import numpy as npy from math import pi def xy2ll(x, y, sgn, *args): ''' XY2LL - converts xy to lat long Converts Polar Stereographic (X, Y) coordinates for the polar regions to latitude and longitude Stereographic (X, Y) coordinates for the polar regions. Author: Michael P. Schodlok, December 2003 (map2xy.m) Usage: [lat, lon] = xy2ll(x, y, sgn); [lat, lon] = xy2ll(x, y, sgn, central_meridian, standard_parallel); - sgn = Sign of latitude +1 : north latitude (default is mer=45 lat=70) -1 : south latitude (default is mer=0 lat=71) ''' #Get central_meridian and standard_parallel depending on hemisphere if len(args) == 2: delta = args[0] slat = args[1] elif len(args) == 0: if sgn == 1: delta = 45. slat = 70. print(' xy2ll: creating coordinates in north polar stereographic (Std Latitude: 70degN Meridian: 45deg)') elif sgn == -1: delta = 0. slat = 71. print(' xy2ll: creating coordinates in south polar stereographic (Std Latitude: 71degS Meridian: 0deg)') else: raise ValueError('sgn should be either +1 or -1') else: raise Exception('bad usage: type "help(xy2ll)" for details') # if x,y passed as lists, convert to numpy arrays if type(x) != "numpy.ndarray": x=npy.array(x) if type(y) != "numpy.ndarray": y=npy.array(y) ## Conversion constant from degrees to radians cde = 57.29577951 ## Radius of the earth in meters re = 6378.273*10**3 ## Eccentricity of the Hughes ellipsoid squared ex2 = .006693883 ## Eccentricity of the Hughes ellipsoid ex = npy.sqrt(ex2) sl = slat*pi/180. rho = npy.sqrt(x**2 + y**2) cm = npy.cos(sl) / npy.sqrt(1.0 - ex2 * (npy.sin(sl)**2)) T = npy.tan((pi/4.0) - (sl/2.0)) / ((1.0 - ex*npy.sin(sl)) / (1.0 + ex*npy.sin(sl)))**(ex / 2.0) if abs(slat-90.) < 1.e-5: T = rho*npy.sqrt((1. + ex)**(1. + ex) * (1. - ex)**(1. - ex)) / 2. / re else: T = rho * T / (re * cm) chi = (pi / 2.0) - 2.0 * npy.arctan(T) lat = chi + ((ex2 / 2.0) + (5.0 * ex2**2.0 / 24.0) + (ex2**3.0 / 12.0)) * \ npy.sin(2 * chi) + ((7.0 * ex2**2.0 / 48.0) + (29.0 * ex2**3 / 240.0)) * \ npy.sin(4.0 * chi) + (7.0 * ex2**3.0 / 120.0) * npy.sin(6.0 * chi) lat = sgn * lat lon = npy.arctan2(sgn * x,-sgn * y) lon = sgn * lon res1 = npy.nonzero(rho <= 0.1)[0] if len(res1) > 0: lat[res1] = 90. * sgn lon[res1] = 0.0 lon = lon * 180. / pi lat = lat * 180. / pi lon = lon - delta return lat, lon