertain', 704 'uniform_uncertain', 705 'continuous_state'] 706 dm.lcspec =[] 707 dm.responses=['response_function'] 708 dm.ghspec =['grad'] 709 # not documented, but may work 710 dm.params.output=False 711 dm.params.quadrature_order=[] 712 dm.params.sparse_grid_level=[] 713 dm.params.seed=False 714 dm.params.fixed_seed=False 715 dm.params.samples=0 716 dm.params.sample_type='lhs' 717 dm.params.all_variables=False 718 711 719 elif dm.method == 'nond_evidence': 712 713 714 715 716 717 718 719 # not documented, but may work720 721 722 720 dm.type ='nond' 721 dm.variables=['normal_uncertain', 722 'uniform_uncertain', 723 'continuous_state'] 724 dm.lcspec =[] 725 dm.responses=['response_function'] 726 dm.ghspec =['grad'] 727 # not documented, but may work 728 dm.params.output=False 729 dm.params.seed=False 730 dm.params.samples=10000 723 731 724 732 elif dm.method == 'dace': 725 dm.type ='dace' 726 dm.variables=['continuous_design', 727 'continuous_state'] 728 dm.lcspec =[] 729 dm.responses=['objective_function', 730 'response_function'] 731 dm.ghspec =[] 732 dm.params.grid=False 733 dm.params.random=False 734 dm.params.oas=False 735 dm.params.lhs=False 736 dm.params.oa_lhs=False 737 dm.params.box_behnken=False 738 dm.params.central_composite=False 739 dm.params.seed=False 740 dm.params.fixed_seed=False 741 dm.params.samples=False 742 dm.params.symbols=False 743 dm.params.quality_metrics=False 744 dm.params.variance_based_decomp=False 733 dm.type ='dace' 734 dm.variables=['continuous_design', 735 'continuous_state'] 736 dm.lcspec =[] 737 dm.responses=['objective_function', 738 'response_function'] 739 dm.ghspec =[] 740 dm.params.grid=False 741 dm.params.random=False 742 dm.params.oas=False 743 dm.params.lhs=False 744 dm.params.oa_lhs=False 745 dm.params.box_behnken=False 746 dm.params.central_composite=False 747 dm.params.seed=False 748 dm.params.fixed_seed=False 749 dm.params.samples=False 750 dm.params.symbols=False 751 dm.params.quality_metrics=False 752 dm.params.variance_based_decomp=False 753 745 754 elif dm.method == 'fsu_quasi_mc': 746 dm.type ='dace' 747 dm.variables=['continuous_design', 748 'continuous_state'] 749 dm.lcspec =[] 750 dm.responses=['objective_function', 751 'response_function'] 752 dm.ghspec =[] 753 dm.params.halton=False 754 dm.params.hammersley=False 755 dm.params.samples=0 756 dm.params.sequence_start=[0] 757 dm.params.sequence_leap=[1] 758 dm.params.prime_base=False 759 dm.params.fixed_sequence=False 760 dm.params.latinize=False 761 dm.params.variance_based_decomp=False 762 dm.params.quality_metrics=False 755 dm.type ='dace' 756 dm.variables=['continuous_design', 757 'continuous_state'] 758 dm.lcspec =[] 759 dm.responses=['objective_function', 760 'response_function'] 761 dm.ghspec =[] 762 dm.params.halton=False 763 dm.params.hammersley=False 764 dm.params.samples=0 765 dm.params.sequence_start=[0] 766 dm.params.sequence_leap=[1] 767 dm.params.prime_base=False 768 dm.params.fixed_sequence=False 769 dm.params.latinize=False 770 dm.params.variance_based_decomp=False 771 dm.params.quality_metrics=False 772 763 773 elif dm.method == 'fsu_cvt': 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 774 dm.type ='dace' 775 dm.variables=['continuous_design', 776 'continuous_state'] 777 dm.lcspec =[] 778 dm.responses=['objective_function', 779 'response_function'] 780 dm.ghspec =[] 781 dm.params.seed=False 782 dm.params.fixed_seed=False 783 dm.params.samples=0 784 dm.params.num_trials=10000 785 dm.params.trial_type='random' 786 dm.params.latinize=False 787 dm.params.variance_based_decomp=False 788 dm.params.quality_metrics=False 779 789 780 790 elif dm.method == 'vector_parameter_study': 781 dm.type ='param' 782 dm.variables=['continuous_design', 783 'normal_uncertain', 784 'uniform_uncertain', 785 'continuous_state'] 786 dm.lcspec =[] 787 dm.responses=['objective_function', 788 'response_function'] 789 dm.ghspec =[] 790 dm.params.output=False 791 dm.params.final_point=[] 792 dm.params.step_length=[] 793 dm.params.num_steps=[] 794 dm.params.step_vector=[] 795 dm.params.num_steps=[] 791 dm.type ='param' 792 dm.variables=['continuous_design', 793 'normal_uncertain', 794 'uniform_uncertain', 795 'continuous_state'] 796 dm.lcspec =[] 797 dm.responses=['objective_function', 798 'response_function'] 799 dm.ghspec =[] 800 dm.params.output=False 801 dm.params.final_point=[] 802 dm.params.step_length=[] 803 dm.params.num_steps=[] 804 dm.params.step_vector=[] 805 dm.params.num_steps=[] 806 796 807 elif dm.method == 'list_parameter_study': 797 dm.type ='param' 798 dm.variables=['continuous_design', 799 'normal_uncertain', 800 'uniform_uncertain', 801 'continuous_state'] 802 dm.lcspec =[] 803 dm.responses=['objective_function', 804 'response_function'] 805 dm.ghspec =[] 806 dm.params.output=False 807 dm.params.list_of_points=[] 808 dm.type ='param' 809 dm.variables=['continuous_design', 810 'normal_uncertain', 811 'uniform_uncertain', 812 'continuous_state'] 813 dm.lcspec =[] 814 dm.responses=['objective_function', 815 'response_function'] 816 dm.ghspec =[] 817 dm.params.output=False 818 dm.params.list_of_points=[] 819 808 820 elif dm.method == 'centered_parameter_study': 809 dm.type ='param' 810 dm.variables=['continuous_design', 811 'normal_uncertain', 812 'uniform_uncertain', 813 'continuous_state'] 814 dm.lcspec =[] 815 dm.responses=['objective_function', 816 'response_function'] 817 dm.ghspec =[] 818 dm.params.output=False 819 dm.params.percent_delta=[] 820 dm.params.deltas_per_variable=[] 821 dm.type ='param' 822 dm.variables=['continuous_design', 823 'normal_uncertain', 824 'uniform_uncertain', 825 'continuous_state'] 826 dm.lcspec =[] 827 dm.responses=['objective_function', 828 'response_function'] 829 dm.ghspec =[] 830 dm.params.output=False 831 dm.params.percent_delta=[] 832 dm.params.deltas_per_variable=[] 833 821 834 elif dm.method == 'multidim_parameter_study': 822 dm.type ='param' 823 dm.variables=['continuous_design', 824 'normal_uncertain', 825 'uniform_uncertain', 826 'continuous_state'] 827 dm.lcspec =[] 828 dm.responses=['objective_function', 829 'response_function'] 830 dm.ghspec =[] 831 dm.params.output=False 832 dm.params.partitions=[] 835 dm.type ='param' 836 dm.variables=['continuous_design', 837 'normal_uncertain', 838 'uniform_uncertain', 839 'continuous_state'] 840 dm.lcspec =[] 841 dm.responses=['objective_function', 842 'response_function'] 843 dm.ghspec =[] 844 dm.params.output=False 845 dm.params.partitions=[] 846 833 847 elif dm.method == 'bayes_calibration': 834 835 836 837 838 839 840 841 842 843 844 848 dm.type ='bayes' 849 dm.variables=['continuous_design', 850 'normal_uncertain', 851 'uniform_uncertain', 852 'continuous_state'] 853 dm.lcspec =[] 854 dm.responses=['objective_function', 855 'response_function', 856 'calibration_function'] 857 dm.ghspec =[] 858 dm.params.queso=False 845 859 dm.params.dream=False 846 860 dm.params.gpmsa=False 847 dm.params.samples=0 848 dm.params.seed=False 849 dm.params.output=False 850 861 dm.params.samples=0 862 dm.params.seed=False 863 dm.params.output=False 851 864 dm.params.metropolis_hastings=False 852 853 865 dm.params.proposal_covariance=False 854 866 dm.params.diagonal=False … … 856 868 857 869 else: 858 raise RuntimeError('Unimplemented method: '+str(dm.method)+'.')870 raise RuntimeError('Unimplemented method: {}.'.format(dm.method)) 859 871 860 872 # if more than one argument, issue warning 861 873 else: 862 print 'Warning: dakota_method:extra_arg: Extra arguments for object of class '+str(type(dm))+'.'874 print('Warning: dakota_method:extra_arg: Extra arguments for object of class '+str(type(dm))+'.') 863 875 return dm 864 876 … … 886 898 for i in range(len(fnames)): 887 899 maxlen=max(maxlen,len(fnames[i])) 888 900 889 901 for i in fnames: 890 902 string += ' params.{:{space}s}: {}\n'.format(str(i),str(dm.params.__dict__[i]),space=maxlen+1) … … 892 904 #with maxlen+1 spaces between x and : 893 905 return string 894 -
issm/trunk-jpl/src/m/classes/qmu/@dakota_method/dmeth_params_set.py
r23095 r23716 16 16 if isfield(dm.params,args[i]): 17 17 #vars(dresp)[fnames[i]] 18 exec( 'dm.params.%s = args[i+1]')%(args[i])18 exec(('dm.params.%s = args[i+1]')%(args[i])) 19 19 #vars(dm.params)[args[i]]=args[i+1] 20 20 else: 21 print 'WARNING: dmeth_params_set:unknown_param No parameter \''+str(args[i])+'\' for dakota_method \''+str(dm.method)+'\'.'21 print('WARNING: dmeth_params_set:unknown_param No parameter \''+str(args[i])+'\' for dakota_method \''+str(dm.method)+'\'.') 22 22 23 23 return dm 24 25 26 27 -
issm/trunk-jpl/src/m/classes/qmu/@dakota_method/dmeth_params_write.py
r23095 r23716 41 41 #switch dm.method 42 42 if dm.method in ['dot_bfgs', 43 'dot_frcg', 44 'dot_mmfd', 45 'dot_slp', 46 'dot_sqp']: 47 param_write(fid,sbeg,'optimization_type',' = ','\n',dm.params) 48 49 else: 50 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 51 43 'dot_frcg', 44 'dot_mmfd', 45 'dot_slp', 46 'dot_sqp']: 47 param_write(fid,sbeg,'optimization_type',' = ','\n',dm.params) 48 49 else: 50 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 52 51 53 52 elif dm.type == 'npsol': … … 67 66 else: 68 67 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 69 70 68 71 69 elif dm.type == 'conmin': … … 78 76 param_write(fid,sbeg,'scaling','','\n',dm.params) 79 77 #switch dm.method 80 if dm.method in ['conmin_frcg', 81 'conmin_mfd']: 78 if dm.method in ['conmin_frcg','conmin_mfd']: 82 79 pass 83 80 else: 84 81 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 85 86 82 87 83 elif dm.type == 'optpp': … … 94 90 #switch dm.method 95 91 if dm.method == 'optpp_cg': 96 param_write(fid,sbeg,'max_step',' = ','\n',dm.params) 97 param_write(fid,sbeg,'gradient_tolerance',' = ','\n',dm.params) 98 99 elif dm.method in ['optpp_q_newton', 100 'optpp_fd_newton', 101 'optpp_newton']: 102 if (dm.params.value_based_line_search + 103 dm.params.gradient_based_line_search + 104 dm.params.trust_region + 105 dm.params.tr_pds > 1): 106 raise RuntimeError('#s'' method must have only one algorithm.', 107 dm.method) 108 109 param_write(fid,sbeg,'value_based_line_search','','\n',dm.params) 110 param_write(fid,sbeg,'gradient_based_line_search','','\n',dm.params) 111 param_write(fid,sbeg,'trust_region','','\n',dm.params) 112 param_write(fid,sbeg,'tr_pds','','\n',dm.params) 113 param_write(fid,sbeg,'max_step',' = ','\n',dm.params) 114 param_write(fid,sbeg,'gradient_tolerance',' = ','\n',dm.params) 115 param_write(fid,sbeg,'merit_function',' = ','\n',dm.params) 116 param_write(fid,sbeg,'central_path',' = ','\n',dm.params) 117 param_write(fid,sbeg,'steplength_to_boundary',' = ','\n',dm.params) 118 param_write(fid,sbeg,'centering_parameter',' = ','\n',dm.params) 92 param_write(fid,sbeg,'max_step',' = ','\n',dm.params) 93 param_write(fid,sbeg,'gradient_tolerance',' = ','\n',dm.params) 94 95 elif dm.method in ['optpp_q_newton','optpp_fd_newton','optpp_newton']: 96 if (dm.params.value_based_line_search + 97 dm.params.gradient_based_line_search + 98 dm.params.trust_region + 99 dm.params.tr_pds > 1): 100 raise RuntimeError('#s'' method must have only one algorithm.', 101 dm.method) 102 param_write(fid,sbeg,'value_based_line_search','','\n',dm.params) 103 param_write(fid,sbeg,'gradient_based_line_search','','\n',dm.params) 104 param_write(fid,sbeg,'trust_region','','\n',dm.params) 105 param_write(fid,sbeg,'tr_pds','','\n',dm.params) 106 param_write(fid,sbeg,'max_step',' = ','\n',dm.params) 107 param_write(fid,sbeg,'gradient_tolerance',' = ','\n',dm.params) 108 param_write(fid,sbeg,'merit_function',' = ','\n',dm.params) 109 param_write(fid,sbeg,'central_path',' = ','\n',dm.params) 110 param_write(fid,sbeg,'steplength_to_boundary',' = ','\n',dm.params) 111 param_write(fid,sbeg,'centering_parameter',' = ','\n',dm.params) 119 112 120 113 elif dm.method == 'optpp_pds': 121 param_write(fid,sbeg,'search_scheme_size',' = ','\n',dm.params) 122 123 else: 124 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 125 114 param_write(fid,sbeg,'search_scheme_size',' = ','\n',dm.params) 115 116 else: 117 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 126 118 127 119 elif dm.type == 'apps': … … 132 124 #switch dm.method 133 125 if dm.method == 'asynch_pattern_search': 134 param_write(fid,sbeg,'initial_delta',' = ','\n',dm.params) 135 param_write(fid,sbeg,'threshold_delta',' = ','\n',dm.params) 136 param_write(fid,sbeg,'contraction_factor',' = ','\n',dm.params) 137 param_write(fid,sbeg,'solution_target',' = ','\n',dm.params) 138 param_write(fid,sbeg,'synchronization',' = ','\n',dm.params) 139 param_write(fid,sbeg,'merit_function',' = ','\n',dm.params) 140 param_write(fid,sbeg,'constraint_penalty',' = ','\n',dm.params) 141 param_write(fid,sbeg,'smoothing_factor',' = ','\n',dm.params) 142 143 else: 144 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 145 126 param_write(fid,sbeg,'initial_delta',' = ','\n',dm.params) 127 param_write(fid,sbeg,'threshold_delta',' = ','\n',dm.params) 128 param_write(fid,sbeg,'contraction_factor',' = ','\n',dm.params) 129 param_write(fid,sbeg,'solution_target',' = ','\n',dm.params) 130 param_write(fid,sbeg,'synchronization',' = ','\n',dm.params) 131 param_write(fid,sbeg,'merit_function',' = ','\n',dm.params) 132 param_write(fid,sbeg,'constraint_penalty',' = ','\n',dm.params) 133 param_write(fid,sbeg,'smoothing_factor',' = ','\n',dm.params) 134 135 else: 136 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 146 137 147 138 elif dm.type == 'coliny': … … 151 142 param_write(fid,sbeg,'output',' ','\n',dm.params) 152 143 param_write(fid,sbeg,'scaling','','\n',dm.params) 153 154 144 param_write(fid,sbeg,'show_misc_options','','\n',dm.params) 155 145 param_write(fid,sbeg,'misc_options',' = ','\n',dm.params) … … 157 147 #switch dm.method 158 148 if dm.method == 'coliny_cobyla': 159 160 149 param_write(fid,sbeg,'initial_delta',' = ','\n',dm.params) 150 param_write(fid,sbeg,'threshold_delta',' = ','\n',dm.params) 161 151 162 152 elif dm.method == 'coliny_direct': 163 164 165 166 167 168 153 param_write(fid,sbeg,'division',' = ','\n',dm.params) 154 param_write(fid,sbeg,'global_balance_parameter',' = ','\n',dm.params) 155 param_write(fid,sbeg,'local_balance_parameter',' = ','\n',dm.params) 156 param_write(fid,sbeg,'max_boxsize_limit',' = ','\n',dm.params) 157 param_write(fid,sbeg,'min_boxsize_limit',' = ','\n',dm.params) 158 param_write(fid,sbeg,'constraint_penalty',' = ','\n',dm.params) 169 159 170 160 elif dm.method == 'coliny_ea': 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 161 param_write(fid,sbeg,'seed',' = ','\n',dm.params) 162 param_write(fid,sbeg,'population_size',' = ','\n',dm.params) 163 param_write(fid,sbeg,'initialization_type',' = ','\n',dm.params) 164 param_write(fid,sbeg,'fitness_type',' = ','\n',dm.params) 165 param_write(fid,sbeg,'replacement_type',' = ','\n',dm.params) 166 param_write(fid,sbeg,'random',' = ','\n',dm.params) 167 param_write(fid,sbeg,'chc',' = ','\n',dm.params) 168 param_write(fid,sbeg,'elitist',' = ','\n',dm.params) 169 param_write(fid,sbeg,'new_solutions_generated',' = ','\n',dm.params) 170 param_write(fid,sbeg,'crossover_type',' = ','\n',dm.params) 171 param_write(fid,sbeg,'crossover_rate',' = ','\n',dm.params) 172 param_write(fid,sbeg,'mutation_type',' = ','\n',dm.params) 173 param_write(fid,sbeg,'mutation_scale',' = ','\n',dm.params) 174 param_write(fid,sbeg,'mutation_range',' = ','\n',dm.params) 175 param_write(fid,sbeg,'dimension_ratio',' = ','\n',dm.params) 176 param_write(fid,sbeg,'mutation_rate',' = ','\n',dm.params) 177 param_write(fid,sbeg,'non_adaptive','','\n',dm.params) 188 178 189 179 elif dm.method == 'coliny_pattern_search': 190 191 192 193 194 195 196 197 198 199 200 201 202 180 param_write(fid,sbeg,'stochastic','','\n',dm.params) 181 param_write(fid,sbeg,'seed',' = ','\n',dm.params) 182 param_write(fid,sbeg,'initial_delta',' = ','\n',dm.params) 183 param_write(fid,sbeg,'threshold_delta',' = ','\n',dm.params) 184 param_write(fid,sbeg,'constraint_penalty',' = ','\n',dm.params) 185 param_write(fid,sbeg,'constant_penalty','','\n',dm.params) 186 param_write(fid,sbeg,'pattern_basis',' = ','\n',dm.params) 187 param_write(fid,sbeg,'total_pattern_size',' = ','\n',dm.params) 188 param_write(fid,sbeg,'no_expansion','','\n',dm.params) 189 param_write(fid,sbeg,'expand_after_success',' = ','\n',dm.params) 190 param_write(fid,sbeg,'contraction_factor',' = ','\n',dm.params) 191 param_write(fid,sbeg,'synchronization',' = ','\n',dm.params) 192 param_write(fid,sbeg,'exploratory_moves',' = ','\n',dm.params) 203 193 204 194 elif dm.method == 'coliny_solis_wets': 205 param_write(fid,sbeg,'seed',' = ','\n',dm.params) 206 param_write(fid,sbeg,'initial_delta',' = ','\n',dm.params) 207 param_write(fid,sbeg,'threshold_delta',' = ','\n',dm.params) 208 param_write(fid,sbeg,'no_expansion','','\n',dm.params) 209 param_write(fid,sbeg,'expand_after_success',' = ','\n',dm.params) 210 param_write(fid,sbeg,'contract_after_failure',' = ','\n',dm.params) 211 param_write(fid,sbeg,'contraction_factor',' = ','\n',dm.params) 212 param_write(fid,sbeg,'constraint_penalty',' = ','\n',dm.params) 213 param_write(fid,sbeg,'constant_penalty','','\n',dm.params) 214 215 else: 216 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 217 195 param_write(fid,sbeg,'seed',' = ','\n',dm.params) 196 param_write(fid,sbeg,'initial_delta',' = ','\n',dm.params) 197 param_write(fid,sbeg,'threshold_delta',' = ','\n',dm.params) 198 param_write(fid,sbeg,'no_expansion','','\n',dm.params) 199 param_write(fid,sbeg,'expand_after_success',' = ','\n',dm.params) 200 param_write(fid,sbeg,'contract_after_failure',' = ','\n',dm.params) 201 param_write(fid,sbeg,'contraction_factor',' = ','\n',dm.params) 202 param_write(fid,sbeg,'constraint_penalty',' = ','\n',dm.params) 203 param_write(fid,sbeg,'constant_penalty','','\n',dm.params) 204 205 else: 206 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 218 207 219 208 elif dm.type == 'ncsu': … … 223 212 #switch dm.method 224 213 if dm.method == 'ncsu_direct': 225 param_write(fid,sbeg,'solution_accuracy',' = ','\n',dm.params) 226 param_write(fid,sbeg,'min_boxsize_limit',' = ','\n',dm.params) 227 param_write(fid,sbeg,'vol_boxsize_limit',' = ','\n',dm.params) 228 229 else: 230 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 231 214 param_write(fid,sbeg,'solution_accuracy',' = ','\n',dm.params) 215 param_write(fid,sbeg,'min_boxsize_limit',' = ','\n',dm.params) 216 param_write(fid,sbeg,'vol_boxsize_limit',' = ','\n',dm.params) 217 218 else: 219 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 232 220 233 221 elif dm.type == 'jega': … … 236 224 param_write(fid,sbeg,'output',' ','\n',dm.params) 237 225 param_write(fid,sbeg,'scaling','','\n',dm.params) 238 239 226 param_write(fid,sbeg,'seed',' = ','\n',dm.params) 240 227 param_write(fid,sbeg,'log_file',' = ','\n',dm.params) … … 260 247 #switch dm.method 261 248 if dm.method == 'moga': 262 param_write(fid,sbeg,'fitness_type',' = ','\n',dm.params) 263 param_write(fid,sbeg,'niching_type',' = ','\n',dm.params) 264 if not isempty(dm.params.radial) and not isempty(dm.params.distance): 265 raise RuntimeError('#s'' method must have only one niching distance.', 266 dm.method) 267 268 param_write(fid,sbeg,'radial',' = ','\n',dm.params) 269 param_write(fid,sbeg,'distance',' = ','\n',dm.params) 270 param_write(fid,sbeg,'metric_tracker','','\n',dm.params) 271 param_write(fid,sbeg,'percent_change',' = ','\n',dm.params) 272 param_write(fid,sbeg,'num_generations',' = ','\n',dm.params) 273 param_write(fid,sbeg,'postprocessor_type',' = ','\n',dm.params) 274 param_write(fid,sbeg,'orthogonal_distance',' = ','\n',dm.params) 249 param_write(fid,sbeg,'fitness_type',' = ','\n',dm.params) 250 param_write(fid,sbeg,'niching_type',' = ','\n',dm.params) 251 if not isempty(dm.params.radial) and not isempty(dm.params.distance): 252 raise RuntimeError('#s'' method must have only one niching distance.', 253 dm.method) 254 param_write(fid,sbeg,'radial',' = ','\n',dm.params) 255 param_write(fid,sbeg,'distance',' = ','\n',dm.params) 256 param_write(fid,sbeg,'metric_tracker','','\n',dm.params) 257 param_write(fid,sbeg,'percent_change',' = ','\n',dm.params) 258 param_write(fid,sbeg,'num_generations',' = ','\n',dm.params) 259 param_write(fid,sbeg,'postprocessor_type',' = ','\n',dm.params) 260 param_write(fid,sbeg,'orthogonal_distance',' = ','\n',dm.params) 275 261 276 262 elif dm.method == 'soga': 277 param_write(fid,sbeg,'fitness_type',' = ','\n',dm.params) 278 param_write(fid,sbeg,'constraint_penalty',' = ','\n',dm.params) 279 param_write(fid,sbeg,'replacement_type',' = ','\n',dm.params) 280 param_write(fid,sbeg,'convergence_type',' = ','\n',dm.params) 281 param_write(fid,sbeg,'num_generations',' = ','\n',dm.params) 282 param_write(fid,sbeg,'percent_change',' = ','\n',dm.params) 283 284 else: 285 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 286 263 param_write(fid,sbeg,'fitness_type',' = ','\n',dm.params) 264 param_write(fid,sbeg,'constraint_penalty',' = ','\n',dm.params) 265 param_write(fid,sbeg,'replacement_type',' = ','\n',dm.params) 266 param_write(fid,sbeg,'convergence_type',' = ','\n',dm.params) 267 param_write(fid,sbeg,'num_generations',' = ','\n',dm.params) 268 param_write(fid,sbeg,'percent_change',' = ','\n',dm.params) 269 270 else: 271 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 287 272 288 273 elif dm.type == 'lsq': 289 274 #switch dm.method 290 275 if dm.method == 'nl2sol': 291 param_write(fid,sbeg,'max_iterations',' = ','\n',dm.params) 292 param_write(fid,sbeg,'max_function_evaluations',' = ','\n',dm.params) 293 param_write(fid,sbeg,'convergence_tolerance',' = ','\n',dm.params) 294 param_write(fid,sbeg,'output',' ','\n',dm.params) 295 param_write(fid,sbeg,'scaling','','\n',dm.params) 296 297 param_write(fid,sbeg,'function_precision',' = ','\n',dm.params) 298 param_write(fid,sbeg,'absolute_conv_tol',' = ','\n',dm.params) 299 param_write(fid,sbeg,'x_conv_tol',' = ','\n',dm.params) 300 param_write(fid,sbeg,'singular_conv_tol',' = ','\n',dm.params) 301 param_write(fid,sbeg,'singular_radius',' = ','\n',dm.params) 302 param_write(fid,sbeg,'false_conv_tol',' = ','\n',dm.params) 303 param_write(fid,sbeg,'initial_trust_radius',' = ','\n',dm.params) 304 param_write(fid,sbeg,'covariance',' = ','\n',dm.params) 305 param_write(fid,sbeg,'regression_stressbalances','','\n',dm.params) 276 param_write(fid,sbeg,'max_iterations',' = ','\n',dm.params) 277 param_write(fid,sbeg,'max_function_evaluations',' = ','\n',dm.params) 278 param_write(fid,sbeg,'convergence_tolerance',' = ','\n',dm.params) 279 param_write(fid,sbeg,'output',' ','\n',dm.params) 280 param_write(fid,sbeg,'scaling','','\n',dm.params) 281 param_write(fid,sbeg,'function_precision',' = ','\n',dm.params) 282 param_write(fid,sbeg,'absolute_conv_tol',' = ','\n',dm.params) 283 param_write(fid,sbeg,'x_conv_tol',' = ','\n',dm.params) 284 param_write(fid,sbeg,'singular_conv_tol',' = ','\n',dm.params) 285 param_write(fid,sbeg,'singular_radius',' = ','\n',dm.params) 286 param_write(fid,sbeg,'false_conv_tol',' = ','\n',dm.params) 287 param_write(fid,sbeg,'initial_trust_radius',' = ','\n',dm.params) 288 param_write(fid,sbeg,'covariance',' = ','\n',dm.params) 289 param_write(fid,sbeg,'regression_stressbalances','','\n',dm.params) 306 290 307 291 elif dm.method == 'nlssol_sqp': 308 param_write(fid,sbeg,'max_iterations',' = ','\n',dm.params) 309 param_write(fid,sbeg,'max_function_evaluations',' = ','\n',dm.params) 310 param_write(fid,sbeg,'convergence_tolerance',' = ','\n',dm.params) 311 param_write(fid,sbeg,'constraint_tolerance',' = ','\n',dm.params) 312 param_write(fid,sbeg,'output',' ','\n',dm.params) 313 param_write(fid,sbeg,'speculative','','\n',dm.params) 314 param_write(fid,sbeg,'scaling','','\n',dm.params) 315 316 param_write(fid,sbeg,'verify_level',' = ','\n',dm.params) 317 param_write(fid,sbeg,'function_precision',' = ','\n',dm.params) 318 param_write(fid,sbeg,'linesearch_tolerance',' = ','\n',dm.params) 292 param_write(fid,sbeg,'max_iterations',' = ','\n',dm.params) 293 param_write(fid,sbeg,'max_function_evaluations',' = ','\n',dm.params) 294 param_write(fid,sbeg,'convergence_tolerance',' = ','\n',dm.params) 295 param_write(fid,sbeg,'constraint_tolerance',' = ','\n',dm.params) 296 param_write(fid,sbeg,'output',' ','\n',dm.params) 297 param_write(fid,sbeg,'speculative','','\n',dm.params) 298 param_write(fid,sbeg,'scaling','','\n',dm.params) 299 param_write(fid,sbeg,'verify_level',' = ','\n',dm.params) 300 param_write(fid,sbeg,'function_precision',' = ','\n',dm.params) 301 param_write(fid,sbeg,'linesearch_tolerance',' = ','\n',dm.params) 319 302 320 303 elif dm.method == 'optpp_g_newton': 321 param_write(fid,sbeg,'max_iterations',' = ','\n',dm.params) 322 param_write(fid,sbeg,'max_function_evaluations',' = ','\n',dm.params) 323 param_write(fid,sbeg,'convergence_tolerance',' = ','\n',dm.params) 324 param_write(fid,sbeg,'output',' ','\n',dm.params) 325 param_write(fid,sbeg,'speculative','','\n',dm.params) 326 param_write(fid,sbeg,'scaling','','\n',dm.params) 327 328 if (dm.params.value_based_line_search + 329 dm.params.gradient_based_line_search + 330 dm.params.trust_region + 331 dm.params.tr_pds > 1): 332 raise RuntimeError('#s'' method must have only one algorithm.', 333 dm.method) 334 335 param_write(fid,sbeg,'value_based_line_search','','\n',dm.params) 336 param_write(fid,sbeg,'gradient_based_line_search','','\n',dm.params) 337 param_write(fid,sbeg,'trust_region','','\n',dm.params) 338 param_write(fid,sbeg,'tr_pds','','\n',dm.params) 339 param_write(fid,sbeg,'max_step',' = ','\n',dm.params) 340 param_write(fid,sbeg,'gradient_tolerance',' = ','\n',dm.params) 341 param_write(fid,sbeg,'merit_function',' = ','\n',dm.params) 342 param_write(fid,sbeg,'central_path',' = ','\n',dm.params) 343 param_write(fid,sbeg,'steplength_to_boundary',' = ','\n',dm.params) 344 param_write(fid,sbeg,'centering_parameter',' = ','\n',dm.params) 345 346 else: 347 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 348 304 param_write(fid,sbeg,'max_iterations',' = ','\n',dm.params) 305 param_write(fid,sbeg,'max_function_evaluations',' = ','\n',dm.params) 306 param_write(fid,sbeg,'convergence_tolerance',' = ','\n',dm.params) 307 param_write(fid,sbeg,'output',' ','\n',dm.params) 308 param_write(fid,sbeg,'speculative','','\n',dm.params) 309 param_write(fid,sbeg,'scaling','','\n',dm.params) 310 311 if (dm.params.value_based_line_search + 312 dm.params.gradient_based_line_search + 313 dm.params.trust_region + 314 dm.params.tr_pds > 1): 315 raise RuntimeError('#s'' method must have only one algorithm.', 316 dm.method) 317 318 param_write(fid,sbeg,'value_based_line_search','','\n',dm.params) 319 param_write(fid,sbeg,'gradient_based_line_search','','\n',dm.params) 320 param_write(fid,sbeg,'trust_region','','\n',dm.params) 321 param_write(fid,sbeg,'tr_pds','','\n',dm.params) 322 param_write(fid,sbeg,'max_step',' = ','\n',dm.params) 323 param_write(fid,sbeg,'gradient_tolerance',' = ','\n',dm.params) 324 param_write(fid,sbeg,'merit_function',' = ','\n',dm.params) 325 param_write(fid,sbeg,'central_path',' = ','\n',dm.params) 326 param_write(fid,sbeg,'steplength_to_boundary',' = ','\n',dm.params) 327 param_write(fid,sbeg,'centering_parameter',' = ','\n',dm.params) 328 329 else: 330 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 349 331 350 332 elif dm.type == 'nond': 351 333 #switch dm.method 352 334 if dm.method == 'nond_sampling': 353 354 335 param_write(fid,sbeg,'seed',' = ','\n',dm.params) 336 param_write(fid,sbeg,'fixed_seed','','\n',dm.params) 355 337 dver = str(IssmConfig('_DAKOTA_VERSION_')[0]) 356 if ((int(dver[0])==4 and int(dver[2])>2) or int(dver[0])>4): 357 param_write(fid,sbeg,'rng',' ','\n',dm.params) 358 359 param_write(fid,sbeg,'samples',' = ','\n',dm.params) 360 param_write(fid,sbeg,'sample_type',' ','\n',dm.params) 361 param_write(fid,sbeg,'all_variables','','\n',dm.params) 362 param_write(fid,sbeg,'variance_based_decomp','','\n',dm.params) 363 if strcmp(dm.params.sample_type,'incremental_random') or strcmp(dm.params.sample_type,'incremental_lhs'): 364 param_write(fid,sbeg,'previous_samples',' = ','\n',dm.params) 365 366 param_write(fid,sbeg,'output',' ','\n',dm.params) 338 if ((int(dver[0])==4 and int(dver[2])>2) or int(dver[0])>4): 339 param_write(fid,sbeg,'rng',' ','\n',dm.params) 340 param_write(fid,sbeg,'samples',' = ','\n',dm.params) 341 param_write(fid,sbeg,'sample_type',' ','\n',dm.params) 342 param_write(fid,sbeg,'all_variables','','\n',dm.params) 343 param_write(fid,sbeg,'variance_based_decomp','','\n',dm.params) 344 if strcmp(dm.params.sample_type,'incremental_random') or strcmp(dm.params.sample_type,'incremental_lhs'): 345 param_write(fid,sbeg,'previous_samples',' = ','\n',dm.params) 346 param_write(fid,sbeg,'output',' ','\n',dm.params) 367 347 368 348 elif dm.method == 'nond_local_reliability': 369 param_write(fid,sbeg,'max_iterations',' = ','\n',dm.params) 370 param_write(fid,sbeg,'convergence_tolerance',' = ','\n',dm.params) 371 372 param_write(fid,sbeg,'mpp_search',' = ','\n',dm.params) 373 if type(dm.params.mpp_search) == str: 374 if (dm.params.sqp + 375 dm.params.nip > 1): 376 raise RuntimeError('#s'' method must have only one algorithm.', 377 dm.method) 378 349 param_write(fid,sbeg,'max_iterations',' = ','\n',dm.params) 350 param_write(fid,sbeg,'convergence_tolerance',' = ','\n',dm.params) 351 param_write(fid,sbeg,'mpp_search',' = ','\n',dm.params) 352 if type(dm.params.mpp_search) == str: 353 if (dm.params.sqp +dm.params.nip > 1): 354 raise RuntimeError('#s'' method must have only one algorithm.', 355 dm.method) 356 379 357 param_write(fid,sbeg,'sqp','','\n',dm.params) 380 358 param_write(fid,sbeg,'nip','','\n',dm.params) 381 359 param_write(fid,sbeg,'integration',' ','\n',dm.params) 382 360 param_write(fid,sbeg,'refinement',' = ','\n',dm.params) 383 if type(dm.params.refinement) == str: 384 param_write(fid,sbeg,'samples',' = ','\n',dm.params) 385 param_write(fid,sbeg,'seed',' = ','\n',dm.params) 386 387 388 param_write(fid,sbeg,'output',' ','\n',dm.params) 361 if type(dm.params.refinement) == str: 362 param_write(fid,sbeg,'samples',' = ','\n',dm.params) 363 param_write(fid,sbeg,'seed',' = ','\n',dm.params) 364 param_write(fid,sbeg,'output',' ','\n',dm.params) 389 365 390 366 elif dm.method == 'nond_global_reliability': 391 367 if (dm.params.x_gaussian_process + dm.params.u_gaussian_process != 1): 392 393 394 395 396 397 398 368 raise RuntimeError('#s'' method must have one and only one algorithm.', 369 dm.method) 370 371 param_write(fid,sbeg,'x_gaussian_process','','\n',dm.params) 372 param_write(fid,sbeg,'u_gaussian_process','','\n',dm.params) 373 param_write(fid,sbeg,'all_variables','','\n',dm.params) 374 param_write(fid,sbeg,'seed',' = ','\n',dm.params) 399 375 400 376 elif dm.method == 'nond_polynomial_chaos': 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 377 param_write(fid,sbeg,'expansion_order',' = ','\n',dm.params) 378 param_write(fid,sbeg,'expansion_terms',' = ','\n',dm.params) 379 param_write(fid,sbeg,'quadrature_order',' = ','\n',dm.params) 380 param_write(fid,sbeg,'sparse_grid_level',' = ','\n',dm.params) 381 param_write(fid,sbeg,'expansion_samples',' = ','\n',dm.params) 382 param_write(fid,sbeg,'incremental_lhs','','\n',dm.params) 383 param_write(fid,sbeg,'collocation_points',' = ','\n',dm.params) 384 param_write(fid,sbeg,'collocation_ratio',' = ','\n',dm.params) 385 param_write(fid,sbeg,'reuse_samples','','\n',dm.params) 386 param_write(fid,sbeg,'expansion_import_file',' = ','\n',dm.params) 387 param_write(fid,sbeg,'seed',' = ','\n',dm.params) 388 param_write(fid,sbeg,'fixed_seed','','\n',dm.params) 389 param_write(fid,sbeg,'samples',' = ','\n',dm.params) 390 param_write(fid,sbeg,'sample_type',' = ','\n',dm.params) 391 param_write(fid,sbeg,'all_variables','','\n',dm.params) 416 392 417 393 elif dm.method == 'nond_stoch_collocation': 418 419 420 421 422 423 424 394 param_write(fid,sbeg,'quadrature_order',' = ','\n',dm.params) 395 param_write(fid,sbeg,'sparse_grid_level',' = ','\n',dm.params) 396 param_write(fid,sbeg,'seed',' = ','\n',dm.params) 397 param_write(fid,sbeg,'fixed_seed','','\n',dm.params) 398 param_write(fid,sbeg,'samples',' = ','\n',dm.params) 399 param_write(fid,sbeg,'sample_type',' = ','\n',dm.params) 400 param_write(fid,sbeg,'all_variables','','\n',dm.params) 425 401 426 402 elif dm.method == 'nond_evidence': 427 428 429 430 else: 431 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 432 403 param_write(fid,sbeg,'seed',' = ','\n',dm.params) 404 param_write(fid,sbeg,'samples',' = ','\n',dm.params) 405 406 else: 407 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 408 433 409 434 410 elif dm.type == 'dace': … … 436 412 if dm.method == 'dace': 437 413 if (dm.params.grid + dm.params.random + dm.params.oas + dm.params.lhs + dm.params.oa_lhs + dm.params.box_behnken + dm.params.central_composite != 1): 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 414 raise RuntimeError('#s'' method must have one and only one algorithm.', 415 dm.method) 416 417 param_write(fid,sbeg,'grid','','\n',dm.params) 418 param_write(fid,sbeg,'random','','\n',dm.params) 419 param_write(fid,sbeg,'oas','','\n',dm.params) 420 param_write(fid,sbeg,'lhs','','\n',dm.params) 421 param_write(fid,sbeg,'oa_lhs','','\n',dm.params) 422 param_write(fid,sbeg,'box_behnken','','\n',dm.params) 423 param_write(fid,sbeg,'central_composite','','\n',dm.params) 424 param_write(fid,sbeg,'seed',' = ','\n',dm.params) 425 param_write(fid,sbeg,'fixed_seed','','\n',dm.params) 426 param_write(fid,sbeg,'samples',' = ','\n',dm.params) 427 param_write(fid,sbeg,'symbols',' = ','\n',dm.params) 428 param_write(fid,sbeg,'quality_metrics','','\n',dm.params) 429 param_write(fid,sbeg,'variance_based_decomp','','\n',dm.params) 454 430 455 431 elif dm.method == 'fsu_quasi_mc': 456 457 458 459 460 461 462 463 464 465 466 467 468 432 if (dm.params.halton + dm.params.hammersley != 1): 433 raise RuntimeError('#s'' method must have one and only one sequence type.',dm.method) 434 435 param_write(fid,sbeg,'halton','','\n',dm.params) 436 param_write(fid,sbeg,'hammersley','','\n',dm.params) 437 param_write(fid,sbeg,'samples',' = ','\n',dm.params) 438 param_write(fid,sbeg,'sequence_start',' = ','\n',dm.params) 439 param_write(fid,sbeg,'sequence_leap',' = ','\n',dm.params) 440 param_write(fid,sbeg,'prime_base',' = ','\n',dm.params) 441 param_write(fid,sbeg,'fixed_sequence','','\n',dm.params) 442 param_write(fid,sbeg,'latinize','','\n',dm.params) 443 param_write(fid,sbeg,'variance_based_decomp','','\n',dm.params) 444 param_write(fid,sbeg,'quality_metrics','','\n',dm.params) 469 445 470 446 elif dm.method == 'fsu_cvt': 471 param_write(fid,sbeg,'seed',' = ','\n',dm.params) 472 param_write(fid,sbeg,'fixed_seed','','\n',dm.params) 473 param_write(fid,sbeg,'samples',' = ','\n',dm.params) 474 param_write(fid,sbeg,'num_trials',' = ','\n',dm.params) 475 param_write(fid,sbeg,'trial_type',' = ','\n',dm.params) 476 param_write(fid,sbeg,'latinize','','\n',dm.params) 477 param_write(fid,sbeg,'variance_based_decomp','','\n',dm.params) 478 param_write(fid,sbeg,'quality_metrics','','\n',dm.params) 479 480 else: 481 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 482 447 param_write(fid,sbeg,'seed',' = ','\n',dm.params) 448 param_write(fid,sbeg,'fixed_seed','','\n',dm.params) 449 param_write(fid,sbeg,'samples',' = ','\n',dm.params) 450 param_write(fid,sbeg,'num_trials',' = ','\n',dm.params) 451 param_write(fid,sbeg,'trial_type',' = ','\n',dm.params) 452 param_write(fid,sbeg,'latinize','','\n',dm.params) 453 param_write(fid,sbeg,'variance_based_decomp','','\n',dm.params) 454 param_write(fid,sbeg,'quality_metrics','','\n',dm.params) 455 456 else: 457 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 483 458 484 459 elif dm.type == 'param': … … 486 461 #switch dm.method 487 462 if dm.method == 'vector_parameter_study': 488 489 490 491 492 493 494 495 elif not isempty(dm.params.step_vector): 496 param_write(fid,sbeg,'step_vector',' = ','\n',dm.params)497 param_write(fid,sbeg,'num_steps','= ','\n',dm.params)498 463 if not np.logical_xor(isempty(dm.params.final_point),isempty(dm.params.step_vector)): 464 raise RuntimeError(str(dm.method)+' method must have one and only one specification.') 465 466 if not isempty(dm.params.final_point): 467 param_write(fid,sbeg,'final_point',' = ','\n',dm.params) 468 param_write(fid,sbeg,'step_length',' = ','\n',dm.params) 469 param_write(fid,sbeg,'num_steps',' = ','\n',dm.params) 470 471 elif not isempty(dm.params.step_vector): 472 param_write(fid,sbeg,'step_vector',' = ','\n',dm.params) 473 param_write(fid,sbeg,'num_steps',' = ','\n',dm.params) 499 474 500 475 elif dm.method == 'list_parameter_study': 501 476 param_write(fid,sbeg,'list_of_points',' = ','\n',dm.params) 502 477 503 478 elif dm.method == 'centered_parameter_study': 504 505 479 param_write(fid,sbeg,'percent_delta',' = ','\n',dm.params) 480 param_write(fid,sbeg,'deltas_per_variable',' = ','\n',dm.params) 506 481 507 482 elif dm.method == 'multidim_parameter_study': 508 509 510 else: 511 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 512 483 param_write(fid,sbeg,'partitions',' = ','\n',dm.params) 484 485 else: 486 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 487 513 488 514 489 elif dm.type == 'bayes': 515 490 #switch dm.method 516 491 if dm.method == 'bayes_calibration': 517 # if (dm.params.queso + 518 # dm.params.dream + 492 # if (dm.params.queso + 493 # dm.params.dream + 519 494 # dm.params.gpmsa ~= 1) 520 495 # raise RuntimeError('''#s'' method must have one and only one bayes type. YOU SUCK', 521 496 # dm.method) 522 # 497 # 523 498 param_write(fid,sbeg,'queso','','\n',dm.params) 524 525 526 527 499 param_write(fid,sbeg,'dream','','\n',dm.params) 500 param_write(fid,sbeg,'gpmsa','','\n',dm.params) 501 param_write(fid,sbeg,'samples',' = ','\n',dm.params) 502 param_write(fid,sbeg,'seed',' = ','\n',dm.params) 528 503 param_write(fid,sbeg,'output',' =','\n',dm.params) 529 504 param_write(fid,sbeg,'metropolis_hastings','','\n',dm.params) … … 531 506 param_write(fid,sbeg,'diagonal','','\n',dm.params) 532 507 param_write(fid,sbeg,'values',' = ','\n',dm.params) 533 508 534 509 else: 535 510 raise RuntimeError('Unrecognized '+dm.type+' method: '+dm.method+'.') 536 511 537 538 512 ## function to write a structure of parameters 539 540 513 def param_struc_write(fidi,sbeg,smid,s,params): 541 542 514 # loop through each parameter field in the structure 543 544 515 fnames=fieldnames(params) 545 546 516 for i in range(np.size(fnames)): 547 517 param_write(fidi,sbeg,fnames[i],smid,s,params) … … 550 520 551 521 ## function to write a parameter 552 553 522 def param_write(fidi,sbeg,pname,smid,s,params): 554 555 523 # check for errors 556 557 524 if not isfield(params,pname): 558 525 warning('param_write:param_not_found', … … 562 529 return 563 530 elif isempty(vars(params)[pname]): 564 print 'Warning: param_write:param_empty: Parameter '+pname+' requires input of type '+type(vars(params)[pname])+'.'531 print('Warning: param_write:param_empty: Parameter {} requires input of type {}.'.format(pname,type(vars(params)[pname]))) 565 532 return 566 533 567 568 534 # construct the parameter string based on type 569 570 535 if type(vars(params)[pname]) == bool: 571 536 fidi.write(sbeg+str(pname)+s) 537 572 538 elif type(vars(params)[pname]) in [int,float]: 573 539 fidi.write(sbeg+str(pname)+smid+str(vars(params)[pname])+s) 540 574 541 elif type(vars(params)[pname]) == list: 575 542 fidi.write(sbeg+str(pname)+smid+str(vars(params)[pname][0])) 576 543 for i in range(1,np.size(vars(params)[pname])): 577 544 fidi.write(' '+str(vars(params)[pname][i])) 578 545 579 546 fidi.write(s) 547 580 548 elif type(vars(params)[pname]) == str: 581 549 fidi.write(sbeg+str(pname)+smid+str(vars(params)[pname])+s) 550 582 551 else: 583 print 'Warning: param_write:param_unrecog: Parameter '+pname+' is of unrecognized type '+type(vars(params)[pname])+'.'552 print('Warning: param_write:param_unrecog: Parameter {} is of unrecognized type {}.'.format(pname,type(vars(params)[pname]))) 584 553 return 585 586 587 -
issm/trunk-jpl/src/m/classes/qmu/calibration_function.py
r23095 r23716 42 42 asizec = array_size(*args[0:min(nargin,4)]) 43 43 cf = [calibration_function() for i in range(asizec[0]) for j in range(asizec[1])] 44 44 45 45 for i in range(np.size(cf)): 46 46 if (np.size(args[0]) > 1): … … 59 59 cf[i].weight = args[3] 60 60 if nargin > 4: 61 print 'WARNING: calibration_function:extra_arg: Extra arguments for object of class '+str(type(cf))+'.'61 print('WARNING: calibration_function:extra_arg: Extra arguments for object of class '+str(type(cf))+'.') 62 62 63 63 return cf … … 71 71 string += ' scale: '+str(self.scale) + '\n' 72 72 string += ' weight: '+str(self.weight) + '\n' 73 74 73 return string 75 74 76 75 # from here on, cf is either a single, or a 1d vector of, calibration_function 77 78 @staticmethod 79 def prop_desc(cf,dstr): 76 @staticmethod 77 def prop_desc(cf,dstr): 80 78 if type(cf) not in [list,np.ndarray]: 81 79 if cf.descriptor != '' or type(cf.descriptor) != str: … … 95 93 else: 96 94 desc[i] = 'cf'+str(string_dim(cf,i,'vector')) 97 95 98 96 desc = allempty(desc) 99 100 97 return desc 101 98 102 @staticmethod 99 @staticmethod 103 100 def prop_stype(cf): 104 101 stype='' 105 102 return stype 106 103 107 104 @staticmethod 108 105 def prop_weight(cf): 109 106 weight=[] 110 107 return weight 111 108 112 109 @staticmethod 113 110 def prop_lower(cf): 114 111 lower=[] 115 112 return lower 116 113 117 114 @staticmethod 118 115 def prop_upper(cf): 119 116 upper=[] 120 117 return upper 121 118 122 119 @staticmethod 123 120 def prop_target(cf): 124 121 target=[] 125 122 return target 126 123 127 124 @staticmethod 128 125 def prop_scale(cf): 129 126 scale=[] 130 127 return scale 131 128 132 133 129 @staticmethod 130 def dakota_write(fidi,dresp,rdesc): 134 131 # collect only the responses of the appropriate class 135 132 cf = [struc_class(i,'calibration_function','cf') for i in dresp] … … 139 136 return rdesc 140 137 141 138 @staticmethod 142 139 def dakota_rlev_write(fidi,dresp,params): 143 140 return -
issm/trunk-jpl/src/m/classes/qmu/continuous_design.py
r23095 r23716 96 96 97 97 if (nargin > 6): 98 print 'WARNING: continuous_design:extra_arg: Extra arguments for object of class '+str(type(cdv))+'.'98 print('WARNING: continuous_design:extra_arg: Extra arguments for object of class '+str(type(cdv))+'.') 99 99 100 100 return cdv -
issm/trunk-jpl/src/m/classes/qmu/continuous_state.py
r23095 r23716 76 76 77 77 if (nargin > 4): 78 print 'continuous_state:extra_arg','Extra arguments for object of class '+str(type(csv))+'.'78 print('continuous_state:extra_arg','Extra arguments for object of class '+str(type(csv))+'.') 79 79 80 80 return csv -
issm/trunk-jpl/src/m/classes/qmu/least_squares_term.py
r23095 r23716 26 26 self.scale = 1. 27 27 self.weight = 1. 28 28 29 29 @staticmethod 30 30 def least_squares_term(*args): … … 32 32 33 33 #create a default object 34 34 if nargin == 0: 35 35 return least_squares_term() 36 36 37 37 #copy the object or create the object from the input 38 38 else: 39 39 if (nargin == 1) and isinstance(args[0],least_squares_term): 40 40 lst = args[0] … … 42 42 asizec = np.shape(*args[0:min(nargin,4)]) 43 43 lst = [least_squares_term() for i in range(asizec[0]) for j in range(asizec[1])] 44 44 45 45 for i in range(np.size(lst)): 46 46 if (np.size(args[0]) > 1): 47 lst[i].descriptor 47 lst[i].descriptor = args[0][i] 48 48 else: 49 lst[i].descriptor 49 lst[i].descriptor = str(args[0])+string_dim(lst,i,'vector') 50 50 51 if (nargin >= 2): 51 if (nargin >= 2): 52 52 for i in range(np.size(lst)): 53 53 if (np.size(args[1]) > 1): … … 59 59 for i in range(np.size(lst)): 60 60 if (np.size(args[2]) > 1): 61 lst[i].scale 61 lst[i].scale = args[2][i] 62 62 else: 63 lst[i].scale 63 lst[i].scale = args[2] 64 64 65 65 if (nargin >= 4): 66 66 for i in range(np.size(lst)): 67 67 if (np.size(args[3]) > 1): 68 lst[i].weight 68 lst[i].weight = args[3][i] 69 69 else: 70 lst[i].weight 71 70 lst[i].weight = args[3] 71 72 72 if (nargin > 4): 73 print 'WARNING: least_squares_term:extra_arg Extra arguments for object of class '+str(type(lst))+'.'73 print('WARNING: least_squares_term:extra_arg Extra arguments for object of class '+str(type(lst))+'.') 74 74 75 75 return lst … … 83 83 string += ' scale: '+str(self.scale) + '\n' 84 84 string += ' weight: '+str(self.weight) + '\n' 85 86 85 return string 87 86 88 87 @staticmethod 89 88 def prop_desc(lst,dstr): 90 89 if type(lst) not in [list,np.ndarray]: 91 90 lst = [lst] … … 101 100 102 101 desc = allempty(desc) 103 104 102 return desc 105 103 106 104 @staticmethod 107 105 def prop_stype(lst): 108 106 if type(lst) not in [list,np.ndarray]: 109 107 return str(lst.scale_type) … … 112 110 for i in range(np.size(lst)): 113 111 stype[i] = str(lst[i].scale_type) 114 112 115 113 stype = allequal(stype,'none') 116 117 114 return stype 118 115 119 116 @staticmethod 120 117 def prop_scale(lst): 121 118 if type(lst) not in [list,np.ndarray]: 122 119 return lst.scale … … 125 122 for i in range(np.size(lst)): 126 123 scale[i] = lst[i].scale 127 124 128 125 scale = allequal(scale,1.) 129 130 126 return scale 131 127 … … 138 134 for i in range(np.size(lst)): 139 135 weight[i] = lst[i].weight 140 136 141 137 weight = allequal(weight,1.) 142 143 138 return weight 144 139 145 140 @staticmethod 146 141 def prop_lower(lst): 147 142 lower=[] 148 143 return lower 149 144 150 145 @staticmethod 151 146 def prop_upper(lst): 152 147 upper=[] 153 148 return upper 154 149 155 150 @staticmethod 156 151 def prop_target(lst): 157 152 target=[] 158 153 return target … … 166 161 rdesc = rlist_write(fidi,'least_squares_terms','least_squares_term',lst,rdesc) 167 162 return rdesc 168 163 169 164 @staticmethod 170 171 165 def dakota_rlev_write(fidi,dresp,params): 166 return -
issm/trunk-jpl/src/m/classes/qmu/linear_equality_constraint.py
r23095 r23716 81 81 82 82 if (nargin > 4): 83 print 'WARNING: linear_equality_constraint:extra_arg: Extra arguments for object of class '+str(type(lec))+'.'83 print('WARNING: linear_equality_constraint:extra_arg: Extra arguments for object of class '+str(type(lec))+'.') 84 84 85 85 return lec -
issm/trunk-jpl/src/m/classes/qmu/linear_inequality_constraint.py
r23095 r23716 94 94 95 95 if (nargin > 5): 96 print 'WARNING: linear_inequality_constraint:extra_arg: Extra arguments for object of class '+str(type(lic))+'.'96 print('WARNING: linear_inequality_constraint:extra_arg: Extra arguments for object of class '+str(type(lic))+'.') 97 97 98 98 return lic -
issm/trunk-jpl/src/m/classes/qmu/nonlinear_equality_constraint.py
r23095 r23716 72 72 73 73 if (nargin > 4): 74 print 'WARNING: nonlinear_equality_constraint:extra_arg: Extra arguments for object of class '+str(type(nec))+'.'74 print('WARNING: nonlinear_equality_constraint:extra_arg: Extra arguments for object of class '+str(type(nec))+'.') 75 75 76 76 return nec -
issm/trunk-jpl/src/m/classes/qmu/nonlinear_inequality_constraint.py
r23095 r23716 83 83 84 84 if (nargin > 5): 85 print 'WARNING: nonlinear_inequality_constraint:extra_arg: Extra arguments for object of class '+str(type(nic))+'.'85 print('WARNING: nonlinear_inequality_constraint:extra_arg: Extra arguments for object of class '+str(type(nic))+'.') 86 86 87 87 return nic -
issm/trunk-jpl/src/m/classes/qmu/normal_uncertain.py
r23095 r23716 1 1 import numpy as np 2 from vlist_write import *2 #from vlist_write import * 3 3 from MatlabArray import * 4 4 … … 29 29 self.upper = np.Inf 30 30 31 @staticmethod 31 @staticmethod 32 32 def normal_uncertain(*args): 33 33 nargin = len(args) … … 38 38 39 39 # copy the object 40 40 elif nargin == 1: 41 41 if isinstance(args[0],normal_uncertain): 42 42 nuv = args[0] … … 45 45 46 46 # not enough arguments 47 48 47 elif nargin == 2: 48 raise RuntimeError('Construction of "normal_uncertain" class object requires at least 3 inputs.') 49 49 50 50 # create the object from the input 51 51 else: 52 52 # lines differ here in other classes/tests; see asizec problem in notes 53 53 nuv=normal_uncertain() 54 55 54 nuv.descriptor = str(args[0]) 56 nuv.mean = args[1] 55 nuv.mean = args[1] 57 56 nuv.stddev = args[2] 58 57 if nargin >= 4: … … 61 60 nuv.upper = args[4] 62 61 if nargin > 5: 63 print 'WARNING: normal_uncertain:extra_arg: Extra arguments for object of class '+str(type(nuv))+'.'62 print('WARNING: normal_uncertain:extra_arg: Extra arguments for object of class '+str(type(nuv))+'.') 64 63 65 64 return [nuv] … … 98 97 else: 99 98 desc[i] = 'nuv'+str(string_dim(nuv,i,'vector')) 100 99 101 100 desc = allempty(desc) 102 101 103 102 return desc 104 103 105 @staticmethod 104 @staticmethod 106 105 def prop_initpt(nuv): 107 106 initpt=[] 108 107 return initpt 109 108 110 @staticmethod 109 @staticmethod 111 110 def prop_lower(nuv): 112 111 if type(nuv) not in [list,np.ndarray]: … … 121 120 return lower 122 121 123 @staticmethod 122 @staticmethod 124 123 def prop_upper(nuv): 125 124 if type(nuv) not in [list,np.ndarray]: … … 131 130 132 131 upper = allequal(upper,-np.inf) 133 134 132 return upper 135 133 136 @staticmethod 134 @staticmethod 137 135 def prop_mean(nuv): 138 136 if type(nuv) not in [list,np.ndarray]: … … 145 143 return mean 146 144 147 @staticmethod 145 @staticmethod 148 146 def prop_stddev(nuv): 149 147 if type(nuv) not in [list,np.ndarray]: … … 154 152 stddev[i] = nuv[i].stddev 155 153 156 return stddev 154 return stddev 157 155 158 156 @staticmethod … … 161 159 return initst 162 160 163 @staticmethod 161 @staticmethod 164 162 def prop_stype(nuv): 165 163 stype=[] 166 164 return stype 167 165 168 @staticmethod 166 @staticmethod 169 167 def prop_scale(nuv): 170 168 scale=[] 171 169 return scale 172 170 173 171 @staticmethod … … 176 174 nuv = [struc_class(i,'normal_uncertain','nuv') for i in dvar] 177 175 178 # possible namespace pollution, the above import seems not to work 179 from vlist_write import *176 # possible namespace pollution, the above import seems not to work 177 from vlist_write import vlist_write 180 178 # write variables 181 179 vlist_write(fidi,'normal_uncertain','nuv',nuv) -
issm/trunk-jpl/src/m/classes/qmu/objective_function.py
r23095 r23716 36 36 37 37 # copy the object or create the object from the input 38 38 else: 39 39 if (nargin == 1) and isinstance(args[0],objective_function): 40 40 of = args[0] … … 43 43 of = [objective_function() for i in range(shapec[0]) for j in range(shapec[1])] 44 44 45 45 for i in range(np.size(of)): 46 46 if (np.size(args[0]) > 1): 47 of[i].descriptor 47 of[i].descriptor = args[0][i] 48 48 else: 49 of[i].descriptor 49 of[i].descriptor = str(args[0])+string_dim(of,i,'vector') 50 50 51 if (nargin >= 2): 51 if (nargin >= 2): 52 52 for i in range(np.size(of)): 53 53 if (np.size(args[1]) > 1): … … 59 59 for i in range(np.size(of)): 60 60 if (np.size(args[2]) > 1): 61 of[i].scale 61 of[i].scale = args[2][i] 62 62 else: 63 of[i].scale 63 of[i].scale = args[2] 64 64 65 65 if (nargin >= 4): 66 66 for i in range(np.size(of)): 67 67 if (np.size(args[3]) > 1): 68 of[i].weight 68 of[i].weight = args[3][i] 69 69 else: 70 of[i].weight 70 of[i].weight = args[3] 71 71 72 72 if (nargin > 4): 73 print 'WARNING: objective_function:extra_arg Extra arguments for object of class '+str(type(of))+'.'73 print('WARNING: objective_function:extra_arg Extra arguments for object of class '+str(type(of))+'.') 74 74 75 75 return of … … 84 84 string += ' scale: ' +str(self.scale) + '\n' 85 85 string += ' weight: ' +str(self.weight) + '\n' 86 87 86 return string 88 87 … … 106 105 else: 107 106 desc[i] = 'of'+str(string_dim(of,i,'vector')) 108 107 109 108 desc = allempty(desc) 110 111 109 return desc 112 110 … … 134 132 for i in range(np.size(of)): 135 133 weight[i] = of[i].weight 136 134 137 135 weight = allequal(weight,1.) 138 139 136 return weight 140 137 … … 147 144 for i in range(np.size(of)): 148 145 stype[i] = str(of[i].scale_type) 149 146 150 147 stype = allequal(stype,'none') 151 152 148 return stype 153 149 … … 160 156 for i in range(np.size(of)): 161 157 scale[i] = of[i].scale 162 158 163 159 scale = allequal(scale,1.) 160 return scale 164 161 165 return scale166 167 162 @staticmethod 168 163 def dakota_write(fidi,dresp,rdesc): -
issm/trunk-jpl/src/m/classes/qmu/response_function.py
r23095 r23716 1 1 import numpy as np 2 from rlist_write import *2 #from rlist_write import * 3 3 from rlev_write import * 4 4 from MatlabArray import * … … 35 35 36 36 @staticmethod 37 37 def response_function(*args): 38 38 39 39 nargin = len(args) … … 49 49 asizec = array_size(*args[0:min(nargin,1)]) 50 50 rf = [response_function() for i in range(asizec[0]) for j in range(asizec[1])] 51 51 52 52 for i in range(np.size(rf)): 53 53 if (np.size(args[0]) > 1): … … 73 73 74 74 if nargin > 5: 75 print 'WARNING: response_function:extra_arg: Extra arguments for object of class '+str(type(rf))+'.'75 print('WARNING: response_function:extra_arg: Extra arguments for object of class '+str(type(rf))+'.') 76 76 77 77 return rf 78 78 79 80 79 def __repr__(self): 81 80 # display the object … … 109 108 else: 110 109 desc[i] = 'rf'+str(string_dim(rf,i,'vector')) 111 110 112 111 desc = allempty(desc) 113 114 112 return desc 115 113 … … 118 116 stype=[] 119 117 return stype 120 118 121 119 @staticmethod 122 120 def prop_scale(rf): 123 121 scale=[] 124 122 return scale 125 123 126 124 @staticmethod 127 125 def prop_weight(rf): 128 126 weight=[] 129 127 return weight 130 128 131 129 @staticmethod 132 130 def prop_lower(rf): 133 131 lower=[] 134 132 return lower 135 133 136 134 @staticmethod 137 135 def prop_upper(rf): 138 136 upper=[] 139 137 return upper 140 138 141 139 @staticmethod 142 140 def prop_target(rf): 143 141 target=[] 144 142 return target 145 143 146 144 @staticmethod 147 145 def prop_levels(rf): … … 151 149 152 150 respl = empty_nd_list(np.size(rf)) 153 154 151 probl = empty_nd_list(np.size(rf)) 155 156 152 rell = empty_nd_list(np.size(rf)) 157 158 153 grell = empty_nd_list(np.size(rf)) 159 154 160 155 for i in range(np.size(rf)): 161 156 respl[i] = rf[i].respl 162 157 probl[i] = rf[i].probl 163 158 rell [i] = rf[i].rell 164 165 159 grell[i] = rf[i].grell 160 166 161 respl = allempty(respl) 167 162 probl = allempty(probl) 168 163 rell = allempty(rell) 169 164 grell = allempty(grell) 170 171 return [respl,probl,rell,grell] 165 return [respl,probl,rell,grell] 172 166 173 167 @staticmethod -
issm/trunk-jpl/src/m/classes/qmu/uniform_uncertain.py
r23095 r23716 1 1 import numpy as np 2 from vlist_write import *2 #from vlist_write import * 3 3 from MatlabArray import * 4 4 … … 41 41 42 42 # not enough arguments 43 44 43 elif nargin == 2: 45 44 raise RuntimeError('Construction of "uniform_uncertain" class object requires at least 3 inputs.') … … 50 49 #asizec=array_size(*args[0:min(nargin,3)]) 51 50 #uuv = [uniform_uncertain() for i in range(asizec[0]) for j in range(asizec[1])] 52 53 uuv = uniform_uncertain() 54 51 uuv = uniform_uncertain() 55 52 uuv.descriptor = str(args[0]) 56 53 uuv.lower = args[1] 57 54 uuv.upper = args[2] 58 55 if (nargin > 3): 59 print 'WARNING: uniform_uncertain:extra_arg: Extra arguments for object of class '+type(uuv)+'.'56 print('WARNING: uniform_uncertain:extra_arg: Extra arguments for object of class '+type(uuv)+'.') 60 57 61 58 return [uuv] 62 59 63 64 def __repr__(self): 60 def __repr__(self): 65 61 # display an individual object 66 62 string = '\n' … … 93 89 else: 94 90 desc[i] = 'uuv'+str(string_dim(uuv,i,'vector')) 95 91 96 92 desc = allempty(desc) 97 93 98 94 return desc 99 95 100 96 @staticmethod 101 97 def prop_initpt(uuv): 102 98 initpt=[] 103 99 return initpt 104 100 105 101 @staticmethod 106 102 def prop_lower(uuv): … … 111 107 for i in range(np.size(uuv)): 112 108 lower[i] = uuv[i].lower 113 109 114 110 lower = allequal(lower,-np.Inf) 115 111 116 112 return lower 117 113 118 114 @staticmethod 119 115 def prop_upper(uuv): … … 124 120 for i in range(np.size(uuv)): 125 121 upper[i] = uuv[i].upper 126 122 127 123 upper = allequal(upper, np.Inf) 128 124 129 125 return upper 130 126 131 127 @staticmethod 132 128 def prop_mean(uuv): 133 129 mean=[] 134 130 return mean 135 131 136 132 @staticmethod 137 133 def prop_stddev(uuv): 138 134 stddev=[] 139 135 return stddev 140 136 141 137 @staticmethod 142 138 def prop_initst(uuv): 143 139 initst=[] 144 140 return initst 145 141 146 142 @staticmethod 147 143 def prop_stype(uuv): 148 144 stype=[] 149 145 return stype 150 146 151 147 @staticmethod 152 148 def prop_scale(uuv): 153 149 scale=[] 154 150 return scale 155 151 156 152 @staticmethod 157 153 def dakota_write(fidi,dvar): 158 154 # collect only the variables of the appropriate class 159 155 uuv = [struc_class(i,'uniform_uncertain','uuv') for i in dvar] 160 161 # possible namespace pollution, the above import seems not to work 162 from vlist_write import * 156 # possible namespace pollution, the above import seems not to work 157 from vlist_write import vlist_write 163 158 # write variables 164 159 vlist_write(fidi,'uniform_uncertain','uuv',uuv) -
issm/trunk-jpl/src/m/classes/regionaloutput.py
r21827 r23716 75 75 def checkconsistency(self,md,solution,analyses): # {{{ 76 76 77 if not isinstance(self.name, basestring):77 if not isinstance(self.name, str): 78 78 raise RuntimeError("regionaloutput error message: 'name' field should be a string!") 79 79 80 if not isinstance(self.outputnamestring, basestring):80 if not isinstance(self.outputnamestring, str): 81 81 raise RuntimeError("regionaloutput error message: 'outputnamestring' field should be a string!") 82 82 -
issm/trunk-jpl/src/m/classes/results.py
r21303 r23716 25 25 s+="%s\n" % fielddisplay(self,'SolutionType',"solution type") 26 26 27 for name in self.__dict__.iterkeys():27 for name in list(self.__dict__.keys()): 28 28 if name not in ['step','time','SolutionType','errlog','outlog']: 29 29 if isinstance(getattr(self,name),list): -
issm/trunk-jpl/src/m/classes/rifts.py
r21303 r23716 47 47 md.checkmessage("model should be processed for rifts (run meshprocessrifts)!") 48 48 for i,rift in enumerate(self.riftstruct): 49 md = checkfield(md,'fieldname',"rifts.riftstruct[ %d]['fill']" % i,'values',['Water','Air','Ice','Melange',0,1,2,3])49 md = checkfield(md,'fieldname',"rifts.riftstruct[{}]['fill']".format(i),'values',['Water','Air','Ice','Melange',0,1,2,3]) 50 50 else: 51 51 if self.riftstruct and np.any(np.logical_not(isnans(self.riftstruct))): -
issm/trunk-jpl/src/m/classes/slr.py
r23088 r23716 9 9 """ 10 10 SLR class definition 11 11 12 12 Usage: 13 13 slr=slr() 14 14 """ 15 16 15 def __init__(self): # {{{ 17 16 self.deltathickness = float('NaN') 18 17 self.sealevel = float('NaN') 19 self.spcthickness 18 self.spcthickness = float('NaN') 20 19 self.maxiter = 0 21 20 self.reltol = 0 … … 26 25 self.tide_love_k = 0 #ideam 27 26 self.tide_love_h = 0 #ideam 28 self.fluid_love = 0 29 self.equatorial_moi = 0 30 self.polar_moi = 0 27 self.fluid_love = 0 28 self.equatorial_moi = 0 29 self.polar_moi = 0 31 30 self.angular_velocity = 0 32 31 self.rigid = 0 … … 44 43 self.requested_outputs = [] 45 44 self.transitions = [] 46 45 47 46 #set defaults 48 47 self.setdefaultparameters() 49 48 #}}} 49 50 50 def __repr__(self): # {{{ 51 51 string=' slr parameters:' 52 52 string="%s\n%s"%(string,fielddisplay(self,'deltathickness','thickness change: ice height equivalent [m]')) 53 53 string="%s\n%s"%(string,fielddisplay(self,'sealevel','current sea level (prior to computation) [m]')) 54 54 string="%s\n%s"%(string,fielddisplay(self,'spcthickness','thickness constraints (NaN means no constraint) [m]')) … … 64 64 string="%s\n%s"%(string,fielddisplay(self,'equatorial_moi','mean equatorial moment of inertia [kg m^2]')) 65 65 string="%s\n%s"%(string,fielddisplay(self,'polar_moi','polar moment of inertia [kg m^2]')) 66 string="%s\n%s"%(string,fielddisplay(self,'angular_velocity','mean rotational velocity of earth [per second]')) 66 string="%s\n%s"%(string,fielddisplay(self,'angular_velocity','mean rotational velocity of earth [per second]')) 67 67 string="%s\n%s"%(string,fielddisplay(self,'ocean_area_scaling','correction for model representation of ocean area [default: No correction]')) 68 68 string="%s\n%s"%(string,fielddisplay(self,'steric_rate','rate of steric ocean expansion [mm/yr]')) 69 string="%s\n%s"%(string,fielddisplay(self,'Ngia','rate of viscous (GIA) geoid expansion (in mm/yr)')) 69 string="%s\n%s"%(string,fielddisplay(self,'Ngia','rate of viscous (GIA) geoid expansion (in mm/yr)')) 70 70 string="%s\n%s"%(string,fielddisplay(self,'Ugia','rate of viscous (GIA) bedrock uplift (in mm/yr)')) 71 71 string="%s\n%s"%(string,fielddisplay(self,'loop_increment','vector assembly (in the convolution) framentation')) … … 81 81 return string 82 82 # }}} 83 83 84 def setdefaultparameters(self): # {{{ 84 85 85 #Convergence criterion: absolute, relative and residual 86 self.reltol =0.01 #default87 self.abstol =float('NaN') #1 mm of sea level rise86 self.reltol = 0.01 #default 87 self.abstol = float('NaN') #1 mm of sea level rise 88 88 89 89 #maximum of non-linear iterations. 90 self.maxiter =591 self.loop_increment =20092 93 #computational flags: 94 self.geodetic =095 self.rigid =196 self.elastic =197 self.ocean_area_scaling =098 self.rotation =199 100 #tidal love numbers: 101 self.tide_love_h =0.6149 #degree 2102 self.tide_love_k =0.3055 #degree 2103 104 #secular fluid love number: 105 self.fluid_love =0.942106 107 #moment of inertia: 108 self.equatorial_moi =8.0077*10**37 # [kg m^2]109 self.polar_moi = 8.0345*10**37 # [kg m^2]110 111 #mean rotational velocity of earth 112 self.angular_velocity =7.2921*10**-5 # [s^-1]90 self.maxiter = 5 91 self.loop_increment = 200 92 93 #computational flags: 94 self.geodetic = 0 95 self.rigid = 1 96 self.elastic = 1 97 self.ocean_area_scaling = 0 98 self.rotation = 1 99 100 #tidal love numbers: 101 self.tide_love_h = 0.6149 #degree 2 102 self.tide_love_k = 0.3055 #degree 2 103 104 #secular fluid love number: 105 self.fluid_love = 0.942 106 107 #moment of inertia: 108 self.equatorial_moi = 8.0077*10**37 # [kg m^2] 109 self.polar_moi = 8.0345*10**37 # [kg m^2] 110 111 #mean rotational velocity of earth 112 self.angular_velocity = 7.2921*10**-5 # [s^-1] 113 113 114 114 #numerical discretization accuracy 115 self.degacc =.01115 self.degacc = .01 116 116 117 117 #steric: 118 self.steric_rate =0118 self.steric_rate = 0 119 119 120 120 #how many time steps we skip before we run SLR solver during transient 121 self.geodetic_run_frequency =1122 121 self.geodetic_run_frequency = 1 122 123 123 #output default: 124 self.requested_outputs =['default']125 126 #transitions should be a cell array of vectors: 127 self.transitions =[]124 self.requested_outputs = ['default'] 125 126 #transitions should be a cell array of vectors: 127 self.transitions = [] 128 128 129 129 #horizontal displacement? (not by default) 130 self.horiz =0130 self.horiz = 0 131 131 132 132 return self 133 133 #}}} 134 134 135 def checkconsistency(self,md,solution,analyses): # {{{ 135 136 136 #Early return 137 137 if (solution!='SealevelriseAnalysis'): … … 162 162 md = checkfield(md,'fieldname','slr.Ugia','NaN',1,'Inf',1,'size',[md.mesh.numberofvertices]) 163 163 164 #check that love numbers are provided at the same level of accuracy: 164 #check that love numbers are provided at the same level of accuracy: 165 165 if (size(self.love_h,0) != size(self.love_k,0) | size(self.love_h,0) != size(self.love_l,0)): 166 166 error('slr error message: love numbers should be provided at the same level of accuracy') 167 167 168 #cross check that whereever we have an ice load, the mask is <0 on each vertex: 168 #cross check that whereever we have an ice load, the mask is <0 on each vertex: 169 169 pos=np.where(self.deltathickness) 170 maskpos=md.mask.ice_levelset[md.mesh.elements[pos,:]] 170 maskpos=md.mask.ice_levelset[md.mesh.elements[pos,:]] 171 171 els=np.where(maskpos>0) 172 172 if len(els[0])>0: 173 173 warnings.warn('slr checkconsistency fail: there are elements with ice loads where some vertices are not on the ice!') 174 175 #check that if geodetic is requested, we are a mesh3dsurface model (planet), or if we are not, 176 #a coupler to a planet model is provided. 174 175 #check that if geodetic is requested, we are a mesh3dsurface model (planet), or if we are not, 176 #a coupler to a planet model is provided. 177 177 if self.geodetic and not md.transient.iscoupler and domaintype(md.mesh)!='mesh3dsurface': 178 178 error('model is requesting geodetic computations without being a mesh3dsurface, or being coupled to one!') 179 179 return md 180 180 # }}} 181 181 182 def defaultoutputs(self,md): # {{{ 182 183 return ['Sealevel'] 183 184 # }}} 185 184 186 def marshall(self,prefix,md,fid): # {{{ 185 187 WriteData(fid,prefix,'object',self,'fieldname','deltathickness','format','DoubleMat','mattype',2) … … 211 213 WriteData(fid,prefix,'object',self,'fieldname','horiz','format','Integer') 212 214 WriteData(fid,prefix,'object',self,'fieldname','geodetic','format','Integer') 213 215 214 216 #process requested outputs 215 217 outputs = self.requested_outputs -
issm/trunk-jpl/src/m/classes/stressbalance.py
r23088 r23716 142 142 # if ~any((~isnan(md.stressbalance.spcvx)+~isnan(md.stressbalance.spcvy))==2), 143 143 if not np.any(np.logical_and(np.logical_not(np.isnan(md.stressbalance.spcvx)),np.logical_not(np.isnan(md.stressbalance.spcvy)))): 144 print "\n !!! Warning: no spc applied, model might not be well posed if no basal friction is applied, check for solution crash\n"144 print("\n !!! Warning: no spc applied, model might not be well posed if no basal friction is applied, check for solution crash\n") 145 145 #CHECK THAT EACH LINES CONTAINS ONLY NAN VALUES OR NO NAN VALUES 146 146 # if any(sum(isnan(md.stressbalance.referential),2)~=0 & sum(isnan(md.stressbalance.referential),2)~=6), -
issm/trunk-jpl/src/m/classes/timesteppingadaptive.py
r22460 r23716 20 20 self.interp_forcings = 1 21 21 self.coupling_time = 0. 22 22 23 23 #set defaults 24 24 self.setdefaultparameters() … … 26 26 elif len(args)==1 and args[0].__module__=='timestepping': 27 27 old=args[0] 28 #first call setdefaultparameters: 28 #first call setdefaultparameters: 29 29 self.setdefaultparameters() 30 self.start_time = old.start_time 31 self.final_time = old.final_time 32 self.interp_forcings = old.interp_forcings 33 30 self.start_time = old.start_time 31 self.final_time = old.final_time 32 self.interp_forcings = old.interp_forcings 33 self.coupling_time = old.coupling_time 34 34 35 35 else: 36 36 raise Exception('constructor not supported') 37 #}}} 37 #}}} 38 38 39 def __repr__(self): # {{{ 39 40 string=" timesteppingadaptive parameters:" … … 46 47 string="%s\n%s"%(string,fielddisplay(self,"coupling_time","coupling time steps with ocean model [yr]")) 47 48 return string 48 #}}} 49 # }}} 50 49 51 def setdefaultparameters(self): # {{{ 50 52 51 53 #time between 2 time steps 52 54 self.time_step_min=0.01 … … 56 58 self.final_time=10.*self.time_step_max 57 59 58 #time adaptation? 60 #time adaptation? 59 61 self.cfl_coefficient=0.5 60 62 61 63 #should we interpolate forcings between timesteps? 62 64 self.interp_forcings=1 … … 64 66 return self 65 67 #}}} 68 66 69 def checkconsistency(self,md,solution,analyses): # {{{ 67 68 70 md = checkfield(md,'fieldname','timestepping.start_time','numel',[1],'NaN',1,'Inf',1) 69 71 md = checkfield(md,'fieldname','timestepping.final_time','numel',[1],'NaN',1,'Inf',1) … … 78 80 return md 79 81 # }}} 82 80 83 def marshall(self,prefix,md,fid): # {{{ 81 82 84 yts=md.constants.yts 83 85 WriteData(fid,prefix,'name','md.timestepping.type','data',2,'format','Integer'); -
issm/trunk-jpl/src/m/classes/toolkits.py
r22843 r23716 35 35 def __repr__(self): # {{{ 36 36 s ="List of toolkits options per analysis:\n\n" 37 for analysis in vars(self).iterkeys():37 for analysis in list(vars(self).keys()): 38 38 s+="%s\n" % fielddisplay(self,analysis,'') 39 39 … … 56 56 # }}} 57 57 def checkconsistency(self,md,solution,analyses): # {{{ 58 for analysis in vars(self).iterkeys():58 for analysis in list(vars(self).keys()): 59 59 if not getattr(self,analysis): 60 60 md.checkmessage("md.toolkits.%s is empty" % analysis) … … 83 83 84 84 #start writing options 85 for analysis in vars(self).iterkeys():85 for analysis in list(vars(self).keys()): 86 86 options=getattr(self,analysis) 87 87 … … 89 89 fid.write("\n+%s\n" % analysis) #append a + to recognize it's an analysis enum 90 90 #now, write options 91 for optionname,optionvalue in options.iteritems():91 for optionname,optionvalue in list(options.items()): 92 92 93 93 if not optionvalue: … … 96 96 else: 97 97 #option with value. value can be string or scalar 98 if isinstance(optionvalue,(bool,int, long,float)):98 if isinstance(optionvalue,(bool,int,float)): 99 99 fid.write("-%s %g\n" % (optionname,optionvalue)) 100 elif isinstance(optionvalue, (str,unicode)):100 elif isinstance(optionvalue,str): 101 101 fid.write("-%s %s\n" % (optionname,optionvalue)) 102 102 else: -
issm/trunk-jpl/src/m/classes/verbose.py
r21049 r23716 50 50 elif len(args) == 1: 51 51 binary=args[0] 52 if isinstance(binary, (str,unicode)):52 if isinstance(binary,str): 53 53 if binary.lower()=='all': 54 54 binary=2**11-1 #all ones … … 58 58 binary=int(binary,2) 59 59 self.BinaryToVerbose(binary) 60 elif isinstance(binary,(int, long,float)):60 elif isinstance(binary,(int,float)): 61 61 self.BinaryToVerbose(int(binary)) 62 62 … … 67 67 #Cast to logicals 68 68 listproperties=vars(self) 69 for fieldname,fieldvalue in list properties.iteritems():70 if isinstance(fieldvalue,bool) or isinstance(fieldvalue,(int, long,float)):69 for fieldname,fieldvalue in list(listproperties.items()): 70 if isinstance(fieldvalue,bool) or isinstance(fieldvalue,(int,float)): 71 71 setattr(self,fieldname,bool(fieldvalue)) 72 72 else: -
issm/trunk-jpl/src/m/consistency/checkfield.py
r23705 r23716 1 1 import numpy as np 2 2 import os 3 from re import findall,split 3 4 from pairoptions import pairoptions 4 5 from operator import attrgetter … … 42 43 else: 43 44 fieldname=options.getfieldvalue('fieldname') 44 exec("field=md.{}".format(fieldname)) 45 46 if isinstance(field,(bool,int,long,float)): 45 fieldprefix=split(r'\[(.*?)\]',fieldname)[0] 46 fieldindexes=findall(r'\[(.*?)\]',fieldname) 47 field=attrgetter(fieldprefix)(md) 48 for index in fieldindexes: 49 try: 50 field=field[index.strip("\'")] 51 except TypeError: 52 field=field[int(index)] #looking for an index and not a key 53 54 # that works for py2 55 # exec("field=md.{}".format(fieldname)) 56 # exec("field=md.{}".format(fieldname),namespace) 57 58 59 if isinstance(field,(bool,int,float)): 47 60 field=np.array([field]) 48 61 … … 65 78 try: 66 79 exec("md.{}=np.squeeze(field)".format(fieldname)) 67 print( '{} had been squeezed if it was a matrix with only one column'.format(fieldname))80 print(('{} had been squeezed if it was a matrix with only one column'.format(fieldname))) 68 81 except IndexError: 69 82 md = md.checkmessage(options.getfieldvalue('message',"field {} should have {} dimension".format(fieldname,len(fieldsize)))) … … 102 115 "NaN values found in field '%s'" % fieldname)) 103 116 117 104 118 #check Inf 105 119 if options.getfieldvalue('Inf',0): … … 107 121 md = md.checkmessage(options.getfieldvalue('message',\ 108 122 "Inf values found in field '%s'" % fieldname)) 123 109 124 110 125 #check cell … … 206 221 else: 207 222 maxval=np.nanmax(field[0]) 223 208 224 if maxval>=upperbound: 209 md = md.checkmessage(options.getfieldvalue('message',"field ' {}' should have values below {}".format(fieldname,upperbound)))225 md = md.checkmessage(options.getfieldvalue('message',"field '%s' should have values below %d" % (fieldname,upperbound))) 210 226 211 227 #check file -
issm/trunk-jpl/src/m/consistency/ismodelselfconsistent.py
r22004 r23716 1 1 def AnalysisConfiguration(solutiontype): #{{{ 2 2 """ 3 ANALYSISCONFIGURATION - return type of analyses, number of analyses 3 ANALYSISCONFIGURATION - return type of analyses, number of analyses 4 4 5 5 Usage: … … 9 9 if solutiontype == 'StressbalanceSolution': 10 10 analyses=['StressbalanceAnalysis','StressbalanceVerticalAnalysis','StressbalanceSIAAnalysis','L2ProjectionBaseAnalysis'] 11 12 11 elif solutiontype == 'SteadystateSolution': 13 12 analyses=['StressbalanceAnalysis','StressbalanceVerticalAnalysis','StressbalanceSIAAnalysis','L2ProjectionBaseAnalysis','ThermalAnalysis','MeltingAnalysis','EnthalpyAnalysis'] 14 15 13 elif solutiontype == 'ThermalSolution': 16 14 analyses=['EnthalpyAnalysis','ThermalAnalysis','MeltingAnalysis'] 17 18 15 elif solutiontype == 'MasstransportSolution': 19 16 analyses=['MasstransportAnalysis'] 20 21 17 elif solutiontype == 'BalancethicknessSolution': 22 18 analyses=['BalancethicknessAnalysis'] 23 24 19 elif solutiontype == 'SurfaceSlopeSolution': 25 20 analyses=['L2ProjectionBaseAnalysis'] 26 27 21 elif solutiontype == 'BalancevelocitySolution': 28 22 analyses=['BalancevelocityAnalysis'] 29 30 23 elif solutiontype == 'BedSlopeSolution': 31 24 analyses=['L2ProjectionBaseAnalysis'] 32 33 25 elif solutiontype == 'GiaSolution': 34 26 analyses=['GiaIvinsAnalysis'] 35 36 elif solutiontype == 'LoveSolution': 37 analyses=['LoveAnalysis'] 38 27 elif solutiontype == 'LoveSolution': 28 analyses=['LoveAnalysis'] 39 29 elif solutiontype == 'TransientSolution': 40 30 analyses=['StressbalanceAnalysis','StressbalanceVerticalAnalysis','StressbalanceSIAAnalysis','L2ProjectionBaseAnalysis','ThermalAnalysis','MeltingAnalysis','EnthalpyAnalysis','MasstransportAnalysis'] 41 42 31 elif solutiontype == 'HydrologySolution': 43 32 analyses=['L2ProjectionBaseAnalysis','HydrologyShreveAnalysis','HydrologyDCInefficientAnalysis','HydrologyDCEfficientAnalysis'] 44 45 33 elif 'DamageEvolutionSolution': 46 34 analyses=['DamageEvolutionAnalysis'] … … 86 74 if not md.private.isconsistent: 87 75 raise RuntimeError('Model not consistent, see messages above.') 88 -
issm/trunk-jpl/src/m/contrib/defleurian/netCDF/ClassTry.py
r21530 r23716 13 13 def netCDFread(filename): 14 14 def walktree(data): 15 keys = data.groups.keys()15 keys = list(data.groups.keys()) 16 16 yield keys 17 17 for key in keys: … … 20 20 21 21 if path.exists(filename): 22 print ('Opening {} for reading '.format(filename))22 print(('Opening {} for reading '.format(filename))) 23 23 NCData=Dataset(filename, 'r') 24 24 class_dict={} … … 35 35 classtype=self.default_prop() 36 36 37 module= map(__import__,dict.values(classtype))37 module=list(map(__import__,dict.values(classtype))) 38 38 39 39 for i,mod in enumerate(dict.keys(classtype)): -
issm/trunk-jpl/src/m/contrib/defleurian/netCDF/export_netCDF.py
r23633 r23716 11 11 #Now going on Real treatment 12 12 if path.exists(filename): 13 print ('File {} allready exist'.format(filename))14 newname= raw_input('Give a new name or "delete" to replace: ')13 print(('File {} allready exist'.format(filename))) 14 newname=eval(input('Give a new name or "delete" to replace: ')) 15 15 if newname=='delete': 16 16 remove(filename) 17 17 else: 18 print ('New file name is {}'.format(newname))18 print(('New file name is {}'.format(newname))) 19 19 filename=newname 20 20 … … 34 34 dimlist=[2,md.mesh.numberofelements,md.mesh.numberofvertices,np.shape(md.mesh.elements)[1]] 35 35 for i in range(0,4): 36 if dimlist[i] not in DimDict.keys():36 if dimlist[i] not in list(DimDict.keys()): 37 37 dimindex+=1 38 38 NewDim=NCData.createDimension('DimNum'+str(dimindex),dimlist[i]) 39 39 DimDict[len(NewDim)]='DimNum'+str(dimindex) 40 40 41 typelist=[bool,str, unicode,int,float,complex,41 typelist=[bool,str,str,int,float,complex, 42 42 collections.OrderedDict, 43 43 np.int64,np.ndarray,np.float64] … … 93 93 DimDict=CreateVar(NCData,Var,field,NCgroup,DimDict) 94 94 elif md.__dict__[group].__dict__[field] is None: 95 print( 'field md.{}.{} is None'.format(group,field))95 print(( 'field md.{}.{} is None'.format(group,field))) 96 96 #do nothing 97 97 #if it is a masked array … … 140 140 #Now define and fill up variable 141 141 #treating scalar string or bool as atribute 142 if val_type in [str, unicode,bool]:142 if val_type in [str,str,bool]: 143 143 Group.__setattr__(str(field).swapcase(), str(var)) 144 144 #treating list as string table … … 182 182 ncvar[:] = var 183 183 else: 184 print( 'WARNING type "{}" is unknown for "{}.{}"'.format(val_type,Group.name,field))184 print(('WARNING type "{}" is unknown for "{}.{}"'.format(val_type,Group.name,field))) 185 185 return DimDict 186 186 … … 200 200 DimDict[len(NewDim)]='DimNum'+str(index) 201 201 output=output+[str(DimDict[shape[dim]])] 202 elif type(shape[0])==str or type(shape[0])== unicode:#dealling with a dictionnary202 elif type(shape[0])==str or type(shape[0])==str:#dealling with a dictionnary 203 203 try: 204 204 #dimension5 is 2 to treat with dict -
issm/trunk-jpl/src/m/contrib/defleurian/netCDF/read_netCDF.py
r19408 r23716 7 7 8 8 def walktree(data): 9 keys = data.groups.keys()9 keys = list(data.groups.keys()) 10 10 yield keys 11 11 for key in keys: … … 14 14 15 15 if path.exists(filename): 16 print ('Opening {} for reading '.format(filename))16 print(('Opening {} for reading '.format(filename))) 17 17 NCData=Dataset(filename, 'r') 18 18 class_dict={} … … 22 22 class_dict[str(child)]=str(getattr(NCData.groups[str(child)],'classtype')+'()') 23 23 24 print class_dict24 print(class_dict) 25 25 -
issm/trunk-jpl/src/m/contrib/defleurian/paraview/enveloppeVTK.py
r23526 r23716 27 27 28 28 if os.path.exists(filename): 29 print ('File {} allready exist'.format(filename))30 newname= raw_input('Give a new name or "delete" to replace: ')29 print(('File {} allready exist'.format(filename))) 30 newname=eval(input('Give a new name or "delete" to replace: ')) 31 31 if newname=='delete': 32 32 filelist = glob.glob(filename+'/*') … … 34 34 os.remove(oldfile) 35 35 else: 36 print ('New file name is {}'.format(newname))36 print(('New file name is {}'.format(newname))) 37 37 filename=newname 38 38 os.mkdir(filename) -
issm/trunk-jpl/src/m/contrib/defleurian/paraview/exportVTK.py
r23211 r23716 27 27 28 28 if os.path.exists(filename): 29 print ('File {} allready exist'.format(filename))30 newname= raw_input('Give a new name or "delete" to replace: ')29 print(('File {} allready exist'.format(filename))) 30 newname=eval(input('Give a new name or "delete" to replace: ')) 31 31 if newname=='delete': 32 32 filelist = glob.glob(filename+'/*') … … 34 34 os.remove(oldfile) 35 35 else: 36 print ('New file name is {}'.format(newname))36 print(('New file name is {}'.format(newname))) 37 37 filename=newname 38 38 os.mkdir(filename) … … 101 101 fid.write('6 %d %d %d %d %d %d\n' %(model.mesh.elements[elt,0]-1,model.mesh.elements[elt,1]-1,model.mesh.elements[elt,2]-1,model.mesh.elements[elt,3]-1,model.mesh.elements[elt,4]-1,model.mesh.elements[elt,5]-1)) 102 102 else: 103 print 'Number of nodes per element not supported'103 print('Number of nodes per element not supported') 104 104 105 105 fid.write('CELL_TYPES %d\n' %num_of_elt) … … 193 193 for node in range(0,num_of_points): 194 194 #paraview does not like NaN, replacing 195 print other_struct.__dict__[field][node]195 print((other_struct.__dict__[field][node])) 196 196 if np.isnan(other_struct.__dict__[field][node]): 197 197 fid.write('%e\n' % -9999.9999) -
issm/trunk-jpl/src/m/contrib/morlighem/bamg/YamsCall.py
r21303 r23716 29 29 #Compute Hessian 30 30 t1=time.time() 31 print "%s" % ' computing Hessian...'31 print(("%s" % ' computing Hessian...')) 32 32 hessian=ComputeHessian(md.mesh.elements,md.mesh.x,md.mesh.y,field,'node') 33 33 t2=time.time() 34 print "%s%d%s\n" % (' done (',t2-t1,' seconds)')34 print(("%s%d%s\n" % (' done (',t2-t1,' seconds)'))) 35 35 36 36 #Compute metric 37 37 t1=time.time() 38 print "%s" % ' computing metric...'38 print(("%s" % ' computing metric...')) 39 39 metric=ComputeMetric(hessian,scale,epsilon,hmin,hmax,np.empty(0,int)) 40 40 t2=time.time() 41 print "%s%d%s\n" % (' done (',t2-t1,' seconds)')41 print(("%s%d%s\n" % (' done (',t2-t1,' seconds)'))) 42 42 43 43 #write files 44 44 t1=time.time() 45 print "%s" % ' writing initial mesh files...'45 print(("%s" % ' writing initial mesh files...')) 46 46 np.savetxt('carre0.met',metric) 47 47 … … 56 56 #Vertices 57 57 f.write("\n%s\n%i\n\n" % ('Vertices',md.mesh.numberofvertices)) 58 for i in xrange(0,md.mesh.numberofvertices):58 for i in range(0,md.mesh.numberofvertices): 59 59 f.write("%8g %8g %i\n" % (md.mesh.x[i],md.mesh.y[i],0)) 60 60 61 61 #Triangles 62 62 f.write("\n\n%s\n%i\n\n" % ('Triangles',md.mesh.numberofelements)) 63 for i in xrange(0,md.mesh.numberofelements):63 for i in range(0,md.mesh.numberofelements): 64 64 f.write("%i %i %i %i\n" % (md.mesh.elements[i,0],md.mesh.elements[i,1],md.mesh.elements[i,2],0)) 65 65 numberofelements1=md.mesh.numberofelements … … 80 80 f.close() 81 81 t2=time.time() 82 print "%s%d%s\n" % (' done (',t2-t1,' seconds)')82 print(("%s%d%s\n" % (' done (',t2-t1,' seconds)'))) 83 83 84 84 #call yams 85 print "%s\n" % ' call Yams...'85 print(("%s\n" % ' call Yams...')) 86 86 if m.ispc(): 87 87 #windows … … 96 96 #plug new mesh 97 97 t1=time.time() 98 print "\n%s" % ' reading final mesh files...'98 print(("\n%s" % ' reading final mesh files...')) 99 99 Tria=np.loadtxt('carre1.tria',int) 100 100 Coor=np.loadtxt('carre1.coor',float) … … 107 107 numberofelements2=md.mesh.numberofelements 108 108 t2=time.time() 109 print "%s%d%s\n\n" % (' done (',t2-t1,' seconds)')109 print(("%s%d%s\n\n" % (' done (',t2-t1,' seconds)'))) 110 110 111 111 #display number of elements 112 print "\n%s %i" % (' inital number of elements:',numberofelements1)113 print "\n%s %i\n\n" % (' new number of elements:',numberofelements2)112 print(("\n%s %i" % (' inital number of elements:',numberofelements1))) 113 print(("\n%s %i\n\n" % (' new number of elements:',numberofelements2))) 114 114 115 115 #clean up: -
issm/trunk-jpl/src/m/coordsystems/gmtmask.py
r22133 r23716 21 21 22 22 if recursive: 23 print ' recursing: num vertices #'+str(lenlat)23 print((' recursing: num vertices #'+str(lenlat))) 24 24 else: 25 print 'gmtmask: num vertices #'+str(lenlat)25 print(('gmtmask: num vertices #'+str(lenlat))) 26 26 27 27 #Check lat and long size is not more than 50,000 If so, recursively call gmtmask: … … 32 32 if j>lenlat: 33 33 j=lenlat 34 mask[i:j]=gmtmask(lat[i:j], long[i:j],1)34 mask[i:j]=gmtmask(lat[i:j],int[i:j],1) 35 35 return mask 36 36 … … 38 38 #First, write our lat,long file for gmt: 39 39 nv=lenlat 40 np.savetxt('./all_vertices.txt',np.transpose([ long, lat, np.arange(1,nv+1)]),delimiter='\t',fmt='%.10f')40 np.savetxt('./all_vertices.txt',np.transpose([int, lat, np.arange(1,nv+1)]),delimiter='\t',fmt='%.10f') 41 41 42 42 #Avoid bypassing of the ld library path by Matlab (:() … … 77 77 subprocess.call('rm -rf ./all_vertices.txt ./oce_vertices.txt ./gmt.history',shell=True) 78 78 if not recursive: 79 print 'gmtmask: done'79 print('gmtmask: done') 80 80 return mask -
issm/trunk-jpl/src/m/coordsystems/ll2xy.py
r21303 r23716 23 23 delta = 45 24 24 slat = 70 25 print ' ll2xy: creating coordinates in north polar stereographic (Std Latitude: 70N Meridian: 45)'25 print(' ll2xy: creating coordinates in north polar stereographic (Std Latitude: 70N Meridian: 45)') 26 26 else: 27 27 delta = central_meridian 28 28 slat = standard_parallel 29 print ' ll2xy: creating coordinates in south polar stereographic (Std Latitude: 71S Meridian: 0)'29 print(' ll2xy: creating coordinates in south polar stereographic (Std Latitude: 71S Meridian: 0)') 30 30 31 31 # Conversion constant from degrees to radians -
issm/trunk-jpl/src/m/coordsystems/xy2ll.py
r22493 r23716 27 27 delta = 45. 28 28 slat = 70. 29 print ' xy2ll: creating coordinates in north polar stereographic (Std Latitude: 70degN Meridian: 45deg)'29 print(' xy2ll: creating coordinates in north polar stereographic (Std Latitude: 70degN Meridian: 45deg)') 30 30 elif sgn == -1: 31 31 delta = 0. 32 32 slat = 71. 33 print ' xy2ll: creating coordinates in south polar stereographic (Std Latitude: 71degS Meridian: 0deg)'33 print(' xy2ll: creating coordinates in south polar stereographic (Std Latitude: 71degS Meridian: 0deg)') 34 34 else: 35 35 raise ValueError('sgn should be either +1 or -1') 36 36 else: 37 raise StandardError('bad usage: type "help(xy2ll)" for details')37 raise Exception('bad usage: type "help(xy2ll)" for details') 38 38 39 39 # if x,y passed as lists, convert to np.arrays -
issm/trunk-jpl/src/m/dev/ISSM.py
r23095 r23716 1 print 'WARNING: EXPERIMENTAL FEATURE ISSM.py: universal Python ISSM import'1 print('WARNING: EXPERIMENTAL FEATURE ISSM.py: universal Python ISSM import') 2 2 3 3 #Most common imports … … 42 42 def python_help(): 43 43 '''Prints out key code fragments that may be useful to users''' 44 print 'Differences between Python and Matlab code:'44 print('Differences between Python and Matlab code:') 45 45 #... 46 46 -
issm/trunk-jpl/src/m/dev/devpath.py
r23095 r23716 4 4 5 5 #Recover ISSM_DIR and USERNAME 6 ISSM_DIR = os.getenv('ISSM_D IR')6 ISSM_DIR = os.getenv('ISSM_DEV_DIR') 7 7 USERNAME = os.getenv('USER') 8 8 JPL_SVN = os.getenv('JPL_SVN') … … 10 10 raise NameError('"ISSM_DIR" environment variable is empty! You should define ISSM_DIR in your .cshrc or .bashrc!') 11 11 12 #Go through src/m and append any directory that contains a *.py file to PATH 12 #Go through src/m and append any directory that contains a *.py file to PATH 13 13 for root,dirs,files in os.walk(ISSM_DIR+ '/src/m'): 14 14 if '.svn' in dirs: … … 22 22 #Also add the Nightly run directory 23 23 sys.path.append(ISSM_DIR + '/test/NightlyRun') 24 24 25 25 sys.path.append(ISSM_DIR + '/lib') 26 26 sys.path.append(ISSM_DIR + '/src/wrappers/python/.libs') … … 42 42 #c.InteractiveShellApp.exec_lines.append('print "Warning: disable autoreload in startup.py to improve performance." ') 43 43 44 print("\n ISSM development path correctly loaded\n\n") 44 print("\n ISSM development path correctly loaded") 45 print(("Current path is {}\n\n".format(ISSM_DIR))) -
issm/trunk-jpl/src/m/dev/issmversion.py
r23696 r23716 9 9 """ 10 10 11 print ' ' 12 print IssmConfig('PACKAGE_NAME')[0]+' Version '+IssmConfig('PACKAGE_VERSION')[0] 13 print '(website: '+IssmConfig('PACKAGE_URL')[0]+' contact: '+IssmConfig('PACKAGE_BUGREPORT')[0]+')' 14 print ' ' 15 print 'Build date: '+IssmConfig('PACKAGE_BUILD_DATE')[0] 16 print 'Copyright (c) 2009-2019 California Institute of Technology' 17 print ' ' 18 print ' to get started type: issmdoc' 19 print ' ' 11 12 print(' ') 13 print((IssmConfig('PACKAGE_NAME')[0]+' Version '+IssmConfig('PACKAGE_VERSION')[0])) 14 print(('(website: '+IssmConfig('PACKAGE_URL')[0]+' contact: '+IssmConfig('PACKAGE_BUGREPORT')[0]+')')) 15 print(' ') 16 print(('Build date: '+IssmConfig('PACKAGE_BUILD_DATE')[0])) 17 print('Copyright (c) 2009-2018 California Institute of Technology') 18 print(' ') 19 print(' to get started type: issmdoc') 20 print(' ') -
issm/trunk-jpl/src/m/exp/expcoarsen.py
r21303 r23716 23 23 raise OSError("expcoarsen error message: file '%s' not found!" % oldfile) 24 24 if os.path.exists(newfile): 25 choice= raw_input('A file ' + newfile + ' already exists, do you want to modify it? (y/n)')25 choice=eval(input('A file ' + newfile + ' already exists, do you want to modify it? (y/n)')) 26 26 if choice not in 'y': 27 27 print('no modification done ... exiting') -
issm/trunk-jpl/src/m/exp/expdisp.py
r21303 r23716 5 5 6 6 def expdisp(ax,options): 7 8 7 ''' 8 plot the contents of a domain outline file 9 9 10 10 This routine reads in an exp file and plots all of the x,y points/lines/patches 11 11 12 12 'ax' is a handle to the current plot axes, onto which we want to plot 13 13 14 15 14 Usage: 15 expdisp(ax,options) 16 16 17 18 19 20 21 22 23 24 17 List of options passable to plotmodel: 18 'expdisp' : path (or list of paths) to the exp file to be plotted 19 'explinewidth' : linewidth 20 'explinestyle' : matplotlib linestyle string 21 'explinecolor' : matplotlib color string 22 'expfill' : (True/False) fill a closed contour 23 'expfillcolor' : Color for a filled contour, only used if expfill is True 24 'expfillalpha' : alpha transparency for filled contour 25 25 26 27 26 All options should be passed as lists of length len(number of exp files passed) 27 ''' 28 28 29 30 31 32 33 34 35 36 37 for i in xrange(len(filenames)):38 linestylei=linestyle[i]39 40 41 42 43 filenamei=filenames[i]44 45 46 for j in xrange(len(domain)):47 48 49 50 51 52 53 54 55 56 57 58 59 29 filenames=options.getfieldvalue('expdisp') 30 linewidth=options.getfieldvalue('explinewidth',[1]*len(filenames)) 31 linestyle=options.getfieldvalue('explinestyle',['-']*len(filenames)) 32 linecolor=options.getfieldvalue('explinecolor',['k']*len(filenames)) 33 fill=options.getfieldvalue('expfill',[0]*len(filenames)) 34 alpha=options.getfieldvalue('expfillalpha',[1]*len(filenames)) 35 facecolor=options.getfieldvalue('expfillcolor',['r']*len(filenames)) 36 unitmultiplier=options.getfieldvalue('unit',1) 37 for i in range(len(filenames)): 38 linestylei=linestyle[i] 39 linecolori=linecolor[i] 40 linewidthi=linewidth[i] 41 alphai=alpha[i] 42 facecolori=facecolor[i] 43 filenamei=filenames[i] 44 filli=fill[i] 45 domain=expread(filenamei) 46 for j in range(len(domain)): 47 if domain[j]['nods']==1: 48 ax.plot(domain[j]['x']*unitmultiplier,domain[j]['y']*unitmultiplier,'o',mec='k',mfc='r',ms=10) 49 elif filli: 50 verts=np.column_stack((domain[j]['x'],domain[j]['y'])) 51 codes=[Path.MOVETO] + [Path.LINETO]*(len(domain[j]['x'])-2) + [Path.CLOSEPOLY] 52 path=Path(verts, codes) 53 patch=patches.PathPatch(path,facecolor=facecolori,edgecolor=linecolori,alpha=alphai, 54 lw=linewidthi) 55 ax.add_patch(patch) 56 else: 57 x=domain[j]['x'].tolist() # since expread returns a string representation of the arrays 58 y=domain[j]['y'].tolist() 59 ax.plot(x*unitmultiplier,y*unitmultiplier,ls=linestylei,lw=linewidthi,c=linecolori) -
issm/trunk-jpl/src/m/exp/expread.py
r21303 r23716 76 76 contour['x']=np.empty(contour['nods']) 77 77 contour['y']=np.empty(contour['nods']) 78 for i in xrange(int(contour['nods'])):78 for i in range(int(contour['nods'])): 79 79 A=fid.readline().split() 80 80 contour['x'][i]=float(A[0]) -
issm/trunk-jpl/src/m/extrusion/DepthAverage.py
r21303 r23716 20 20 # coerce to array in case float is passed 21 21 if type(vector)!=np.ndarray: 22 print 'coercing array'22 print('coercing array') 23 23 vector=np.array(value) 24 24 … … 31 31 if vector.shape[0]==md.mesh.numberofvertices: 32 32 vector_average=np.zeros(md.mesh.numberofvertices2d) 33 for i in xrange(1,md.mesh.numberoflayers):33 for i in range(1,md.mesh.numberoflayers): 34 34 vector_average=vector_average+(project2d(md,vector,i)+project2d(md,vector,i+1))/2.*(project2d(md,md.mesh.z,i+1)-project2d(md,md.mesh.z,i)) 35 35 vector_average=vector_average/project2d(md,md.geometry.thickness,1) … … 38 38 elif vector.shape[0]==md.mesh.numberofelements: 39 39 vector_average=np.zeros(md.mesh.numberofelements2d) 40 for i in xrange(1,md.mesh.numberoflayers):40 for i in range(1,md.mesh.numberoflayers): 41 41 vector_average=vector_average+project2d(md,vector,i)*(project2d(md,md.mesh.z,i+1)-project2d(md,md.mesh.z,i)) 42 42 vector_average=vector_average/project2d(md,md.geometry.thickness,1) -
issm/trunk-jpl/src/m/extrusion/project2d.py
r21303 r23716 19 19 20 20 if md3d.mesh.domaintype().lower() != '3d': 21 raise StandardError("model passed to project2d function should be 3D")21 raise Exception("model passed to project2d function should be 3D") 22 22 23 23 if layer<1 or layer>md3d.mesh.numberoflayers: … … 26 26 # coerce to array in case float is passed 27 27 if type(value)!=np.ndarray: 28 print 'coercing array'28 print('coercing array') 29 29 value=np.array(value) 30 30 -
issm/trunk-jpl/src/m/extrusion/project3d.py
r21303 r23716 41 41 vector2d=vector2d.reshape(-1,) 42 42 43 if isinstance(vector2d,(bool,int, long,float)) or np.size(vector2d)==1:43 if isinstance(vector2d,(bool,int,float)) or np.size(vector2d)==1: 44 44 projected_vector=vector2d 45 45 … … 58 58 #Fill in 59 59 if layer==0: 60 for i in xrange(md.mesh.numberoflayers):60 for i in range(md.mesh.numberoflayers): 61 61 projected_vector[(i*md.mesh.numberofvertices2d):((i+1)*md.mesh.numberofvertices2d)]=vector2d 62 62 else: … … 73 73 #Fill in 74 74 if layer==0: 75 for i in xrange(md.mesh.numberoflayers):75 for i in range(md.mesh.numberoflayers): 76 76 projected_vector[(i*md.mesh.numberofvertices2d):((i+1)*md.mesh.numberofvertices2d),:]=vector2d 77 77 else: … … 93 93 #Fill in 94 94 if layer==0: 95 for i in xrange(md.mesh.numberoflayers-1):95 for i in range(md.mesh.numberoflayers-1): 96 96 projected_vector[(i*md.mesh.numberofelements2d):((i+1)*md.mesh.numberofelements2d)]=vector2d 97 97 else: … … 108 108 #Fill in 109 109 if layer==0: 110 for i in xrange(md.mesh.numberoflayers-1):110 for i in range(md.mesh.numberoflayers-1): 111 111 projected_vector[(i*md.mesh.numberofelements2d):((i+1)*md.mesh.numberofelements2d),:]=vector2d 112 112 else: -
issm/trunk-jpl/src/m/geometry/FlagElements.py
r21303 r23716 22 22 """ 23 23 24 if isinstance(region, (str,unicode)):24 if isinstance(region,str): 25 25 if not region: 26 26 flag=np.zeros(md.mesh.numberofelements,bool) -
issm/trunk-jpl/src/m/geometry/NowickiProfile.py
r22267 r23716 28 28 29 29 #upstream of the GL 30 for i in range( np.size(x) / 2):30 for i in range(int(np.size(x)/2)): 31 31 ss = np.roots([1, 4 * lamda * beta, 0, 0, 6 * lamda * ms * x[i]**2 + 32 32 12 * lamda * q * x[i] - hg**4 - 4 * lamda * beta * hg**3]) … … 38 38 39 39 #downstream of the GL 40 for i in range( np.size(x) / 2, np.size(x)):40 for i in range(int(np.size(x)/2), int(np.size(x))): 41 41 h[i] = (x[i] / (4. * (delta+1) * q) + hg**(-2))**(-0.5) # ice thickness for ice shelf from (3.1) 42 42 b[i] = sea - h[i] * (1. / (1+delta)) -
issm/trunk-jpl/src/m/interp/SectionValues.py
r21303 r23716 45 45 S=np.array([0.]) #curvilinear coordinate 46 46 47 for i in xrange(nods-1):47 for i in range(nods-1): 48 48 49 49 x_start=x[i] … … 60 60 s_segment=np.zeros(portion) 61 61 62 for j in xrange(int(portion)):62 for j in range(int(portion)): 63 63 x_segment[j]=x_start+(j)*(x_end-x_start)/portion 64 64 y_segment[j]=y_start+(j)*(y_end-y_start)/portion … … 88 88 89 89 #Compute index 90 index=np.array([ range(1,numberofnodes),range(2,numberofnodes+1)]).T90 index=np.array([list(range(1,numberofnodes)),list(range(2,numberofnodes+1))]).T 91 91 92 92 else: … … 116 116 117 117 #Get new coordinates in 3d 118 for i in xrange(1,layers+1):118 for i in range(1,layers+1): 119 119 X3[i-1::layers]=X 120 120 Y3[i-1::layers]=Y -
issm/trunk-jpl/src/m/interp/averaging.py
r21335 r23716 5 5 from scipy.sparse import csc_matrix 6 6 except ImportError: 7 print "could not import scipy, no averaging capabilities enabled"7 print("could not import scipy, no averaging capabilities enabled") 8 8 9 9 def averaging(md,data,iterations,layer=0): … … 30 30 31 31 if len(data)!=md.mesh.numberofelements and len(data)!=md.mesh.numberofvertices: 32 raise StandardError('averaging error message: data not supported yet')32 raise Exception('averaging error message: data not supported yet') 33 33 if md.mesh.dimension()==3 and layer!=0: 34 34 if layer<=0 or layer>md.mesh.numberoflayers: -
issm/trunk-jpl/src/m/interp/holefiller.py
r21303 r23716 26 26 27 27 if len(x) != len(data) or len(y) != len(data): 28 raise StandardError('nearestneighbors error: x and y should have the same length as "data"')28 raise Exception('nearestneighbors error: x and y should have the same length as "data"') 29 29 30 30 filled=data -
issm/trunk-jpl/src/m/interp/interp.py
r21303 r23716 6 6 import matplotlib.pyplot as plt 7 7 except ImportError: 8 print 9 Set plotonly=False in function call' 8 print('could not import matplotlib, no plotting functions enabled.\ 9 Set plotonly=False in function call') 10 10 11 11 def MeshSplineToMesh2d(x,y,data,xi,yi,tol=1e-6,fill_nans=False,**kwargs):#{{{ … … 63 63 ind=np.nonzero(mask)[0] 64 64 if len(ind) and fill_nans: 65 print " WARNING: filling nans using spline fit through good data points, which may or may not be appropriate. Check results carefully."65 print(" WARNING: filling nans using spline fit through good data points, which may or may not be appropriate. Check results carefully.") 66 66 subdata=np.delete(subdata,ind) 67 67 points=np.delete(points,ind,axis=0) … … 133 133 # create points array and flattened data array 134 134 if len(x)==data.shape[1] and len(y)==data.shape[0]: 135 print ' x,y taken to define the center of data grid cells'135 print(' x,y taken to define the center of data grid cells') 136 136 xind=np.nonzero(np.logical_and(x>xlim[0],x<xlim[1]))[0] 137 137 yind=np.nonzero(np.logical_and(y>ylim[0],y<ylim[1]))[0] … … 139 139 subdata=data[yind[0]:yind[-1]+1,xind[0]:xind[-1]+1] 140 140 elif len(x)==data.shape[1]+1 and len(y)==data.shape[0]+1: 141 print ' x,y taken to define the corners of data grid cells'141 print(' x,y taken to define the corners of data grid cells') 142 142 xcenter=np.fromiter(((x[i]+x[i+1])/2 for i in range(len(x)-1)),np.float) 143 143 ycenter=np.fromiter(((y[i]+y[i+1])/2 for i in range(len(y)-1)),np.float) … … 161 161 ind=np.nonzero(mask)[0] 162 162 if len(ind) and fill_nans: 163 print " WARNING: filling nans using spline fit through good data points, which may or may not be appropriate. Check results carefully."163 print(" WARNING: filling nans using spline fit through good data points, which may or may not be appropriate. Check results carefully.") 164 164 goodsubdata=np.delete(flatsubdata,ind) 165 165 goodpoints=np.delete(points,ind,axis=0) -
issm/trunk-jpl/src/m/io/loadmodel.py
r21235 r23716 1 1 from loadvars import loadvars 2 from whichdbimport whichdb2 from dbm.ndbm import whichdb 3 3 from netCDF4 import Dataset 4 4 … … 27 27 #recover model on file and name it md 28 28 struc=loadvars(path) 29 name=[key for key in struc.iterkeys()]29 name=[key for key in list(struc.keys())] 30 30 if len(name)>1: 31 31 raise IOError("loadmodel error message: file '%s' contains several variables. Only one model should be present." % path) -
issm/trunk-jpl/src/m/io/loadvars.py
r22843 r23716 7 7 from os import path 8 8 from collections import OrderedDict 9 from whichdbimport whichdb9 from dbm.ndbm import whichdb 10 10 from model import * 11 11 … … 31 31 nvdict={} 32 32 33 if len(args) >= 1 and isinstance(args[0], (str,unicode)):33 if len(args) >= 1 and isinstance(args[0],str): 34 34 filename=args[0] 35 35 if not filename: … … 39 39 raise TypeError("Missing file name.") 40 40 41 if len(args) >= 2 and isinstance(args[1], (str,unicode)): # (filename,name)41 if len(args) >= 2 and isinstance(args[1],str): # (filename,name) 42 42 for name in args[1:]: 43 43 nvdict[name]=None … … 57 57 58 58 if whichdb(filename): 59 print "Loading variables from file '%s'." % filename59 print(("Loading variables from file '%s'." % filename)) 60 60 61 61 my_shelf = shelve.open(filename,'r') # 'r' for read-only 62 62 if nvdict: 63 for name in nvdict.iterkeys():63 for name in list(nvdict.keys()): 64 64 try: 65 65 nvdict[name] = my_shelf[name] 66 print "Variable '%s' loaded." % name66 print(("Variable '%s' loaded." % name)) 67 67 except KeyError: 68 68 value = None 69 print "Variable '%s' not found." % name69 print(("Variable '%s' not found." % name)) 70 70 71 71 else: 72 for name in my_shelf.iterkeys():72 for name in list(my_shelf.keys()): 73 73 nvdict[name] = my_shelf[name] 74 print "Variable '%s' loaded." % name74 print(("Variable '%s' loaded." % name)) 75 75 76 76 my_shelf.close() … … 173 173 strings1=[str(arg[0]) for arg in varval if arg[0]!='toolkits'] 174 174 strings2=[str(arg[1]) for arg in varval if arg[0]!='toolkits'] 175 Tree.__dict__[str(var)].update( zip(strings1, strings2))175 Tree.__dict__[str(var)].update(list(zip(strings1, strings2))) 176 176 else: 177 177 if type(Tree)==list: … … 194 194 Tree.__dict__[str(var)]=varval[:,:,:] 195 195 else: 196 print 'table dimension greater than 3 not implemented yet'196 print('table dimension greater than 3 not implemented yet') 197 197 for attr in listclass.ncattrs(): 198 198 if attr!='classtype': #classtype is for treatment, don't get it back … … 210 210 Tree.__dict__[str(attr).swapcase()]=False 211 211 NCFile.close() 212 if len(args) >= 2 and isinstance(args[1], (str,unicode)): # (value)212 if len(args) >= 2 and isinstance(args[1],str): # (value) 213 213 value=[nvdict[name] for name in args[1:]] 214 214 return value … … 223 223 224 224 def netCDFread(filename): 225 print ('Opening {} for reading '.format(filename))225 print(('Opening {} for reading '.format(filename))) 226 226 NCData=Dataset(filename, 'r') 227 227 class_dict={} … … 244 244 class_tree[classe]=[group,] 245 245 except AttributeError: 246 print( 'group {} is empty'.format(group))246 print(('group {} is empty'.format(group))) 247 247 NCData.close() 248 248 return class_dict,class_tree -
issm/trunk-jpl/src/m/io/savevars.py
r13950 r23716 23 23 nvdict={} 24 24 25 if len(args) >= 1 and isinstance(args[0], (str,unicode)):25 if len(args) >= 1 and isinstance(args[0],str): 26 26 filename=args[0] 27 27 if not filename: … … 31 31 raise TypeError("Missing file name.") 32 32 33 if len(args) >= 3 and isinstance(args[1], (str,unicode)): # (filename,name,value)34 for i in xrange(1,len(args),2):33 if len(args) >= 3 and isinstance(args[1],str): # (filename,name,value) 34 for i in range(1,len(args),2): 35 35 nvdict[args[i]]=args[i+1] 36 36 … … 46 46 47 47 if os.path.exists(filename): 48 print "Shelving variables to existing file '%s'." % filename48 print(("Shelving variables to existing file '%s'." % filename)) 49 49 else: 50 print "Shelving variables to new file '%s'." % filename50 print(("Shelving variables to new file '%s'." % filename)) 51 51 52 52 my_shelf = shelve.open(filename,'c') # 'c' for create if not exist, else 'n' for new 53 53 54 for name,value in nvdict.iteritems():54 for name,value in list(nvdict.items()): 55 55 try: 56 56 my_shelf[name] = value 57 print "Variable '%s' shelved." % name57 print(("Variable '%s' shelved." % name)) 58 58 except TypeError: 59 print "Variable '%s' not shelved." % name59 print(("Variable '%s' not shelved." % name)) 60 60 61 61 my_shelf.close() -
issm/trunk-jpl/src/m/mech/analyticaldamage.py
r21303 r23716 58 58 # check inputs 59 59 if 'strainrate' not in md.results.__dict__: 60 raise StandardError('md.results.strainrate not present. Calculate using md=mechanicalproperties(md,vx,vy)')60 raise Exception('md.results.strainrate not present. Calculate using md=mechanicalproperties(md,vx,vy)') 61 61 if not '2d' in md.mesh.__doc__: 62 raise StandardError('only 2d (planview) model supported currently')62 raise Exception('only 2d (planview) model supported currently') 63 63 if np.any(md.flowequation.element_equation!=2): 64 print 'Warning: the model has some non SSA elements. These will be treated like SSA elements'64 print('Warning: the model has some non SSA elements. These will be treated like SSA elements') 65 65 66 66 a,b,theta,ex=thomasparams(md,eq=eq,smoothing=smoothing,coordsys=coordsys) -
issm/trunk-jpl/src/m/mech/backstressfrominversion.py
r21303 r23716 50 50 # some checks 51 51 if not hasattr(md.results,'strainrate'): 52 raise StandardError('md.results.strainrate not present. Calculate using md=mechanicalproperties(md,vx,vy)')52 raise Exception('md.results.strainrate not present. Calculate using md=mechanicalproperties(md,vx,vy)') 53 53 if not '2d' in md.mesh.__doc__: 54 raise StandardError('only 2d (planview) model supported currently')54 raise Exception('only 2d (planview) model supported currently') 55 55 if any(md.flowequation.element_equation!=2): 56 raise StandardError('Warning: the model has some non-SSA elements. These will be treated like SSA elements')56 raise Exception('Warning: the model has some non-SSA elements. These will be treated like SSA elements') 57 57 58 58 T=0.5*md.materials.rho_ice*md.constants.g*(1-md.materials.rho_ice/md.materials.rho_water)*md.geometry.thickness -
issm/trunk-jpl/src/m/mech/calcbackstress.py
r21303 r23716 44 44 # some checks 45 45 if not hasattr(md.results,'strainrate'): 46 raise StandardError('md.results.strainrate not present. Calculate using md=mechanicalproperties(md,vx,vy)')46 raise Exception('md.results.strainrate not present. Calculate using md=mechanicalproperties(md,vx,vy)') 47 47 if not '2d' in md.mesh.__doc__: 48 raise StandardError('only 2d (planview) model supported currently')48 raise Exception('only 2d (planview) model supported currently') 49 49 if any(md.flowequation.element_equation!=2): 50 raise StandardError('Warning: the model has some non-SSA elements. These will be treated like SSA elements')50 raise Exception('Warning: the model has some non-SSA elements. These will be treated like SSA elements') 51 51 52 52 T=0.5*md.materials.rho_ice*md.constants.g*(1-md.materials.rho_ice/md.materials.rho_water)*md.geometry.thickness -
issm/trunk-jpl/src/m/mech/damagefrominversion.py
r21303 r23716 19 19 # check inputs 20 20 if not hasattr(md.results,'strainrate'): 21 raise StandardError('md.results.strainrate is not present. Calculate using md=mechanicalproperties(md,vx,vy)')21 raise Exception('md.results.strainrate is not present. Calculate using md=mechanicalproperties(md,vx,vy)') 22 22 if not '2d' in md.mesh.__doc__: 23 raise StandardError('only 2d (planview) model supported currently')23 raise Exception('only 2d (planview) model supported currently') 24 24 if any(md.flowequation.element_equation!=2): 25 raise StandardError('Warning: the model has some non-SSA elements. These will be treated like SSA elements')25 raise Exception('Warning: the model has some non-SSA elements. These will be treated like SSA elements') 26 26 if np.ndim(md.results.StressbalanceSolution.MaterialsRheologyBbar)==2: 27 27 Bi=md.results.StressbalanceSolution.MaterialsRheologyBbar.reshape(-1,) -
issm/trunk-jpl/src/m/mech/mechanicalproperties.py
r22754 r23716 28 28 29 29 if np.any(md.flowequation.element_equation!=2): 30 print 'Warning: the model has some non SSA elements. These will be treated like SSA elements'30 print('Warning: the model has some non SSA elements. These will be treated like SSA elements') 31 31 32 32 #unpack kwargs … … 85 85 nu[location]=10^18 86 86 elif 'matdamageice' in md.materials.__module__ and damage is not None: 87 print 'computing damage-dependent properties!'87 print('computing damage-dependent properties!') 88 88 Zinv=np.dot(1-damage[index-1],summation/3.).reshape(-1,) 89 89 location=np.nonzero(second_inv) … … 93 93 #clear Zinv 94 94 else: 95 raise StandardError('class of md.materials (' + md.materials.__module__ + ') not recognized or not supported')95 raise Exception('class of md.materials (' + md.materials.__module__ + ') not recognized or not supported') 96 96 97 97 #compute stress -
issm/trunk-jpl/src/m/mech/steadystateiceshelftemp.py
r21303 r23716 48 48 temperature[pos]=-( (Tb[pos]-Ts[pos])*ki/wi[pos] + Hi[pos]*Tb[pos] - (Hi[pos]*Ts[pos] + (Tb[pos]-Ts[pos])*ki/wi[pos])*np.exp(Hi[pos]*wi[pos]/ki) )/( Hi[pos]*(np.exp(Hi[pos]*wi[pos]/ki)-1)) 49 49 except FloatingPointError: 50 print 'steadystateiceshelf warning: overflow encountered in multipy/divide/exp, trying another formulation.'50 print('steadystateiceshelf warning: overflow encountered in multipy/divide/exp, trying another formulation.') 51 51 temperature[pos]=-( ((Tb[pos]-Ts[pos])*ki/wi[pos] + Hi[pos]*Tb[pos])/np.exp(Hi[pos]*wi[pos]/ki) - Hi[pos]*Ts[pos] + (Tb[pos]-Ts[pos])*ki/wi[pos])/( Hi[pos]*(1-np.exp(-Hi[pos]*wi[pos]/ki))) 52 52 -
issm/trunk-jpl/src/m/mech/thomasparams.py
r21303 r23716 61 61 # some checks 62 62 if not hasattr(md.results,'strainrate'): 63 raise StandardError('md.results.strainrate not present. Calculate using md=mechanicalproperties(md,vx,vy)')63 raise Exception('md.results.strainrate not present. Calculate using md=mechanicalproperties(md,vx,vy)') 64 64 if not '2d' in md.mesh.__doc__: 65 raise StandardError('only 2d (planview) model supported currently')65 raise Exception('only 2d (planview) model supported currently') 66 66 if any(md.flowequation.element_equation!=2): 67 raise StandardError('Warning: the model has some non-SSA elements. These will be treated like SSA elements')67 raise Exception('Warning: the model has some non-SSA elements. These will be treated like SSA elements') 68 68 69 69 # average element strain rates onto vertices … … 77 77 pos=np.nonzero(e1==0) 78 78 if np.any(pos==1): 79 print 'WARNING: first principal strain rate equal to zero. Value set to 1e-13 s^-1'79 print('WARNING: first principal strain rate equal to zero. Value set to 1e-13 s^-1') 80 80 e1[pos]=1.e-13 81 81 pos=np.nonzero(e2==0) 82 82 if np.any(pos==1): 83 print 'WARNING: second principal strain rate equal to zero. Value set to 1e-13 s^-1'83 print('WARNING: second principal strain rate equal to zero. Value set to 1e-13 s^-1') 84 84 e2[pos]=1.e-13 85 85 … … 126 126 pos=np.nonzero(np.abs((np.abs(a)-2.))<1.e-3) 127 127 if len(pos)>0: 128 print 'Warning: ', len(pos), ' vertices have alpha within 1e-3 of -2'128 print(('Warning: ', len(pos), ' vertices have alpha within 1e-3 of -2')) 129 129 a[pos]=-2+1e-3 130 130 -
issm/trunk-jpl/src/m/mesh/ComputeMetric.py
r21303 r23716 55 55 pos=np.nonzero(np.isnan(metric))[0] 56 56 if np.size(pos): 57 print( " %i NaN found in the metric. Use Numpy routine..." % np.size(pos))57 print((" %i NaN found in the metric. Use Numpy routine..." % np.size(pos))) 58 58 for posi in pos: 59 59 H=np.array([[hessian[posi,0],hessian[posi,1]],[hessian[posi,1],hessian[posi,2]]]) -
issm/trunk-jpl/src/m/mesh/bamg.py
r22300 r23716 226 226 elif np.any(np.logical_not(flags)): 227 227 #We LOTS of work to do 228 print "Rift tip outside of or on the domain has been detected and is being processed..."228 print("Rift tip outside of or on the domain has been detected and is being processed...") 229 229 230 230 #check that only one point is outside (for now) … … 247 247 x2=rifti['x'][1] 248 248 y2=rifti['y'][1] 249 for j in xrange(0,np.size(domain[0]['x'])-1):249 for j in range(0,np.size(domain[0]['x'])-1): 250 250 if SegIntersect(np.array([[x1,y1],[x2,y2]]),np.array([[domain[0]['x'][j],domain[0]['y'][j]],[domain[0]['x'][j+1],domain[0]['y'][j+1]]])): 251 251 … … 269 269 270 270 if np.min(tipdis)/segdis < options.getfieldvalue('toltip',0): 271 print "moving tip-domain intersection point"271 print("moving tip-domain intersection point") 272 272 273 273 #Get position of the closer point … … 323 323 #read tracks 324 324 track=options.getfieldvalue('tracks') 325 if all(isinstance(track, (str,unicode))):325 if all(isinstance(track,str)): 326 326 A=expread(track) 327 327 track=np.hstack((A.x.reshape(-1,),A.y.reshape(-1,))) … … 487 487 raise RuntimeError("bamg.py/processgeometry is not complete.") 488 488 #Deal with edges 489 print "Checking Edge crossing..."489 print("Checking Edge crossing...") 490 490 i=0 491 491 while (i<np.size(geom.Edges,axis=0)): … … 542 542 543 543 #Check point outside 544 print "Checking for points outside the domain..."544 print("Checking for points outside the domain...") 545 545 i=0 546 546 num=0 … … 572 572 573 573 if num: 574 print "WARNING: %d points outside the domain outline have been removed" % num574 print(("WARNING: %d points outside the domain outline have been removed" % num)) 575 575 576 576 """ -
issm/trunk-jpl/src/m/mesh/squaremesh.py
r21410 r23716 27 27 28 28 #create coordinates 29 for n in xrange(0,nx):30 for m in xrange(0,ny):29 for n in range(0,nx): 30 for m in range(0,ny): 31 31 x[n*ny+m]=float(n) 32 32 y[n*ny+m]=float(m) 33 33 34 34 #create index 35 for n in xrange(0,nx-1):36 for m in xrange(0,ny-1):35 for n in range(0,nx-1): 36 for m in range(0,ny-1): 37 37 A=n*ny+(m+1) 38 38 B=A+1 -
issm/trunk-jpl/src/m/mesh/triangle.py
r23238 r23716 37 37 #Check that mesh was not already run, and warn user: 38 38 if md.mesh.numberofelements: 39 choice = raw_input('This model already has a mesh. Are you sure you want to go ahead? (y/n)')39 choice = eval(input('This model already has a mesh. Are you sure you want to go ahead? (y/n)')) 40 40 if not m.strcmp(choice,'y'): 41 print 'no meshing done ... exiting'41 print('no meshing done ... exiting') 42 42 return None 43 43 -
issm/trunk-jpl/src/m/miscellaneous/fielddisplay.py
r21303 r23716 21 21 22 22 #string 23 if isinstance(field, (str,unicode)):23 if isinstance(field,str): 24 24 25 25 if len(field)>30: … … 29 29 30 30 #numeric 31 elif isinstance(field,(int, long,float)):31 elif isinstance(field,(int,float)): 32 32 string=displayunit(offset,name,str(field),comment) 33 33 … … 67 67 offset+=' ' 68 68 69 for structure_field,sfield in field.iteritems():69 for structure_field,sfield in list(field.items()): 70 70 string+=parsedisplay(offset,str(structure_field),sfield,'')+'\n' 71 71 … … 93 93 if len(field)<5: 94 94 for fieldi in field: 95 if isinstance(fieldi, (str,unicode)):95 if isinstance(fieldi,str): 96 96 string+="'%s'," % fieldi 97 elif isinstance(fieldi,(bool,int, long,float)):97 elif isinstance(fieldi,(bool,int,float)): 98 98 string+="%s," % str(fieldi) 99 99 else: … … 127 127 string="%s%-23s: %-15s" % (offset,name,characterization) 128 128 else: 129 if isinstance(comment, (str,unicode)):129 if isinstance(comment,str): 130 130 string="%s%-23s: %-15s -- %s" % (offset,name,characterization,comment) 131 131 elif isinstance(comment,list): -
issm/trunk-jpl/src/m/miscellaneous/parallelrange.py
r13010 r23716 9 9 10 10 #We use floor. we under distribute rows. The rows left are then redistributed, therefore resulting in a more even distribution. 11 num_local_rows=[int(globalsize/numprocs) for i in xrange(numprocs)]11 num_local_rows=[int(globalsize/numprocs) for i in range(numprocs)] 12 12 13 13 #There may be some rows left. Distribute evenly. 14 14 row_rest=globalsize - numprocs*int(globalsize/numprocs) 15 15 16 for i in xrange(row_rest):16 for i in range(row_rest): 17 17 num_local_rows[i]=num_local_rows[i]+1 18 18 19 19 i1=0 20 for i in xrange(rank-1):20 for i in range(rank-1): 21 21 i1+=num_local_rows[i] 22 22 i2=i1+num_local_rows[rank-1]-1 -
issm/trunk-jpl/src/m/modules/MeshPartition.py
r23284 r23716 15 15 ''' 16 16 if md == None or numpartitions == None: 17 print MeshPartition.__doc__17 print((MeshPartition.__doc__)) 18 18 raise RuntimeError('Wrong usage (see above)') 19 19 -
issm/trunk-jpl/src/m/os/issmscpin.py
r19157 r23716 43 43 raise OSError("issmscpin error message: could not find ISSM_DIR_WIN environment variable.") 44 44 45 username= raw_input('Username: (quoted string) ')46 key= raw_input('Key: (quoted string) ')45 username=eval(input('Username: (quoted string) ')) 46 key=eval(input('Key: (quoted string) ')) 47 47 48 48 for package in packages: -
issm/trunk-jpl/src/m/os/issmscpout.py
r17480 r23716 36 36 raise OSError("issmscpout error message: could not find ISSM_DIR_WIN environment variable.") 37 37 38 username= raw_input('Username: (quoted string) ')39 key= raw_input('Key: (quoted string) ')38 username=eval(input('Username: (quoted string) ')) 39 key=eval(input('Key: (quoted string) ')) 40 40 41 41 for package in packages: -
issm/trunk-jpl/src/m/os/issmssh.py
r20674 r23716 29 29 raise OSError("issmssh error message: could not find ISSM_DIR_WIN environment variable.") 30 30 31 username= raw_input('Username: (quoted string) ')32 key= raw_input('Key: (quoted string) ')31 username=eval(input('Username: (quoted string) ')) 32 key=eval(input('Key: (quoted string) ')) 33 33 34 34 subprocess.call('%s/externalpackages/ssh/plink.exe -ssh -l "%s" -pw "%s" %s "%s"' % (ISSM_DIR,username,key,host,command),shell=True); -
issm/trunk-jpl/src/m/parameterization/contourenvelope.py
r21303 r23716 27 27 flags=args[0] 28 28 29 if isinstance(flags, (str,unicode)):29 if isinstance(flags,str): 30 30 file=flags 31 31 if not os.path.exists(file): 32 32 raise IOError("contourenvelope error message: file '%s' not found" % file) 33 33 isfile=1 34 elif isinstance(flags,(bool,int, long,float)):34 elif isinstance(flags,(bool,int,float)): 35 35 #do nothing for now 36 36 isfile=0 … … 118 118 nods1=elements[el1,:] 119 119 flag=np.setdiff1d(nods1,elements[els2,:]) 120 for j in xrange(0,3):120 for j in range(0,3): 121 121 nods=np.delete(nods1,j) 122 122 if np.any(m.ismember(flag,nods)): -
issm/trunk-jpl/src/m/parameterization/parameterize.py
r13030 r23716 22 22 23 23 #Try and run parameter file. 24 exec file(parametername)24 exec(compile(open(parametername).read(), parametername, 'exec')) 25 25 26 26 #Name and notes -
issm/trunk-jpl/src/m/parameterization/setflowequation.py
r21303 r23716 11 11 'SIA','SSA','HO','L1L2','FS' and 'fill' are the possible options 12 12 that must be followed by the corresponding exp file or flags list 13 It can either be a domain file (argus type, .exp extension), or an array of element flags. 14 If user wants every element outside the domain to be 13 It can either be a domain file (argus type, .exp extension), or an array of element flags. 14 If user wants every element outside the domain to be 15 15 setflowequationd, add '~' to the name of the domain file (ex: '~HO.exp'); 16 16 an empty string '' will be considered as an empty domain … … 58 58 #check that each element has only one flag 59 59 if any(SIAflag+SSAflag+L1L2flag+HOflag+FSflag>1): 60 print "setflowequation warning message: some elements have several types, higher order type is used for them"60 print("setflowequation warning message: some elements have several types, higher order type is used for them") 61 61 SIAflag[np.where(np.logical_and(SIAflag,SSAflag))]=False 62 62 SIAflag[np.where(np.logical_and(SIAflag,HOflag))]=False … … 96 96 97 97 #Then complete with NoneApproximation or the other model used if there is no FS 98 if any(FSflag): 98 if any(FSflag): 99 99 if any(HOflag): #fill with HO 100 100 HOflag[~FSflag]=True … … 103 103 SSAflag[~FSflag]=True 104 104 nodeonSSA[md.mesh.elements[np.where(SSAflag),:]-1]=True 105 else: #fill with none 105 else: #fill with none 106 106 noneflag[np.where(~FSflag)]=True 107 107 … … 123 123 if np.all(np.logical_not(np.isnan(bordernodes2d))): 124 124 penalties=np.zeros((0,2)) 125 for i in xrange(1,numlayers):125 for i in range(1,numlayers): 126 126 penalties=np.vstack((penalties,np.vstack((bordernodes2d,bordernodes2d+md.mesh.numberofvertices2d*(i))).T)) 127 127 md.stressbalance.vertex_pairing=penalties … … 285 285 286 286 return md 287 -
issm/trunk-jpl/src/m/parameterization/setmask.py
r22133 r23716 10 10 SETMASK - establish boundaries between grounded and floating ice. 11 11 12 By default, ice is considered grounded. The contour floatingicename defines nodes 13 for which ice is floating. The contour groundedicename defines nodes inside an floatingice, 12 By default, ice is considered grounded. The contour floatingicename defines nodes 13 for which ice is floating. The contour groundedicename defines nodes inside an floatingice, 14 14 that are grounded (ie: ice rises, islands, etc ...) 15 15 All input files are in the Argus format (extension .exp). … … 39 39 #Assign elementonfloatingice, elementongroundedice, vertexongroundedice and vertexonfloatingice. Only change at your own peril! This is synchronized heavily with the GroundingLineMigration module. {{{ 40 40 elementonfloatingice = FlagElements(md, floatingicename) 41 elementongroundedice = FlagElements(md, groundedicename) 41 elementongroundedice = FlagElements(md, groundedicename) 42 42 43 #Because groundedice nodes and elements can be included into an floatingice, we need to update. Remember, all the previous 44 #arrays come from domain outlines that can intersect one another: 43 #Because groundedice nodes and elements can be included into an floatingice, we need to update. Remember, all the previous 44 #arrays come from domain outlines that can intersect one another: 45 45 46 46 elementonfloatingice = np.logical_and(elementonfloatingice,np.logical_not(elementongroundedice)) -
issm/trunk-jpl/src/m/partition/partitioner.py
r23440 r23716 59 59 md=adjacency(md) 60 60 else: 61 print 'skipping adjacency matrix computation as requested in the options'61 print('skipping adjacency matrix computation as requested in the options') 62 62 63 63 if m.strcmpi(package,'chaco'): … … 104 104 if (npart == md.mesh.numberofelements) or (md.qmu.numberofpartitions == md.mesh.numberofelements): 105 105 part=np.arange(1,1+md.mesh.numberofelements,1) 106 print 'Linear partitioner requesting partitions on elements'106 print('Linear partitioner requesting partitions on elements') 107 107 else: 108 108 part=np.arange(1,1+md.mesh.numberofvertices,1) … … 113 113 114 114 else: 115 print help115 print(help) 116 116 raise RuntimeError('partitioner error message: could not find '+str(package)+' partitioner') 117 117 -
issm/trunk-jpl/src/m/plot/applyoptions.py
r23563 r23716 12 12 import matplotlib.pyplot as plt 13 13 except ImportError: 14 print "could not import pylab, matplotlib has not been installed, no plotting capabilities enabled"14 print("could not import pylab, matplotlib has not been installed, no plotting capabilities enabled") 15 15 16 16 def applyoptions(md,data,options,fig,axgrid,gridindex): … … 142 142 # }}} 143 143 # {{{ xlim, ylim, zlim 144 144 if options.exist('xlim'): 145 145 ax.set_xlim(options.getfieldvalue('xlim')) 146 146 if options.exist('ylim'): -
issm/trunk-jpl/src/m/plot/checkplotoptions.py
r21303 r23716 29 29 if 'on' in options.getfieldvalue('showsection','on'): 30 30 options.changefieldvalue('showsection',4) 31 # }}} 31 # }}} 32 32 # {{{ smooth values 33 33 if options.exist('smooth'): … … 54 54 textlist.extend([text] if isinstance(text,str) else text) 55 55 numtext=len(textlist) 56 # text position 56 # text position 57 57 textpos=options.getfieldvalue('textposition',[0.5,0.5]) 58 58 if not isinstance(textpos,list): 59 59 raise Exception('textposition should be passed as a list') 60 60 if any(isinstance(i,list) for i in textpos): 61 62 63 64 65 61 textx=[item[0] for item in textpos] 62 texty=[item[1] for item in textpos] 63 else: 64 textx=[textpos[0]] 65 texty=[textpos[1]] 66 66 if len(textx)!=numtext or len(texty)!=numtext: 67 67 raise Exception('textposition should contain one list of x,y vertices for every text instance') -
issm/trunk-jpl/src/m/plot/colormaps/cmaptools.py
r21303 r23716 4 4 import matplotlib as mpl 5 5 except ImportError: 6 print 'cannot import matplotlib, no plotting capabilities enabled'6 print('cannot import matplotlib, no plotting capabilities enabled') 7 7 8 8 def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100): -
issm/trunk-jpl/src/m/plot/export_gl.py
r21303 r23716 42 42 #Deal with contour {{{ 43 43 print ('getting contour') 44 print (md.mesh.segments)45 segmenets0 = map(lambda s: s - 1, md.mesh.segments[:,0]);46 segmenets1 = map(lambda s: s - 1, md.mesh.segments[:,1]);44 print((md.mesh.segments)) 45 segmenets0 = [s - 1 for s in md.mesh.segments[:,0]]; 46 segmenets1 = [s - 1 for s in md.mesh.segments[:,1]]; 47 47 48 48 contour_lat1=md.mesh.lat.take(segmenets0) … … 56 56 R2=6371000*np.ones(len(contour_surface2))+scaling_factor*contour_surface2; 57 57 58 model.contourx1 = map(lambda r, lat, long: r * math.cos(math.radians(lat)) * math.cos(math.radians(long)), R1, contour_lat1, contour_long1);59 model.contoury1 = map(lambda r, lat, long: r * math.cos(math.radians(lat)) * math.sin(math.radians(long)), R1, contour_lat1, contour_long1);60 model.contourz1 = map(lambda r, lat: r * math.sin(math.radians(lat)), R1, contour_lat1);58 model.contourx1 = list(map(lambda r, lat, int: r * math.cos(math.radians(lat)) * math.cos(math.radians(int)), R1, contour_lat1, contour_long1)); 59 model.contoury1 = list(map(lambda r, lat, int: r * math.cos(math.radians(lat)) * math.sin(math.radians(int)), R1, contour_lat1, contour_long1)); 60 model.contourz1 = list(map(lambda r, lat: r * math.sin(math.radians(lat)), R1, contour_lat1)); 61 61 62 model.contourx2 = map(lambda r, lat, long: r * math.cos(math.radians(lat)) * math.cos(math.radians(long)), R2, contour_lat2, contour_long2);63 model.contoury2 = map(lambda r, lat, long: r * math.cos(math.radians(lat)) * math.sin(math.radians(long)), R2, contour_lat2, contour_long2);64 model.contourz2 = map(lambda r, lat: r * math.sin(math.radians(lat)), R2, contour_lat2);62 model.contourx2 = list(map(lambda r, lat, int: r * math.cos(math.radians(lat)) * math.cos(math.radians(int)), R2, contour_lat2, contour_long2)); 63 model.contoury2 = list(map(lambda r, lat, int: r * math.cos(math.radians(lat)) * math.sin(math.radians(int)), R2, contour_lat2, contour_long2)); 64 model.contourz2 = list(map(lambda r, lat: r * math.sin(math.radians(lat)), R2, contour_lat2)); 65 65 66 66 #}}} … … 72 72 R=6371000*np.ones(len(md.mesh.lat))+scaling_factor*surface; 73 73 74 x = map(lambda r, lat, long: r * math.cos(math.radians(lat)) * math.cos(math.radians(long)), R, md.mesh.lat,md.mesh.long);75 y = map(lambda r, lat, long: r * math.cos(math.radians(lat)) * math.sin(math.radians(long)), R, md.mesh.lat,md.mesh.long);76 z = map(lambda r, lat: r * math.sin(math.radians(lat)), R, md.mesh.lat);74 x = list(map(lambda r, lat, int: r * math.cos(math.radians(lat)) * math.cos(math.radians(int)), R, md.mesh.lat,md.mesh.long)); 75 y = list(map(lambda r, lat, int: r * math.cos(math.radians(lat)) * math.sin(math.radians(int)), R, md.mesh.lat,md.mesh.long)); 76 z = list(map(lambda r, lat: r * math.sin(math.radians(lat)), R, md.mesh.lat)); 77 77 78 78 #Deal with triangulation: … … 88 88 #Deal with data: 89 89 print('getting data') 90 for i in xrange(0,len(optionslist)):90 for i in range(0,len(optionslist)): 91 91 options=optionslist[i]; 92 92 options=checkplotoptions(md,options); -
issm/trunk-jpl/src/m/plot/plot_BC.py
r21656 r23716 2 2 import pylab as p 3 3 except ImportError: 4 print "could not import pylab, matplotlib has not been installed, no plotting capabilities enabled"4 print("could not import pylab, matplotlib has not been installed, no plotting capabilities enabled") 5 5 6 6 import numpy as np -
issm/trunk-jpl/src/m/plot/plot_contour.py
r21254 r23716 5 5 import matplotlib.pyplot as plt 6 6 except ImportError: 7 print "could not import pylab, matplotlib has not been installed, no plotting capabilities enabled"7 print("could not import pylab, matplotlib has not been installed, no plotting capabilities enabled") 8 8 9 9 def plot_contour(md,datain,options,ax): -
issm/trunk-jpl/src/m/plot/plot_elementnumbering.py
r21478 r23716 2 2 import pylab as p 3 3 except ImportError: 4 print "could not import pylab, matplotlib has not been installed, no plotting capabilities enabled"4 print("could not import pylab, matplotlib has not been installed, no plotting capabilities enabled") 5 5 6 6 import numpy as np … … 26 26 ax.triplot(x,y,elements) 27 27 else: 28 print 'Not Implemented Yet'28 print('Not Implemented Yet') 29 29 30 30 XLims=[np.min(x),np.max(x)] -
issm/trunk-jpl/src/m/plot/plot_icefront.py
r21611 r23716 2 2 import pylab as p 3 3 except ImportError: 4 print "could not import pylab, matplotlib has not been installed, no plotting capabilities enabled"4 print("could not import pylab, matplotlib has not been installed, no plotting capabilities enabled") 5 5 import numpy as np 6 6 from processmesh import processmesh -
issm/trunk-jpl/src/m/plot/plot_manager.py
r23563 r23716 3 3 import matplotlib.pyplot as plt 4 4 except ImportError: 5 print "could not import pylab, matplotlib has not been installed, no plotting capabilities enabled"5 print("could not import pylab, matplotlib has not been installed, no plotting capabilities enabled") 6 6 7 7 from checkplotoptions import checkplotoptions … … 19 19 overlaysupport=True 20 20 except ImportError: 21 print 'osgeo/gdal for python not installed, overlay plots are not enabled'21 print('osgeo/gdal for python not installed, overlay plots are not enabled') 22 22 overlaysupport=False 23 23 … … 60 60 # }}} 61 61 # {{{ dealing with special plot 62 if isinstance(data, (str,unicode)):62 if isinstance(data,str): 63 63 if data=='mesh': 64 64 plot_mesh(md,options,fig,axgrid,gridindex) … … 76 76 return 77 77 elif data=='none': 78 print 'no data provided to plot (TODO: write plot_none.py)'78 print('no data provided to plot (TODO: write plot_none.py)') 79 79 applyoptions(md,[],options,fig,axgrid,gridindex) 80 80 return 81 81 else: 82 print "WARNING: '%s' is not implemented or is not a valid string for option 'data'" % data82 print(("WARNING: '%s' is not implemented or is not a valid string for option 'data'" % data)) 83 83 # }}} 84 84 # {{{ Gridded plot TODO -
issm/trunk-jpl/src/m/plot/plot_mesh.py
r21588 r23716 2 2 import pylab as p 3 3 except ImportError: 4 print "could not import pylab, matplotlib has not been installed, no plotting capabilities enabled"4 print("could not import pylab, matplotlib has not been installed, no plotting capabilities enabled") 5 5 6 6 import numpy as np … … 46 46 47 47 for triangle in triel: 48 tri= zip(x[triangle],y[triangle],z[triangle])48 tri=list(zip(x[triangle],y[triangle],z[triangle])) 49 49 pl3=Line3DCollection([tri],edgecolor='r') 50 50 ax.add_collection3d(pl3) -
issm/trunk-jpl/src/m/plot/plot_overlay.py
r23563 r23716 9 9 from mpl_toolkits.basemap import Basemap 10 10 except ImportError: 11 print 'Basemap toolkit not installed'11 print('Basemap toolkit not installed') 12 12 try: 13 13 from osgeo import gdal 14 14 except ImportError: 15 print 'osgeo/gdal for python not installed, plot_overlay is disabled'15 print('osgeo/gdal for python not installed, plot_overlay is disabled') 16 16 17 17 … … 32 32 33 33 if not is2d: 34 raise StandardError('overlay plot not supported for 3D meshes, project on a 2D layer first')34 raise Exception('overlay plot not supported for 3D meshes, project on a 2D layer first') 35 35 36 36 if not options.exist('overlay_image'): 37 raise StandardError('overlay error: provide overlay_image with path to geotiff file')37 raise Exception('overlay error: provide overlay_image with path to geotiff file') 38 38 image=options.getfieldvalue('overlay_image') 39 39 … … 111 111 lon_0=0 112 112 else: 113 hemisphere= raw_input('epsg code {} is not supported chose your hemisphere (1 for North, -1 for south)'.format(mesh.epsg))113 hemisphere=eval(input('epsg code {} is not supported chose your hemisphere (1 for North, -1 for south)'.format(mesh.epsg))) 114 114 115 115 lat,lon=xy2ll(xlim,ylim,hemisphere,lon_0,st_lat) -
issm/trunk-jpl/src/m/plot/plot_quiver.py
r21303 r23716 15 15 #scaling of arrow length (giving info to change as it seems that there is no better way to work arround it) 16 16 scale=options.getfieldvalue('scaling',scaler) 17 print( 'the current value for "scaling" is {}, increase it to shorten the arrows'.format(scale))17 print(('the current value for "scaling" is {}, increase it to shorten the arrows'.format(scale))) 18 18 #sizing of the arrows 19 19 width=options.getfieldvalue('width',5.0e-3) -
issm/trunk-jpl/src/m/plot/plot_streamlines.py
r23563 r23716 8 8 from scipy.interpolate import griddata 9 9 except ImportError: 10 print "could not import pylab, matplotlib has not been installed, no plotting capabilities enabled"10 print("could not import pylab, matplotlib has not been installed, no plotting capabilities enabled") 11 11 12 12 def plot_streamlines(md,options,ax): … … 42 42 43 43 if not is2d: 44 raise StandardError('plot_streamlines error: streamlines option not supported for 3D plots')44 raise Exception('plot_streamlines error: streamlines option not supported for 3D plots') 45 45 46 46 # format data for matplotlib streamplot function -
issm/trunk-jpl/src/m/plot/plot_unit.py
r23563 r23716 10 10 from mpl_toolkits.mplot3d.art3d import Poly3DCollection 11 11 except ImportError: 12 print "could not import pylab, matplotlib has not been installed, no plotting capabilities enabled"12 print("could not import pylab, matplotlib has not been installed, no plotting capabilities enabled") 13 13 14 14 def plot_unit(x,y,z,elements,data,is2d,isplanet,datatype,options,fig,axgrid,gridindex): … … 116 116 recindex=eltind[idx[np.where(recur==1)]] 117 117 for i,rectangle in enumerate(recel): 118 rec= zip(x[rectangle],y[rectangle],z[rectangle])118 rec=list(zip(x[rectangle],y[rectangle],z[rectangle])) 119 119 pl3=Poly3DCollection([rec]) 120 120 color=loccmap.to_rgba(data[recindex[i]]) … … 133 133 triindex=eltind[idx[np.where(recur==1)]] 134 134 for i,triangle in enumerate(triel): 135 tri= zip(x[triangle],y[triangle],z[triangle])135 tri=list(zip(x[triangle],y[triangle],z[triangle])) 136 136 pl3=Poly3DCollection([tri]) 137 137 color=loccmap.to_rgba(data[triindex[i]]) … … 182 182 recel= recface[idx[np.where(recur==1)]] 183 183 for rectangle in recel: 184 rec= zip(x[rectangle],y[rectangle],z[rectangle])184 rec=list(zip(x[rectangle],y[rectangle],z[rectangle])) 185 185 pl3=Poly3DCollection([rec]) 186 186 color=loccmap.to_rgba(np.mean(data[rectangle])) … … 196 196 triel= triface[idx[np.where(recur==1)]] 197 197 for triangle in triel: 198 tri= zip(x[triangle],y[triangle],z[triangle])198 tri=list(zip(x[triangle],y[triangle],z[triangle])) 199 199 pl3=Poly3DCollection([tri]) 200 200 color=loccmap.to_rgba(np.mean(data[triangle])) … … 222 222 223 223 elif datatype==4: 224 print 'plot_unit message: P1 patch plot not implemented yet'224 print('plot_unit message: P1 patch plot not implemented yet') 225 225 return 226 226 … … 229 229 230 230 elif datatype==5: 231 print 'plot_unit message: P0 patch plot not implemented yet'231 print('plot_unit message: P0 patch plot not implemented yet') 232 232 return 233 233 -
issm/trunk-jpl/src/m/plot/plot_vertexnumbering.py
r21478 r23716 2 2 import pylab as p 3 3 except ImportError: 4 print "could not import pylab, matplotlib has not been installed, no plotting capabilities enabled"4 print("could not import pylab, matplotlib has not been installed, no plotting capabilities enabled") 5 5 6 6 import numpy as np … … 28 28 ax.triplot(x,y,elements) 29 29 else: 30 print 'Not Implemented Yet'30 print('Not Implemented Yet') 31 31 32 32 XPad=0.1*(np.max(x)-np.min(x)) -
issm/trunk-jpl/src/m/plot/plotdoc.py
r21444 r23716 170 170 print(" Options: ") 171 171 print(" 'data' : and a model field or one of the following options.") 172 for key in pydata.keys():173 print( " - {} : {}".format(key,pydata[key]))172 for key in list(pydata.keys()): 173 print((" - {} : {}".format(key,pydata[key]))) 174 174 print("") 175 175 print(" The general look of the plot is then given by the following keywords") 176 176 for key in sorted(pyoptions): 177 print( " - {} : {}".format(key,pyoptions[key]))177 print((" - {} : {}".format(key,pyoptions[key]))) 178 178 print(" any options (except 'data') can be followed by '#i' where 'i' is the subplot number, or '#all' if applied to all plots") -
issm/trunk-jpl/src/m/plot/plotmodel.py
r21444 r23716 11 11 from mpl_toolkits.mplot3d import Axes3D 12 12 except ImportError: 13 print "could not import pylab, matplotlib has not been installed, no plotting capabilities enabled"13 print("could not import pylab, matplotlib has not been installed, no plotting capabilities enabled") 14 14 15 15 def plotmodel(md,*args): … … 48 48 #check that nrows and ncols were given at the same time! 49 49 if not nr==nc: 50 raise StandardError('error: nrows and ncols need to be specified together, or not at all')50 raise Exception('error: nrows and ncols need to be specified together, or not at all') 51 51 52 52 #Go through plots 53 53 if numberofplots: 54 #if plt.fignum_exists(figurenumber): 54 #if plt.fignum_exists(figurenumber): 55 55 # plt.cla() 56 56 … … 72 72 # options needed to define plot grid 73 73 plotnum=options.numberofplots 74 if plotnum==1: 75 plotnum=None 74 76 direction=options.list[0].getfieldvalue('direction','row') # row,column 75 77 axes_pad=options.list[0].getfieldvalue('axes_pad',0.25) … … 81 83 cbar_location=options.list[0].getfieldvalue('colorbarpos','right') # right,top 82 84 cbar_size=options.list[0].getfieldvalue('colorbarsize','5%') 83 cbar_pad=options.list[0].getfieldvalue('colorbarpad', '2.5%') # None or %85 cbar_pad=options.list[0].getfieldvalue('colorbarpad',0.025) # None or % 84 86 85 87 axgrid=ImageGrid(fig,111, … … 97 99 98 100 if cbar_mode=='None': 99 for ax in axgrid.cbar_axes: 101 for ax in axgrid.cbar_axes: 100 102 fig._axstack.remove(ax) 101 103 … … 104 106 fig.show() 105 107 else: 106 raise StandardError('plotmodel error message: no output data found.')108 raise Exception('plotmodel error message: no output data found.') -
issm/trunk-jpl/src/m/plot/processdata.py
r21303 r23716 57 57 options.addfielddefault('clim',[lb,ub]) 58 58 options.addfielddefault('cmap_set_under','1') 59 print "WARNING: nan's treated as", nanfill, "by default. Change using pairoption 'nan',nan_fill_value in plotmodel call"59 print(("WARNING: nan's treated as", nanfill, "by default. Change using pairoption 'nan',nan_fill_value in plotmodel call")) 60 60 # }}} 61 61 # {{{ log … … 117 117 datatype=2 118 118 spccol=options.getfieldvalue('spccol',0) 119 print 'multiple-column spc field; specify column to plot using option "spccol"'120 print 'column ', spccol, ' plotted for time: ', procdata[-1,spccol]119 print('multiple-column spc field; specify column to plot using option "spccol"') 120 print(('column ', spccol, ' plotted for time: ', procdata[-1,spccol])) 121 121 procdata=procdata[0:-1,spccol] 122 122 -
issm/trunk-jpl/src/m/plot/writejsfield.py
r21303 r23716 11 11 fid.write('<!-- {0}{{{{{{-->\n'.format(name)) 12 12 fid.write('{0}=['.format(name)) 13 for i in xrange(0, nods-1):13 for i in range(0, nods-1): 14 14 fid.write('{0},'.format(variable[i])) 15 15 fid.write('{0}];\n'.format(variable[-1])) … … 19 19 fid.write('<!-- {0}{{{{{{-->\n'.format(name)) 20 20 fid.write('{0}=[]\n'.format(name)) 21 for i in xrange(0, len(variable[2])):21 for i in range(0, len(variable[2])): 22 22 fid.write('{0}["{1}"]=['.format(name,i)) 23 for j in xrange(1, nods-1):23 for j in range(1, nods-1): 24 24 fid.write('{0},'.format(variable[j][i])) 25 25 fid.write('{0}];\n'.format(variable[-1][i])) -
issm/trunk-jpl/src/m/plot/writejsfile.py
r21303 r23716 20 20 fid.write('<!-- model["index"]{{{-->\n') 21 21 fid.write('model["index"]=[') 22 for i in xrange(0, nel-1):22 for i in range(0, nel-1): 23 23 fid.write('[{0}, {1}, {2}],'.format(model.index[i][0],model.index[i][1],model.index[i][2])) 24 24 fid.write('[{0}, {1}, {2}]];\n'.format(model.index[-1][0],model.index[-1][1],model.index[-1][2])) … … 40 40 fid.write('results={};\n') 41 41 42 for i in xrange(0,len(results)):42 for i in range(0,len(results)): 43 43 fid.write('result={};\n') 44 44 writejsfield(fid,'result["data"]',results[i].data,nods) -
issm/trunk-jpl/src/m/qmu/dakota_in_data.py
r23095 r23716 45 45 # get default set of parameters 46 46 params=dakota_in_params(struct()) 47 48 47 # merge specified parameters into default set, whether or not 49 48 # they already exist 50 49 fnames=fieldnames(dparams) 51 50 52 for i in range(np.size(fnames)): 53 if not isfield(params,fnames[i]): 54 print 'WARNING: dakota_in_data:unknown_param: No parameter '+str(fnames[i])+' in default parameter set.' 55 56 exec('params.%s = vars(dparams)[fnames[i]]')%(fnames[i]) 51 for fieldname in fnames: 52 if not isfield(params,fieldname): 53 print('WARNING: dakota_in_data:unknown_param: No parameter {} in default parameter set.'.format(str(fieldname))) 54 exec('params.{} = vars(dparams)[fieldname]'.format(fieldname)) 57 55 58 56 # use matlab even though we are running python … … 76 74 for i in range(len(fnames)): 77 75 # currently all variable types can just be copied 78 exec( 'dvar.%s = vars(variables)[fnames[i]]')%(fnames[i])76 exec(('dvar.%s = vars(variables)[fnames[i]]')%(fnames[i])) 79 77 80 78 ## responses … … 83 81 for i in range(len(fnames)): 84 82 # currently all response types can just be copied 85 exec( 'dresp.%s = vars(responses)[fnames[i]]')%(fnames[i])83 exec(('dresp.%s = vars(responses)[fnames[i]]')%(fnames[i])) 86 84 87 85 -
issm/trunk-jpl/src/m/qmu/dakota_in_params.py
r23095 r23716 182 182 183 183 return params 184 -
issm/trunk-jpl/src/m/qmu/dakota_in_write.py
r23231 r23716 43 43 # process the input parameters 44 44 if len(fieldnames(method)) == 0: 45 method=str( input('Method? '))45 method=str(eval(input('Method? '))) 46 46 47 47 if type(method) == str: … … 53 53 54 54 if len(filei) == 0: 55 filei=str( input('Dakota input file to write? '))55 filei=str(eval(input('Dakota input file to write? '))) 56 56 57 57 [pathstr,name,ext] = fileparts(filei) … … 62 62 filei2=fullfile(pathstr,name+ext) 63 63 64 print 'Opening Dakota input file \''+filei2 + '\'.'64 print('Opening Dakota input file \''+filei2 + '\'.') 65 65 try: 66 66 with open(filei2,'w+') as fidi: … … 93 93 94 94 except IOError: 95 print filei2 + ' could not be opened.'96 97 print 'End of file successfully written.'95 print(filei2 + ' could not be opened.') 96 97 print('End of file successfully written.') 98 98 99 99 … … 102 102 def strategy_write(fidi,params): 103 103 104 print 'Writing strategy section of Dakota input file.'104 print('Writing strategy section of Dakota input file.') 105 105 106 106 fidi.write('strategy,\n') … … 116 116 def environment_write(fidi,params): 117 117 118 print 'Writing environment section of Dakota input file.'118 print('Writing environment section of Dakota input file.') 119 119 120 120 fidi.write('environment,\n') … … 129 129 def method_write(fidi,dmeth,dresp,params): 130 130 131 print 'Writing method section of Dakota input file.'131 print('Writing method section of Dakota input file.') 132 132 133 133 fidi.write('method,\n') … … 151 151 def model_write(fidi): 152 152 153 print 'Writing model section of Dakota input file.'153 print('Writing model section of Dakota input file.') 154 154 155 155 fidi.write('model,\n') … … 161 161 def variables_write(fidi,dmeth,dvar): 162 162 163 print 'Writing variables section of Dakota input file.'163 print('Writing variables section of Dakota input file.') 164 164 165 165 fidi.write('variables,\n') … … 174 174 str_name = dmeth.variables[j] 175 175 176 # organize so that multiple instances of the same qmu class 177 # (2 different variable instances of "normal_uncertain" for example) 176 # organize so that multiple instances of the same qmu class 177 # (2 different variable instances of "normal_uncertain" for example) 178 178 # are in the same dakota_write call regardless of individual size; 179 179 # but that each class has its own dakota_write call … … 205 205 def interface_write(fidi,params): 206 206 207 print 'Writing interface section of Dakota input file.'207 print('Writing interface section of Dakota input file.') 208 208 209 209 fidi.write('interface,\n') … … 213 213 elif params.system+params.fork+params.direct > 1: 214 214 raise RuntimeError('Too many interfaces selected.') 215 216 215 if params.system or params.fork: 217 216 param_write(fidi,'\t','asynchronous','','\n',params) … … 230 229 if len(params.input_filter) != 0: 231 230 param_write(fidi,'\t ','input_filter',' = ','\n',params) 232 231 233 232 if len(params.output_filter) != 0: 234 233 param_write(fidi,'\t ','output_filter',' = ','\n',params) 235 234 236 235 param_write(fidi,'\t ','failure_capture',' ','\n',params) 237 236 param_write(fidi,'\t ','deactivate',' ','\n',params) 238 param_write(fidi,'\t ','parameters_file',' = ','\n',params)239 param_write(fidi,'\t ','results_file',' = ','\n',params)237 param_write(fidi,'\t ','parameters_file',' = \'','\'\n',params) 238 param_write(fidi,'\t ','results_file',' = \'','\'\n',params) 240 239 param_write(fidi,'\t ','verbatim', '','\n',params) 241 240 param_write(fidi,'\t ','aprepro', '','\n',params) … … 257 256 if ext != '': 258 257 ext='.py' 259 258 260 259 params.analysis_components=fullfile(pathstr,name+ext) 261 260 param_write(fidi,'\t ','analysis_components',' = \'','\'\n',params) 262 261 263 262 if len(params.input_filter) != 0: 264 263 param_write(fidi,'\t ','input_filter',' = ','\n',params) 265 264 266 265 if len(params.output_filter) != 0: 267 266 param_write(fidi,'\t ','output_filter',' = ','\n',params) 268 267 269 268 param_write(fidi,'\t ','failure_capture',' ','\n',params) 270 269 param_write(fidi,'\t ','deactivate',' ','\n',params) … … 278 277 def responses_write(fidi,dmeth,dresp,params): 279 278 280 print 'Writing responses section of Dakota input file.'279 print('Writing responses section of Dakota input file.') 281 280 282 281 fidi.write('responses,\n') … … 312 311 elif (params.numerical_gradients+params.analytic_gradients > 1): 313 312 raise RuntimeError('Too many gradients selected.') 314 313 315 314 if params.numerical_gradients: 316 315 param_write(fidi,'\t','numerical_gradients','','\n',params) … … 329 328 else: 330 329 fidi.write('\tno_hessians\n') 331 332 333 -
issm/trunk-jpl/src/m/qmu/dakota_out_parse.py
r23231 r23716 54 54 55 55 if not isfile(filei) or getsize(filei) == 0: 56 filei=str( input('Input file? '))56 filei=str(eval(input('Input file? '))) 57 57 58 58 #fidi=fopen(sprintf('%s',filei),'r') … … 88 88 [ntokens,tokens]=fltokens(fline) 89 89 method=tokens[0].strip() 90 print 'Dakota method =\''+method+'\'.'90 print('Dakota method =\''+method+'\'.') 91 91 elif fline[6] in ['N','n']: 92 92 fline=findline(fidi,'methodName = '); 93 93 [ntokens,tokens]=fltokens(fline) 94 94 method=tokens[2].strip() 95 print 'Dakota methodName="'+method+'".'95 print('Dakota methodName="'+method+'".') 96 96 97 97 ## loop through the file to find the function evaluation summary … … 160 160 # return 161 161 # 162 print 'End of file successfully reached.'162 print('End of file successfully reached.') 163 163 #close(fidi) 164 164 #except Exception as err: … … 173 173 ## function to parse the dakota tabular output file 174 174 175 print 'Reading Dakota tabular output file.'175 print('Reading Dakota tabular output file.') 176 176 177 177 # process column headings of matrix (skipping eval_id) … … 190 190 desc[0][i]=str(tokens[i+offset]) 191 191 192 print "Number of columns (Dakota V+R)="+str(ntokens-2)+'.'192 print("Number of columns (Dakota V+R)="+str(ntokens-2)+'.') 193 193 194 194 # process rows of matrix … … 213 213 nrow=nrow+1 214 214 215 print 'Number of rows (Dakota func evals)='+str(nrow)+'.'215 print('Number of rows (Dakota func evals)='+str(nrow)+'.') 216 216 217 217 # calculate statistics … … 297 297 [ntokens,tokens]=fltokens(fline) 298 298 nfeval=tokens[4] 299 print ' Dakota function evaluations='+str(int(nfeval))+'.'299 print(' Dakota function evaluations='+str(int(nfeval))+'.') 300 300 301 301 return nfeval … … 311 311 [ntokens,tokens]=fltokens(fline) 312 312 nsamp=tokens[3] 313 print ' Dakota samples='+str(int(nsamp))+'.'313 print(' Dakota samples='+str(int(nsamp))+'.') 314 314 315 315 return nsamp … … 323 323 return 324 324 325 print 'Reading moments for response functions:'325 print('Reading moments for response functions:') 326 326 327 327 while True: … … 336 336 dresp.append(struct()) 337 337 dresp[-1].descriptor=tokens[ 0] 338 print ' '+str(dresp[-1].descriptor)338 print(' '+str(dresp[-1].descriptor)) 339 339 dresp[-1].mean =tokens[ 3] 340 340 dresp[-1].stddev =tokens[ 6] 341 341 dresp[-1].coefvar =tokens[12] 342 342 343 print ' Number of Dakota response functions='+str(len(dresp))+'.'343 print(' Number of Dakota response functions='+str(len(dresp))+'.') 344 344 345 345 return dresp … … 353 353 return 354 354 355 print 'Reading moment-based statistics for response functions:'355 print('Reading moment-based statistics for response functions:') 356 356 357 357 # skip column headings of moment-based statistics … … 370 370 dresp.append(struct()) 371 371 dresp[-1].descriptor=tokens[ 0] 372 print ' '+str(dresp[-1].descriptor)372 print(' '+str(dresp[-1].descriptor)) 373 373 dresp[-1].mean =tokens[ 1] 374 374 dresp[-1].stddev =tokens[ 2] … … 376 376 dresp[-1].kurtosis =tokens[ 4] 377 377 378 print ' Number of Dakota response functions='+str(len(dresp))+'.'378 print(' Number of Dakota response functions='+str(len(dresp))+'.') 379 379 380 380 return dresp … … 388 388 return 389 389 390 print 'Reading 95% confidence intervals for response functions:'390 print('Reading 95% confidence intervals for response functions:') 391 391 392 392 while True: … … 418 418 dresp.append(struct()) 419 419 dresp[idresp].descriptor=tokens[0] 420 print ' '+str(dresp[idresp].descriptor)420 print(' '+str(dresp[idresp].descriptor)) 421 421 422 422 # add confidence intervals to response functions … … 435 435 dresp[i].stddevci[1,0]=tokens[ 4] 436 436 437 print ' Number of Dakota response functions='+str(len(dresp))+'.'437 print(' Number of Dakota response functions='+str(len(dresp))+'.') 438 438 439 439 return dresp … … 450 450 return 451 451 452 print 'Reading CDF''s for response functions:'452 print('Reading CDF''s for response functions:') 453 453 454 454 while fline == '' or fline.isspace(): … … 475 475 dresp.append(struct()) 476 476 dresp[idresp].descriptor=tokens[ 5] 477 print ' '+str(dresp(idresp).descriptor)477 print(' '+str(dresp(idresp).descriptor)) 478 478 479 479 … … 501 501 fline=fidi.readline() 502 502 503 print ' Number of Dakota response functions='+str(len(dresp))+'.'503 print(' Number of Dakota response functions='+str(len(dresp))+'.') 504 504 505 505 return dresp … … 513 513 return 514 514 515 print 'Reading PDF''s for response functions:'515 print('Reading PDF''s for response functions:') 516 516 517 517 while (fline != '' and not fline.isspace()): … … 539 539 dresp.append(struct) 540 540 dresp[idresp].descriptor=tokens[ 2] 541 print ' '+str(dresp[idresp].descriptor)541 print(' '+str(dresp[idresp].descriptor)) 542 542 543 543 … … 561 561 fline=fidi.readline() 562 562 563 print ' Number of Dakota response functions='+str(len(dresp))+'.'563 print(' Number of Dakota response functions='+str(len(dresp))+'.') 564 564 565 565 return dresp … … 575 575 return 576 576 577 print 'Reading ' +fline+ '.'577 print('Reading ' +fline+ '.') 578 578 579 579 cmat.title=fline … … 627 627 return 628 628 629 print 'Reading MV statistics for response functions:'629 print('Reading MV statistics for response functions:') 630 630 631 631 ndresp=0 … … 638 638 dresp.append(struct()) 639 639 dresp[-1].descriptor=tokens[3] 640 print ' '+str(dresp[-1].descriptor)640 print(' '+str(dresp[-1].descriptor)) 641 641 fline=fidi.readline() 642 642 [ntokens,tokens]=fltokens(fline) … … 674 674 675 675 if not idvar: 676 print ' Importance Factors not available.'676 print(' Importance Factors not available.') 677 677 dresp[-1].var =[] 678 678 dresp[-1].impfac=[] … … 709 709 dresp.append(struct()) 710 710 dresp[idresp].descriptor=tokens[ 5] 711 print ' '+str(dresp[idresp].descriptor)711 print(' '+str(dresp[idresp].descriptor)) 712 712 713 713 # skip column headings of cdf … … 736 736 737 737 if not icdf: 738 print ' Cumulative Distribution Function not available.'738 print(' Cumulative Distribution Function not available.') 739 739 dresp[ndresp].cdf=[] 740 740 while (fline != '' and not fline.isspace()) and not strncmpi(fline,'MV Statistics for ',18) and not strncmp (fline,'-',1): 741 741 fline=fidi.readline() 742 742 743 print ' Number of Dakota response functions='+str(len(dresp))+'.'743 print(' Number of Dakota response functions='+str(len(dresp))+'.') 744 744 745 745 return dresp … … 758 758 dresp[-1].best=struct() 759 759 760 print 'Reading values for best function evaluation:'760 print('Reading values for best function evaluation:') 761 761 762 762 while (fline != '' and not fline.isspace()) and strncmpi(fline,'<<<<< Best ',11): … … 766 766 767 767 if strncmpi(str(tokens[2]),'parameter', 9): 768 print ' '+fline768 print(' '+fline) 769 769 770 770 fline=fidi.readline() … … 782 782 783 783 elif strncmpi(str(tokens[2]),'objective', 9) and strncmpi(str(tokens[3]),'function' , 8): 784 print ' '+fline784 print(' '+fline) 785 785 786 786 fline=fidi.readline() … … 796 796 797 797 elif strncmpi(str(tokens[2]),'residual', 8) and strncmpi(str(tokens[3]),'norm' , 4): 798 print ' '+fline798 print(' '+fline) 799 799 dresp.best.norm = tokens[ 5] 800 800 dresp.best.hnormsq= tokens[10] … … 808 808 809 809 elif strncmpi(str(tokens[2]),'residual', 8) and strncmpi(str(tokens[3]),'term' , 4): 810 print ' '+fline810 print(' '+fline) 811 811 812 812 fline=fidi.readline() … … 822 822 823 823 elif strncmpi(str(tokens[2]),'constraint',10) and strncmpi(str(tokens[3]),'value' , 5): 824 print ' '+fline824 print(' '+fline) 825 825 826 826 fline=fidi.readline() … … 836 836 837 837 elif strncmpi(str(tokens[2]),'data' , 4) and strncmpi(str(tokens[3]),'captured', 8): 838 print ' '+fline838 print(' '+fline) 839 839 dresp.best.eval= tokens[7] 840 840 … … 846 846 # read until next best or blank or end 847 847 else: 848 print ' '+fline+' (ignored)'848 print(' '+fline+' (ignored)') 849 849 850 850 fline=fidi.readline() … … 868 868 dresp[-1].vum=[] 869 869 870 print 'Reading measures for volumetric uniformity.'870 print('Reading measures for volumetric uniformity.') 871 871 872 872 fline=fidi.readline() … … 904 904 [ntokens,tokens]=fltokens(fline) 905 905 method=tokens[2] 906 print 'Dakota iterator \''+str(method)+'\' completed.'906 print('Dakota iterator \''+str(method)+'\' completed.') 907 907 908 908 return method … … 927 927 928 928 # issue warning and reset file position 929 print 'Warning: findline:str_not_found: String '+str(string)+' not found in file.'929 print('Warning: findline:str_not_found: String '+str(string)+' not found in file.') 930 930 fidi.seek(ipos,0) 931 931 return None … … 947 947 strings = re.split(':| ',fline) 948 948 # remove blank strings 949 strings = filter(lambda a: (a != '' and not a.isspace()),strings)949 strings = [a for a in strings if (a != '' and not a.isspace())] 950 950 951 951 ntokens=0 -
issm/trunk-jpl/src/m/qmu/expandresponses.py
r23095 r23716 12 12 for k in fnames: 13 13 v = eval('responses.{}'.format(k)) 14 exec 'dresp.{} = type(v)()'.format(k)14 exec('dresp.{} = type(v)()'.format(k)) 15 15 for j in range(len(v)): 16 16 #call setupdesign 17 exec 'dresp.{}=QmuSetupResponses(md,dresp.{},v[j])'.format(k,k)17 exec('dresp.{}=QmuSetupResponses(md,dresp.{},v[j])'.format(k,k)) 18 18 19 19 return dresp -
issm/trunk-jpl/src/m/qmu/expandvariables.py
r23095 r23716 16 16 # for linear constraints, just copy 17 17 if isinstance(v,linear_inequality_constraint) or isinstance(v,linear_equality_constraint): 18 exec 'dvar.{} = v'.format(k)18 exec('dvar.{} = v'.format(k)) 19 19 20 20 # for variables, call the setup function 21 21 else: 22 exec 'dvar.{} = type(v)()'.format(k)22 exec('dvar.{} = type(v)()'.format(k)) 23 23 for j in range(len(v)): 24 24 #call setupdesign 25 exec 'dvar.{}=QmuSetupVariables(md,dvar.{},v[j])'.format(k,k)25 exec('dvar.{}=QmuSetupVariables(md,dvar.{},v[j])'.format(k,k)) 26 26 27 27 -
issm/trunk-jpl/src/m/qmu/helpers.py
r23333 r23716 128 128 129 129 for a,b in zip(args[0::2],args[1::2]): 130 exec( 'self.%s = b')%(a)130 exec(('self.%s = b')%(a)) 131 131 return 132 132 … … 155 155 # re-route calls to vars(x) and x.__dict__ 156 156 if attr == '__dict__': 157 return OrderedDict( self.items())157 return OrderedDict(list(self.items())) 158 158 else: 159 159 return object.__getattribute__(self, attr) … … 186 186 # unless redefined as an entirely different structure 187 187 newInstance = type(self)() 188 for k,v in self.items():189 exec( 'newInstance.%s = v')%(k)188 for k,v in list(self.items()): 189 exec(('newInstance.%s = v')%(k)) 190 190 return newInstance 191 191 … … 197 197 # but will generally work in this case 198 198 newInstance = type(self)() 199 for k,v in self.items():200 exec( 'newInstance.%s = deepcopy(v)')%(k)199 for k,v in list(self.items()): 200 exec(('newInstance.%s = deepcopy(v)')%(k)) 201 201 return newInstance 202 202 … … 217 217 return self._v 218 218 def items(self): 219 return zip(self._k,self._v)219 return list(zip(self._k,self._v)) 220 220 221 221 def isempty(x): … … 256 256 '''returns a list of fields of x 257 257 ignore_internals ignores all fieldnames starting with '_' and is True by default''' 258 result = vars(x).keys()258 result = list(vars(x).keys()) 259 259 260 260 if ignore_internals: 261 result = filter(lambda i: i[0] != '_',result)261 result = [i for i in result if i[0] != '_'] 262 262 263 263 return result -
issm/trunk-jpl/src/m/qmu/lclist_write.py
r23095 r23716 38 38 # write linear constraints 39 39 40 print ' Writing '+str(nvar)+' '+cstring+' linear constraints.'40 print(' Writing '+str(nvar)+' '+cstring+' linear constraints.') 41 41 42 42 if len(pmatrix) != 0: -
issm/trunk-jpl/src/m/qmu/param_write.py
r23095 r23716 7 7 ''' 8 8 if not isfield(params,pname): 9 print 'WARNING: param_write:param_not_found: Parameter '+str(pname)+' not found in structure.'9 print('WARNING: param_write:param_not_found: Parameter {} not found in structure.'.format(pname)) 10 10 return 11 11 … … 19 19 20 20 elif type(params_pname) in [str]: 21 fidi.write(sbeg+ str(pname)+smid+params_pname+s)21 fidi.write(sbeg+pname+smid+params_pname+s) 22 22 23 23 elif type(params_pname) in [int, float]: 24 24 fidi.write(sbeg+str(pname)+smid+str(params_pname)+s) 25 26 27 -
issm/trunk-jpl/src/m/qmu/postqmu.py
r23095 r23716 22 22 with open(qmuerrfile,'r') as fide: 23 23 fline=fide.read() 24 print fline24 print(fline) 25 25 26 26 raise RuntimeError('Dakota returned error in '+str(qmuerrfile)+' file. '+str(qmudir)+' directory retained.') -
issm/trunk-jpl/src/m/qmu/preqmu.py
r23256 r23716 26 26 ''' 27 27 28 print 'preprocessing dakota inputs'28 print('preprocessing dakota inputs') 29 29 qmudir = options.getfieldvalue('qmudir','qmu'+str(os.getpid())) 30 30 # qmudir = ['qmu_' datestr(now,'yyyymmdd_HHMMSS')] -
issm/trunk-jpl/src/m/qmu/rlev_write.py
r23095 r23716 1 1 import numpy as np 2 3 2 #move this later 4 3 from helpers import * 5 6 4 from vector_write import * 7 5 from param_write import * 6 8 7 #import relevent qmu classes 9 10 8 from MatlabArray import * 11 9 … … 23 21 else: 24 22 fidi.write(' ' + str(len(levels))) 25 23 26 24 fidi.write('\n') 27 28 25 fidi.write('\t '+str(ltype)+' =\n') 29 26 … … 35 32 else: 36 33 vector_write(fidi,'\t ',levels,8,76) 37 34 38 35 return 39 36 … … 95 92 rlevi_write(fidi,'response_levels',respl) 96 93 param_write(fidi,'\t ','compute',' ','\n',params) 97 94 98 95 if len(probl) != 0: 99 96 rlevi_write(fidi,'probability_levels',probl) 100 97 101 98 if len(rell) != 0: 102 99 rlevi_write(fidi,'reliability_levels',rell) 103 100 104 101 if len(grell) != 0: 105 102 rlevi_write(fidi,'gen_reliability_levels',grell) -
issm/trunk-jpl/src/m/qmu/rlist_write.py
r23095 r23716 48 48 # write responses 49 49 50 print ' Writing '+str(nresp)+' '+cstring+' responses.'50 print(' Writing '+str(nresp)+' '+cstring+' responses.') 51 51 52 52 if strcmp(cstring,'calibration_terms')==1: -
issm/trunk-jpl/src/m/qmu/vlist_write.py
r23095 r23716 41 41 if dvar == None: 42 42 return 43 from uniform_uncertain import *43 #from uniform_uncertain import * 44 44 func = eval(cstring) 45 45 46 46 # put variables into lists for writing 47 47 48 48 if type(dvar) not in [list,np.ndarray]: 49 49 dvar = [dvar] … … 89 89 90 90 # write variables 91 print ' Writing '+str(nvar)+' '+cstring+' variables.'91 print(' Writing '+str(nvar)+' '+cstring+' variables.') 92 92 93 93 fidi.write('\t'+cstring+' = '+str(nvar)+'\n') -
issm/trunk-jpl/src/m/solve/WriteData.py
r23365 r23716 1 1 import numpy as np 2 import struct 2 from struct import pack,unpack 3 3 import pairoptions 4 import MatlabFuncs as m5 4 6 5 def WriteData(fid,prefix,*args): … … 31 30 name = options.getfieldvalue('name') 32 31 33 format= options.getfieldvalue('format')32 datatype = options.getfieldvalue('format') 34 33 mattype = options.getfieldvalue('mattype',0) #only required for matrices 35 34 timeserieslength = options.getfieldvalue('timeserieslength',-1) … … 56 55 57 56 #Step 1: write the enum to identify this record uniquely 58 fid.write(struct.pack('i',len(name))) 59 fid.write(struct.pack('%ds' % len(name),name)) 57 fid.write(pack('i',len(name))) 58 fid.write(pack('{}s'.format(len(name)),name.encode())) 59 60 60 61 61 #Step 2: write the data itself. 62 if m.strcmpi(format,'Boolean'): # {{{ 62 if datatype=='Boolean': # {{{ 63 # if len(data) !=1: 64 # raise ValueError('fi eld %s cannot be marshalled as it has more than one element!' % name[0]) 65 66 #first write length of record 67 fid.write(pack('i',4+4)) #1 bool (disguised as an int)+code 68 69 #write data code: 70 fid.write(pack('i',FormatToCode(datatype))) 71 72 #now write integer 73 fid.write(pack('i',int(data))) #send an int, not easy to send a bool 74 # }}} 75 76 elif datatype=='Integer': # {{{ 63 77 # if len(data) !=1: 64 78 # raise ValueError('field %s cannot be marshalled as it has more than one element!' % name[0]) 65 79 66 80 #first write length of record 67 fid.write( struct.pack('i',4+4)) #1 bool (disguised as an int)+code68 69 #write data code: 70 fid.write( struct.pack('i',FormatToCode(format)))81 fid.write(pack('i',4+4)) #1 integer + code 82 83 #write data code: 84 fid.write(pack('i',FormatToCode(datatype))) 71 85 72 86 #now write integer 73 fid.write( struct.pack('i',int(data))) #send an int, not easy to send a bool74 # }}} 75 76 elif m.strcmpi(format,'Integer'): # {{{87 fid.write(pack('i',int(data))) #force an int, 88 # }}} 89 90 elif datatype=='Double': # {{{ 77 91 # if len(data) !=1: 78 92 # raise ValueError('field %s cannot be marshalled as it has more than one element!' % name[0]) 79 93 80 94 #first write length of record 81 fid.write(struct.pack('i',4+4)) #1 integer + code 82 83 #write data code: 84 fid.write(struct.pack('i',FormatToCode(format))) 85 86 #now write integer 87 fid.write(struct.pack('i',data)) 88 # }}} 89 90 elif m.strcmpi(format,'Double'): # {{{ 91 # if len(data) !=1: 92 # raise ValueError('field %s cannot be marshalled as it has more than one element!' % name[0]) 93 94 #first write length of record 95 fid.write(struct.pack('i',8+4)) #1 double+code 96 97 #write data code: 98 fid.write(struct.pack('i',FormatToCode(format))) 95 fid.write(pack('i',8+4)) #1 double+code 96 97 #write data code: 98 fid.write(pack('i',FormatToCode(datatype))) 99 99 100 100 #now write double 101 fid.write( struct.pack('d',data))102 # }}} 103 104 elif m.strcmpi(format,'String'): # {{{105 #first write length of record 106 fid.write( struct.pack('i',len(data)+4+4)) #string + string size + code107 108 #write data code: 109 fid.write( struct.pack('i',FormatToCode(format)))101 fid.write(pack('d',data)) 102 # }}} 103 104 elif datatype=='String': # {{{ 105 #first write length of record 106 fid.write(pack('i',len(data)+4+4)) #string + string size + code 107 108 #write data code: 109 fid.write(pack('i',FormatToCode(datatype))) 110 110 111 111 #now write string 112 fid.write( struct.pack('i',len(data)))113 fid.write( struct.pack('%ds' % len(data),data))114 # }}} 115 116 elif m.strcmpi(format,'BooleanMat'): # {{{117 118 if isinstance(data,bool):112 fid.write(pack('i',len(data))) 113 fid.write(pack('{}s'.format(len(data)),data.encode())) 114 # }}} 115 116 elif datatype in ['IntMat','BooleanMat']: # {{{ 117 118 if isinstance(data,(int,bool)): 119 119 data=np.array([data]) 120 120 elif isinstance(data,(list,tuple)): … … 133 133 134 134 #first write length of record 135 fid.write( struct.pack('i',4+4+8*np.product(s)+4+4)) #2 integers (32 bits) + the double matrix + code + matrix type135 fid.write(pack('i',4+4+8*np.product(s)+4+4)) #2 integers (32 bits) + the double matrix + code + matrix type 136 136 137 137 #write data code and matrix type: 138 fid.write( struct.pack('i',FormatToCode(format)))139 fid.write( struct.pack('i',mattype))138 fid.write(pack('i',FormatToCode(datatype))) 139 fid.write(pack('i',mattype)) 140 140 141 141 #now write matrix 142 if np.ndim(data)==1: 143 fid.write(struct.pack('i',s[0])) 144 fid.write(struct.pack('i',1)) 145 for i in xrange(s[0]): 146 fid.write(struct.pack('d',float(data[i]))) #get to the "c" convention, hence the transpose 147 else: 148 fid.write(struct.pack('i',s[0])) 149 fid.write(struct.pack('i',s[1])) 150 for i in xrange(s[0]): 151 for j in xrange(s[1]): 152 fid.write(struct.pack('d',float(data[i][j]))) #get to the "c" convention, hence the transpose 153 # }}} 154 155 elif m.strcmpi(format,'IntMat'): # {{{ 156 157 if isinstance(data,(int,long)): 158 data=np.array([data]) 159 elif isinstance(data,(list,tuple)): 160 data=np.array(data).reshape(-1,) 161 if np.ndim(data) == 1: 162 if np.size(data): 163 data=data.reshape(np.size(data),) 164 else: 165 data=data.reshape(0,0) 166 167 #Get size 168 s=data.shape 169 #if matrix = NaN, then do not write anything 170 if np.ndim(data)==2 and np.product(s)==1 and np.all(np.isnan(data)): 171 s=(0,0) 172 173 #first write length of record 174 fid.write(struct.pack('i',4+4+8*np.product(s)+4+4)) #2 integers (32 bits) + the double matrix + code + matrix type 175 176 #write data code and matrix type: 177 fid.write(struct.pack('i',FormatToCode(format))) 178 fid.write(struct.pack('i',mattype)) 179 180 #now write matrix 181 if np.ndim(data) == 1: 182 fid.write(struct.pack('i',s[0])) 183 fid.write(struct.pack('i',1)) 184 for i in xrange(s[0]): 185 fid.write(struct.pack('d',float(data[i]))) #get to the "c" convention, hence the transpose 186 else: 187 fid.write(struct.pack('i',s[0])) 188 fid.write(struct.pack('i',s[1])) 189 for i in xrange(s[0]): 190 for j in xrange(s[1]): 191 fid.write(struct.pack('d',float(data[i][j]))) #get to the "c" convention, hence the transpose 192 # }}} 193 194 elif m.strcmpi(format,'DoubleMat'): # {{{ 195 196 if isinstance(data,(bool,int,long,float)): 142 if np.ndim(data) == 1: 143 fid.write(pack('i',s[0])) 144 fid.write(pack('i',1)) 145 for i in range(s[0]): 146 fid.write(pack('d',float(data[i]))) #get to the "c" convention, hence the transpose 147 else: 148 fid.write(pack('i',s[0])) 149 fid.write(pack('i',s[1])) 150 for i in range(s[0]): 151 for j in range(s[1]): 152 fid.write(pack('d',float(data[i][j]))) #get to the "c" convention, hence the transpose 153 # }}} 154 155 elif datatype=='DoubleMat': # {{{ 156 157 if isinstance(data,(bool,int,float)): 197 158 data=np.array([data]) 198 159 elif isinstance(data,(list,tuple)): … … 213 174 recordlength=4+4+8*np.product(s)+4+4; #2 integers (32 bits) + the double matrix + code + matrix type 214 175 if recordlength > 4**31 : 215 raise ValueError('field %s cannot be marshalled because it is larger than 4^31 bytes!' % enum)216 217 fid.write( struct.pack('i',recordlength)) #2 integers (32 bits) + the double matrix + code + matrix type176 raise ValueError('field {} cannot be marshalled because it is larger than 4^31 bytes!'.format(enum)) 177 178 fid.write(pack('i',recordlength)) #2 integers (32 bits) + the double matrix + code + matrix type 218 179 219 180 #write data code and matrix type: 220 fid.write( struct.pack('i',FormatToCode(format)))221 fid.write( struct.pack('i',mattype))181 fid.write(pack('i',FormatToCode(datatype))) 182 fid.write(pack('i',mattype)) 222 183 223 184 #now write matrix 224 185 if np.ndim(data) == 1: 225 fid.write( struct.pack('i',s[0]))226 fid.write( struct.pack('i',1))227 for i in xrange(s[0]):228 fid.write( struct.pack('d',float(data[i]))) #get to the "c" convention, hence the transpose229 else: 230 fid.write( struct.pack('i',s[0]))231 fid.write( struct.pack('i',s[1]))232 for i in xrange(s[0]):233 for j in xrange(s[1]):234 fid.write( struct.pack('d',float(data[i][j]))) #get to the "c" convention, hence the transpose235 # }}} 236 237 elif m.strcmpi(format,'CompressedMat'): # {{{238 239 if isinstance(data,(bool,int, long,float)):186 fid.write(pack('i',s[0])) 187 fid.write(pack('i',1)) 188 for i in range(s[0]): 189 fid.write(pack('d',float(data[i]))) #get to the "c" convention, hence the transpose 190 else: 191 fid.write(pack('i',s[0])) 192 fid.write(pack('i',s[1])) 193 for i in range(s[0]): 194 for j in range(s[1]): 195 fid.write(pack('d',float(data[i][j]))) #get to the "c" convention, hence the transpose 196 # }}} 197 198 elif datatype=='CompressedMat': # {{{ 199 200 if isinstance(data,(bool,int,float)): 240 201 data=np.array([data]) 241 202 elif isinstance(data,(list,tuple)): … … 264 225 raise ValueError('field %s cannot be marshalled because it is larger than 4^31 bytes!' % enum) 265 226 266 fid.write( struct.pack('i',recordlength)) #2 integers (32 bits) + the matrix + code + matrix type227 fid.write(pack('i',recordlength)) #2 integers (32 bits) + the matrix + code + matrix type 267 228 268 229 #write data code and matrix type: 269 fid.write( struct.pack('i',FormatToCode(format)))270 fid.write( struct.pack('i',mattype))230 fid.write(pack('i',FormatToCode(datatype))) 231 fid.write(pack('i',mattype)) 271 232 272 233 #Write offset and range … … 282 243 #now write matrix 283 244 if np.ndim(data) == 1: 284 fid.write( struct.pack('i',s[0]))285 fid.write( struct.pack('i',1))286 fid.write( struct.pack('d',float(offsetA)))287 fid.write( struct.pack('d',float(rangeA)))288 for i in xrange(s[0]-1):289 fid.write( struct.pack('B',int(A[i])))290 291 fid.write( struct.pack('d',float(data[s[0]-1]))) #get to the "c" convention, hence the transpose245 fid.write(pack('i',s[0])) 246 fid.write(pack('i',1)) 247 fid.write(pack('d',float(offsetA))) 248 fid.write(pack('d',float(rangeA))) 249 for i in range(s[0]-1): 250 fid.write(pack('B',int(A[i]))) 251 252 fid.write(pack('d',float(data[s[0]-1]))) #get to the "c" convention, hence the transpose 292 253 293 254 elif np.product(s) > 0: 294 fid.write( struct.pack('i',s[0]))295 fid.write( struct.pack('i',s[1]))296 fid.write( struct.pack('d',float(offsetA)))297 fid.write( struct.pack('d',float(rangeA)))298 for i in xrange(s[0]-1):299 for j in xrange(s[1]):300 fid.write( struct.pack('B',int(A[i][j]))) #get to the "c" convention, hence the transpose301 302 for j in xrange(s[1]):303 fid.write( struct.pack('d',float(data[s[0]-1][j])))304 305 # }}} 306 307 elif m.strcmpi(format,'MatArray'): # {{{255 fid.write(pack('i',s[0])) 256 fid.write(pack('i',s[1])) 257 fid.write(pack('d',float(offsetA))) 258 fid.write(pack('d',float(rangeA))) 259 for i in range(s[0]-1): 260 for j in range(s[1]): 261 fid.write(pack('B',int(A[i][j]))) #get to the "c" convention, hence the transpose 262 263 for j in range(s[1]): 264 fid.write(pack('d',float(data[s[0]-1][j]))) 265 266 # }}} 267 268 elif datatype=='MatArray': # {{{ 308 269 309 270 #first get length of record 310 271 recordlength=4+4 #number of records + code 311 272 for matrix in data: 312 if isinstance(matrix,(bool,int, long,float)):273 if isinstance(matrix,(bool,int,float)): 313 274 matrix=np.array([matrix]) 314 275 elif isinstance(matrix,(list,tuple)): … … 324 285 325 286 #write length of record 326 fid.write( struct.pack('i',recordlength))327 328 #write data code: 329 fid.write( struct.pack('i',FormatToCode(format)))287 fid.write(pack('i',recordlength)) 288 289 #write data code: 290 fid.write(pack('i',FormatToCode(datatype))) 330 291 331 292 #write data, first number of records 332 fid.write( struct.pack('i',len(data)))293 fid.write(pack('i',len(data))) 333 294 334 295 for matrix in data: 335 if isinstance(matrix,(bool,int, long,float)):296 if isinstance(matrix,(bool,int,float)): 336 297 matrix=np.array([matrix]) 337 298 elif isinstance(matrix,(list,tuple)): … … 343 304 344 305 if np.ndim(matrix) == 1: 345 fid.write( struct.pack('i',s[0]))346 fid.write( struct.pack('i',1))347 for i in xrange(s[0]):348 fid.write( struct.pack('d',float(matrix[i]))) #get to the "c" convention, hence the transpose306 fid.write(pack('i',s[0])) 307 fid.write(pack('i',1)) 308 for i in range(s[0]): 309 fid.write(pack('d',float(matrix[i]))) #get to the "c" convention, hence the transpose 349 310 else: 350 fid.write( struct.pack('i',s[0]))351 fid.write( struct.pack('i',s[1]))352 for i in xrange(s[0]):353 for j in xrange(s[1]):354 fid.write( struct.pack('d',float(matrix[i][j])))355 # }}} 356 357 elif m.strcmpi(format,'StringArray'): # {{{311 fid.write(pack('i',s[0])) 312 fid.write(pack('i',s[1])) 313 for i in range(s[0]): 314 for j in range(s[1]): 315 fid.write(pack('d',float(matrix[i][j]))) 316 # }}} 317 318 elif datatype=='StringArray': # {{{ 358 319 359 320 #first get length of record … … 363 324 364 325 #write length of record 365 fid.write( struct.pack('i',recordlength))366 367 #write data code: 368 fid.write( struct.pack('i',FormatToCode(format)))326 fid.write(pack('i',recordlength)) 327 328 #write data code: 329 fid.write(pack('i',FormatToCode(datatype))) 369 330 370 331 #now write length of string array 371 fid.write( struct.pack('i',len(data)))332 fid.write(pack('i',len(data))) 372 333 373 334 #now write the strings 374 335 for string in data: 375 fid.write( struct.pack('i',len(string)))376 fid.write( struct.pack('%ds' % len(string),string))336 fid.write(pack('i',len(string))) 337 fid.write(pack('{}s'.format(len(string)),string.encode())) 377 338 # }}} 378 339 379 340 else: # {{{ 380 raise TypeError('WriteData error message: data type: %d not supported yet! (%s)' % (format,enum))341 raise TypeError('WriteData error message: data type: {} not supported yet! ({})'.format(datatype,enum)) 381 342 # }}} 382 343 383 def FormatToCode( format): # {{{344 def FormatToCode(datatype): # {{{ 384 345 """ 385 This routine takes the formatstring, and hardcodes it into an integer, which346 This routine takes the datatype string, and hardcodes it into an integer, which 386 347 is passed along the record, in order to identify the nature of the dataset being 387 348 sent. 388 349 """ 389 350 390 if m.strcmpi(format,'Boolean'):351 if datatype=='Boolean': 391 352 code=1 392 elif m.strcmpi(format,'Integer'):353 elif datatype=='Integer': 393 354 code=2 394 elif m.strcmpi(format,'Double'):355 elif datatype=='Double': 395 356 code=3 396 elif m.strcmpi(format,'String'):357 elif datatype=='String': 397 358 code=4 398 elif m.strcmpi(format,'BooleanMat'):359 elif datatype=='BooleanMat': 399 360 code=5 400 elif m.strcmpi(format,'IntMat'):361 elif datatype=='IntMat': 401 362 code=6 402 elif m.strcmpi(format,'DoubleMat'):363 elif datatype=='DoubleMat': 403 364 code=7 404 elif m.strcmpi(format,'MatArray'):365 elif datatype=='MatArray': 405 366 code=8 406 elif m.strcmpi(format,'StringArray'):367 elif datatype=='StringArray': 407 368 code=9 408 elif m.strcmpi(format,'CompressedMat'):369 elif datatype=='CompressedMat': 409 370 code=10 410 371 else: -
issm/trunk-jpl/src/m/solve/loadresultsfromcluster.py
r23095 r23716 37 37 md=loadresultsfromdisk(md,md.miscellaneous.name+'.outbin') 38 38 else: 39 print 'WARNING, outbin file is empty for run '+md.miscellaneous.name39 print(('WARNING, outbin file is empty for run '+md.miscellaneous.name)) 40 40 elif not md.qmu.isdakota: 41 print 'WARNING, outbin file does not exist '+md.miscellaneous.name41 print(('WARNING, outbin file does not exist '+md.miscellaneous.name)) 42 42 43 43 #erase the log and output files … … 88 88 os.remove(filename+extension) 89 89 except OSError: 90 print 'WARNING, no '+extension+' is present for run '+filename90 print(('WARNING, no '+extension+' is present for run '+filename)) -
issm/trunk-jpl/src/m/solve/loadresultsfromdisk.py
r23098 r23716 2 2 from results import results 3 3 from parseresultsfromdisk import parseresultsfromdisk 4 import MatlabFuncs as m5 4 from postqmu import postqmu 6 5 7 6 def loadresultsfromdisk(md,filename): 8 7 """ 9 LOADRESULTSFROMDISK - load results of solution sequence from disk file "filename" 10 8 LOADRESULTSFROMDISK - load results of solution sequence from disk file "filename" 9 11 10 Usage: 12 11 md=loadresultsfromdisk(md=False,filename=False); … … 21 20 #Check that file exists 22 21 if not os.path.exists(filename): 23 raise OSError("binary file ' %s' not found." % filename)22 raise OSError("binary file '{}' not found.".format(filename)) 24 23 25 24 #initialize md.results if not a structure yet … … 30 29 structure=parseresultsfromdisk(md,filename,not md.settings.io_gather) 31 30 if not len(structure): 32 raise RuntimeError("No result found in binary file '%s'. Check for solution crash." % filename) 31 raise RuntimeError("No result found in binary file '{}'. Check for solution crash.".format(filename)) 32 33 33 setattr(md.results,structure[0].SolutionType,structure) 34 34 … … 53 53 54 54 #if only one solution, extract it from list for user friendliness 55 if len(structure) == 1 and not m.strcmp(structure[0].SolutionType,'TransientSolution'):55 if len(structure) == 1 and not structure[0].SolutionType=='TransientSolution': 56 56 setattr(md.results,structure[0].SolutionType,structure[0]) 57 57 -
issm/trunk-jpl/src/m/solve/marshall.py
r23095 r23716 12 12 """ 13 13 if md.verbose.solution: 14 print "marshalling file '%s.bin'." % md.miscellaneous.name14 print(("marshalling file '%s.bin'." % md.miscellaneous.name)) 15 15 16 16 #open file for binary writing -
issm/trunk-jpl/src/m/solve/parseresultsfromdisk.py
r22539 r23716 9 9 else: 10 10 saveres=parseresultsfromdiskioserial(md,filename) 11 12 11 return saveres 13 12 … … 17 16 fid=open(filename,'rb') 18 17 except IOError as e: 19 raise IOError("loadresultsfromdisk error message: could not open ' %s' for binary reading." % filename)20 21 #initialize results: 18 raise IOError("loadresultsfromdisk error message: could not open '{}' for binary reading.".format(filename)) 19 20 #initialize results: 22 21 saveres=[] 23 22 … … 30 29 31 30 while loadres: 32 #check that the new result does not add a step, which would be an error: 31 #check that the new result does not add a step, which would be an error: 33 32 if check_nomoresteps: 34 33 if loadres['step']>=1: … … 42 41 #Add result 43 42 if loadres['step']==0: 44 #if we have a step = 0, this is a steady state solution, don't expect more steps. 43 #if we have a step = 0, this is a steady state solution, don't expect more steps. 45 44 index = 0; 46 45 check_nomoresteps=1 … … 49 48 else: 50 49 index = counter; 51 50 52 51 if index > len(saveres)-1: 53 for i in xrange(len(saveres)-1,index-1):52 for i in range(len(saveres)-1,index-1): 54 53 saveres.append(None) 55 54 saveres.append(resultsclass.results()) 56 55 elif saveres[index] is None: 57 56 saveres[index]=resultsclass.results() 58 57 59 58 #Get time and step 60 59 if loadres['step'] != -9999.: … … 79 78 fid=open(filename,'rb') 80 79 except IOError as e: 81 raise IOError("loadresultsfromdisk error message: could not open ' %s' for binary reading." % filename)80 raise IOError("loadresultsfromdisk error message: could not open '{}' for binary reading.".format(filename)) 82 81 83 82 saveres=[] 84 83 85 #if we have done split I/O, ie, we have results that are fragmented across patches, 84 #if we have done split I/O, ie, we have results that are fragmented across patches, 86 85 #do a first pass, and figure out the structure of results 87 86 loadres=ReadDataDimensions(fid) … … 90 89 #Get time and step 91 90 if loadres['step'] > len(saveres): 92 for i in xrange(len(saveres),loadres['step']-1):91 for i in range(len(saveres),loadres['step']-1): 93 92 saveres.append(None) 94 93 saveres.append(resultsclass.results()) 95 94 setattr(saveres[loadres['step']-1],'step',loadres['step']) 96 setattr(saveres[loadres['step']-1],'time',loadres['time']) 95 setattr(saveres[loadres['step']-1],'time',loadres['time']) 97 96 98 97 #Add result … … 117 116 #Get time and step 118 117 if loadres['step']> len(saveres): 119 for i in xrange(len(saveres),loadres['step']-1):118 for i in range(len(saveres),loadres['step']-1): 120 119 saveres.append(None) 121 120 saveres.append(saveresclass.saveres()) 122 121 setattr(saveres[loadres['step']-1],'step',loadres['step']) 123 setattr(saveres[loadres['step']-1],'time',loadres['time']) 122 setattr(saveres[loadres['step']-1],'time',loadres['time']) 124 123 125 124 #Add result … … 134 133 return saveres 135 134 # }}} 135 136 136 def ReadData(fid,md): # {{{ 137 137 """ 138 138 READDATA - ... 139 139 140 140 Usage: 141 141 field=ReadData(fid,md) … … 145 145 try: 146 146 length=struct.unpack('i',fid.read(struct.calcsize('i')))[0] 147 148 fieldname= struct.unpack('%ds' % length,fid.read(length))[0][:-1]147 fieldname=struct.unpack('{}s'.format(length),fid.read(length))[0][:-1] 148 fieldname=fieldname.decode() #strings are booleans when stored so need to be converted back 149 149 time=struct.unpack('d',fid.read(struct.calcsize('d')))[0] 150 150 step=struct.unpack('i',fid.read(struct.calcsize('i')))[0] 151 152 type=struct.unpack('i',fid.read(struct.calcsize('i')))[0] 151 datatype=struct.unpack('i',fid.read(struct.calcsize('i')))[0] 153 152 M=struct.unpack('i',fid.read(struct.calcsize('i')))[0] 154 if type==1: 155 field=np.array(struct.unpack('%dd' % M,fid.read(M*struct.calcsize('d'))),dtype=float) 156 elif type==2: 157 field=struct.unpack('%ds' % M,fid.read(M))[0][:-1] 158 elif type==3: 153 if datatype==1: 154 field=np.array(struct.unpack('{}d'.format(M),fid.read(M*struct.calcsize('d'))),dtype=float) 155 156 elif datatype==2: 157 field=struct.unpack('{}s'.format(M),fid.read(M))[0][:-1] 158 field=field.decode() 159 160 elif datatype==3: 159 161 N=struct.unpack('i',fid.read(struct.calcsize('i')))[0] 160 162 # field=transpose(fread(fid,[N M],'double')); 161 163 field=np.zeros(shape=(M,N),dtype=float) 162 for i in xrange(M): 163 field[i,:]=struct.unpack('%dd' % N,fid.read(N*struct.calcsize('d'))) 164 elif type==4: 164 for i in range(M): 165 field[i,:]=struct.unpack('{}d'.format(N),fid.read(N*struct.calcsize('d'))) 166 167 elif datatype==4: 165 168 N=struct.unpack('i',fid.read(struct.calcsize('i')))[0] 166 169 # field=transpose(fread(fid,[N M],'int')); 167 170 field=np.zeros(shape=(M,N),dtype=int) 168 for i in xrange(M): 169 field[i,:]=struct.unpack('%ii' % N,fid.read(N*struct.calcsize('i'))) 171 for i in range(M): 172 field[i,:]=struct.unpack('{}i'.format(N),fid.read(N*struct.calcsize('i'))) 173 170 174 else: 171 raise TypeError("cannot read data of type %d" % type)175 raise TypeError("cannot read data of datatype {}".format(datatype)) 172 176 173 177 #Process units here FIXME: this should not be done here! … … 209 213 elif fieldname=='SmbRunoff': 210 214 field = field*yts 211 212 213 214 215 elif fieldname=='SmbEvaporation': 216 field = field*yts; 217 elif fieldname=='SmbRefreeze': 218 field = field*yts; 215 219 elif fieldname=='SmbEC': 216 220 field = field*yts … … 219 223 elif fieldname=='SmbMelt': 220 224 field = field*yts 221 222 225 elif fieldname=='SmbMAdd': 226 field = field*yts 223 227 elif fieldname=='CalvingCalvingrate': 224 228 field = field*yts … … 256 260 """ 257 261 READDATADIMENSIONS - read data dimensions, step and time, but not the data itself. 258 262 259 263 Usage: 260 264 field=ReadDataDimensions(fid) … … 264 268 try: 265 269 length=struct.unpack('i',fid.read(struct.calcsize('i')))[0] 266 267 fieldname=struct.unpack('%ds' % length,fid.read(length))[0][:-1] 270 fieldname=struct.unpack('{}s'.format(length),fid.read(length))[0][:-1] 268 271 time=struct.unpack('d',fid.read(struct.calcsize('d')))[0] 269 272 step=struct.unpack('i',fid.read(struct.calcsize('i')))[0] 270 271 type=struct.unpack('i',fid.read(struct.calcsize('i')))[0] 273 dtattype=struct.unpack('i',fid.read(struct.calcsize('i')))[0] 272 274 M=struct.unpack('i',fid.read(struct.calcsize('i')))[0] 273 275 N=1 #default 274 if type==1:276 if datatype==1: 275 277 fid.seek(M*8,1) 276 elif type==2:278 elif datatype==2: 277 279 fid.seek(M,1) 278 elif type==3:280 elif datatype==3: 279 281 N=struct.unpack('i',fid.read(struct.calcsize('i')))[0] 280 282 fid.seek(N*M*8,1) 281 283 else: 282 raise TypeError("cannot read data of type %d" % type)284 raise TypeError("cannot read data of datatype {}".format(datatype)) 283 285 284 286 saveres=OrderedDict() -
issm/trunk-jpl/src/m/solve/solve.py
r23095 r23716 13 13 """ 14 14 SOLVE - apply solution sequence for this model 15 15 16 16 Usage: 17 17 md=solve(md,solutionstring,varargin) 18 18 where varargin is a list of paired arguments of string OR enums 19 19 20 20 solution types available comprise: 21 21 - 'Stressbalance' or 'sb' … … 39 39 - checkconsistency : 'yes' or 'no' (default is 'yes'), ensures checks on consistency of model 40 40 - restart: 'directory name (relative to the execution directory) where the restart file is located. 41 41 42 42 Examples: 43 43 md=solve(md,'Stressbalance'); … … 49 49 solutionstring = 'StressbalanceSolution'; 50 50 elif solutionstring.lower() == 'mt' or solutionstring.lower() == 'masstransport': 51 solutionstring = 'MasstransportSolution'; 51 solutionstring = 'MasstransportSolution'; 52 52 elif solutionstring.lower() == 'th' or solutionstring.lower() == 'thermal': 53 53 solutionstring = 'ThermalSolution'; … … 70 70 elif solutionstring.lower() == 'gia' or solutionstring.lower() == 'gia': 71 71 solutionstring = 'GiaSolution'; 72 73 72 elif solutionstring.lower() == 'lv' or solutionstring.lower() == 'love': 73 solutionstring = 'LoveSolution'; 74 74 elif solutionstring.lower() == 'esa': 75 75 solutionstring = 'EsaSolution'; 76 76 elif solutionstring.lower() == 'slr' or solutionstring.lower() == 'sealevelrise': 77 77 solutionstring = 'SealevelriseSolution'; 78 else: 78 else: 79 79 raise ValueError("solutionstring '%s' not supported!" % solutionstring) 80 80 options=pairoptions('solutionstring',solutionstring,*args) … … 82 82 #recover some fields 83 83 md.private.solution=solutionstring 84 cluster=md.cluster 84 cluster=md.cluster 85 85 if options.getfieldvalue('batch','no')=='yes': 86 86 batch=1 … … 91 91 if options.getfieldvalue('checkconsistency','yes')=='yes': 92 92 if md.verbose.solution: 93 print "checking model consistency"93 print("checking model consistency") 94 94 ismodelselfconsistent(md) 95 95 … … 106 106 md.private.runtimename="%s-%02i-%02i-%04i-%02i-%02i-%02i-%i" % (md.miscellaneous.name,c.month,c.day,c.year,c.hour,c.minute,c.second,os.getpid()) 107 107 else: 108 md.private.runtimename=md.miscellaneous.name 108 md.private.runtimename=md.miscellaneous.name 109 109 110 110 #if running qmu analysis, some preprocessing of dakota files using models 111 #fields needs to be carried out. 111 #fields needs to be carried out. 112 112 if md.qmu.isdakota: 113 113 md=preqmu(md,options) … … 120 120 121 121 #Write all input files 122 marshall(md) 123 md.toolkits.ToolkitsFile(md.miscellaneous.name+'.toolkits') 124 cluster.BuildQueueScript(md.private.runtimename,md.miscellaneous.name,md.private.solution,md.settings.io_gather,md.debug.valgrind,md.debug.gprof,md.qmu.isdakota,md.transient.isoceancoupling) 122 marshall(md) # bin file 123 md.toolkits.ToolkitsFile(md.miscellaneous.name+'.toolkits') # toolkits file 124 cluster.BuildQueueScript(md.private.runtimename,md.miscellaneous.name,md.private.solution,md.settings.io_gather,md.debug.valgrind,md.debug.gprof,md.qmu.isdakota,md.transient.isoceancoupling) # queue file 125 125 126 126 #Stop here if batch mode 127 127 if options.getfieldvalue('batch','no')=='yes': 128 print 'batch mode requested: not launching job interactively'129 print 'launch solution sequence on remote cluster by hand'128 print('batch mode requested: not launching job interactively') 129 print('launch solution sequence on remote cluster by hand') 130 130 return md 131 131 132 #Upload all required files: 132 #Upload all required files: 133 133 modelname = md.miscellaneous.name 134 134 filelist = [modelname+'.bin ',modelname+'.toolkits ',modelname+'.queue '] … … 138 138 if not restart: 139 139 cluster.UploadQueueJob(md.miscellaneous.name,md.private.runtimename,filelist) 140 140 141 141 #Launch job 142 142 cluster.LaunchQueueJob(md.miscellaneous.name,md.private.runtimename,filelist,restart,batch) … … 147 147 islock=waitonlock(md) 148 148 if islock==0: #no results to be loaded 149 print 'The results must be loaded manually with md=loadresultsfromcluster(md).'149 print('The results must be loaded manually with md=loadresultsfromcluster(md).') 150 150 else: #load results 151 151 if md.verbose.solution: 152 print 'loading results from cluster'152 print('loading results from cluster') 153 153 md=loadresultsfromcluster(md) 154 154 -
issm/trunk-jpl/src/m/solve/waitonlock.py
r20886 r23716 26 26 if not m.strcmpi(gethostname(),cluster): 27 27 28 print 'solution launched on remote cluster. log in to detect job completion.'29 choice= raw_input('Is the job successfully completed? (y/n) ')28 print('solution launched on remote cluster. log in to detect job completion.') 29 choice=eval(input('Is the job successfully completed? (y/n) ')) 30 30 if not m.strcmp(choice,'y'): 31 print 'Results not loaded... exiting'31 print('Results not loaded... exiting') 32 32 flag=0 33 33 else: … … 44 44 etime=0 45 45 ispresent=0 46 print "waiting for '%s' hold on... (Ctrl+C to exit)" % filename46 print(("waiting for '%s' hold on... (Ctrl+C to exit)" % filename)) 47 47 48 48 #loop till file .lock exist or time is up … … 54 54 #build output 55 55 if etime>timelimit: 56 print 'Time limit exceeded. Increase md.settings.waitonlock'57 print 'The results must be loaded manually with md=loadresultsfromcluster(md).'56 print('Time limit exceeded. Increase md.settings.waitonlock') 57 print('The results must be loaded manually with md=loadresultsfromcluster(md).') 58 58 raise RuntimeError('waitonlock error message: time limit exceeded.') 59 59 flag=0 -
issm/trunk-jpl/src/m/solvers/mumpsoptions.py
r23430 r23716 17 17 #default mumps options 18 18 PETSC_MAJOR=IssmConfig('_PETSC_MAJOR_')[0] 19 19 PETSC_MINOR=IssmConfig('_PETSC_MINOR_')[0] 20 20 if PETSC_MAJOR==2.: 21 21 mumps['toolkit']='petsc' … … 29 29 mumps['ksp_type']=options.getfieldvalue('ksp_type','preonly') 30 30 mumps['pc_type']=options.getfieldvalue('pc_type','lu') 31 32 33 34 31 if PETSC_MINOR>8.: 32 mumps['pc_factor_mat_solver_type']=options.getfieldvalue('pc_factor_mat_solver_type','mumps') 33 else: 34 mumps['pc_factor_mat_solver_package']=options.getfieldvalue('pc_factor_mat_solver_package','mumps') 35 35 mumps['mat_mumps_icntl_14']=options.getfieldvalue('mat_mumps_icntl_14',120) 36 36 37 37 return mumps 38
Note:
See TracChangeset
for help on using the changeset viewer.