1 | """A collection of functions that replicate the behavior of MATLAB built-in
|
---|
2 | functions of the same, respective name.
|
---|
3 |
|
---|
4 | Where possible, users are encouraged to use native and/or the most efficient
|
---|
5 | methods in Python, but we provide these functions as a way to make translations
|
---|
6 | from the MATLAB to the Python ISSM API more seamless.
|
---|
7 | """
|
---|
8 |
|
---|
9 | def acosd(X): # {{{
|
---|
10 | """function acosd - Inverse cosine in degrees
|
---|
11 |
|
---|
12 | Usage:
|
---|
13 | Y = acosd(X)
|
---|
14 | """
|
---|
15 | import numpy as np
|
---|
16 |
|
---|
17 | return np.degrees(np.arccos(X))
|
---|
18 | # }}}
|
---|
19 |
|
---|
20 | def asind(X): # {{{
|
---|
21 | """function asind - Inverse sine in degrees
|
---|
22 |
|
---|
23 | Usage:
|
---|
24 | Y = asind(X)
|
---|
25 | """
|
---|
26 | import numpy as np
|
---|
27 |
|
---|
28 | return np.degrees(np.arcsin(X))
|
---|
29 | # }}}
|
---|
30 |
|
---|
31 | def atand(X): # {{{
|
---|
32 | """function atand - Inverse tangent in degrees
|
---|
33 |
|
---|
34 | Usage:
|
---|
35 | Y = atand(X)
|
---|
36 | """
|
---|
37 | import numpy as np
|
---|
38 |
|
---|
39 | return np.degrees(np.arctan(X))
|
---|
40 | # }}}
|
---|
41 |
|
---|
42 |
|
---|
43 | def atan2d(Y, X): # {{{
|
---|
44 | """function atan2d - Four-quadrant inverse tangent in degrees
|
---|
45 |
|
---|
46 | Usage:
|
---|
47 | D = atan2d(Y, X)
|
---|
48 | """
|
---|
49 | import numpy as np
|
---|
50 |
|
---|
51 | return np.degrees(np.arctan2(Y, X))
|
---|
52 | # }}}
|
---|
53 |
|
---|
54 | def contains(str, pat): #{{{
|
---|
55 | """function contains - Determine if pattern is in strings
|
---|
56 |
|
---|
57 | Usage:
|
---|
58 | TF = contains(str, pat)
|
---|
59 |
|
---|
60 | TODO:
|
---|
61 | - Implement 'IgnoreCase' option
|
---|
62 | """
|
---|
63 |
|
---|
64 | # }}}
|
---|
65 |
|
---|
66 | def cosd(X): # {{{
|
---|
67 | """function cosd - Cosine of argument in degrees
|
---|
68 |
|
---|
69 | Usage:
|
---|
70 | Y = cosd(X)
|
---|
71 | """
|
---|
72 | import numpy as np
|
---|
73 |
|
---|
74 | if type(X) == np.ndarray:
|
---|
75 | Y = np.array([])
|
---|
76 | for x in X:
|
---|
77 | Y = np.append(Y, cosdsingle(x))
|
---|
78 | return Y
|
---|
79 | else:
|
---|
80 | return cosdsingle(X)
|
---|
81 | # }}}
|
---|
82 |
|
---|
83 | def cosdsingle(x): # {{{
|
---|
84 | """function cosdsingle - Helper function for cosd to reduce repetition of
|
---|
85 | logic
|
---|
86 |
|
---|
87 | Usage:
|
---|
88 | y = cosdsingle(x)
|
---|
89 | """
|
---|
90 | import numpy as np
|
---|
91 |
|
---|
92 | while x >= 360:
|
---|
93 | x = x - 360
|
---|
94 |
|
---|
95 | if x == 0:
|
---|
96 | return 1
|
---|
97 | elif x == 90 or x == 270:
|
---|
98 | return 0
|
---|
99 | elif x == 180:
|
---|
100 | return -1
|
---|
101 | else:
|
---|
102 | return np.cos(np.radians(x))
|
---|
103 | # }}}
|
---|
104 |
|
---|
105 | def det(a): # {{{
|
---|
106 | if a.shape == (1, ):
|
---|
107 | return a[0]
|
---|
108 | elif a.shape == (1, 1):
|
---|
109 | return a[0, 0]
|
---|
110 | elif a.shape == (2, 2):
|
---|
111 | return a[0, 0] * a[1, 1] - a[0, 1] * a[1, 0]
|
---|
112 | else:
|
---|
113 | raise TypeError('MatlabFunc.det only implemented for shape (2, 2), not for shape {}.'.format(a.shape))
|
---|
114 | # }}}
|
---|
115 |
|
---|
116 | def error(msg): # {{{
|
---|
117 | raise Exception(msg)
|
---|
118 | # }}}
|
---|
119 |
|
---|
120 | def etime(t2, t1): # {{{
|
---|
121 | return t2 - t1
|
---|
122 | # }}}
|
---|
123 |
|
---|
124 | def find(*args): # {{{
|
---|
125 | nargs = len(args)
|
---|
126 | if nargs >= 1 or nargs <= 2:
|
---|
127 | X = args[0]
|
---|
128 | n = len(args[0])
|
---|
129 | if nargs == 2:
|
---|
130 | n = args[1]
|
---|
131 | indices=[]
|
---|
132 | for i in range(n):
|
---|
133 | if X[i] != 0:
|
---|
134 | indices.push(i)
|
---|
135 | return indices
|
---|
136 | else:
|
---|
137 | raise Exception('find: must have 1 or 2 arguments')
|
---|
138 | # }}}
|
---|
139 |
|
---|
140 | def floor(X): # {{{
|
---|
141 | import math
|
---|
142 |
|
---|
143 | return int(math.floor(X))
|
---|
144 | # }}}
|
---|
145 |
|
---|
146 | def heaviside(x): # {{{
|
---|
147 | import numpy as np
|
---|
148 |
|
---|
149 | y = np.zeros_like(x)
|
---|
150 | y[np.nonzero(x > 0.)] = 1.
|
---|
151 | y[np.nonzero(x == 0.)] = 0.5
|
---|
152 |
|
---|
153 | return y
|
---|
154 | # }}}
|
---|
155 |
|
---|
156 | def intersect(A, B): # {{{
|
---|
157 | """function intersect - Set intersection of two arrays
|
---|
158 |
|
---|
159 | Usage:
|
---|
160 | C = intersect(A, B)
|
---|
161 |
|
---|
162 | NOTE:
|
---|
163 | - Only the following functionality is currently implemented:
|
---|
164 | - C = intersect(A,B) returns the data common to both A and B, with no
|
---|
165 | repetitions. C is in sorted order.
|
---|
166 |
|
---|
167 | """
|
---|
168 | import numpy as np
|
---|
169 |
|
---|
170 | return np.intersect1d(A, B)
|
---|
171 | #}}}
|
---|
172 |
|
---|
173 | def isa(A, dataType): # {{{
|
---|
174 | """function isa
|
---|
175 |
|
---|
176 | NOTE:
|
---|
177 | - Takes a type as its second argument (in contrast to the MATLAB function
|
---|
178 | that it replicates, which takes a string representing the name of a type)
|
---|
179 | """
|
---|
180 | return type(A) == dataType
|
---|
181 | # }}}
|
---|
182 |
|
---|
183 | # NOTE: Conflicts with definition of isempty in $ISSM_DIR/src/m/qmu/helpers.py
|
---|
184 | #
|
---|
185 | # def isempty(A): # {{{
|
---|
186 | # return len(A) > 0
|
---|
187 | # # }}}
|
---|
188 |
|
---|
189 | def isfile(fileName): # {{{
|
---|
190 | import os
|
---|
191 |
|
---|
192 | return os.path.exists(fileName)
|
---|
193 | # }}}
|
---|
194 |
|
---|
195 | def ismac(): # {{{
|
---|
196 | import platform
|
---|
197 |
|
---|
198 | if 'Darwin' in platform.system():
|
---|
199 | return True
|
---|
200 | else:
|
---|
201 | return False
|
---|
202 | # }}}
|
---|
203 |
|
---|
204 | def ismember(a, s): # {{{
|
---|
205 | import numpy as np
|
---|
206 | if not isinstance(s, (tuple, list, dict, np.ndarray)):
|
---|
207 | s = [s]
|
---|
208 |
|
---|
209 | if not isinstance(a, (tuple, list, dict, np.ndarray)):
|
---|
210 | a = [a]
|
---|
211 |
|
---|
212 | if not isinstance(a, np.ndarray):
|
---|
213 | b = [item in s for item in a]
|
---|
214 | else:
|
---|
215 | if not isinstance(s, np.ndarray):
|
---|
216 | b = np.empty_like(a).flat
|
---|
217 | for i, item in enumerate(a.flat):
|
---|
218 | b[i] = item in s
|
---|
219 | else:
|
---|
220 | b = np.in1d(a.flat, s.flat).reshape(a.shape)
|
---|
221 | return b
|
---|
222 | # }}}
|
---|
223 |
|
---|
224 | def isnan(A): # {{{
|
---|
225 | import numpy as np
|
---|
226 |
|
---|
227 | return np.isnan(A)
|
---|
228 | # }}}
|
---|
229 |
|
---|
230 | def ispc(): # {{{
|
---|
231 | import platform
|
---|
232 |
|
---|
233 | if 'Windows' in platform.system():
|
---|
234 | return True
|
---|
235 | else:
|
---|
236 | return False
|
---|
237 | # }}}
|
---|
238 |
|
---|
239 | def isprop(obj, PropertyName): # {{{
|
---|
240 | return hasattr(obj, PropertyName)
|
---|
241 | # }}}
|
---|
242 |
|
---|
243 | def mod(a, m): # {{{
|
---|
244 | return a % m
|
---|
245 | # }}}
|
---|
246 |
|
---|
247 | def numel(A): # {{{
|
---|
248 | """function numel - Number of array elements
|
---|
249 |
|
---|
250 | Usage:
|
---|
251 | n = numel(A))
|
---|
252 | """
|
---|
253 | import numpy as np
|
---|
254 |
|
---|
255 | return np.size(A)
|
---|
256 | # }}}
|
---|
257 |
|
---|
258 | def pause(n): # {{{
|
---|
259 | import time
|
---|
260 |
|
---|
261 | time.sleep(n)
|
---|
262 | # }}}
|
---|
263 |
|
---|
264 | def pwd(): # {{{
|
---|
265 | import os
|
---|
266 |
|
---|
267 | return os.getcwd()
|
---|
268 | # }}}
|
---|
269 |
|
---|
270 | def oshostname(): # {{{
|
---|
271 | import socket
|
---|
272 | hostname = socket.gethostname()
|
---|
273 |
|
---|
274 | return hostname.lower()
|
---|
275 | # }}}
|
---|
276 |
|
---|
277 | def rem(a, b): # {{{
|
---|
278 | return a % b
|
---|
279 | # }}}
|
---|
280 |
|
---|
281 | def sind(X): # {{{
|
---|
282 | """function sind - Sine of argument in degrees
|
---|
283 |
|
---|
284 | Usage:
|
---|
285 | Y = sind(X)
|
---|
286 | """
|
---|
287 | import numpy as np
|
---|
288 |
|
---|
289 | if type(X) == np.ndarray:
|
---|
290 | Y = np.array([])
|
---|
291 | for x in X:
|
---|
292 | Y = np.append(Y, sindsingle(x))
|
---|
293 | return Y
|
---|
294 | else:
|
---|
295 | return sindsingle(X)
|
---|
296 | # }}}
|
---|
297 |
|
---|
298 | def sindsingle(x): # {{{
|
---|
299 | """function sindsingle - Helper function for sind to reduce repetition of
|
---|
300 | logic
|
---|
301 |
|
---|
302 | Usage:
|
---|
303 | y = sindsingle(x)
|
---|
304 | """
|
---|
305 | import numpy as np
|
---|
306 |
|
---|
307 | while x >= 360:
|
---|
308 | x = x - 360
|
---|
309 |
|
---|
310 | if x == 0 or x == 180:
|
---|
311 | return 0
|
---|
312 | elif x == 90:
|
---|
313 | return 1
|
---|
314 | elif x == 270:
|
---|
315 | return -1
|
---|
316 | else:
|
---|
317 | return np.sin(np.radians(x))
|
---|
318 | # }}}
|
---|
319 |
|
---|
320 | def sparse(ivec, jvec, svec, m=0, n=0, nzmax=0): # {{{
|
---|
321 | import numpy as np
|
---|
322 |
|
---|
323 | if not m:
|
---|
324 | m = np.max(ivec)
|
---|
325 | if not n:
|
---|
326 | n = np.max(jvec)
|
---|
327 |
|
---|
328 | a = np.zeros((m, n))
|
---|
329 |
|
---|
330 | for i, j, s in zip(ivec.reshape(-1, order='F'), jvec.reshape(-1, order='F'), svec.reshape(-1, order='F')):
|
---|
331 | a[i - 1, j - 1] += s
|
---|
332 |
|
---|
333 | return a
|
---|
334 | # }}}
|
---|
335 |
|
---|
336 | def strcmp(s1, s2): # {{{
|
---|
337 | if s1 == s2:
|
---|
338 | return True
|
---|
339 | else:
|
---|
340 | return False
|
---|
341 | # }}}
|
---|
342 |
|
---|
343 | def strcmpi(s1, s2): # {{{
|
---|
344 | if s1.lower() == s2.lower():
|
---|
345 | return True
|
---|
346 | else:
|
---|
347 | return False
|
---|
348 | # }}}
|
---|
349 |
|
---|
350 | def strjoin(*args): # {{{
|
---|
351 | nargs = len(args)
|
---|
352 | if nargs >= 1 or nargs <= 2:
|
---|
353 | sep = ' '
|
---|
354 | if nargs == 2:
|
---|
355 | sep = args[1]
|
---|
356 | return sep.join(args[0])
|
---|
357 | else:
|
---|
358 | raise Exception('strjoin: must have 1 or 2 arguments')
|
---|
359 | # }}}
|
---|
360 |
|
---|
361 | def strncmp(s1, s2, n): # {{{
|
---|
362 | if s1[0:n] == s2[0:n]:
|
---|
363 | return True
|
---|
364 | else:
|
---|
365 | return False
|
---|
366 | # }}}
|
---|
367 |
|
---|
368 | def strncmpi(s1, s2, n): # {{{
|
---|
369 | if s1.lower()[0:n] == s2.lower()[0:n]:
|
---|
370 | return True
|
---|
371 | else:
|
---|
372 | return False
|
---|
373 | # }}}
|
---|