function md=control(md) %CONTROL - launch a control method using MacAyeal solution % % the routine is used for a control method. It determines the most adapted viscosity % field so that the calculated velocity field is as close as possible to an observed velocity field % % Usage: % md=control(md) %First check we do have the correct argument number if ((nargin~=1) || (nargout~=1)), velfinderusage(); error('macayealcontrol error message: incorrect number of input and output arguments'); end if ~isa(md,'model'), macayealcontrolusage(); error('macayealcontrol error message: input argument is not a @model object'); end %Check that control is done on flow law, and not drag (not supported yet): %if ~strcmp(md.control_type,'B') % error('macayealcontrol error message: only ''B'' inversion supported yet'); %end %Transfer model fields into matlab variables x=md.x; y=md.y; index=md.elements; index=sort(index,2); %necessary nods=md.numberofgrids; nel=md.numberofelements; z_thick=md.thickness; z_surf=md.surface; z_bed=md.bed; z_thick_bar=(z_thick(index(:,1))+z_thick(index(:,2))+z_thick(index(:,3)))/3; rho_ice=md.rho_ice; rho_water=md.rho_water; g=md.g; index_icefront=md.segmentonneumann_diag; index_icefront=index_icefront(:,1:2); %we strip the last column, which holds the element number for the boundary segment nodes_on_boundary=md.gridonboundary; nodes_on_dirichlet=md.gridondirichlet_diag; nodes_on_icefront=zeros(nods,1); nodes_on_icefront(index_icefront)=1; nodes_on_iceshelf=md.gridoniceshelf; criterion=md.eps_rel; yts=md.yts; tolx=md.tolx; maxiter=md.maxiter(1); if strcmp(md.control_type,'B') B_ini=md.B; B_to_p=10^-3*yts^(-1/3); else drag_coeff_ini=md.drag; end glen_coeff=md.n; vx_obs=md.vx_obs/md.yts; %From m/a to m/s vy_obs=md.vy_obs/md.yts; nsteps=md.nsteps; %Build length_icefront and normal_icefront: [length_icefront,normal_icefront]=buildicefrontnormal(x,y,index_icefront); %Building shape functions and derivative operators [alpha, beta, gamma, area]=shape(index,x,y,nel,nods); [matrix_bar, matrix_xbar, matrix_ybar]=... bar_maker(nel,nods,index,alpha,beta); %initialize some data create_el2nod_matrices old_direction=zeros(nods,1); %setup some fake distributions. z_thick_bar=matrix_bar*z_thick; z_surf_bar=matrix_bar*z_surf; z_surf_xbar=matrix_xbar*z_surf; z_surf_ybar=matrix_ybar*z_surf; z_surf_x=el2nod\(el2nodRhs*z_surf_xbar); z_surf_y=el2nod\(el2nodRhs*z_surf_ybar); z_bed_bar=matrix_bar*z_bed; z_bed_xbar=matrix_xbar*z_bed; z_bed_ybar=matrix_ybar*z_bed; %data_elements and data_nodes are the elements and nodes where %we have observations data_elements=[1:nel]'; data_nodes=ones(nods,1); %initialize misfit between model velocity and observed velocity J=zeros(nsteps,1); %Weighting: one areas where we don't want the control method to optimize %the misfit, we can set weighting to 0. weighting=ones(nods,1); %optimization parameters for the matlab functoin fminbnd options=optimset('fminbnd'); options=optimset(options,'Display','iter'); options=optimset(options,'MaxFunEvals',maxiter); options=optimset(options,'MaxIter',100); options=optimset(options,'TolX',tolx); %build useful matrices. setup_control %setup initial drag paramter distribution to startup the optimization. drag_type=md.drag_type; qcoeff=md.q; pcoeff=md.p; if strcmp(md.control_type,'B') %setup initial flow law paramter distribution to startup the optimization. B_bar_ini=(B_ini(index(:,1))+B_ini(index(:,2))+B_ini(index(:,3)))/3; B=B_ini; %variables used in optimziation are B and B_bar. B_bar=B_bar_ini; else B_bar=(md.B(index(:,1))+md.B(index(:,2))+md.B(index(:,3)))/3; if (drag_type~=2), error('md.drag_type must be 2 for control methods'); end drag_coeff_bar_ini=(drag_coeff_ini(index(:,1))+drag_coeff_ini(index(:,2))+drag_coeff_ini(index(:,3)))/3; drag_coeff=drag_coeff_ini; %variables used in optimziation are drag_coeff and drag_coeff_bar. drag_coeff_bar=drag_coeff_bar_ini; end %check that the model is not a pure ice shelf (no friction on ice shelves) if strcmp(md.control_type,'drag') & (length(find(drag_coeff))==0), disp(sprintf('\n No drag pure for ice shelves => STOP')) return end %nu_bar=10^14*ones(nel,1); %initial element viscosity distribution. nu_bar=viscosity(index,nel,alpha,beta,[],[],B_bar,glen_coeff); %%%AK velfinder; %forward model that determines first velocity field used %to start optimization. disp('calculating the velocity with the initial parameters') c_velfinder; if strcmp(md.control_type,'B'), for niteration=1:nsteps, disp([' Step #' num2str(niteration) ' on ' num2str(nsteps)]); % Compute search direction - [u,v,adjointu,adjointv,direction]= ... grad_J_flow(Rhs,S,F,P,P0,area,specified_velocity,nods,vx_obs,vy_obs,... index,x,y,nel,rho_ice,g,weighting,alpha,beta,z_thick_bar,B_bar); if md.plot==1, if niteration==1 scrsz = get(0,'ScreenSize'); figure('Position',[scrsz(3)/3 scrsz(4)*1.8/3 scrsz(3)/3 scrsz(4)/3]) end plotmodel(md,'data',sqrt(u.^2+v.^2)*yts,'title','Modeled velocity',... 'data',sqrt(adjointu.^2+adjointv.^2)*yts,'title','Adjoint vectors','colorbar#all', 'on',... 'data',sqrt(vx_obs.^2+vy_obs.^2)*yts,'title','Observed velocity',... 'data',100*abs(sqrt(vx_obs.^2+vy_obs.^2)-sqrt(u.^2+v.^2))./sqrt(vx_obs.^2+vy_obs.^2),'title','Relative misfit','caxis#4',[0 100],'figure',1);drawnow; end %Keep track of u and v to use in objectivefunction_C: u_objective=u; v_objective=v; %Orthogonalize direction direction=real(direction); direction=direction/sqrt(direction'*direction); % rough orthagonalization direction=direction-(direction'*old_direction)*old_direction; old_direction=direction; %visualize direction if md.plot==1, if niteration==1 scrsz = get(0,'ScreenSize'); figure('Position',[10 scrsz(4)*1/3 scrsz(3)/3 scrsz(4)/3]) end plotmodel(md,'data',direction,'title','Orthogonal direction','figure',2);drawnow; end % normalize direction to 10^7, so that when variations on B are computed %they will be significant. if abs(max(direction))>abs(min(direction)) direction=10^7*direction/abs(max(direction)); else direction=10^7*direction/abs(min(direction)); end %during optimization, bounds on B variations can vary. Here, they are less %strict in the first iteration. if niteration<=2, upperbound=20; lowerbound=0; else upperbound=10; lowerbound=0; end %search the multiplicative constant to the direction, that will %be used to modify B. search_constant=fminbnd('objectivefunction_C_flow',lowerbound,upperbound, ... options,B,glen_coeff,direction,Rhs,S,F,P,specified_velocity,nods,nel,vx_obs, ... vy_obs,u_objective, v_objective, index,alpha, beta, area,weighting,rowD,colD,rowDshort,colDshort,valueuu,valuevv,valueuv,matrix_bar,criterion); %update value of B B_old=B; B_new=B+search_constant*direction; B=B_new; pos=find(B<0);B(pos)=-B(pos); %Average B over elements: B_bar=(B(index(:,1))+B(index(:,2))+B(index(:,3)))/3; %visualize new distribution. if md.plot==1, if niteration==1 scrsz = get(0,'ScreenSize'); figure('Position',[scrsz(3)*1.97/3 scrsz(4)*1/3 scrsz(3)/3 scrsz(4)/3]) end plotmodel(md,'data',B*B_to_p,'title',['B at iteration ' num2str(niteration)],'caxis',[200 900],'colorbar','on','figure',3);drawnow; end %evaluate new misfit. %@@@AK load F_file %this file was created in objectivefunction_C, and is reloaded %here to win some computation time. load F_file J(niteration)=objectivefunction_C_flow(0,B,glen_coeff,direction,Rhs,S,F,P,specified_velocity,nods,nel,vx_obs, ... vy_obs,u_objective, v_objective, index,alpha, beta, area,weighting,rowD,colD,rowDshort,colDshort,valueuu,valuevv,valueuv,matrix_bar,criterion); disp(J(niteration)); %do a backup every 5 iterations if(mod(niteration,5)==0), save temporary_control_results_flow B B_bar u v J direction end end %Load results onto md: md.results.control.step=1; md.results.control.time=0; md.results.control.J=J; md.results.control.parameter=B; md.results.control.vx=u; md.results.control.vy=v; md.results.control.vel=sqrt(u.^2+v.^2); elseif strcmp(md.control_type,'drag'), for niteration=1:nsteps, disp([' Step #' num2str(niteration) ' on ' num2str(nsteps)]); % Compute search direction - [u,v,adjointu,adjointv,direction]= ... grad_J_drag(Rhs,S,F,P,P0,area,specified_velocity,nods,vx_obs,vx_obs,... index,x,y,nel,rho_ice,g,weighting,alpha,beta,z_thick_bar,drag_coeff,drag_coeff_bar); if md.plot==1, if niteration==1 scrsz = get(0,'ScreenSize'); figure('Position',[scrsz(3)/3 scrsz(4)*1.8/3 scrsz(3)/3 scrsz(4)/3]) end plotmodel(md,'data',sqrt(u.^2+v.^2),'title','Modeled velocity',... 'data',sqrt(adjointu.^2+adjointv.^2),'title','Adjoint vectors','colorbar', 'all',... 'data',sqrt(vx_obs.^2+vy_obs.^2),'title','Observed velocity',... 'data',100*abs(sqrt(vx_obs.^2+vy_obs.^2)-sqrt(u.^2+v.^2))./sqrt(vx_obs.^2+vy_obs.^2),'title','Relative misfit','caxis#3',[0 100],'figure',1);drawnow; end %Keep track of u and v to use in objectivefunction_C: u_objective=u; v_objective=v; %Orthogonalize direction direction=real(direction); direction=direction/sqrt(direction'*direction); pos=find(nodes_on_iceshelf); direction(pos)=0; % rough orthagonalization direction=direction-(direction'*old_direction)*old_direction; old_direction=direction; %visualize direction if md.plot==1, if niteration==1 scrsz = get(0,'ScreenSize'); figure('Position',[10 scrsz(4)*1/3 scrsz(3)/3 scrsz(4)/3]) end plotmodel(md,'data',direction,'title','Orthogonal direction','figure',2);drawnow; end % normalize direction to 50, so that when variations on drag are computed %they will be significant. direction=50*direction/max(abs(direction)); %during optimization, bounds on drag variations can vary. Here, they are less %strict in the first iteration. if niteration<=2, upperbound=2; lowerbound=0; else upperbound=1; lowerbound=0; end %search the multiplicative constant to the direction, that will %be used to modify drag. search_constant=fminbnd('objectivefunction_C_drag',lowerbound,upperbound, ... options,B,glen_coeff,drag_coeff,direction,Rhs,S,F,P,specified_velocity,nods,nel,vx_obs, ... vy_obs,u_objective, v_objective, index,alpha, beta, area,weighting,rowD,colD,rowDshort,colDshort,valueuu,valuevv,valueuv,matrix_bar,criterion); %update value of drag drag_coeff_old=drag_coeff; drag_coeff_new=drag_coeff+search_constant*direction; drag_coeff=drag_coeff_new; if length(find(drag_coeff<0))~=0, disp(sprintf('\n Some basal drag coefficient negative => STOP')) break end %Average drag over elements: if niteration==1 scrsz = get(0,'ScreenSize'); figure('Position',[scrsz(3)*1.97/3 scrsz(4)*1/3 scrsz(3)/3 scrsz(4)/3]) end drag_coeff_bar=(drag_coeff(index(:,1))+drag_coeff(index(:,2))+drag_coeff(index(:,3)))/3; %visualize new distribution. if md.plot==1, plotmodel(md,'data',drag_coeff,'title',['Drag at iteration ' num2str(niteration)],'caxis',[0 1000],'colorbar','on','figure',3);drawnow; end %evaluate new misfit. %@@@AK load F_file %this file was created in objectivefunction_C, and is reloaded %here to win some computation time. load F_file J(niteration)=objectivefunction_C_drag(0,B,glen_coeff,drag_coeff,direction,Rhs,S,F,P,specified_velocity,nods,nel,vx_obs, ... vy_obs,u_objective, v_objective, index,alpha, beta, area,weighting,rowD,colD,rowDshort,colDshort,valueuu,valuevv,valueuv,matrix_bar,criterion); disp(J(niteration)); %do a backup every 5 iterations if(mod(niteration,5)==0), save temporary_control_results_drag drag_coeff drag_coeff_bar u v J direction end end end function macayealcontrolusage(); disp('md=macayealcontrol(md)'); disp(' where md is a structure of class @model');