1 | %{
|
---|
2 | Given a NetCDF4 file, this set of functions will perform the following:
|
---|
3 | 1. Enter each group of the file.
|
---|
4 | 2. For each variable in each group, update an empty model with the variable's data
|
---|
5 | 3. Enter nested groups and repeat
|
---|
6 |
|
---|
7 |
|
---|
8 | If the model you saved has subclass instances that are not in the standard model() class
|
---|
9 | you can:
|
---|
10 | 1. Copy lines 30-35, set the "results" string to the name of the subclass instance,
|
---|
11 | 2. Copy and modify the make_results_subclasses() function to create the new subclass
|
---|
12 | instances you need.
|
---|
13 | From there, the rest of this script will automatically create the new subclass
|
---|
14 | instance in the model you're writing to and store the data from the netcdf file there.
|
---|
15 | %}
|
---|
16 |
|
---|
17 |
|
---|
18 | function model_copy = read_netCDF(filename)
|
---|
19 | fprintf('NetCDF42C v1.1.14\n');
|
---|
20 |
|
---|
21 | % make a model framework to fill that is in the scope of this file
|
---|
22 | global model_copy;
|
---|
23 | model_copy = model();
|
---|
24 |
|
---|
25 | % Check if path exists
|
---|
26 | if exist(filename, 'file')
|
---|
27 | fprintf('Opening %s for reading\n', filename);
|
---|
28 |
|
---|
29 | % Open the given netCDF4 file
|
---|
30 | global NCData;
|
---|
31 | NCData = netcdf.open(filename, 'NOWRITE');
|
---|
32 | % Remove masks from netCDF data for easy conversion: NOT WORKING
|
---|
33 | %netcdf.setMask(NCData, 'NC_NOFILL');
|
---|
34 |
|
---|
35 | % see if results is in there, if it is we have to instantiate some classes
|
---|
36 | try
|
---|
37 | results_group_id = netcdf.inqNcid(NCData, "results");
|
---|
38 | make_results_subclasses();
|
---|
39 | catch
|
---|
40 | end % 'results' group doesn't exist
|
---|
41 |
|
---|
42 | % see if inversion is in there, if it is we may have to instantiate some classes
|
---|
43 | try
|
---|
44 | inversion_group_id = netcdf.inqNcid(NCData, "inversion");
|
---|
45 | check_inversion_class();
|
---|
46 | catch
|
---|
47 | end % 'inversion' group doesn't exist
|
---|
48 |
|
---|
49 | % loop over first layer of groups in netcdf file
|
---|
50 | for group = netcdf.inqGrps(NCData)
|
---|
51 | group_id = netcdf.inqNcid(NCData, netcdf.inqGrpName(group));
|
---|
52 | %disp(netcdf.inqGrpNameFull(group_id))
|
---|
53 | % hand off first level to recursive search
|
---|
54 | walk_nested_groups(group_id);
|
---|
55 | end
|
---|
56 |
|
---|
57 | % Close the netCDF file
|
---|
58 | netcdf.close(NCData);
|
---|
59 | disp('Model Successfully Copied')
|
---|
60 | else
|
---|
61 | fprintf('File %s does not exist.\n', filename);
|
---|
62 | end
|
---|
63 | end
|
---|
64 |
|
---|
65 |
|
---|
66 | function make_results_subclasses()
|
---|
67 | global model_copy;
|
---|
68 | global NCData;
|
---|
69 | resultsGroup = netcdf.inqNcid(NCData, "results");
|
---|
70 | variables = netcdf.inqVarIDs(resultsGroup);
|
---|
71 | for name = variables
|
---|
72 | class_instance = netcdf.inqVar(resultsGroup, name);
|
---|
73 | class_instance_names_raw = netcdf.getVar(resultsGroup, name, 'char').';
|
---|
74 | class_instance_names = cellstr(class_instance_names_raw);
|
---|
75 | for index = 1:numel(class_instance_names)
|
---|
76 | class_instance_name = class_instance_names{index};
|
---|
77 | model_copy.results = setfield(model_copy.results, class_instance_name, struct());
|
---|
78 | end
|
---|
79 | %model_copy.results = setfield(model_copy.results, class_instance, class_instance_name);
|
---|
80 | end
|
---|
81 | disp('Successfully recreated results structs:')
|
---|
82 | for fieldname = string(fieldnames(model_copy.results))
|
---|
83 | disp(fieldname)
|
---|
84 | end
|
---|
85 | end
|
---|
86 |
|
---|
87 |
|
---|
88 | function check_inversion_class()
|
---|
89 | % get the name of the inversion class: either inversion or m1qn3inversion or taoinversion
|
---|
90 | global model_copy;
|
---|
91 | global NCData;
|
---|
92 | inversionGroup = netcdf.inqNcid(NCData, "inversion");
|
---|
93 | varid = netcdf.inqVarID(inversionGroup, 'inversion_class_name');
|
---|
94 | inversion_class = convertCharsToStrings(netcdf.getVar(inversionGroup, varid,'char'));
|
---|
95 | if strcmp(inversion_class, 'm1qn3inversion')
|
---|
96 | model_copy.inversion = m1qn3inversion();
|
---|
97 | disp('Successfully created inversion class instance: m1qn3inversion')
|
---|
98 | elseif strcmp(inversion_class, 'taoinversion')
|
---|
99 | model_copy.inversion = taoinversion();
|
---|
100 | disp('Successfully created inversion class instance: taoinversion')
|
---|
101 | else
|
---|
102 | disp('No inversion class was found')
|
---|
103 | end
|
---|
104 | end
|
---|
105 |
|
---|
106 |
|
---|
107 |
|
---|
108 | function walk_nested_groups(group_location_in_file)
|
---|
109 | global model_copy;
|
---|
110 | global NCData;
|
---|
111 | % we search the current group level for variables by getting this struct
|
---|
112 | variables = netcdf.inqVarIDs(group_location_in_file);
|
---|
113 |
|
---|
114 | % from the variables struct get the info related to the variables
|
---|
115 | for variable = variables
|
---|
116 | [varname, xtype, dimids, numatts] = netcdf.inqVar(group_location_in_file, variable);
|
---|
117 |
|
---|
118 | % keep an eye out for nested structs:
|
---|
119 | if strcmp(varname, 'this_is_a_nested')
|
---|
120 | is_nested = true;
|
---|
121 | copy_nested_struct(group_location_in_file)
|
---|
122 | elseif strcmp(varname, 'solution')
|
---|
123 | % band-aid pass..
|
---|
124 | else
|
---|
125 | copy_variable_data_to_new_model(group_location_in_file, varname, xtype);
|
---|
126 | end
|
---|
127 | end
|
---|
128 |
|
---|
129 | % try to find groups in current level, if it doesn't work it's because there is nothing there
|
---|
130 | %try
|
---|
131 | % if it's a nested struct the function copy_nested_struct has already been called
|
---|
132 | if logical(exist('is_nested', 'var'))
|
---|
133 | % do nothing
|
---|
134 | else
|
---|
135 | % search for nested groups in the current level to feed back to this function
|
---|
136 | groups = netcdf.inqGrps(group_location_in_file);
|
---|
137 | if not(isempty(groups))
|
---|
138 | for group = groups
|
---|
139 | group_id = netcdf.inqNcid(group_location_in_file, netcdf.inqGrpName(group));
|
---|
140 | %disp(netcdf.inqGrpNameFull(group_id))
|
---|
141 | walk_nested_groups(group);
|
---|
142 | end
|
---|
143 | end
|
---|
144 | end
|
---|
145 | %catch % no nested groups here
|
---|
146 | %end
|
---|
147 | end
|
---|
148 |
|
---|
149 |
|
---|
150 |
|
---|
151 | function copy_nested_struct(group_location_in_file)
|
---|
152 | global model_copy;
|
---|
153 | global NCData;
|
---|
154 | %{
|
---|
155 | A common multidimensional struct array is the 1xn md.results.TransientSolution struct.
|
---|
156 | The process to recreate is as follows:
|
---|
157 | 1. Get the name of the struct from group name
|
---|
158 | 2. Get the fieldnames from the subgroups
|
---|
159 | 3. Recreate the struct with fieldnames
|
---|
160 | 4. Populate the fields with their respective values
|
---|
161 | %}
|
---|
162 |
|
---|
163 | % step 1
|
---|
164 | name_of_struct = netcdf.inqGrpName(group_location_in_file);
|
---|
165 |
|
---|
166 | % step 2
|
---|
167 | subgroups = netcdf.inqGrps(group_location_in_file); % numerical cell array with ID's of subgroups
|
---|
168 | % get single subgroup's data
|
---|
169 | single_subgroup_ID = subgroups(1);
|
---|
170 | subgroup_varids = netcdf.inqVarIDs(single_subgroup_ID);
|
---|
171 | fieldnames = {};
|
---|
172 | for variable = subgroup_varids
|
---|
173 | [varname, xtype, dimids, numatts] = netcdf.inqVar(single_subgroup_ID, variable);
|
---|
174 | fieldnames{end+1} = varname;
|
---|
175 | end
|
---|
176 |
|
---|
177 | % step 3
|
---|
178 | address_in_model_raw = split(netcdf.inqGrpNameFull(group_location_in_file), '/');
|
---|
179 | address_in_model = address_in_model_raw{2};
|
---|
180 |
|
---|
181 | % we cannot assign a variable to represent this object as MATLAB treats all variables as copies
|
---|
182 | % and not pointers to the same memory address
|
---|
183 | % this means that if address_in_model has more than 1 layer, we need to modify the code. For now,
|
---|
184 | % we just hope this will do. An example of a no-solution would be model().abc.def.ghi.field
|
---|
185 |
|
---|
186 | model_copy.(address_in_model).(name_of_struct) = struct();
|
---|
187 | % for every fieldname in the subgroup, create an empty field
|
---|
188 | for fieldname = string(fieldnames)
|
---|
189 | model_copy.(address_in_model).(name_of_struct).(fieldname) = {};
|
---|
190 | end
|
---|
191 |
|
---|
192 | % use repmat to make the struct array multidimensional along the fields axis
|
---|
193 | number_of_dimensions = numel(subgroups);
|
---|
194 | model_copy.(address_in_model).(name_of_struct) = repmat(model_copy.(address_in_model).(name_of_struct), 1, number_of_dimensions);
|
---|
195 |
|
---|
196 | % step 4
|
---|
197 | % for every layer of the multidimensional struct array, populate the fields
|
---|
198 | for current_layer = 1:number_of_dimensions
|
---|
199 | % choose subgroup
|
---|
200 | current_layer_subgroup_ID = subgroups(current_layer);
|
---|
201 | % get all vars
|
---|
202 | current_layer_subgroup_varids = netcdf.inqVarIDs(current_layer_subgroup_ID);
|
---|
203 | % get individual vars and set fields at layer current_layer
|
---|
204 | for varid = current_layer_subgroup_varids
|
---|
205 | [varname, xtype, dimids, numatts] = netcdf.inqVar(current_layer_subgroup_ID, varid);
|
---|
206 | data = netcdf.getVar(current_layer_subgroup_ID, varid);
|
---|
207 |
|
---|
208 | % netcdf uses Row Major Order but MATLAB uses Column Major Order so we need to transpose all arrays w/ more than 1 dim
|
---|
209 | if all(size(data)~=1) || xtype == 2
|
---|
210 | data = data.';
|
---|
211 | end
|
---|
212 |
|
---|
213 | % set the field
|
---|
214 | model_copy.(address_in_model).(name_of_struct)(current_layer).(varname) = data;
|
---|
215 | %address_to_struct_in_model = setfield(address_to_struct_in_model(current_layer), varname, data)
|
---|
216 | end
|
---|
217 | model_copy.(address_in_model).(name_of_struct)(current_layer);
|
---|
218 | fprintf("Successfully saved layer %s to multidimension struct array\n", num2str(current_layer))
|
---|
219 | end
|
---|
220 | fprintf('Successfully recreated multidimensional structure array %s in md.%s\n', name_of_struct, address_in_model)
|
---|
221 | end
|
---|
222 |
|
---|
223 |
|
---|
224 |
|
---|
225 |
|
---|
226 | %{
|
---|
227 | Since there are two types of objects that MATLAB uses (classes and structs), we have to check
|
---|
228 | which object we're working with before we can set any fields/attributes of it. After this is completed,
|
---|
229 | we can write the data to that location in the model.
|
---|
230 | %}
|
---|
231 |
|
---|
232 | function copy_variable_data_to_new_model(group_location_in_file, varname, xtype)
|
---|
233 | global model_copy;
|
---|
234 | global NCData;
|
---|
235 | %disp(varname)
|
---|
236 | % this is an inversion band-aid
|
---|
237 | if strcmp(varname, 'inversion_class_name') || strcmp(varname, 'name_of_struct') || strcmp(varname, 'solution')
|
---|
238 | % we don't need this
|
---|
239 | else
|
---|
240 | % putting try/catch here so that any errors generated while copying data are logged and not lost by the try/catch in walk_nested_groups function
|
---|
241 | try
|
---|
242 | %disp(netcdf.inqGrpNameFull(group_location_in_file))
|
---|
243 | %disp(class(netcdf.inqGrpNameFull(group_location_in_file)))
|
---|
244 | address_to_attr = strrep(netcdf.inqGrpNameFull(group_location_in_file), '/', '.');
|
---|
245 | varid = netcdf.inqVarID(group_location_in_file, varname);
|
---|
246 | data = netcdf.getVar(group_location_in_file, varid);
|
---|
247 |
|
---|
248 |
|
---|
249 | % if we have an empty string
|
---|
250 | if xtype == 2 && isempty(all(data))
|
---|
251 | data = cell(char());
|
---|
252 | % if we have an empty cell-char array
|
---|
253 | elseif numel(data) == 1 && xtype == 3 && data == -32767
|
---|
254 | data = cell(char());
|
---|
255 | elseif isempty(all(data))
|
---|
256 | data = []
|
---|
257 | end
|
---|
258 | % band-aid for some cell-char-arrays:
|
---|
259 | if xtype == 2 && strcmp(data, 'default')
|
---|
260 | data = {'default'};
|
---|
261 | end
|
---|
262 |
|
---|
263 | % netcdf uses Row Major Order but MATLAB uses Column Major Order so we need to transpose all arrays w/ more than 1 dim
|
---|
264 | if all(size(data)~=1) || xtype == 2
|
---|
265 | data = data.';
|
---|
266 | end
|
---|
267 |
|
---|
268 | % if we have a list of strings
|
---|
269 | if xtype == 2
|
---|
270 | try
|
---|
271 | if strcmp(netcdf.getAtt(group_location_in_file, varid, "type_is"), 'cell_array_of_strings')
|
---|
272 | data = cellstr(data);
|
---|
273 | end
|
---|
274 | catch
|
---|
275 | % no attr found so we pass
|
---|
276 | end
|
---|
277 | end
|
---|
278 |
|
---|
279 | % the issm c compiler does not work with int64 datatypes, so we need to convert those to int16
|
---|
280 | % reference this (very hard to find) link for netcdf4 datatypes: https://docs.unidata.ucar.edu/netcdf-c/current/netcdf_8h_source.html
|
---|
281 | %xtype
|
---|
282 | if xtype == 10
|
---|
283 | arg_to_eval = ['model_copy', address_to_attr, '.', varname, ' = ' , 'double(data);'];
|
---|
284 | eval(arg_to_eval);
|
---|
285 | %disp('saved int64 as int16')
|
---|
286 | else
|
---|
287 | arg_to_eval = ['model_copy', address_to_attr, '.', varname, ' = data;'];
|
---|
288 | eval(arg_to_eval);
|
---|
289 | end
|
---|
290 |
|
---|
291 | full_addy = netcdf.inqGrpNameFull(group_location_in_file);
|
---|
292 | %disp(xtype)
|
---|
293 | %class(data)
|
---|
294 | fprintf('Successfully saved %s to %s\n', varname, full_addy);
|
---|
295 |
|
---|
296 | catch Me %e is an MException struct
|
---|
297 | % Some error occurred if you get here.
|
---|
298 | fprintf(1,'There was an error with %s! \n', varname)
|
---|
299 | errorMessage = sprintf('Error in function %s() at line %d.\n\nError Message:\n%s', ME.stack.name, ME.stack.line, ME.message);
|
---|
300 | fprintf(1, '%s\n', errorMessage);
|
---|
301 | uiwait(warndlg(errorMessage));
|
---|
302 | %line = Me.stack.line
|
---|
303 | %fprintf(1,'There was an error with %s! \n', varname)
|
---|
304 | %fprintf('The message was:\n%s\n',Me.message);
|
---|
305 | %fprintf(1,'The identifier was:\n%s\n',Me.identifier);
|
---|
306 |
|
---|
307 | % more error handling...
|
---|
308 | end
|
---|
309 | end
|
---|
310 | end
|
---|
311 |
|
---|
312 |
|
---|
313 |
|
---|