[26374] | 1 | import os.path
|
---|
| 2 | import numpy as np
|
---|
| 3 | from collections import OrderedDict
|
---|
| 4 |
|
---|
[28013] | 5 |
|
---|
[26374] | 6 | def contourlevelzero(md,mask,level):
|
---|
[28013] | 7 | """CONTOURLEVELZERO - figure out the zero level (or offset thereof,
|
---|
| 8 | specified by the level value of a vectorial mask, and vectorialize it into
|
---|
| 9 | an exp or shp compatible structure.
|
---|
| 10 |
|
---|
| 11 | Usage:
|
---|
| 12 | contours=contourlevelzero(md,mask,level)
|
---|
| 13 |
|
---|
| 14 | See also: PLOT_CONTOUR
|
---|
[26374] | 15 | """
|
---|
[28013] | 16 |
|
---|
| 17 | # Process data
|
---|
| 18 | if md.mesh.dimension() == 3:
|
---|
[26374] | 19 | x = md.mesh.x2d
|
---|
| 20 | y = md.mesh.y2d
|
---|
[28013] | 21 | z = md.mesh.z
|
---|
| 22 | index = md.mesh.elements2d - 1
|
---|
[26374] | 23 | else:
|
---|
[28013] | 24 | x = md.mesh.x
|
---|
| 25 | y = md.mesh.y
|
---|
| 26 | index = md.mesh.elements - 1
|
---|
| 27 | z = np.zeros((md.mesh.numberofvertices, 1))
|
---|
| 28 |
|
---|
| 29 | if len(mask) == 0:
|
---|
[26374] | 30 | raise OSError("mask provided is empty")
|
---|
[28013] | 31 |
|
---|
| 32 | if md.mesh.dimension() == 3:
|
---|
| 33 | if len(mask) != md.mesh.numberofvertices2d:
|
---|
[26374] | 34 | raise OSError("mask provided should be specified at the vertices of the mesh")
|
---|
| 35 | else:
|
---|
[28013] | 36 | if len(mask) != md.mesh.numberofvertices:
|
---|
[26374] | 37 | raise OSError("mask provided should be specified at the vertices of the mesh")
|
---|
| 38 |
|
---|
[28013] | 39 | # Initialization of some variables
|
---|
| 40 | numberofelements = np.size(index, 0)
|
---|
| 41 | elementslist = np.c_[0:numberofelements]
|
---|
| 42 | c = []
|
---|
| 43 | h = []
|
---|
| 44 |
|
---|
| 45 | # Get unique edges in mesh
|
---|
| 46 | # 1: list of edges
|
---|
| 47 | edges = np.vstack((np.vstack((index[:, (0, 1)], index[:, (1, 2)])), index[:, (2, 0)]))
|
---|
| 48 | # 2: find unique edges
|
---|
| 49 | [edges, J] = np.unique(np.sort(edges, 1), axis=0, return_inverse=True)
|
---|
| 50 | # 3: unique edge numbers
|
---|
| 51 | vec = J
|
---|
| 52 | # 4: unique edges numbers in each triangle (2 triangles sharing the same
|
---|
| 53 | # edge will have the same edge number)
|
---|
| 54 | edges_tria = np.hstack((np.hstack((vec[elementslist], vec[elementslist + numberofelements])), vec[elementslist + 2 * numberofelements]))
|
---|
| 55 |
|
---|
| 56 | # Segments [nodes1 nodes2]
|
---|
| 57 | Seg1 = index[:, (0, 1)]
|
---|
| 58 | Seg2 = index[:, (1, 2)]
|
---|
| 59 | Seg3 = index[:, (2, 0)]
|
---|
| 60 |
|
---|
| 61 | # Segment numbers [1;4;6;...]
|
---|
| 62 | Seg1_num = edges_tria[:, 0]
|
---|
| 63 | Seg2_num = edges_tria[:, 1]
|
---|
| 64 | Seg3_num = edges_tria[:, 2]
|
---|
| 65 |
|
---|
[26374] | 66 | #value of data on each tips of the segments
|
---|
[28013] | 67 | Data1 = mask[Seg1]
|
---|
| 68 | Data2 = mask[Seg2]
|
---|
| 69 | Data3 = mask[Seg3]
|
---|
| 70 |
|
---|
| 71 | # Get the ranges for each segment
|
---|
| 72 | Range1 = np.sort(Data1, 1)
|
---|
| 73 | Range2 = np.sort(Data2, 1)
|
---|
| 74 | Range3 = np.sort(Data3, 1)
|
---|
| 75 |
|
---|
| 76 | # Find the segments that contain this value
|
---|
| 77 | pos1 = (Range1[:, 0] < level) & (Range1[:, 1] >= level)
|
---|
| 78 | pos2 = (Range2[:, 0] < level) & (Range2[:, 1] >= level)
|
---|
| 79 | pos3 = (Range3[:, 0] < level) & (Range3[:, 1] >= level)
|
---|
| 80 |
|
---|
| 81 | # Get elements
|
---|
| 82 | poselem12 = (pos1) & (pos2)
|
---|
| 83 | poselem13 = (pos1) & (pos3)
|
---|
| 84 | poselem23 = (pos2) & (pos3)
|
---|
| 85 | poselem = np.where((poselem12) | (poselem13) | (poselem23))
|
---|
| 86 | poselem = poselem[0]
|
---|
| 87 | numelems = len(poselem)
|
---|
| 88 |
|
---|
| 89 | # If no element has been flagged, skip to the next level
|
---|
| 90 | if numelems == 0:
|
---|
[26374] | 91 | raise Exception('contourlevelzero warning message: no elements found with corresponding level value in mask')
|
---|
[28013] | 92 | contours = []
|
---|
[26374] | 93 | return contours
|
---|
[28013] | 94 |
|
---|
| 95 | # Go through the elements and build the coordinates for each segment (1 by element)
|
---|
| 96 | x1 = np.zeros((numelems, 1))
|
---|
| 97 | x2 = np.zeros((numelems, 1))
|
---|
| 98 | y1 = np.zeros((numelems, 1))
|
---|
| 99 | y2 = np.zeros((numelems, 1))
|
---|
| 100 | z1 = np.zeros((numelems, 1))
|
---|
| 101 | z2 = np.zeros((numelems, 1))
|
---|
| 102 |
|
---|
| 103 | edge_l = np.zeros((numelems, 2))
|
---|
| 104 |
|
---|
| 105 | for j in range(0, numelems):
|
---|
[26374] | 106 | with np.errstate(divide='ignore', invalid='ignore'):
|
---|
[28013] | 107 | weight1 = np.divide(level - Data1[poselem[j], 0],Data1[poselem[j], 1] - Data1[poselem[j], 0])
|
---|
| 108 | weight2 = np.divide(level - Data2[poselem[j], 0],Data2[poselem[j], 1] - Data2[poselem[j], 0])
|
---|
| 109 | weight3 = np.divide(level - Data3[poselem[j], 0],Data3[poselem[j], 1] - Data3[poselem[j], 0])
|
---|
[26374] | 110 |
|
---|
[28013] | 111 | if poselem12[poselem[j]] == True:
|
---|
| 112 | x1[j] = x[Seg1[poselem[j], 0]] + weight1 * [x[Seg1[poselem[j], 1]] - x[Seg1[poselem[j], 0]]]
|
---|
| 113 | x2[j] = x[Seg2[poselem[j], 0]] + weight2 * [x[Seg2[poselem[j], 1]] - x[Seg2[poselem[j], 0]]]
|
---|
| 114 | y1[j] = y[Seg1[poselem[j], 0]] + weight1 * [y[Seg1[poselem[j], 1]] - y[Seg1[poselem[j], 0]]]
|
---|
| 115 | y2[j] = y[Seg2[poselem[j], 0]] + weight2 * [y[Seg2[poselem[j], 1]] - y[Seg2[poselem[j], 0]]]
|
---|
| 116 | z1[j] = z[Seg1[poselem[j], 0]] + weight1 * [z[Seg1[poselem[j], 1]] - z[Seg1[poselem[j], 0]]]
|
---|
| 117 | z2[j] = z[Seg2[poselem[j], 0]] + weight2 * [z[Seg2[poselem[j], 1]] - z[Seg2[poselem[j], 0]]]
|
---|
[26374] | 118 |
|
---|
[28013] | 119 | edge_l[j, 0] = Seg1_num[poselem[j]]
|
---|
| 120 | edge_l[j, 1] = Seg2_num[poselem[j]]
|
---|
| 121 | elif poselem13[poselem[j]] == True:
|
---|
| 122 | x1[j] = x[Seg1[poselem[j], 0]] + weight1 * [x[Seg1[poselem[j], 1]] - x[Seg1[poselem[j], 0]]]
|
---|
| 123 | x2[j] = x[Seg3[poselem[j], 0]] + weight3 * [x[Seg3[poselem[j], 1]] - x[Seg3[poselem[j], 0]]]
|
---|
| 124 | y1[j] = y[Seg1[poselem[j], 0]] + weight1 * [y[Seg1[poselem[j], 1]] - y[Seg1[poselem[j], 0]]]
|
---|
| 125 | y2[j] = y[Seg3[poselem[j], 0]] + weight3 * [y[Seg3[poselem[j], 1]] - y[Seg3[poselem[j], 0]]]
|
---|
| 126 | z1[j] = z[Seg1[poselem[j], 0]] + weight1 * [z[Seg1[poselem[j], 1]] - z[Seg1[poselem[j], 0]]]
|
---|
| 127 | z2[j] = z[Seg3[poselem[j], 0]] + weight3 * [z[Seg3[poselem[j], 1]] - z[Seg3[poselem[j], 0]]]
|
---|
| 128 |
|
---|
| 129 | edge_l[j, 0] = Seg1_num[poselem[j]]
|
---|
| 130 | edge_l[j, 1] = Seg3_num[poselem[j]]
|
---|
| 131 | elif poselem23[poselem[j]] == True:
|
---|
| 132 | x1[j] = x[Seg2[poselem[j], 0]] + weight2 * [x[Seg2[poselem[j], 1]] - x[Seg2[poselem[j], 0]]]
|
---|
| 133 | x2[j] = x[Seg3[poselem[j], 0]] + weight3 * [x[Seg3[poselem[j], 1]] - x[Seg3[poselem[j], 0]]]
|
---|
| 134 | y1[j] = y[Seg2[poselem[j], 0]] + weight2 * [y[Seg2[poselem[j], 1]] - y[Seg2[poselem[j], 0]]]
|
---|
| 135 | y2[j] = y[Seg3[poselem[j], 0]] + weight3 * [y[Seg3[poselem[j], 1]] - y[Seg3[poselem[j], 0]]]
|
---|
| 136 | z1[j] = z[Seg2[poselem[j], 0]] + weight2 * [z[Seg2[poselem[j], 1]] - z[Seg2[poselem[j], 0]]]
|
---|
| 137 | z2[j] = z[Seg3[poselem[j], 0]] + weight3 * [z[Seg3[poselem[j], 1]] - z[Seg3[poselem[j], 0]]]
|
---|
| 138 |
|
---|
| 139 | edge_l[j, 0] = Seg2_num[poselem[j]]
|
---|
| 140 | edge_l[j, 1] = Seg3_num[poselem[j]]
|
---|
| 141 | # else:
|
---|
| 142 | # Should never get here
|
---|
| 143 |
|
---|
| 144 | # Now that we have the segments, we must try to connect them...
|
---|
| 145 |
|
---|
| 146 | # Loop over the subcontours
|
---|
| 147 | contours = []
|
---|
| 148 |
|
---|
| 149 | while len(edge_l) > 0:
|
---|
| 150 | # Take the right edge of the second segment and connect it to the next segments if any
|
---|
| 151 | e1 = edge_l[0, 0]
|
---|
| 152 | e2 = edge_l[0, 1]
|
---|
| 153 | xc = np.vstack((x1[0], x2[0]))
|
---|
| 154 | yc = np.vstack((y1[0], y2[0]))
|
---|
| 155 | zc = np.vstack((z1[0], z2[0]))
|
---|
| 156 | # Erase the lines corresponding to this edge
|
---|
| 157 | edge_l = np.delete(edge_l, 0, axis=0)
|
---|
| 158 | x1 = np.delete(x1, 0, axis=0)
|
---|
| 159 | x2 = np.delete(x2, 0, axis=0)
|
---|
| 160 | y1 = np.delete(y1, 0, axis=0)
|
---|
| 161 | y2 = np.delete(y2, 0, axis=0)
|
---|
| 162 | z1 = np.delete(z1, 0, axis=0)
|
---|
| 163 | z2 = np.delete(z2,0,axis=0)
|
---|
| 164 | pos1 = np.where(edge_l == e1)
|
---|
[26374] | 165 |
|
---|
[28013] | 166 | while len(pos1[0]) > 0:
|
---|
| 167 | if np.all(pos1[1] == 0):
|
---|
| 168 | xc = np.vstack((x2[pos1[0]], xc))
|
---|
| 169 | yc = np.vstack((y2[pos1[0]], yc))
|
---|
| 170 | zc = np.vstack((z2[pos1[0]], zc))
|
---|
| 171 | # Next edge:
|
---|
| 172 | e1 = edge_l[pos1[0], 1]
|
---|
[26374] | 173 | else:
|
---|
[28013] | 174 | xc = np.vstack((x1[pos1[0]], xc))
|
---|
| 175 | yc = np.vstack((y1[pos1[0]], yc))
|
---|
| 176 | zc = np.vstack((z1[pos1[0]], zc))
|
---|
| 177 | # Next edge:
|
---|
| 178 | e1 = edge_l[pos1[0], 0]
|
---|
[26374] | 179 |
|
---|
[28013] | 180 | # Erase the lines of this
|
---|
| 181 | edge_l = np.delete(edge_l, pos1[0], axis=0)
|
---|
| 182 | x1 = np.delete(x1, pos1[0], axis=0)
|
---|
| 183 | x2 = np.delete(x2, pos1[0], axis=0)
|
---|
| 184 | y1 = np.delete(y1, pos1[0], axis=0)
|
---|
| 185 | y2 = np.delete(y2, pos1[0], axis=0)
|
---|
| 186 | z1 = np.delete(z1, pos1[0], axis=0)
|
---|
| 187 | z2 = np.delete(z2, pos1[0], axis=0)
|
---|
| 188 | # Next connection
|
---|
| 189 | pos1 = np.where(edge_l == e1)
|
---|
| 190 |
|
---|
| 191 | # Same thing the other way (to the right)
|
---|
| 192 | pos2 = np.where(edge_l == e2)
|
---|
| 193 |
|
---|
| 194 | while len(pos2[0]) > 0:
|
---|
| 195 | if np.all(pos2[1] == 0):
|
---|
| 196 | xc = np.vstack((xc, x2[pos2[0]]))
|
---|
| 197 | yc = np.vstack((yc, y2[pos2[0]]))
|
---|
| 198 | zc = np.vstack((zc, z2[pos2[0]]))
|
---|
| 199 | # Next edge:
|
---|
| 200 | e2 = edge_l[pos2[0], 1]
|
---|
[26374] | 201 | else:
|
---|
[28013] | 202 | xc = np.vstack((xc, x1[pos2[0]]))
|
---|
| 203 | yc = np.vstack((yc, y1[pos2[0]]))
|
---|
| 204 | zc = np.vstack((zc, z1[pos2[0]]))
|
---|
| 205 | # Next edge:
|
---|
| 206 | e2 = edge_l[pos2[0], 0]
|
---|
| 207 |
|
---|
| 208 | # Erase the lines of this
|
---|
| 209 | edge_l = np.delete(edge_l, pos2[0], axis=0)
|
---|
| 210 | x1 = np.delete(x1, pos2[0], axis=0)
|
---|
| 211 | x2 = np.delete(x2, pos2[0], axis=0)
|
---|
| 212 | y1 = np.delete(y1, pos2[0], axis=0)
|
---|
| 213 | y2 = np.delete(y2, pos2[0], axis=0)
|
---|
| 214 | z1 = np.delete(z1, pos2[0], axis=0)
|
---|
| 215 | z2 = np.delete(z2, pos2[0], axis=0)
|
---|
| 216 | # Next connection
|
---|
| 217 | pos2 = np.where(edge_l == e2)
|
---|
| 218 |
|
---|
| 219 | # Save xc, yc contour:
|
---|
[26374] | 220 | newcontour = OrderedDict()
|
---|
| 221 | newcontour['nods'] = np.size(xc)
|
---|
[28013] | 222 | newcontour['density'] = 1
|
---|
[26374] | 223 | newcontour['closed'] = 0
|
---|
| 224 | newcontour['x'] = np.ma.filled(xc.astype(float), np.nan)
|
---|
| 225 | newcontour['y'] = np.ma.filled(yc.astype(float), np.nan)
|
---|
| 226 | newcontour['z'] = np.ma.filled(zc.astype(float), np.nan)
|
---|
| 227 | newcontour['name'] = ''
|
---|
| 228 | contours.append(newcontour)
|
---|
[28013] | 229 |
|
---|
[26374] | 230 | return contours
|
---|