Changeset 13093
- Timestamp:
- 08/20/12 10:55:23 (13 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
issm/trunk-jpl/src/m/classes/inversion.py
r13059 r13093 37 37 self.vel_obs = float('NaN') 38 38 self.thickness_obs = float('NaN') 39 40 #set defaults 41 self.setdefaultparameters() 42 39 43 #}}} 40 44 def __repr__(self): … … 78 82 #parameter to be inferred by control methods (only 79 83 #drag and B are supported yet) 80 self.control_parameters= ['FrictionCoefficient']84 self.control_parameters='FrictionCoefficient' 81 85 82 86 #number of steps in the control methods … … 85 89 #maximum number of iteration in the optimization algorithm for 86 90 #each step 87 self.maxiter_per_step=20* ones(self.nsteps)91 self.maxiter_per_step=20*numpy.ones(self.nsteps) 88 92 89 93 #the inversed parameter is updated as follows: … … 92 96 #inversed parameter (10^8 for B, 50 for drag) and can be decreased 93 97 #after the first iterations 94 self.gradient_scaling=50* ones(self.nsteps)98 self.gradient_scaling=50*numpy.ones(self.nsteps) 95 99 96 100 #several responses can be used: 97 self.cost_functions=101* ones(self.nsteps)101 self.cost_functions=101*numpy.ones(self.nsteps) 98 102 99 103 #step_threshold is used to speed up control method. When 100 104 #misfit(1)/misfit(0) < self.step_threshold, we go directly to 101 105 #the next step 102 self.step_threshold=.7* ones(self.nsteps) #30 per cent decrement106 self.step_threshold=.7*numpy.ones(self.nsteps) #30 per cent decrement 103 107 104 108 #stop control solution at the gradient computation and return it? … … 108 112 #if J[n]-J[n-1]/J[n] < criteria, the control run stops 109 113 #NaN if not applied 110 self.cost_function_threshold= NaN#not activated114 self.cost_function_threshold=float('NaN') #not activated 111 115 112 116 return self
Note:
See TracChangeset
for help on using the changeset viewer.