1 | % set up a least-squares study, like might be done in Pig.par
|
---|
2 |
|
---|
3 | %% a variety of variables
|
---|
4 |
|
---|
5 | % seems to be a Matlab bug here (on Linux, not WinXP) -- unless
|
---|
6 | % the class has been called, "empty" method can not be found
|
---|
7 | normal_uncertain;
|
---|
8 | continuous_design;
|
---|
9 | continuous_state;
|
---|
10 | linear_inequality_constraint;
|
---|
11 | linear_equality_constraint;
|
---|
12 | response_function;
|
---|
13 | objective_function;
|
---|
14 | least_squares_term;
|
---|
15 | nonlinear_inequality_constraint;
|
---|
16 | nonlinear_equality_constraint;
|
---|
17 |
|
---|
18 | md.variables=struct();
|
---|
19 | md.variables.cdv=continuous_design.empty();
|
---|
20 | md.variables.cdv(end+1)=continuous_design('thickness',1,0.9,1.1);
|
---|
21 | md.variables.cdv(end+1)=continuous_design('drag',1,0.5,1.5);
|
---|
22 | md.variables.csv=continuous_state.empty();
|
---|
23 | md.variables.csv(end+1)=continuous_state('gravity',9.8);
|
---|
24 |
|
---|
25 | %% a variety of responses
|
---|
26 |
|
---|
27 | md.responses=struct();
|
---|
28 | md.responses.lst=least_squares_term.empty();
|
---|
29 | md.responses.lst(end+1)=least_squares_term('max_vx');
|
---|
30 | md.responses.lst(end+1)=least_squares_term('max_vy');
|
---|
31 |
|
---|
32 | %% a least-squares study
|
---|
33 |
|
---|
34 | md.qmu_method =dakota_method('nl2sol');
|
---|
35 | md.qmu_method(end)=dmeth_params_set(md.qmu_method(end),...
|
---|
36 | 'max_iterations',10,...
|
---|
37 | 'max_function_evaluations',50,...
|
---|
38 | 'convergence_tolerance',0.01);
|
---|
39 |
|
---|
40 | %% a variety of parameters
|
---|
41 |
|
---|
42 | md.qmu_params.evaluation_concurrency=4;
|
---|
43 | md.qmu_params.analysis_driver='';
|
---|
44 | md.qmu_params.analysis_components='';
|
---|
45 | md.qmu_params.interval_type='forward';
|
---|
46 | md.qmu_params.fd_gradient_step_size=0.01;
|
---|
47 |
|
---|
48 | md.npart=10;
|
---|
49 |
|
---|
50 | md.qmu
|
---|