1 | %Ok, start defining model parameters here
|
---|
2 |
|
---|
3 | %parallelization
|
---|
4 | md.cluster='none';
|
---|
5 |
|
---|
6 | disp(' creating thickness');
|
---|
7 | h=1000;
|
---|
8 | md.thickness=h*ones(md.numberofgrids,1);
|
---|
9 | md.firn_layer=10*ones(md.numberofgrids,1);
|
---|
10 | md.bed=-1000*ones(md.numberofgrids,1);
|
---|
11 | md.surface=md.bed+md.thickness;
|
---|
12 |
|
---|
13 | disp(' creating velocities');
|
---|
14 | md.vx_obs=zeros(md.numberofgrids,1);
|
---|
15 | md.vy_obs=zeros(md.numberofgrids,1);
|
---|
16 | md.vel_obs=sqrt(md.vx_obs.^2+md.vy_obs.^2);
|
---|
17 |
|
---|
18 | disp(' creating drag');
|
---|
19 | md.drag_type=2; %0 none 1 plastic 2 viscous
|
---|
20 | md.drag=200*ones(md.numberofgrids,1); %q=1.
|
---|
21 | %Take care of iceshelves: no basal drag
|
---|
22 | pos=find(md.elementoniceshelf);
|
---|
23 | md.drag(md.elements(pos,:))=0;
|
---|
24 | md.p=ones(md.numberofelements,1);
|
---|
25 | md.q=ones(md.numberofelements,1);
|
---|
26 |
|
---|
27 | disp(' creating temperatures');
|
---|
28 | md.observed_temperature=273.15*ones(md.numberofgrids,1);
|
---|
29 |
|
---|
30 | disp(' creating flow law paramter');
|
---|
31 | md.B=paterson(md.observed_temperature);
|
---|
32 | md.n=3*ones(md.numberofelements,1);
|
---|
33 |
|
---|
34 | disp(' creating accumulation rates');
|
---|
35 | md.accumulation=ones(md.numberofgrids,1)/md.yts; %1m/a
|
---|
36 | md.melting=0*ones(md.numberofgrids,1)/md.yts; %1m/a
|
---|
37 |
|
---|
38 | %Deal with boundary conditions:
|
---|
39 |
|
---|
40 | disp(' boundary conditions for diagnostic model');
|
---|
41 | md=SetIceShelfBC(md,'Front.exp');
|
---|
42 |
|
---|
43 | disp(' boundary conditions for thermal model');
|
---|
44 | md.gridondirichlet_thermal=ones(md.numberofgrids,1); %surface temperature
|
---|
45 | md.dirichletvalues_thermal=md.observed_temperature;
|
---|
46 | md.geothermalflux=zeros(md.numberofgrids,1);
|
---|
47 | pos=find(md.elementonicesheet);md.geothermalflux(md.elements(pos,:))=1*10^-3; %1 mW/m^2
|
---|