[19895] | 1 | import numpy as npy
|
---|
| 2 | from math import pi
|
---|
| 3 |
|
---|
| 4 | def xy2ll(x, y, sgn, *args):
|
---|
| 5 | '''
|
---|
| 6 | XY2LL - converts xy to lat long
|
---|
| 7 |
|
---|
| 8 | Converts Polar Stereographic (X, Y) coordinates for the polar regions to
|
---|
| 9 | latitude and longitude Stereographic (X, Y) coordinates for the polar
|
---|
| 10 | regions.
|
---|
| 11 | Author: Michael P. Schodlok, December 2003 (map2xy.m)
|
---|
| 12 |
|
---|
| 13 | Usage:
|
---|
| 14 | [lat, lon] = xy2ll(x, y, sgn);
|
---|
| 15 | [lat, lon] = xy2ll(x, y, sgn, central_meridian, standard_parallel);
|
---|
| 16 |
|
---|
| 17 | - sgn = Sign of latitude +1 : north latitude (default is mer=45 lat=70)
|
---|
| 18 | -1 : south latitude (default is mer=0 lat=71)
|
---|
| 19 | '''
|
---|
| 20 |
|
---|
| 21 | #Get central_meridian and standard_parallel depending on hemisphere
|
---|
| 22 | if len(args) == 2:
|
---|
| 23 | delta = args[0]
|
---|
| 24 | slat = args[1]
|
---|
| 25 | elif len(args) == 0:
|
---|
| 26 | if sgn == 1:
|
---|
| 27 | delta = 45.
|
---|
| 28 | slat = 70.
|
---|
| 29 | print(' xy2ll: creating coordinates in north polar stereographic (Std Latitude: 70degN Meridian: 45deg)')
|
---|
| 30 | elif sgn == -1:
|
---|
| 31 | delta = 0.
|
---|
| 32 | slat = 71.
|
---|
| 33 | print(' xy2ll: creating coordinates in south polar stereographic (Std Latitude: 71degS Meridian: 0deg)')
|
---|
| 34 | else:
|
---|
| 35 | raise ValueError('sgn should be either +1 or -1')
|
---|
| 36 | else:
|
---|
| 37 | raise Exception('bad usage: type "help(xy2ll)" for details')
|
---|
| 38 |
|
---|
| 39 | # if x,y passed as lists, convert to numpy arrays
|
---|
| 40 | if type(x) != "numpy.ndarray":
|
---|
| 41 | x=npy.array(x)
|
---|
| 42 | if type(y) != "numpy.ndarray":
|
---|
| 43 | y=npy.array(y)
|
---|
| 44 |
|
---|
| 45 | ## Conversion constant from degrees to radians
|
---|
| 46 | cde = 57.29577951
|
---|
| 47 | ## Radius of the earth in meters
|
---|
| 48 | re = 6378.273*10**3
|
---|
| 49 | ## Eccentricity of the Hughes ellipsoid squared
|
---|
| 50 | ex2 = .006693883
|
---|
| 51 | ## Eccentricity of the Hughes ellipsoid
|
---|
| 52 | ex = npy.sqrt(ex2)
|
---|
| 53 |
|
---|
| 54 | sl = slat*pi/180.
|
---|
| 55 | rho = npy.sqrt(x**2 + y**2)
|
---|
| 56 | cm = npy.cos(sl) / npy.sqrt(1.0 - ex2 * (npy.sin(sl)**2))
|
---|
| 57 | T = npy.tan((pi/4.0) - (sl/2.0)) / ((1.0 - ex*npy.sin(sl)) / (1.0 + ex*npy.sin(sl)))**(ex / 2.0)
|
---|
| 58 |
|
---|
| 59 | if abs(slat-90.) < 1.e-5:
|
---|
| 60 | T = rho*npy.sqrt((1. + ex)**(1. + ex) * (1. - ex)**(1. - ex)) / 2. / re
|
---|
| 61 | else:
|
---|
| 62 | T = rho * T / (re * cm)
|
---|
| 63 |
|
---|
| 64 | chi = (pi / 2.0) - 2.0 * npy.arctan(T)
|
---|
| 65 | lat = chi + ((ex2 / 2.0) + (5.0 * ex2**2.0 / 24.0) + (ex2**3.0 / 12.0)) * \
|
---|
| 66 | npy.sin(2 * chi) + ((7.0 * ex2**2.0 / 48.0) + (29.0 * ex2**3 / 240.0)) * \
|
---|
| 67 | npy.sin(4.0 * chi) + (7.0 * ex2**3.0 / 120.0) * npy.sin(6.0 * chi)
|
---|
| 68 |
|
---|
| 69 | lat = sgn * lat
|
---|
| 70 | lon = npy.arctan2(sgn * x,-sgn * y)
|
---|
| 71 | lon = sgn * lon
|
---|
| 72 |
|
---|
| 73 | res1 = npy.nonzero(rho <= 0.1)[0]
|
---|
| 74 | if len(res1) > 0:
|
---|
| 75 | lat[res1] = 90. * sgn
|
---|
| 76 | lon[res1] = 0.0
|
---|
| 77 |
|
---|
| 78 | lon = lon * 180. / pi
|
---|
| 79 | lat = lat * 180. / pi
|
---|
| 80 | lon = lon - delta
|
---|
| 81 |
|
---|
| 82 | return lat, lon
|
---|